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Abstract

In Federated Learning (FL), the data in each client is
typically assumed fixed or static. However, data often
comes in an incremental manner in real-world applications,
where the data domain may increase dynamically. In this
work, we study catastrophic forgetting with data hetero-
geneity in Federated Incremental Learning (FIL) scenarios
where edge clients may lack enough storage space to retain
full data. We propose to employ a simple, generic frame-
work for FIL named Re-Fed, which can coordinate each
client to cache important samples for replay. More specif-
ically, when a new task arrives, each client first caches se-
lected previous samples based on their global and local im-
portance. Then, the client trains the local model with both
the cached samples and the samples from the new task. The-
oretically, we analyze the ability of Re-Fed to discover im-
portant samples for replay thus alleviating the catastrophic
forgetting problem. Moreover, we empirically show that Re-
Fed achieves competitive performance compared to state-
of-the-art methods.

1. Introduction
Federated learning (FL) is a distributed framework that al-
lows multiple edge clients to learn a unified deep learning
model cooperatively while preserving the data privacy of
the local clients [23, 31, 44]. Recently, FL has attracted
growing attention and been applied to various fields such
as recommendation systems [7, 24] and smart healthcare
[35, 46].

Typically, FL has been actively studied in a static setting,
where the number of training samples does not change over

*Ruixuan Li is the corresponding author.

time. However, in a realistic FL application, each client
may continue collecting new data. It is difficult to learn
new data while retaining previous information in machine
learning due to the notorious phenomenon known as catas-
trophic forgetting [9], leading to performance degradation
on previous tasks. This challenge is further compounded in
FL settings, where the data in a client remains inaccessible
to other ones and clients lack enough storage to retain full
previous samples.

To address this issue, researchers have studied federated
incremental learning (FIL), which enables each client to
continuously learn from a local private and incremental task
stream [4, 20]. The authors in [48] aim to personalize the
models for each client by decomposing the model param-
eters into shared parameters and adaptive parameters, fa-
cilitating the transfer of common knowledge across similar
tasks among clients. FCIL is proposed in [6] which specif-
ically focuses on the federated class-incremental learning
scenario and a global model is developed by incorporating
additional class-imbalance losses. It is studied in [29] to
utilize extra distilled data at both the server and client sides,
where knowledge distillation is employed to mitigate catas-
trophic forgetting. FedCIL is proposed in [38] to learn a
generative network and reconstruct past samples for replay,
improving the retention of previous information.

While these approaches may be effective at learning new
tasks, it is essential to also consider the constraints of pri-
vacy concerns and data heterogeneity. For example, data-
reconstruction techniques with gradient or adversarial train-
ing are employed in FCIL and FedCIL to alleviate catas-
trophic forgetting, but it may cause privacy leakage of local
data. Moreover, existing works simply assume that each
client collects incremental data of different tasks in an inde-
pendently and identically distributed (IID) manner, ignoring
the issue of data heterogeneity in real-world scenarios.
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Figure 1. The motivation for our method: an example of 3-client in FIL scenario. When a new task arrives, each client needs to cache
previous samples with limited storage for replay, alleviating catastrophic forgetting. Global caching represents all the samples cached
by all clients collectively. With a naive caching method, the client may ignore the sample’s correlation across clients which increases
the statistical data heterogeneity in global caching. With a desirable method, the client tends to cache samples which both considers the
distribution of local samples and reduces the statistical data heterogeneity in the global caching.

In this paper, we investigate a simple and efficient
method for catastrophic forgetting in FIL. We consider clas-
sification task in FIL and first identify two types of task for
newly collected data: (1) Class-Incremental Task: the newly
arrived data has different labels from previous data, and thus
the label space of data is growing. (2) Domain-Incremental
Task: the new data has a domain shift from previous data,
and it does not change the label space of data. Then, we
assume data heterogeneity as the data of each task in clients
is Non-IID.

To tackle the catastrophic forgetting problem in the non-
federated environment, data replay [32, 39] based meth-
ods have demonstrated great effectiveness by caching the
important samples from previous tasks and replaying them
when learning the new task. However, existing replay-based
methods fail to consider the correlation between clients
in FL, and the cached samples may not be globally opti-
mal for tasks. Essentially, the cached samples should be
strongly correlated with the statistical heterogeneity of all
data across clients. The intuitive explanation can also be
found in a simple 3-client example illustrated in Figure 1.

To explore this idea, we propose an efficient FIL frame-
work named Re-Fed that can alleviate catastrophic forget-
ting by allowing all clients to synergistically cache data
samples. More specifically, in Re-Fed, each client caches
samples based not only on their importance in the local
dataset but also on their correlation to the global dataset.
Here we fist employ an additional personalized informative
model (PIM) for each client which can incorporate knowl-
edge of data from global point of view in local caching such
that the cached samples contribute to both local and global
understanding of the data. Then, we quantify the sample

importance by calculating the gradient norm of previous
local samples during the update of the PIM. Finally, the
client caches the samples with higher importance scores,
and trains the local model with both the cached samples
from previous tasks and the samples from the new task.

Through extensive experiments on various datasets and
two types of newly collected data (Class-Incremental Task
and Domain-Incremental Task), we show that Re-Fed sig-
nificantly improves the model accuracy compared to state-
of-the-art approaches. The major contributions of this paper
are summarized as follows:
• We are the first to study the problem of catastrophic for-

getting with data heterogeneity in FIL. To address this
problem, we propose a novel framework named Re-Fed
which can be seen as an off-the-shelf personalization add-
on for standard FIL and it inherits privacy protection and
efficiency properties as traditional FL applications in FIL
scenarios.

• Next, we theoretically show that Re-Fed can efficiently
discover the important samples for data replay, with guar-
anteed convergence.

• Finally, we carry out extensive experiments on various
datasets and different FIL task scenarios. Experimental
results illustrate that our proposed model outperforms the
state-of-the-art methods by up to 19.73% in terms of final
accuracy on different tasks.

2. Related Work

Federated Learning FL is a technique to train a shared
global model by aggregating models from multiple clients
that are trained on their own local private datasets [23, 31,



44]. One effective architecture for FL is FedAvg [31],
which optimizes the global model by aggregating the pa-
rameters of local models trained on private local data. How-
ever, traditional FL algorithms like FedAvg face challenges
due to data heterogeneity, where the datasets in clients are
Non-IID, resulting in degradation in model performance
[15, 26]. To tackle the Non-IID issue in FL, a proximal
term is introduced in optimization in [22] to mitigate the ef-
fects of heterogeneous and Non-IID data distribution across
participating devices. Another approach of federated distil-
lation [14], aims to distill the knowledge from multiple local
models into the global model by aggregating only the soft
predictions generated by each model. The authors in [25]
proposed a knowledge distillation method that utilizes un-
labeled training samples as a proxy dataset. Recently, there
has been growing interest in data-free knowledge distilla-
tion methods that leverage adversarial approaches in gener-
ating data [45, 50, 51]. However, the aforementioned meth-
ods follow a framework designed to handle Non-IID static
data with spatial heterogeneity, overlooking the potential
challenges posed by incremental tasks with temporal het-
erogeneity in FL scenarios.

Incremental Learning Incremental Learning (IL) is a
machine learning technique that allows a model to learn
continuously from a incremental sequence of tasks while re-
taining knowledge gained from previous tasks [12, 43], in-
cluding task-incremental learning [5, 30], class-incremental
learning [39, 49], and domain-incremental learning [2, 33].
Existing approaches in IL can be classified into three main
categories: replay-based methods [27, 39], regularization-
based methods [16, 47], and parameter isolation methods
[8, 28]. Replay-based methods select representative old
samples to retain previously learned knowledge when train-
ing on a new task. Regularization-based methods pro-
tect existing knowledge from being overwritten with new
knowledge by imposing constraints on the loss function of
new tasks. Parameter isolation methods typically introduce
additional parameters and computations to learn new tasks.
Here we focus on the federated incremental learning sce-
nario, which can be viewed as a combination of federal
learning and incremental learning.

3. Methodology

We first formulate two FIL scenarios and propose a sim-
ple and scalable framework Re-Fed. Then, we present a
scalable algorithm and provide rigorous analytical results
to show the efficiency of the proposed method.

3.1. Problem Formulation

In the standard IL (non-federated environment), a
model learns from a sequence of streaming tasks
{T 1, T 2, · · · , T n} where T t denotes the t-th task of the

dataset. Here T t =
∑Nt

i=1(x
(i)
t , y

(i)
t ), which has N t pairs of

sample data x
(i)
t ∈ X t and corresponding label y(i)t ∈ Yt.

We use X t and Yt to represent the domain space and la-
bel space for the t-th task, which has |Yt| classes and Y
=
⋃n

t=1 Yt where Y denotes the total classes of all time.
Similarly, we use X =

⋃n
t=1 X t to denote the total domain

space for tasks of all time. In this paper, we focus on two
types of IL scenarios: (1) Class-Incremental Task: all tasks
share the same domain space, i.e., X 1 = X t,∀t ∈ [n].
As the sequence of learning tasks arrives, the number of
the classes may change, i.e, Y1 ̸= Yt,∀t ∈ [n]. (2)
Domain-Incremental Task: all tasks share the same number
of classes i.e., Y1 = Yt,∀t ∈ [n]. As the sequence of tasks
arrives, the client needs to learn the new task while their do-
main and data distribution changes, i.e.,X 1 ̸= X t,∀t ∈ [n].

We further consider IL in a federated setting. We aim
to train a global model for K total clients and assume that
client k can only access the local private streaming tasks
{T 1

k , T 2
k , · · · , T n

k }. When the t-th task comes, while clients
can cache all samples from previous tasks without forget-
ting, the goal is to train a global model wt over all t tasks
T t = {

∑t
n=1

∑K
k=1 T n

k }, which can be formulated as :

wt = argmin
w

t∑
n=1

K∑
k=1

Nn
k∑

i=1

1

|T t|
l
(
fwk

(x
(i)
k,n), y

(i)
k,n

)
. (1)

where fwk
(·) is the output of the model wk in client k and

l(·) is the cross-entropy loss. Then, due to poor storage in
common edge devices, each client caches partial samples
for replay. Here we assume each client can only store to-
tal M samples and has to cache M − N t

k samples from
(t − 1) previous tasks, which is denoted as T t−1

k,cached =∑M−Nt
k

i=1 (x̄
(i)
k,t−1, ȳ

(i)
k,t−1). The goal is to train a global

model wt over both cached samples and the t-th new task,
which can be formulated as:

wt = argmin
w

K∑
k=1

M∑
i=1

1

|T t
k,local|

l
(
fwk

(x̃
(i)
k,t), ỹ

(i)
k,t

)
. (2)

where T t
k,local = T

t−1
k,cached + T t

k =
∑M

i=1(x̃
(i)
k,t, ỹ

(i)
k,t).

3.2. Re-Fed: Framework for FIL

The key idea of Re-Fed is to identify the sample importance
and coordinate clients to cache important previous samples
with limited local storage when the new task arrives. Specif-
ically, in each communication round, the clients train the lo-
cal models with the private sequence of tasks and the server
aggregates local models from all participated clients. Then,
when new tasks come, each client first trains an extra per-
sonalized informative model on previous local samples with
the regulation of both the global model and local model.
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Figure 2. Illustration of the Re-Fed framework. When a new
task arrives, each client first updates the personalized informative
model on previous local samples with the distributed global model.
Then, samples are selected to be cached by the sample importance
scores that are calculated with the updated personalized informa-
tive model. Finally, each client trains the local model with both
the new task and cached previous samples.

During the update of such model, gradient norms of indi-
vidual samples are recorded to calculate sample importance
scores. Finally, each client caches samples with higher im-
portance scores based on local storage and continues train-
ing the local model on the cached samples and the new task.
The workflow of the proposed framework is shown in Al-
gorithm 1 and Figure 2 illustrates the Re-Fed framework.

Personalized Informative Model. In FIL with Non-IID
client samples, sample importance should be defined based
not only on their importance in the local dataset but also on
their correlation to the global dataset across clients such that
the model can be better trained with the cached samples. In
a standard FL scenario, each client can only access its own
local model and global model, which respectively contains
local and global information. A straightforward idea here is
to calculate two sample importance scores using local and
global models and cache samples based on such two scores
for data reply. Then, one can build upon such an idea by
adding following capabilities: (1) The global model is ag-
gregated by local models from participated clients and the
gradient norm of the global model can be calculated locally
without training the global model. (2) A control mecha-
nism should be available to adjust the proportion of local

Algorithm 1: Re-Fed
Input: T : communication round; K: client

number; η: learning rate; {T t}nt=1:
distributed dataset with n tasks; w:
parameter of the model; vk: personalized
informative model in client k.

1 Initialize the parameter w;
2 for c = 1 to T do // the t-th new task
3 Server randomly selects a subset of devices St

and send wt−1

4 for each selected client k ∈ St in parallel do
5 Update vt−1

k in s local iterations with (3).
6 for During the update of vt−1

k do
7 Calculate the importance score after

total s iterations for the sample
(x̃

(i)
k,t−1, ỹ

(i)
k,t−1) with (5).

8 end
9 Cache previous samples with higher

importance scores;
10 Training the local model with cached

samples and the new task with (6);
11 Send the model wt

k back to the server.
12 end
13 wt ← ServerAggregation({wt

k}k∈St
)

14 end

and global information in the sample importance.
Toward the above goals, here we introduce an addi-

tional personalized informative model (PIM) for each client,
which digests both the information from the local model and
the global model. Then, we propose to adopt a ratio factor
to adjust the information proportion from local and global
sides. Finally, we can record the gradient norms of the sam-
ples to calculate the importance scores during the update of
PIM, resulting in sample importance scores with both local
and global information. Suppose that the client k receives
the global model wt−1 and then the t-th new task arrives,
and the clients update PIM vt−1

k with previous local sam-
ples T t−1

k,local in s iterations as follows:

vt−1
k,s = vt−1

k,s−1 − η

( M∑
i=1

∇l
(
fvt−1

k,s−1
(x̃

(i)
k,t−1), ỹ

(i)
k,t−1

)
+ q(λ)(vt−1

k,s−1 − wt−1)

)
. (3)

where q(λ) = 1−λ
2λ , λ ∈ (0, 1), and η is the rate to control

the step size of the update. The hyper-parameter λ adjusts
the balance between the local and global information incor-
porated in the update.

To better understand the update, we can draw an analogy
to momentum methods in optimization. Momentum-based



Table 1. Performance comparison of various methods in two incremental learning scenarios.

Scenario Dataset FedAvg FedProx Fixed DANN+FL Shared FCIL FedCIL Re-Fed

Class-Incremental
CIFAR10 (α = 1.0) 26.73±1.12 25.87±0.68 19.21±0.06 24.86±2.31 23.91±1.70 25.04±0.11 27.35±1.24 29.22±0.49

CIFAR100 (α = 5.0) 17.21±1.35 18.03±0.91 9.27±0.22 19.73±2.17 18.30±1.53 23.02±0.66 17.98±1.46 25.61±0.88

Tiny-ImageNet (α = 10) 27.58±0.74 21.82±0.90 12.34±0.23 20.77±1.31 22.19±0.54 29.58±0.15 24.41±0.95 32.07±0.27

Domain-Incremental
Digit10 (α = 0.1) 77.59±0.39 79.09±0.58 71.26±0.04 76.44±1.05 74.77±0.23 77.59±0.39 83.85±0.80 85.96±0.14

Office31 (α = 1) 39.25±1.61 43.01±1.59 37.44±0.72 45.21±2.10 37.55±0.69 39.25±1.61 46.26±2.24 50.80±0.77

DomainNet (α = 10) 51.73±2.32 49.12±2.71 46.30±1.42 50.01±3.31 41.76±1.26 51.73±2.32 47.28±3.01 56.66±0.50

methods leverage the past updates to guide the current up-
date direction [1]. Similarly, the term q(λ)(vt−1

k,s−1 − wt−1)
acts as a momentum component. It incorporates informa-
tion from the global model wt−1 to influence the update of
PIM vt−1

k . The hyper-parameter λ controls the weight of
this momentum component, and it lies within the range of
(0,1). When λ is close to 0, PIM primarily focuses on recov-
ering the global model wt−1. In other words, it will align
itself with the global data. On the other hand, as λ becomes
larger, it leads to a stronger emphasis on local training.

Theorem 3.1 (Convergence of PIM). Assuming that the
global model wt converges to the optimal model ŵ at com-
munication round t by g(t) as: E

[
||wt − ŵ||2

]
≤ g(t),

limt→∞ g(t) = 0 and g(t + 1) ≤ g(t), there exists a con-
stant C < ∞ such that for any client k ∈ [K] the per-
sonalized informative model vtk can converge to the optimal
model v̂k by Cg(t).

With Theorem 3.1, we ensure the convergence of PIM
and thus can calculate the gradient norms of samples during
the training stage. We provide the proof in Appendix F.1.
Sample Importance. To quantify the sample importance,
we investigate the impact of samples on the generalization
ability of the model, and allocate the samples that can en-
hance the generalization with higher importance. We cal-
culate the gradient norm with respect to model parame-
ters of PIM as the importance scores to samples. The gra-
dient norm of samples during training is recorded, which
can be regarded as the contribution of the sample to the
model update. A similar flavor of such a method can be
found in [36, 42]. Suppose that the client k has converged
on (t− 1)-th tasks with local samples T t−1

k,local, when it
comes to the incremental t-th task, the client should cal-
culate the importance scores for all local samples. Here
we denote Gp(x̃

(i)
k,t−1) is the gradient norm of the sample

(x̃
(i)
k,t−1, ỹ

(i)
k,t−1) in p-th iteration during the update of PIM

vt−1
k,p , which is:

Gp(x̃
(i)
k,t−1) =

∣∣∣∣∣∣∇l (fvt−1
k,p

(x̃
(i)
k,t−1), ỹ

(i)
k,t−1

)∣∣∣∣∣∣2 . (4)

According to [42], the difference in the gradient of the loss
function with and without a sample (x̃

(j)
k,t−1, ỹ

(j)
k,t−1) is up-

per bounded and the bound is linearly dependent on the
sample gradient norm defined in Eq. 4. Thus, caching sam-
ples based on sample gradient norms can least affect the
gradient and best preserve the dynamics of training.

As PIM integrates both local and global models, a greater
gradient norm of a sample with PIM indicates that such a
sample drives PIM more to fitting the task with local and
global knowledge. Such an effect could be more prominent
at early training during s iterations for PIM, where fluctu-
ation around optima is rare than that later in the training.
Thus, we accumulate the gradient norm during the training
of PIM and emphasis on the early training stage to calculate
the sample importance as:

I(x̃
(i)
k,t−1) =

s∑
p=1

1

p
Gp(x̃

(i)
k,t−1). (5)

We also provide illustrative experimental results with
I(x̃

(i)
k,t−1) =

∑s
p=1 G

p(x̃
(i)
k,t−1) in the Appendix E and

show the performance improvement with the sample impor-
tance adopted in Eq. 5.
Local Training. After caching important samples with
higher importance scores, each client continues to train
the local model wt

k with local samples T t
k,local in iteration

p ∈ [1, s] as follows:

wt
k,p = wt

k,p−1 − η

M∑
i=1

∇l
(
fwt

k,p−1
(x̃

(i)
k,t), ỹ

(i)
k,t

)
. (6)

Modularity of Re-Fed. From the Re-Fed framework and
Algorithm 1, we can see that a key feature of Re-Fed is its
unique modularity. One can readily use prior art developed
for FIL algorithm, and employ Re-Fed as a useful off-the-
shelf add-on. Our method has several advantages:
• Optimization: It is possible to plug in other aggregation

methods beyond FedAvg [31] in Algorithm 1 to update
the global model, and inherit the convergence benefits.
In the subsequent experimental design, we investigate the
performance of our Re-Fed framework with FedAvg al-
gorithm and provide a detailed algorithm definition using
FedAvg in Appendix D.

• Privacy: Re-Fed transmits no more extra information
over the network than typical FL algorithms. This is dif-
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Figure 3. Performance w.r.t data heterogeneity α for three datasets.

Table 2. Test accuracy for Re-Fed w.r.t data heterogeneity α and hyper-parameter λ on CIFAR10, Office31 and Tiny-ImageNet.

Dataset
α = 0.1 α = 0.5 α = 1.0 α = 10

λ = 0.2 λ = 0.5 λ = 0.8 λ = 0.2 λ = 0.5 λ = 0.8 λ = 0.2 λ = 0.5 λ = 0.8 λ = 0.2 λ = 0.5 λ = 0.8

CIFAR10 18.75±1.30 18.61±1.09 17.91±0.81 26.25±1.64 26.00±0.97 25.62±0.52 27.05±0.88 27.80±0.21 29.22±0.49 38.43±0.43 40.04±0.19 42.17±0.25

Office31 41.25±1.01 39.29±1.34 38.18±0.68 46.86±0.91 47.64±0.53 47.13±1.16 43.81±0.73 48.67±0.99 50.08±0.77 52.79±1.28 55.92±0.38 58.51±0.46

Tiny-ImageNet 22.32±0.12 20.51±0.98 18.00±1.30 24.60±0.48 25.42±0.59 24.39±0.66 24.88±0.87 27.15±0.78 27.84±0.73 29.03±0.30 30.26±0.24 32.07±0.27

ferent from most other FIL methods where sample recon-
struction methods are applied for data replay, which may
raise privacy concerns.

• Resource: Re-Fed allows each client to train a backbone
model using only its local training data, without employ-
ing additional distillation data or generated data, leading
to extra either computation cost or storage overhead.

4. Experiments

In this section, we evaluate our proposed framework con-
cerning two incremental learning scenarios. We investi-
gate the relationship between the data heterogeneity and the
balance between the local and global information incorpo-
rated in PIM. Additionally, we conduct parameter sensitiv-
ity analysis to verify the effectiveness of our method.

4.1. Experiment Setup

Dataset: We conduct our experiments with heteroge-
neously partitioned datasets over two federated incremen-
tal scenarios on six datasets. (1) Class-Incremental
Learning: CIFAR10[17], CIFAR100[17] and Tiny-
ImageNet[18]. (2) Domain-Incremental Learning:
Digit10, Office31[41] and DomainNet[37]. Among
them, the Digit10 dataset contains 10 digit categories in
four domains: MNIST[19], EMNIST[3], USPS[13] and
SVHN[34]. Details of datasets and data processing can be
found in Appendix A.

Baseline: For a fair comparison with other key works, we
follow the same protocols proposed by [31, 39] to set up FIL
tasks. We evaluate all the methods with two representative
FL models FedAvg [31] and Fedprox [22], two models de-
signed for federated class-incremental learning: FCIL [6]
and FedCIL [38], and three customed methods of Fixed:
we train the model only from the first task and evaluate it
for all the coming sequence of tasks; DANN+FL: here we
adopt the robust adversarial-based method DANN[9] in lo-
cal training for domain adaption; Shared: we adopt all front
layers before the last fully connected layer as shared layers,
and use relevant different fully-connected layers to obtain
outputs for different tasks. Details of datasets and data pro-
cessing can be found in Appendix B.

Configurations: Unless otherwise mentioned, we set the
number of local training epoch E = 20 and communica-
tion round T = 150 for each task, which ensures the con-
vergence of previous tasks before the arrival of new task.
We use the Dirichlet distribution Dir(α) to distribute local
samples to yield data heterogeneity for all tasks where a
smaller α indicates higher data heterogeneity. We employ
ResNet18 [11] as the basic backbone model in all methods.
We calculate the Top-10 accuracy for the Tiny-ImageNet
and DomainNet datasets and Top-1 accuracy for others.
Each experiment setting is run three times and we record
accuracy in the final 10 rounds and report the average value
and standard deviation. The total clients number is 20/10
with an active ratio k = 0.4 for {CIFAR10, CIFAR100,
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Figure 4. Performance w.r.t number of incremental tasks n for three class-incremental datasets.

Table 3. Evaluation of various methods, in terms of the communication rounds to reach the best test accuracy (150 communication rounds
each task). We report the sum of communication rounds required to achieve the best performance on each task.

Scenario Dataset FedAvg FedProx Fixed DANN+FL Shared FCIL FedCIL Re-Fed

Class-Incremental
CIFAR10 (Task:5) 613±2.67 685±3.00 142±0.67 712±3.67 574±1.33 590±2.67 738±4.00 562±1.67

CIFAR100 (Task:10) 1103±2.33 1246±3.00 137±2.00 1258±4.67 1154±3.33 1095±2.67 1311±5.67 1039±4.33

Tiny-ImageNet (Task:10) 1197±2.67 1234±2.67 132±3.00 1305±3.67 1278±4.33 1185±2.33 1317±3.33 1128±3.67

Domain-Incremental
Digit10 (Task:4) 410±1.67 412±0.67 112±0.33 483±1.33 372±2.00 410±1.67 419±2.67 325±1.33

Office31 (Task:3) 413±2.67 429±2.00 144±0.67 436±3.67 391±1.12 413±2.67 431±3.33 388±1.67

DomainNet (Task:6) 726±3.33 767±2.67 141±1.67 752±4.00 694±2.67 726±3.33 791±3.67 661±2.33

Tiny-ImageNet, Digit10, DomainNet}/{Office31}. The
maximum number of cached samples M is 2000/1000/300
for {Digit10, DomainNet, Tiny-ImageNet}/{CIFAR10, CI-
FAR100}/{Office31}. We experiment with different num-
bers of incremental tasks and each task arrives with new
classes: 10/10/5 tasks with 20/10/2 new classes in each task
for {Tiny-ImageNet}/ {CIFAR100}/ {CIFAR10}. Details
of configurations can be found in Appendix C.

4.2. Performance Overview

Test Accuracy. Table 1 shows the test accuracy of var-
ious methods with data heterogeneity across six datasets.
We report the final accuracy of the global model when all
clients finish their training on all tasks. FedCIL outper-
forms FedAvg and FedProx on CIFAR10, Digit10 and Of-
fice31 as the generator in FedCIL exhibits effective training
on simple datasets, enabling the generation of high-quality
samples for data replay. However, its performance experi-
ences a significant decline with larger-scale datasets such
as CIFAR100 and DomainNet, where the classes and do-
mains become more complex. In the federated domain-
incremental learning scenario, FCIL reverts to the Fe-
dAvg algorithm when there are no new incremental sam-
ple classes. Re-Fed achieves the best performance in all

cases by a margin of 1.87%∼19.73% in terms of final accu-
racy. More discussions and results on model performance
are available in Appendix E.

Data Heterogeneity. Figure 3 displays the test accuracy
with different levels of data heterogeneity on three datasets.
As shown in this figure, all methods achieve an improve-
ment in test accuracy with the decline in data heterogeneity,
and Re-Fed consistently achieves a leading improvement in
performance with different levels of data heterogeneity.

Then, we conduct more research on the setting of hyper-
parameter λ. In our framework, we modify the λ value to
adjust the global and local information proportion in PIM.
As shown in Table 2, we select three different λ values with
four different data heterogeneity settings and evaluate the
final test accuracy on three datasets. Experimental results
show that the value of λ should be chosen accordingly un-
der different data heterogeneity. Nevertheless, results ex-
hibit the same trend: as the degree of data heterogeneity
increases, our Re-Fed framework performs better while λ
decreases as PIM contains more global information. Em-
pirically, striking a balance between global and local in-
formation is the key to addressing the data heterogeneity
in FIL. Vice versa, as α increases, the data distribution on
the client side becomes more IID. At this point, the clients
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Figure 5. Performance of Re-Fed under different configurations (a) local training epoch E, (b) sample size B in the classifier, (c) client
selection ratio r of all clients on CIFAR100 with α = 5.0.

Table 4. Test accuracy for Re-Fed and other baselines w.r.t memory size M on Digit10, CIFAR10, CIFAR100 and Tiny-ImageNet.

Dataset
FedAvg DANN+FL FCIL Re-Fed

M = 1000 M = 2000 M = 3000 M = 1000 M = 2000 M = 3000 M = 1000 M = 2000 M = 3000 M = 1000 M = 2000 M = 3000

Digit10 77.05±0.24 77.59±0.39 81.64±0.31 75.16±0.86 76.44±1.05 83.34±0.97 77.50±0.24 77.59±0.39 81.64±0.31 82.30±0.16 85.96±0.14 86.32±0.04

CIFAR10 26.73±1.12 30.19±1.63 33.41±0.92 24.86±2.31 27.65±1.34 30.09±1.06 25.04±0.11 29.14±0.19 31.77±0.28 29.22±0.49 32.83±0.20 33.41±0.74

CIFAR100 17.21±1.35 23.58±1.82 29.90±2.11 19.73±2.17 25.56±2.68 28.49±1.98 23.02±0.66 26.12±0.54 29.06±0.89 25.61±0.88 28.41±0.24 29.90±0.71

Tiny-ImageNet 24.42±0.59 27.58±0.74 31.50±0.63 18.06±1.08 20.77±1.31 26.93±0.77 25.20±1.12 29.58±0.15 33.44±0.38 28.31±0.19 32.07±0.27 35.66±0.42

require less global information and can rely more on their
local information for caching important samples.
Quantitative Analysis. Figure 4 shows the qualitative anal-
ysis of the number of incremental tasks n on three class-
incremental datasets. According to these curves, we can
easily observe that our model performs better than other
baselines across all tasks, with varying numbers of incre-
mental tasks. It demonstrates that Re-Fed enables clients to
learn new incremental classes better than other methods.
Communication Efficiency. Table 3 shows the evaluation
of various methods in terms of the communication rounds to
reach the test accuracy reported in Table 1. Here we show
the sum of communication rounds required to achieve the
performance on each task. Re-Fed requires the least com-
munication rounds to achieve the reported test accuracy on
all datasets with its caching method. Thus, the local model
is easier to converge. More details of the communication
round on each task are available in Appendix E.
Parameter Sensitivity Analysis. Figure 5 shows the per-
formance of Re-Fed under different configurations with
standard boxplots from ten trails with different random
seeds. Re-Fed achieves similar performance with different
sample sizes B, and it achieves a better result when we in-
crease the local training epochs. However, Re-Fed has a
comparable performance when the E is set to 20 and 40.
In addition, a larger client selection ratio r contributes to
higher test accuracy.

For the FIL scenario, we conduct additional research on
the client storage M . When M is large enough for clients
to cache samples from all tasks, our framework degrades to
a normal FedAvg algorithm with a naive caching method.

As shown in Table 4, we select three different M values
to conduct experiments. Experimental results demonstrate
that larger memory size M contributes to the training and
Re-Fed outperforms other baselines in all cases. To con-
clude, Re-Fed is only sensitive to few parameters and still
robust to most parameters in a large range.

5. Conclusion and Future Work
We proposed Re-Fed, a simple framework, to address the
catastrophic forgetting with data heterogeneity in feder-
ated incremental learning. Re-Fed can be thought of as a
lightweight personalization add-on for any federated learn-
ing algorithms with global aggregation, which maintains
privacy and communication efficiency. Extensive experi-
ments conducted on various settings and baselines show that
Re-Fed achieves significant improvement in test accuracy.

Although existing works and our method have demon-
strated great effectiveness over the FIL scenarios, none have
studied the dynamic requirements of the edge clients. To
deploy the FL system in practical settings, it is necessary to
consider personalized local factors such as storage, compu-
tation and even the different arrival time of the new task. In
the future, we seek to work a step forward in this field.
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A. Dataset

Class-Incremental Task Dataset: New classes are incre-
mentally introduced over time. The dataset starts with a
subset of classes, and new classes are added in subsequent
stages, allowing models to learn and adapt to an increasing
number of classes.

• CIFAR10: A dataset with 10 object classes, including
various common objects, animals, and vehicles. It con-
sists of 50,000 training images and 10,000 test images.

• CIFAR100: Similar to CIFAR10, but with 100 fine-
grained object classes. It has 50,000 training images and
10,000 test images.

• Tiny-ImageNet: A subset of the ImageNet dataset with
200 object classes. It contains 100,000 training images,
10,000 validation images, and 10,000 test images.

Domain-Incremental Task Dataset: New domains are in-
troduced gradually. The dataset initially contains samples
from a specific domain, and new domains are introduced at
later stages, enabling models to adapt and generalize to new
unseen domains.

• Digit10: Digit-10 dataset contains 10 digit categories
in four domains: MNIST[19], EMNIST[3], USPS[13],
SVHN[34].Each dataset is a digit image classification
dataset of 10 classes in a specific domain, such as hand-
writing style.
– MNIST: A dataset of handwritten digits with a training

set of 60,000 examples and a test set of 10,000 exam-
ples.

– EMNIST: An extended version of MNIST that in-
cludes handwritten characters (letters and digits) with
a training set of 240,000 examples and a test set of
40,000 examples.

– USPS: The United States Postal Service dataset con-
sists of handwritten digits with a training set of 7,291
examples and a test set of 2,007 examples.

– SVHN: The Street View House Numbers dataset con-
tains images of house numbers captured from Google
Street View, with a training set of 73,257 examples and
a test set of 26,032 examples.

• Office31: A dataset with images from three different
domains: Amazon, Webcam, and DSLR. It consists of 31
object categories, with each domain having around 4,100
images.

• DomainNet: A large-scale dataset with images from six
different domains: Clipart, Painting, Real, Sketch, Quick-
draw, and Infograph. It contains over 0.6 million images
across 345 categories.

B. Baseline
• Representative FL models:

– FedAvg: : It is a representative federated learning
model, which aggregates client parameters in each
communication. It is a simply yet effective model for
federated learning.

– FedProx: It is also a representative federated learning
model, which is better at tackling heterogeneity in fed-
erated networks than FedAvg

• Custom methods:
– Fixed: we train the model only from the first task and

evaluate it for all the coming sequence of tasks.
– DANN+FL: Here we adopt the robust adversarial-

based method DANN[9]. This baseline mainly fol-
lows the domain adaptation paradigm which is differ-
ent from the incremental learning setting and are often
prone to issues like catastrophic forgetting.

– Shared: Inspired by the multi-task learning
scenario[40], we adopt all front layers before the
last fully connected layer as shared layers, and use
relevant different fully-connected layers to get outputs
for different tasks.

• Models for federated class-incremental learning:
– FCIL: This approach addresses the federated class-

incremental learning and trains a global model by com-
puting additional class-imbalance losses. A proxy
server is introduced to reconstruct samples to help
clients select the best old models for loss computation.

– FedCIL: This approach employs the ACGAN back-
bone to generate synthetic samples to consolidate the
global model and align sample features in the output
layer. Authors conduct experiments in the FCIL sce-
nario, and here we adopt it to our FDIL setting.

C. Configurations
For local training, the batch size is 64, learning rate for
our models is 0.01/0.001 for {Office31, CIFAR10, CI-
FAR100}/{Digit10, DomainNet, Tiny-ImageNet}. For the
update of the personalized informative model, the epoch is
set to 40 for each client. For the multi-task learning struc-
ture in our approach, we treat all previous layers before the
last fully-connected layer as share layers, and we use two
different fully-connected layers to get outputs as the aux-
iliary classifier result and target classification result. We
build the Virtual Machine(VM) to simulate the experiment
environment and set up different processes to simulate dif-
ferent clients. The VM is configured with 8 RTX4090 and
6 2.3GHz Intel Xeon CPUs.



D. Detailed Re-Fed Framework with FedAvg

Algorithm 2: Re-Fed for FIL with FedAvg Algorithm
Input: T : communication round; K: number of clients; η: learning rate; {T t}nt=1: distributed dataset with n tasks;

w: parameter of the model; vk: personalized informative model in client k; λ: factor of information
proportion.

1 Initialize the parameter w;
2 for c = 1 to T do // When the t-th new task arrives
3 Server randomly selects a subset of devices St and send wt−1 to them;
4 for each selected client k ∈ St in parallel do
5 Receive the distributed global model wt−1 and initializess the personalized informative model vt−1

k ;
6 Update vt−1

k in s local iterations with previous local samples T t−1
k,local:

7 vt−1
k,s = vt−1

k,s−1 − η

(∑M
i=1∇l

(
fvt−1

k,s−1
(x̃

(i)
k,t−1), ỹ

(i)
k,t−1

)
+ q(λ)(vt−1

k,s−1 − wt−1)

)
, q(λ) = 1−λ

2λ , λ ∈ (0, 1).

8 for During the update of vt−1
k do

9 Calculate the importance score for the sample (x̃
(i)
k,t−1, ỹ

(i)
k,t−1) after total s iterations:

10 I(x̃
(i)
k,t−1) =

∑s
p=1

Gp(x̃
(i)
k,t−1)

p .
11 end
12 Cache previous samples with higher importance scores;
13 Train the local model with cached samples and the new task (x̃

(i)
k,t, ỹ

(i)
k,t) in s iterations:

14 wt
k,s = wt

k,s−1 − η

(∑M
i=1∇l

(
fwt

k,s−1
(x̃

(i)
k,t), ỹ

(i)
k,t

)
.

15 Send the model wt
k back to the server.

16 end
17 The server aggregates the local models: wt =

∑
k∈St

1
|St|w

t
k.

18 end

E. Experimental Results
In this section, we further provide more details about the experiment results on the test accuracy and communication rounds.
We record the test accuracy of the global model at training stage of each task and the communication rounds required to
achieve the corresponding performance. Then, as we use a form of “Early-Emphasis” to accumulate the gradient norms and
calculate the sample importance scores in Re-Fed, we compare and show results with two other methods of calculation of
sample importance scores.

E.1. Detailed Results of Test Accuracy.

Table 5, 6, 7, 8 and 9 show the results of test accuracy on each incremental task in the Acc (Accuray) line, where “∆” denotes
the improvement of our method with other baselines. Here we measure average accuracy over all tasks on each client in the
Acc line and highlight the best test accuracy in bold.

E.2. Detailed Results of Communication Round.

Table 5, 6, 7, 8 and 9 show the detailed results of communication round on each incremental task in the CoR (Communication
Round) line and highlight the results of fewest number of communication rounds in underline.

E.3. Different Weighting Methods for Gradient Norms.

Table 10 shows the impact of using different methods to calculate the sample importance score with gradient norms in the
update of personalized informative models. Here we adopt three methods: Average Weighting: we assign an equal weight
to gradient norms from different iterations; Early-Emphasis: a higher weight to gradient norms in the early-training as



adopted by Re-Fed; and Late-Emphasis: the sorting of samples with the sample importance score obtained by the method
of Early-Emphasis is reversed.

Table 5. Performance comparisons of various methods on CIFAR10 with 5 incremental tasks (2 new classes for each task).

CIFAR10 (α = 1.0)

Method Target 2 4 6 8 10 Avg ∆(↑)

FedAvg
Acc
CoR

92.65
142

76.67
123

42.90
125

40.46
98

26.73
119

55.88
122

2.57↑
10↑

FedProx
Acc
CoR

92.39
153

74.18
137

39.84
141

37.55
123

25.87
132

53.97
137

4.48↑
25↑

Fixed
Acc
CoR

92.65
142

62.48
0

36.54
0

24.20
0

19.21
0

47.02
/

11.43↑
/

DANN+FL
Acc
CoR

93.07
151

77.81
140

44.32
150

36.98
126

24.86
145

55.41
142

3.04↑
30↑

Shared
Acc
CoR

92.65
142

76.19
117

42.15
116

38.24
83

23.91
118

54.63
115

3.82↑
3↑

FCIL
Acc
CoR

92.65
142

78.07
125

43.66
108

40.28
92

25.04
121

55.94
118

2.51↑
6↑

FedCIL
Acc
CoR

94.05
148

80.22
150

46.19
146

35.50
147

27.35
150

56.66
148

1.79↑
36↑

Re-Fed
Acc
CoR

92.65
142

79.23
109

47.41
116

43.75
85

29.22
106

58.45
112 /

Table 6. Performance comparisons of various methods on CIFAR100 with 10 incremental tasks (10 new classes for each task).

CIFAR100 (α = 5.0)

Method Target 10 20 30 40 50 60 70 80 90 100 Avg ∆(↑)

FedAvg
Acc
CoR

58.70
137

43.72
121

48.69
76

38.28
135

30.81
102

26.16
143

24.90
90

20.72
86

18.97
132

17.21
75

32.82
110

5.57↑
6↑

FedProx
Acc
CoR

56.51
146

42.02
134

48.03
112

39.11
139

32.33
119

27.24
140

26.50
125

20.88
105

19.67
132

18.03
99

33.03
125

5.36↑
21↑

Fixed
Acc
CoR

58.70
137

34.52
0

35.09
0

30.37
0

27.01
0

23.96
0

18.18
0

14.78
0

11.47
0

9.27
0

26.34
/

12.05↑
/

DANN+FL
Acc
CoR

58.82
145

44.12
129

46.84
123

39.66
138

31.54
124

27.93
134

24.21
112

24.03
109

21.32
129

19.73
121

33.82
126

4.57↑
22↑

Shared
Acc
CoR

58.70
137

42.53
117

48.49
82

39.10
137

31.88
113

27.39
137

25.85
103

25.74
97

24.35
135

18.30
89

34.23
115

4.16↑
11↑

FCIL
Acc
CoR

58.70
137

45.65
123

51.87
77

42.37
134

37.32
105

32.01
140

29.00
96

28.47
88

24.99
130

23.02
73

37.33
110

1.06↑
6↑

FedCIL
Acc
CoR

61.20
146

47.05
138

49.66
123

38.14
131

32.69
125

24.11
143

23.90
122

23.99
129

19.89
130

17.98
126

33.86
131

4.53↑
27↑

Re-Fed
Acc
CoR

58.70
137

43.66
104

53.53
80

40.17
105

38.71
93

35.96
121

31.25
85

28.77
105

27.53
120

25.61
87

38.39
104 /



Table 7. Performance comparisons of various methods on Tiny-ImageNet with 10 incremental tasks (20 new classes for each task).

Tiny-ImageNet (α = 10.0)
Method Target 20 40 60 80 100 120 140 160 180 200 Avg ∆(↑)

FedAvg
Acc
CoR

85.80
132

68.58
143

57.22
139

43.75
125

40.52
107

41.13
97

34.10
128

29.59
121

28.40
109

27.58
98

45.67
120

5↑
7↑

FedProx
Acc
CoR

82.02
127

66.15
140

54.32
142

40.57
134

38.80
120

38.99
113

30.59
114

24.12
121

22.76
110

21.82
108

42.01
123

8.66↑
10↑

Fixed
Acc
CoR

85.80
132

51.07
0

30.94
0

28.11
0

25.30
0

24.26
0

19.48
0

17.18
0

14.66
0

12.34
0

30.91
/

19.76↑
/

DANN+FL
Acc
CoR

85.24
138

68.16
140

55.32
141

41.11
131

36.45
124

35.38
126

28.83
137

24.54
128

21.09
121

20.77
123

41.69
131

8.98↑
18↑

Shared
Acc
CoR

85.80
132

67.21
135

56.49
145

42.05
125

40.17
119

37.59
127

28.61
129

25.90
116

23.89
130

22.19
125

42.99
128

7.68↑
15↑

FCIL
Acc
CoR

85.80
132

71.94
130

61.02
127

50.73
112

44.25
106

42.40
109

36.96
124

34.51
122

31.36
121

29.58
108

48.86
119

1.81↑
6↑

FedCIL
Acc
CoR

86.43
146

69.39
144

58.11
137

45.74
121

41.02
117

38.93
126

31.29
132

27.65
140

25.17
124

24.41
129

44.81
132

5.86↑
19↑

Re-Fed
Acc
CoR

85.80
132

72.06
120

65.29
126

52.39
121

45.93
91

42.15
103

38.88
110

36.95
114

35.19
112

32.07
92

50.67
113 /

Table 8. Performance comparisons of various methods on Digit10 with 4 domains and Office-31 with 3 domains.

Digit10 (α = 0.1) Office-31 (α = 1.0)
Method Target MNIST EMNIST USPS SVHN Avg ∆(↑) Amazon Dlsr Webcam Avg ∆(↑)

FedAvg
Acc
CoR

92.82
112

88.62
82

84.02
96

77.59
122

85.76
103

3.99↑
22↑

58.08
144

31.62
136

39.25
135

42.98
138

8.76↑
9↑

FedProx
Acc
CoR

93.07
114

87.43
93

85.67
89

79.09
118

86.32
103

3.43↑
22↑

58.69
145

34.25
146

43.01
139

45.32
143

6.42↑
14↑

Fixed
Acc
CoR

92.82
112

85.35
0

82.11
0

71.26
0

82.48
/

7.27↑
/

58.08
144

24.56
0

37.44
0

40.03
/

11.71↑
/

DANN+FL
Acc
CoR

96.07
132

87.30
107

82.81
116

76.44
129

85.66
120

4.09↑
39↑

59.95
149

42.21
144

45.21
141

49.12
145

2.62↑
16↑

Shared
Acc
CoR

92.82
112

82.10
76

80.36
84

74.77
103

82.51
93

7.24↑
12↑

58.08
144

35.33
122

37.55
124

43.65
130

8.09↑
1↑

FCIL
Acc
CoR

92.82
112

88.62
82

84.02
96

77.59
122

85.76
103

3.99↑
22↑

58.08
144

31.62
136

39.25
135

42.98
138

8.76↑
9↑

FedCIL
Acc
CoR

94.61
118

90.24
86

87.55
92

83.85
125

89.06
105

0.69↑
24↑

59.37
146

45.91
139

46.26
148

50.51
144

1.23↑
15↑

Re-Fed
Acc
CoR

92.82
112

91.64
68

88.57
73

85.96
71

89.75
81 /

58.08
144

47.07
125

50.80
118

51.74
129 /



Table 9. Performance comparisons of various methods on DomainNet with 6 domains.

DomainNet (α = 10)
Method Target Clipart Infograph Painting Quickdraw Real Sketch Avg ∆(↑)

FedAvg
Acc
CoR

52.07
141

36.22
128

45.09
97

46.59
108

49.36
136

51.73
115

46.84
121

3.39↑
11↑

FedProx
Acc
CoR

50.31
136

33.64
131

41.77
115

45.04
130

47.44
137

49.12
116

44.55
128

5.68↑
1↑

Fixed
Acc
CoR

52.07
141

29.58
0

32.24
0

38.91
0

40.09
0

46.30
0

39.87
/

10.36↑
/

DANN+FL
Acc
CoR

55.66
142

36.44
126

42.02
109

38.84
112

45.89
137

50.01
121

44.81
125

5.42↑
15↑

Shared
Acc
CoR

52.07
141

35.22
113

37.83
98

35.19
125

40.52
120

41.76
96

40.43
116

9.80↑
6↑

FCIL
Acc
CoR

52.07
141

36.22
128

45.09
97

46.59
108

49.36
136

51.73
115

46.84
121

3.39↑
11↑

FedCIL
Acc
CoR

54.52
148

38.98
136

40.45
128

41.77
112

45.09
142

47.28
125

44.68
132

5.55↑
22↑

Re-Fed
Acc
CoR

52.07
141

42.26
103

48.11
97

48.98
109

53.34
118

56.66
91

50.23
110 /

Table 10. Performance comparisons of three weighting methods for gradient norms in two incremental scenarios.

Dataset
Class-Incremental Scenario Domain-Incremental Scenario

CIFAR10 CIFAR100 Tiny-ImageNet Digit10 Office31 DomainNet
Early-Emphasis 29.22 25.61 32.07 85.96 50.80 56.66

Average-Weighting 28.73 24.88 30.42 85.71 48.95 56.04
Late-Emphasis 26.57 22.18 28.08 84.36 47.29 53.90



F. Analysis of the Federated Incremental-Learning Framework: Re-Fed
In this section, we prove the convergence of personalized informative models. To simplify the notation, here we conduct
an analysis on a fixed task while the convergence does not depend on the IL setting. We first define following standard
assumptions.
Assumption 1 (L2 Distance.) The L2 distance between the optimal local models ŵk:= argmin

wk

{f(wk)} and the optimal

global model ŵ:= argmin
w
{ 1
K

∑K
k=1∇f(wk)} is bounded by:

||ŵk − ŵ|| ≤M, ∀k ∈ [K]. (7)

Assumption 2 (Gradient Variance.) The variance of stochastic gradients is finite and bounded at all clients by:

E
[
||∇f(ŵk)||2

]
≤ σ2, ∀k ∈ [K]. (8)

Assumption 3 (Strong Convexity.) There exists µk ∈ R+ and a unique solution ŵk:

f(wk)− f(ŵk) ≥ ⟨∇f(ŵk), ŵk − wk⟩+
µk

2
||wk − ŵk||2. (9)

F.1. Proof of Theorem 3.1

Definition 1 (Personalized Informative Model Formulation.) Denote the objective of personalized informative model vk on
client k while f(·) is strongly convex as:

v̂k(λ) := argmin
vk

{
f(vk) +

q(λ)

2
||vk − ŵ||2

}
q(λ) :=

1− λ

2λ
, λ ∈ (0, 1)

(10)

where ŵ denotes the global model.

Lemma 1 (Proportion of Global and Local Information.) For all λ ∈ (0, 1) and λ→ f(λk) is non-increasing:

∂f(v̂k(λ))

∂λ
≤ 0

∂||v̂k(λ)− ŵ||2

∂λ
≥ 0.

(11)

Then, for k ∈ [K], we can get:

lim
λ→0

v̂k(λ) := ŵ. (12)

Proof. The proof here directly follows the proof in Theorem 3.1 [10]. As λ declines and q(λ) grows, the objective of Eq. 10
tends to optimize ||vk − ŵ||2 and increase the local empirical training loss f(vk), leading to the convergence on the global
model. Hence we can modify the λ value to adjust the optimization direction of our model vk thus the dominance of local
and global model information.
Theorem 3.1 (Personalized Informative Model.) Assuming the global model wt converges to the optimal model ŵ with g(t)

for any client k ∈ [K] at each communication round t: E
[
||wt − ŵ||2

]
≤ g(t) and limt→∞ g(t) = 0, then there exists a

constant C <∞ such that the personalized informative model vtk can converge to the optimal model v̂k with Cg(t).
Proof. Here we first introduce the Lemma 2 here proved by [21] Lemma 13.
Lemma 2 ([21] Lemma 13.) Under assumptions above, f(vk) is µk-strongly convex at each communication round t, we
have:

E
[
||vt+1

k − v̂k||2
]
≤ (1− η(µk + q(λ)))E

[
||vtk − v̂k||2

]
+ η2

(
σ + q(λ)(M +

σ

µk
)

)2

+ η2q(λ)2E
[
||wt − ŵ||2

]
+ 2η2q(λ)

(
σ + q(λ)(M +

σ

µk
)

)√
E
[
||wt − ŵ||2

]
+ 2ηq(λ)

√
E
[
||vtk − v̂k||2

]
E
[
||wt − ŵ||2

]
.

(13)



Assume g(t + 1) ≤ g(t) and let positive number A be chosen such that A(g(t)− g(t+ 1)) ≤ g2(t), and we arrive at
(1 − g(t)

A )g(t) ≤ g(t + 1). Then, we prove the Theorem 3.2 by induction. Assuming that E
[
||vtk − v̂k||2

]
≤ Cg(t) where

C > 0 and C ≥
E
[
||v0

k−v̂k||2
]

g(0) , the learning rate η = 2g(t)
A(µk+q(λ)) , here we can continue with Lemma 2:

E
[
||vt+1

k − v̂k||2
]
≤(1− 2g(t)

A
)Cg(t) +

4q(λ)
√
Cg(t)

A(µk + q(λ))

+
4g(t)2

A2(µk + q(λ))2

(
(σ + q(λ)(M +

σ

µk
))2 + q(λ)2g(t) + 2q(λ)

√
g(t)(σ + q(λ)(M +

σ

µk
))

)
.

(14)

Therefore, if we let C = max{
E
[
||v0

k−v̂k||2
]

g(0) , 16,
4
(
(σ+q(λ)(M+ σ

µk
))2+q(λ)2g(t)+2q(λ)

√
g(t)(σ+q(λ)(M+ σ

µk
))
)

A(µk+q(λ))2(1− 1

(1+
µk
q(λ)

)
)

}, then we have:

4q(λ)
√
Cg(t)2

A(µk + q(λ))
+

4g(t)2

A2(µk + q(λ))2

(
(σ + q(λ)(M +

σ

µk
))2 + q(λ)2g(t) + 2q(λ)

√
g(t)(σ + q(λ)(M +

σ

µk
))

)
≤

q(λ)Cg(t)2

A(µk + q(λ))
+

4g(t)2

A2(µk + q(λ))2

(
(σ + q(λ)(M +

σ

µk
))2 + q(λ)2g(t) + 2q(λ)

√
g(t)(σ + q(λ)(M +

σ

µk
))

)
=

Cg(t)2

A
· 1

(1 + µk

q(λ) )
+

4g(t)2

A2(µk + q(λ))2

(
(σ + q(λ)(M +

σ

µk
))2 + q(λ)2g(t) + 2q(λ)

√
g(t)(σ + q(λ)(M +

σ

µk
))

)
≤

Cg(t)2

A
· 1

(1 + µk

q(λ) )
+

g(t)2

A2
· CA

(
1− 1

(1 + µk

q(λ) )

)
=

Cg(t)2

A
.

(15)

The first inequality uses the fact that 16 ≤ C and consequently 4
√
C ≤ C. The second inequality results from the definition

of C as
4
(
(σ+q(λ)(M+ σ

µk
))2+q(λ)2g(t)+2q(λ)

√
g(t)(σ+q(λ)(M+ σ

µk
))
)

A(µk+q(λ))2 } ≤ C(1− 1
(1+

µk
q(λ)

)
). Hence, combining the results of 14

and 15 yields

E
[
||vt+1

k − v̂k||2
]
≤ (1− 2g(t)

A
)Cg(t) +

Cg(t)2

A

= (1− g(t)

A
)Cg(t)

≤ Cg(t+ 1),

(16)

and we have the desired result.
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