
Neurocomputing 275 (2018) 1861–1870 

Contents lists available at ScienceDirect 

Neurocomputing 

journal homepage: www.elsevier.com/locate/neucom 

Deep EndoVO: A recurrent convolutional neural network (RCNN) 

based visual odometry approach for endoscopic capsule robots 

Mehmet Turan 

a , d , ∗, Yasin Almalioglu 

b , Helder Araujo 

c , Ender Konukoglu 

d , Metin Sitti a 

a Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany 
b Computer Engineering Department, Bogazici University, Istanbul, Turkey 
c Institute for Systems and Robotics, University of Coimbra, Coimbra, Portugal 
d Department of Information Technology and Electrical Engineering, Computer Vision Laboratory, ETH Zurich, Zurich, Switzerland 

a r t i c l e i n f o 

Article history: 

Received 16 February 2017 

Revised 23 August 2017 

Accepted 6 October 2017 

Available online 7 November 2017 

Communicated by Wei Wu 

Keywords: 

Endoscopic capsule robot 

Visual odometry 

Sequential deep learning 

RCNN 

CNN 

LSTM 

Localization 

a b s t r a c t 

Ingestible wireless capsule endoscopy is an emerging minimally invasive diagnostic technology for in- 

spection of the GI tract and diagnosis of a wide range of diseases and pathologies. Medical de- 

vice companies and many research groups have recently made substantial progresses in convert- 

ing passive capsule endoscopes to active capsule robots, enabling more accurate, precise, and intu- 

itive detection of the location and size of the diseased areas. Since a reliable real time pose es- 

timation functionality is crucial for actively controlled endoscopic capsule robots, in this study, we 

propose a monocular visual odometry (VO) method for endoscopic capsule robot operations. Our 

method lies on the application of the deep recurrent convolutional neural networks (RCNNs) for the 

visual odometry task, where convolutional neural networks (CNNs) and recurrent neural networks 

(RNNs) are used for the feature extraction and inference of dynamics across the frames, respec- 

tively. Detailed analyses and evaluations made on a real pig stomach dataset proves that our system 

achieves high translational and rotational accuracies for different types of endoscopic capsule robot 

trajectories. 

© 2017 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Following the advances in material science in last decades, un-

ethered pill-size, swallowable capsule endoscopes with an on-

oard camera and wireless image transmission device have been

eveloped and used in hospitals for screening the gastrointesti-

al tract and diagnosing diseases such as the inflammatory bowel

isease, the ulcerative colitis and the colorectal cancer. Unlike

tandard endoscopy, endoscopic capsule robots are non-invasive,

ainless and more appropriate to be employed for long duration

creening purposes. Moreover, they can access difficult body parts

hat were not possible to reach before with standard endoscopy

e.g., small intestines). Such advantages make pill-size capsule en-

oscopes a significant alternative screening method over standard

ndoscopy [1–5] . However, current capsule endoscopes used in
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ospitals are passive devices controlled by peristaltic motions of

he inner organs. The control over capsule’s position, orientation,

nd functions would give the doctor a more precise reachability of

argeted body parts and more intuitive and correct diagnosis op-

ortunity [6–10] . Therefore, several groups have recently proposed

ctive, remotely controllable robotic capsule endoscope prototypes

quipped with additional functionalities such as local drug deliv-

ry, biopsy and other medical functions [2,11–19] . However, an ac-

ive motion control needs feedback from a precise and reliable real

ime pose estimation functionality. In last decade, several localiza-

ion methods [4,20–23] were proposed to calculate the 3D posi-

ion and orientation of the endoscopic capsule robot such as fluo-

oscopy [4] , ultrasonic imaging [20–23] , positron emission tomog-

aphy (PET) [4,23] , magnetic resonance imaging (MRI) [4] , radio

ransmitter based techniques and magnetic field based techniques

16] . The common drawback of these localization methods is that

hey require extra sensors and hardware design. Such extra sensors

ave their own deficiencies and limitations if it comes to their ap-

lication in small scale medical devices such as space limitations,

ost aspects, design incompatibilities, biocompatibility issue and

he interference of sensors with activation system of the device. 
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Fig. 1. Traditional visual odometry pipeline. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

t  

r  

p  

e  

w  

f  

n  

t

 

f  

s  

[  

i  

j  

o  

m  

r  

a  

p  

t  

m  

d  

l

A

 

 

 

 

 

t  

i  

m  

d  

t  

(  

c  

m  

d  

s  
As a solution of these issues, a trend of visual odometry meth-

ods have attracted the attention for the localization of such small

scale medical devices. A classic visual odometry pipeline typically

consisting of camera calibration, feature detection, feature match-

ing, outliers rejection (e.g. RANSAC), motion estimation, scale es-

timation and global optimization (bundle adjustment) is depicted

in Fig. 1 . Although some state-of-the-art algorithms based on this

traditional pipeline have been applied for the visual odometry task

of the hand-held endoscopes in the past decades, their main defi-

ciency is tracking failures in low textured areas. In last years, deep

learning (DL) techniques have been dominating many computer vi-

sion related tasks with some promising result, e.g. object detection,

object recognition, classification problems etc. Contrary to these

high-level computer vision tasks, VO is mainly working on motion

dynamics and relations across sequence of images, which can be

defined as a sequential learning problem. With that motivation, we

propose a novel monocular VO algorithm based on deep recurrent

convolutional neural networks (RCNNs). Since it is designed in an

end-to-end fashion, it does not need any module from the classic

VO pipeline to be integrated. The main contributions of our paper

are as follows: 

• To the best of our knowledge, this is the first monocular VO ap-

proach through deep learning techniques developed for the en-

doscopic capsule robot and hand-held standard endoscope lo-

calization. 

• Neither prior knowledge nor parameter tuning is needed to re-

cover the absolute trajectory scale contrary to monocular tradi-

tional VO approach. 

• A novel RCNN architecture is introduced which can successfully

model sequential dependence and complex motion dynamics

across endoscopic video frames. 

• A real pig stomach dataset and a synthetic human simulator

dataset with 6-DoF ground truth pose labels and 3D scan are

recorded, which we are considering to publish for the sake of

other researchers in that area. 

The proposed method solves several issues faced by typical vi-

sual odometry pipelines, e.g. the need to establish a frame-to-

frame feature correspondence, vignetting, motion blur, specularity

or low signal-to-noise ratio (SNR). We think that DL based en-

doscopic VO approach is more suitable for such challenge areas

since the operation environment (GI tract) has similar organ tissue

patterns among different patients which can be learned by a so-

phisticated machine learning approach easily. Even the dynamics

of common artefacts such as vignetting, motion blur and specular-

ity across frame sequences could be learned and used for a better

pose estimation. 

As the outline of this paper, Section 2 introduces the proposed

RCNN based localization method in detail. Section 3 presents our

dataset and the experimental setup. Section 4 shows our exper-

imental results, we achieved for 6-DoF localization of the endo-

scopic capsule robot. Section 5 gives future directions. 
. System overview and analysis 

Our architecture makes use of inception modules for feature ex-

raction and RNN for sequential modelling of motion dynamics to

egress the robot’s orientation and position in real time (5.3 ms

er frame). It takes two consecutive endoscopic RGB Depth frames

ach with timestamp and regresses the 6-DoF pose of the robot

ithout need of any extra sensor. For the depth image creation

rom RGB input images, we used shape from shading (SfS) tech-

ique of Tsai and Shah, which is based on the following assump-

ions [24] : 

• The object surface is Lambertian; 

• The light comes from a single point light source; 

• The surface has no self-shaded areas. 

For more details of the Tsai–Shah SfS method, the reader is re-

erred to the original paper of the authors. In past couple of years,

ome powerful CNN architectures, such as GoogleNet [25] , VGG16

26] , ResNet50 [27] have been developed and evaluated for var-

ous high level computer vision tasks, e.g. object detection, ob-

ect recognition and classification [25,28–30] . One major drawback

f CNN architectures is the fact that they only analyse just-in-

oment information, whereas VO is rather dependent on the cor-

elative information across frames. Unlike traditional feed-forward

rtificial neural networks, RCNN can use its internal memory to

rocess arbitrarily long sequences by its directed cycles between

he hidden units. Therefore, we think that RCNN architectures are

ore suitable than CNN architectures for VO tasks. The proposed

eep EndoVO (endoscopic visual odometry) approach works as fol-

ows: 

lgorithm 1 Deep EndoVO. 

1: Take two consecutive input RGB images. 

2: Create the depth images from RGB images using Tsai–Shah SfS

method. 

3: Subtract mean RGB Depth value of the training set from the

RGB Depth images. 

4: Stack the preprocessed RGB Depth frame pair to form a tensor.

5: Serve the tensor into the stack of inception modules to create

the feature vector. 

6: Feed the feature representation into the RNN layers. 

7: Estimate the 6-DoF relative pose. 

The proposed DL network consists of three inception layers and

wo LSTM layers concatenated sequentially. The inception layers,

mitating visual cortex of human beings, are basically extracting

ulti-level features; i.e, features of different sizes such as small

etails, middle-size or larger features (see Fig. 3 b). The final incep-

ion layer passes the feature representation into the RNN modules

see Fig. 3 a). RNNs are very suitable for modelling the dependen-

ies across image sequences and for creating a temporal motion

odel since it has a memory of hidden states over time and has

irected cycles among hidden units, enabling the current hidden

tate to be a function of arbitrary sequences of inputs (see Fig. 3 a).
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Fig. 2. Experimental overview. 

Fig. 3. The structure of the LSTM and inception layers of the proposed model is shown. 
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hus, using RNN, the pose estimation of the current frame benefits

rom information encapsulated in previous frames [32,33] . Given a

et of inception features x k at time k , RNN updates at time step k,

 denote corresponding weight matrices of the hidden units, b the

ias vector, and H an element-wise hyperbolic tangent based acti-

ation function. Long short-term memory (LSTM) is more suitable

han RNN to exploit longer trajectories since it avoids the vanishing

radient problem of RNN resulting in a higher capacity of learning

ong-term relations among the sequences by introducing memory

ates such as input, forget and output gates and hidden units of

everal blocks. The input gate controls the amount of new infor-

ation flowing into the current state, the forget gate adjusts the

mount of existing information that remains in the memory and

he output gate decides which part of the information triggers the
ctivations. The folded LSTM and its unfolded version over time 
re shown in Fig. 3 a along with the internal structure of a LSTM

emory cell. It can be seen that unfolded LSTMs correspond to

imestamps. Given the input vector x k at time k , the output vector

 k −1 and the cell state vector c k −1 of the previous LSTM unit, the

STM updates at time step k according to the following equations,

here σ is sigmoid non-linearity, tanh is hyperbolic tangent non-

inearity, W terms denote corresponding weight matrices, b terms

enote bias vectors, i k , f k , g k , c k and o k are input gate, forget gate,

nput modulation gate, the cell state and output gate at time k , re-

pectively [31] : 

f k = σ (W f · [ x k , h k −1 ] + b f ) i k = σ (W i · [ x k , h k −1 ] + b i ) 

 k = tanh (W g · [ x k , h k −1 ] + b g ) c k = f k � c k −1 + i k � g k 

 k = σ (W o | cdot[ x k , h k −1 ] + b o ) h k = o k � tanh (c k ) 
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Fig. 4. Architecture of the proposed RCNN based monocular VO system. 
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Although the LSTM is prone to vanishing gradient problem

of RNN and is capable to detect the long-term dependencies, its

learning capacity can be increased further by stacking multiple

LSTM layers vertically. Thus, our deep RNN consists of two LSTM

layers with the output sequence of the first one forming the in-

put sequence of the second one each containing 10 0 0 hidden units,

as illustrated in Fig. 4 . The proposed system, which learns transla-

tional and rotational motions simultaneously to regress the 6-DoF

pose, is trained on Euclidean loss using Adam optimization method

with the following objective loss function: 

loss (I) = ‖ ̂

 x − x ‖ 2 + β‖ ̂

 q − q ‖ 2 (1)

where x is the translation vector and q is the rotation vector. The

pseudo-code to calculate the loss value is given in Algorithm 2 . In

our loss function, a balance β must be kept between the orien-

tation and translation loss values which are highly coupled each

other as they are learned from the same model weights. Exper-

imental results show that the optimal β is given by the ratio be-

tween the loss values of predicted positions and orientations at the

end of training session [30] . 

Algorithm 2 Pseudo code to calculate the loss over the network. 

1: procedure CalculateLoss 

2: loss ← 0 

3: for layer in layers do 

4: for top, loss _ weight in layer.tops, layer.loss _ weights do 

5: loss ← loss + loss _ weight × sum (top) 
The back-propagation algorithm is used to calculate the gradi-

nts of RCNN weights, which are passed to the Adam optimization

ethod to compute adaptive learning rates for each parameter em-

loying the first-order gradient-based optimization of the stochas-

ic objective function. In addition to saving exponentially decaying

verage of past squared gradients, v t , Adam optimization keeps ex-

onentially decaying average of past gradients, m t that is similar to

omentum. The update equations are given as 

(m t ) i = β1 (m t−1 ) i + (1 − β1 )(∇L (W t )) i (2)

(v t ) i = β2 (v t−1 ) i + (1 − β2 )(∇L (W t )) 
2 
i (3)

(W t+1 ) i = (W t ) i − α

√ 

1 − (β2 ) 
t 
i 

1 − (β1 ) 
t 
i 

(m t ) i √ 

(v t ) i + ε 
(4)

e used default values proposed by [34] for the parameters β1 ,

1 and ε: β1 = 0 . 9 , β2 = 0 . 999 and ε = 10 −8 . 

. Dataset 

This section demonstrates the experimental setup of the pro-

osed study, introduces our magnetically actuated soft capsule

ndoscopes (MASCE) and explains how the training and testing

atasets were recorded. 

.1. Magnetically actuated soft capsule endoscopes (MASCE) 

Our capsule prototype is a magnetically actuated soft capsule

ndoscope (MASCE) designed for disease detection, drug delivery
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Fig. 5. MASCE design features and actuation unit. 

(a) Sample frames recorded on a real pig stomach (b) Sample frames recorded on EGD simulator

Fig. 6. Sample frames from the datasets used in the experiments. 

Table 1 

Endoscopic camera specifications used for the experiments. 

(a) Awaiba Naneye Endoscopic Camera (b) Misumi-V3506-2ES Camera 

Resolution 250 × 250 pixel Resolution 400 × 400 pixel 

Footprint 2.2 × 1.0 × 1.7 mm Diameter 8.2 mm 

Pixel size 3 × 3 μm 

2 Pixel size 5.55 × 5.55 μm 

2 

Frame rate 44 fps Frame rate 30 fps 

(c) Misumi-V3506-2ES Camera (d) Potensic Mini Camera 

Resolution 640 × 480 pixel Resolution 1280 × 720 pixel 

Diameter 8.6 mm Diameter 8.8 mm 

Pixel size 6.0 × 6.0 μm 

2 Pixel size 10.0 × 10.0 μm 

2 

Frame rate 30 fps Frame rate 30 fps 
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nd biopsy operations in the upper gastrointestinal tract. The pro-

otype is composed of a RGB camera, a permanent magnet, a fine-

eedle and a drug chamber (see Fig. 5 for visual reference). The

agnet exerts magnetic force and torque to the robot in response

o a controlled external magnetic field [19] . The magnetic torque

nd forces are used to actuate the capsule robot and to release

rug and deliver the needle through the hole in the bottom of

he capsule. Magnetic fields from the electromagnets generate the

agnetic force and torque on the magnet inside MASCE so that the

obot moves inside the workspace. Sixty-four three-axis magnetic

ensors are placed on the top, and nine electromagnets are placed

n the bottom [19] . 

.2. Training dataset 

We created two groups of training datasets. The first train-

ng dataset was recorded on five different real pig stomachs (see

ig. 2 ), whereby the second dataset which was only used for train-

ng purposes, was captured using a non-rigid open GI tract model

GD (esophagus gastro duodenoscopy) surgical simulator LM-103

see Fig. 2 ). To ensure that our algorithm is not tuned to a spe-

ific camera model, four different commercial endoscopic cameras

ere employed, specifications of which are shown in Table 1 , ac-

ordingly. For each pig stomach-camera combination, 20 0 0 frames

ere acquired which makes for four cameras and five pig stom-

chs 40 , 0 0 0 frames, in total. Sample real pig stomach frames are

hown in Fig. 6 a for visual reference. As a second training dataset,
or each of four cameras, we captured 10 , 0 0 0 frames on an EGD

uman stomach simulator making 40 , 0 0 0 frames, in total. Sample

ynthetic training frames are shown in Fig. 6 b for visual reference.

uring video recording, Optitrack motion tracking system consist-

ng of eight Prime-13 cameras and a tracking software was utilized

o obtain 6-DoF localization ground truth data in a sub-millimeter

recision (see Fig. 2 ) which was used as a gold standard for the

valuations of the pose estimation accuracy. 

.3. Testing dataset 

We created a testing dataset recorded using five different real

ig stomachs, which were not used for the training section. For

ach pig stomach-camera combination, 20 0 0 frames are acquired

aking 40 , 0 0 0 frames, in total. We did not capture any synthetic

ataset for the testing session since it is less realistic due to ob-

ious patterns of such artificial simulators. For all of the video

ecords, again Optitrack motion tracking system was utilized to ob-

ain 6-DoF localization ground truth. 

. Evaluations and results 

Architecture was trained using Caffe library and NVIDIA

esla K40 GPU. Using back-propagation-through-time method, the

eights of hidden units were trained for up to 200 epochs with an

nitial learning rate of 0.001. Overfitting meaning that the noise or

andom fluctuations in the training data are picked up and learned

s concepts by the model, whereas these concepts do not apply

o a new data and negatively affect the ability of the model to

ake generalizations, was prevented using dropout and early stop-

ing techniques (see Fig. 10 ). Dropout regularization technique in-

roduced by [35] is an extremely effective and simple method to

void overfitting. It samples a part of the whole network and up-

ates its parameters based on the input data. Early stopping is an-

ther widely used technique to prevent overfitting of a complex

eural network architecture which was optimized by a gradient-

ased method. The approach is executed by splitting the dataset

nto a training and a validation set to evaluate the generalization

apability of the model. 
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(a) Change in the loss values for a good fitting (b) Change in the loss values for overfitting

Fig. 7. The decrease in the training and validation loss values. In overfitting case, the training loss gets smaller than the validation loss. However, the loss values are balanced 

for a good fit. 

(a) Trajectory 1 (b) Trajectory 2

(c) Trajectory 3 (d) Trajectory 4

Fig. 8. Sample ground truth trajectories and estimated trajectories predicted by the DL based VO models. As seen, deep EndoVO is the closest to the ground truth trajectories. 

The scale is calculated and maintained correctly by the models. 
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For the testing sessions, only real pig stomach recordings were

used to ensure real world conditions. Additionally, we strictly

avoided to use any frame from the training session for the testing

session. Two separate experiments were conducted, whereas train-

ing session of the first experiment was performed using only the

synthetic training dataset (see Fig. 7 b) which we call simEndoVO

and training session of the second experiment was performed

using frames from both synthetic and real pig stomach dataset

(see Fig. 7 b and a) which we call realEndoVO. The performance of

the simEndoVO and realEndoVO approaches were analysed using

averaged root mean square errors (RMSEs) for translational and

rotational motions. For various trajectories with different complex-

ity levels of motions, including uncomplicated paths with slow

incremental translations and rotations, comprehensive scans with

many local loop closures and complex paths with sharp rotational

and translational movements, we performed testings on both

simEndoVO and realEndoVO comparing them with GoogLeNet

and ResNet50 architectures which were modified to regress 6-DoF

pose values by removing softmax layer and integrating a fully-

connected (FC) layer and an affine regressor layer. The average
ranslational and rotational RMSEs for simEndoVO, realEndoVO,

oogLeNet and ResNet50 networks against different path lengths

re shown in Fig. 9 , respectively. The results depicted indicate, that

ealEndoVO clearly outperforms GoogLeNet and ResNet50, whereas

imEndoVO slightly outperforms them. We presume that the effec-

ive use of LSTM in EndoVO architecture enabled learning motion

ynamics across frame sequences, which is not feasible by archi-

ectures working with the principle of just-in-moment information

rocessing; i.e. GoogleNet and ResNet50. The results in Fig. 9 also

ndicate that the training procedure including both simulator and

eal dataset was more informative than training only with simu-

ator dataset. On the other hand, the accuracies achieved by the

odified GoogLeNet are slightly better than accuracies achieved by

he modified ResNet50, proving the superiority of inception layers

ver residual networks for feature extraction related tasks. Derived

rom RMSEs calculated, the rotational motion parameters seem

o be more prone to overfitting compared to translational motion

arameters (see Fig. 10 for visual reference). The reason for that

bservation could be the fact that inner organ scanning procedures

enerally contain more translational motions than rotational mo-
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(a) Trajectory length vs translation error (b) Trajectory length vs totation error

Fig. 9. Deep EndoVO outperforms both of the other models in terms of translational and rotational position estimation. 

(a) Training good fitting (b) Training overfitting

(c) Test good fitting (d) Test overfitting

Fig. 10. The affect of good fitting and overfitting. The first and the second rows show over-fitted and well-fitted models, respectively. As seen in subfigures, the model learns 

the details and noise in the training data to an undesired extent that it negatively impacts the performance of the model on the test data. 
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ions resulting in a better learning for translations. As the length

f the trajectory increases, both the translational and rotational

rror of all the proposed models significantly decrease (see Fig. 9 ).

ome sample ground truth and estimated trajectories for real-

ndoVO, GoogLeNet and ResNet50 are shown in Fig. 8 for visual

eference. As seen in these sample trajectories, realEndoVO is able

o stay close to the ground truth pose values for even sharp crispy

otions, contrary to realEndoVO; GoogLeNet and ResNet50 path

stimations which deviate drastically from the ground truth path

alues. Even for very fast and challenge paths such as Fig. 8 a and

, the deviations of realEndoVO from the ground truth still remain

n an acceptable range for medical operations. In addition to that,

t is clearly seen that all of the three evaluated neural network

rchitectures are able to estimate the scale very accurately without

sing any prior information or post alignment techniques con-

[  
rary to traditional VO. Solving the scale ambiguity for monocular

amera based VO makes our proposed DL based method more ben-

ficial than traditional VO approach. As opposed to the traditional

O pipeline (see Fig. 1 ), the DL-based VO do not require any ex-

licit feature extraction, matching, outlier detection or multi-scale

undle adjustment-like parameter tuning requiring operations,

hich can be seen as further benefits of the proposed approach. 

.1. Comparisons of deep EndoVO with state-of-the-art SLAM 

ethods 

In this subsection, we compare the performance of the pro-

osed deep EndoVO with two of the widely used state-of-the-art

LAM methods; i.e. large-scale direct monocular SLAM (LSD SLAM)

36] and the oriented fast and rotated brief SLAM (ORB SLAM)
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(a) Trajectory length vs translation error (b) Trajectory length vs rotation error

Fig. 11. Deep EndoVO outperforms the state-of-the-art SLAM methods ORB SLAM and LSD SLAM in both the translation and orientation estimation. 

(a) Trajectory 1
(b) Trajectory 2

(c) Trajectory 3
(d) Trajectory 4

Fig. 12. The ground truth and the trajectory plots acquired via deep EndoVO, LSD SLAM and ORB SLAM. Deep EndoVO is the closest to the ground truth trajectories compared 

to the state-of-the-art SLAM methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c  

S  

e  

p  

r  

t  

t  

s  

j

5

 

fi  

h  

a  
[37] . LSD SLAM is a direct image alignment-based method which

optimizes the geometry using all of the image intensities. In ad-

dition to higher accuracy and robustness particularly in environ-

ments with little key points, this provides substantially more in-

formation about the geometry of the environment, which can be

very valuable for medical robot applications, as well. ORB SLAM

on the other hand, relies on feature point extraction and track-

ing to estimate camera pose and 3D map the environment. Even

though it gives very promising results for feature-rich areas, its

main deficiency appears once the robot enters poorly featured ar-

eas. Tracking failures are commonly observable for poorly featured

GI tract tissues making ORB SLAM less proper for our case. We be-

lieve that our deep EndoVO architectures makes an optimal use

of both direct and feature point information to estimate the pose.

The average translational and rotational RMSEs for simEndoVO,

realEndoVO, LSD SLAM and ORB SLAM, shown in Fig. 11 indi-
ate that both simEndoVO and realEndoVO clearly outperform LSD

LAM and ORB SLAM in terms of pose accuracy. Sample trajectory

stimations shown in Fig. 12 visualize clearly that the tracking ca-

ability of the proposed deep EndoVO is much more robust and

eliable compared to LSD SLAM and ORB SLAM. In many parts of

he trajectories, ORB SLAM and LSD SLAM deviate from the ground

ruth trajectory drastically, whereas deep EndoVO is still able to

tay close to the ground truth values even for most challenge tra-

ectory sections (see Fig. 12 b and c). 

. Conclusion 

In this study, we presented, to the best of our knowledge, the

rst deep VO method for endoscopic capsule robot and standard

and-held endoscope operations. The proposed system is able to

chieve simultaneous representation learning and sequential mod-
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lling of motion dynamics across frames by concatenating the in-

eption modules with RNN layers. Many issues faced by traditional

O techniques such as feature correspondence establishment in

ow textured areas, high reflections, motion blur and low image

uality are handled by the proposed deep EndoVO successfully.

ince it is trained in an end-to-end manner, there is no need to

arefully fine-tune the parameters of the system. As a future step,

e consider to combine deep EndoVO with some functionalities

rom the traditional VO pipelines such as RANSAC for outlier de-

ection and bundle fusion for globally consistent pose estimation

tc to avoid drifts. Moreover, we consider to develop a stereo ver-

ion of the proposed deep EndoVO approach. 
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