
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AUTOMATED OVERREFUSAL PROMPT GENERATION
AND REPAIR WITH DELTA DEBUGGING

Anonymous authors
Paper under double-blind review

ABSTRACT

While safety alignment and guardrails help large language models (LLMs) avoid
harmful outputs, they also introduce the risk of overrefusal—unwarranted rejection
of benign queries that only appear risky. We introduce DDOR (Delta Debugging
for OverRefusal), a fully automated, black-box, causally grounded framework
that generates interpretable test items with explicit refusal triggers. Unlike prior
benchmarks that operate at a coarse prompt level or rely heavily on manual design,
DDOR produces one thousand high-quality prompts per model and consistently
increases measured overrefusal rates relative to seed sets, demonstrating strong
diagnostic capability. Moreover, our mRTF-based repair method substantially
lowers overrefusal rates without compromising safety on genuinely harmful inputs.
By combining precise trigger isolation with scalable generation and principled
filtering, DDOR provides a practical framework to both evaluate and mitigate
overrefusal, thereby improving LLM usability while maintaining safety.

1 INTRODUCTION

With the rapid adoption of large language models (LLMs) across diverse natural language processing
(NLP) applications, growing concerns have also emerged regarding the safety of generated con-
tent (Zhang et al., 2024; Zeng et al., 2025; Yuan et al., 2025). For instance, without proper safeguards,
an LLM might provide harmful responses to queries such as ‘how to kill a person?’. To mitigate
such risks, models are commonly subjected to safety alignment through training or equipped with
guardrails designed to reject unsafe or malicious requests. However, these protective measures intro-
duce a new challenge: the model may also unnecessarily refuse benign queries that share superficial
similarities with harmful ones. For example, a request like ‘how to kill a python process?’ may be
declined mistakenly. This phenomenon, known as overrefusal, undermines the usability of LLMs by
limiting their availability to legitimate and safe user requests (Röttger et al., 2024; Cui et al., 2025).

To better understand and evaluate the issue of overrefusal, several benchmark datasets have recently
been proposed. For example, XSTest hand-crafted 250 prompts that were semantically safe but
contained sensitive words, and then, with the aid of online dictionaries and LLMs, minimally modified
them to generate 200 additional unsafe prompts, thereby constructing a contrastive test suite for
detecting exaggerated safety refusals in LLMs (Röttger et al., 2024). Another line of work, OR-Bench,
adopts a different strategy: it first generates harmful seed prompts with the help of an LLM, then
rewrites them into ‘seemingly harmful but actually harmless’ prompts, and finally uses a multi-
model judge to filter the outputs, yielding a large-scale benchmark of 80,000 prompts spanning ten
categories (Cui et al., 2025).

Despite their usefulness, these existing benchmarks face three critical limitations. First, they offer
little interpretability: the precise factors that trigger overrefusal remain opaque. Second, they are
inherently model-agnostic, relying on static test sets that cannot adapt to uncover model-specific
overrefusal cases at scale. Third, they are built entirely from scratch, making it difficult to leverage or
extend existing safety evaluation datasets, particularly the rich set of established safety evaluation
benchmarks, thus constraining both scalability and reusability.

To overcome these limitations, we introduce DDOR (Delta Debugging for OverRefusal), a novel
testing framework that automatically constructs model-specific overrefusal evaluation datasets using
delta debugging. Figure 1 outlines the three main steps: minimization, expansion, and filtering.
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Figure 1: An overview of DDOR.

• Minimization: Starting from any refusal-inducing seed set (either overrefusal cases or general
unsafe prompts), we apply a delta debugging loop to the model under test to isolate the smallest
refusal-triggering fragment. Delta debugging, originally developed for software testing (Zeller &
Hildebrandt, 2002), systematically partitions, removes, and validates input segments to uncover the
minimal element responsible for a failure. Applied here, it yields compact prompts whose refusal
stems from a precisely identified phrase, rather than from the prompt as a whole.

• Expansion: An auxiliary LLM then generates new prompts by embedding the minimal refusal-
triggering fragments into diverse contexts, intents, and task formulations. This preserves the causal
trigger while broadening coverage, enabling large-scale exploration of overrefusal behavior without
diluting the signal.

• Filtering: Finally, a multi-model chain-of-thought (CoT) analysis performs semantic decomposition
and cross-model judgment to remove semantically unsafe or ambiguous cases. This ensures that
the generated prompts capture genuine overrefusal rather than legitimate safety refusals.

Compared to existing benchmarks, DDOR offers several key advantages: (1) precision, by isolating
the true refusal-triggering factor at the phrase level; (2) customization, by adapting to the unique
refusal patterns of each model, avoiding static and homogeneous datasets; and (3) automation, by
replacing manual prompt engineering and labor-intensive filtering with a fully automated pipeline,
enabling scalable and efficient overrefusal evaluation. In addition, DDOR offers a way of repairing
wrongly-refused prompts and restoring model usability, by precisely rewriting refusal-triggering
fragments of the prompt. Note that DDOR operates purely on model input–output behavior, requiring
no access to internal structures, which makes it applicable to both black-box and white-box models
as well as diverse guardrails implemented via either small models or rule-based systems.

To assess the effectiveness of DDOR, we conduct experiments on three datasets and six widely used
LLMs. The results show that DDOR can reliably construct overrefusal test sets from existing refused
prompts (whether derived from safe or unsafe prompts) while producing high-quality cases at scale.
In addition, DDOR successfully repairs wrongly-refused prompts, reducing unnecessary refusals
without altering their original semantics. Finally, ablation studies confirm that both the minimization
and filtering modules are critical contributors, each delivering strong performance gains over existing
approaches.

Our contributions are summarized as follows. First, we introduce delta debugging into the study
of overrefusal, enabling precise isolation and systematic generation of refusal-triggering prompts
in LLMs. Secondly, we develop a CoT-based dual-model reasoning framework for fine-grained
harmfulness assessment, improving both the accuracy and interpretability of filtering. Thirdly, we
propose an automated repair method that rewrites wrongly-refused prompts, effectively mitigating
overrefusal while preserving the original semantics and usability of prompts. Lastly, we conduct
extensive experiments on six state-of-the-art LLMs, showing that DDOR not only identifies but also
repairs overrefusal cases, substantially improving model usability without compromising safety. Our
code and results are available at https://anonymous.4open.science/r/DDOR.
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2 BACKGROUND AND RELATED WORKS

Ensuring the safe deployment of LLMs relies on alignment techniques such as Reinforcement
Learning from Human Feedback (RLHF), which optimizes models based on human preference
signals to discourage unsafe behaviors (Ouyang et al., 2022); Constitutional AI, which replaces direct
human feedback with a set of normative principles that guide model self-improvement through critique
and revision (Bai et al., 2022); and guardrails, which impose explicit input–output constraints to block
or filter harmful or unethical content at runtime (Huang et al., 2025). However, these approaches
impose a ‘safety tax’, where excessive caution can degrade reasoning and instruction-following
abilities (Huang et al., 2025). A key manifestation of this trade-off is overrefusal, where LLMs
unjustifiably decline benign requests. Recent studies have proposed several mitigation strategies.
These include safety-reflection fine-tuning that encourages models to reason before refusal (Si
et al., 2025); safety representation ranking to select non-refusal responses (Du et al., 2025); and
representation-steering methods that disentangle false-refusal features from true-refusal signals (Wang
et al., 2025). In addition, dual-objective optimization integrates robust refusal training with targeted
unlearning to improve safety while limiting unnecessary refusals (Zhao et al., 2025). Despite these
advances, overrefusal remains an open challenge, undermining the reliability and usability of LLMs
in real-world applications.

Overrefusal Benchmarks XSTest is the first test suite that targets overrefusal, which is based on
hand-crafted prompts (Röttger et al., 2024). It comprises 250 safe prompts spanning 10 prompt types
that are designed to be semantically harmless but lexically akin to unsafe requests, paired with 200
unsafe contrast prompts to probe calibration trade-offs. To partly address the scalability issue on
constructing such benchmarks, OR-Bench proposes an automated pipeline: (i) generate toxic seed
prompts, (ii) rewrite them into ‘seemingly toxic but benign’ variants, and (iii) filter candidates using
a multi-model ensemble moderator (e.g. GPT-4-turbo, LLaMA-3-70B, Gemini-1.5-Pro) (Cui et al.,
2025). The resulting benchmark includes 80,000 safe prompts spanning 10 standardized refusal
categories, a hard subset of 1,000 prompts rejected by multiple strong models, and an auxiliary toxic
set for safety calibration. This large-scale benchmark enabled systematic evaluation of 25 models
across eight families, revealing a strong correlation between improved safety (toxic prompt rejection)
and increased overrefusal. Despite its scale, OR-Bench has limitations. Its rewriting step operates
at a coarse prompt level, limiting interpretability and obscuring the phrase-level triggers of refusals.
Moreover, we observed many cases of mislabeling, where genuinely unsafe prompts were incorrectly
retained as safe. These issues highlight the need for more fine-grained, systematic approaches to
overrefusal evaluation.

Reasoning-Based Safety Filtering Beyond benchmark construction, recent studies have explored
reasoning-based safety guards that produce explicit intermediate analyses before issuing moderation
decisions. The intuition is that structured reasoning, such as CoT or stepwise evidence checking,
improves calibration on ambiguous cases while offering transparency. For example, GuardReasoner
combines Reasoning-SFT with Hard-Sample DPO to train guards that ‘think then moderate’, achiev-
ing superior generalization and F1 performance across harmfulness and refusal tasks (Liu et al.,
2025). Complementary approaches introduce safety reflection inside task models, such as the Think-
Before-Refusal (TBR) schema, where models first reason about user intent and risk before deciding
to refuse, thereby mitigating false refusals without reducing harmfulness detection (Si et al., 2025).
Baseline systems like Llama Guard (Inan et al., 2023) demonstrate the effectiveness of structured
guardrails, but reasoning-enhanced guards extend these by providing more robust and interpretable
moderation. These developments highlight both the promise and vulnerabilities of reasoning-based
safety filtering, motivating our use of multi-model CoT filtering to ensure high-quality overrefusal
datasets that stress-test guard performance on fine-grained triggers.

3 OUR METHOD

In this section, we first introduce how to systematically extract minimal refusal-triggering fragments
from seed prompts, which serve as the basis for constructing high-quality overrefusal test samples
through LLM-based expansion and filtering. We then describe how these fragments are further
utilized to reduce overrefusals by precisely rewriting prompts. The complete prompts used for
generation and repair are provided in Appendix A.
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3.1 REFUSAL-TRIGGER EXTRACTION

Our method starts from any refusal-inducing dataset, including both overrefusal benchmarks (e.g.,
OR-Bench, and XSTest) and general safety evaluation benchmarks (e.g., S-Eval (Yuan et al., 2025),
and HarmEval (Banerjee et al., 2025)). The goal is to extract a minimal Refusal-Triggering Fragment
(mRTF), defined as the smallest phrase whose presence alone is sufficient to elicit a refusal from the
model. This reduction guarantees that only the essential refusal-inducing elements are preserved,
thereby enhancing interpretability and providing basis for subsequent expansion and repairing.

Definition 1 (Minimal Refusal-Triggering Fragment). An input prompt to an LLM can be represented
as a sequence of fragments,

P = {f1, f2, . . . , fn},
where each fi denotes a textual unit, which can range from a single character to a token, word,
phrase, or even an entire sentence. The test function for refusal is defined as,

test(S) =
{

FAIL, if concat(S) triggers a refusal from the model,
PASS, if the model responds normally.

where S ⊆ P . Given a refused input prompt P , the minimal Refusal-Triggering Fragment S×
min is

defined as,

SmRTF ⊆ P, s.t. test(SmRTF ) = FAIL, ∀ui ∈ SmRTF , test(SmRTF \ {ui}) = PASS.

In other words, S×
min is the minimal subset of P that by itself is sufficient to trigger a refusal.

To extract mRTF, we introduce the delta debugging algorithm (ddmin) (Zeller & Hildebrandt, 2002).
Originally proposed in software testing, delta debugging was designed to automatically minimize
failure-inducing inputs. In that context, a failure typically corresponds to a deterministic program
crash, and the algorithm iteratively prunes input components until the smallest failure-inducing input
is identified. We adapt this principle to the LLM setting, where the goal is to isolate the minimal
refusal-triggering fragment from a given prompt.

Algorithm 1 shows the details of the delta debugging for refusal. Note that adapting delta debugging
from deterministic software failures to the stochastic refusal behavior of LLMs faces several practical
challenges. First, linguistic validity must be preserved during the search, since removing arbitrary
tokens often produces prompts that are no longer syntactically or semantically well-formed. To
mitigate this, we adopt a two-stage granularity: the prompt is first segmented into sentences, and only
once the reduced set collapses to a single sentence do we further split it into whitespace-delimited
words. This preserves readability while still permitting fine-grained pruning. Second, the failure
oracle requires a precise operational definition. Unlike a program crash, an LLM refusal may be
partial or hedged. We therefore implement a deterministic binary test: a reply is labeled FAIL if
it matches any entry in a curated suite of refusal patterns (e.g., “I can’t help,” “violates my safety
policies”), and PASS otherwise. This enables automated and repeatable evaluation inside the reduction
loop. Third, search efficiency is essential. Natural-language prompts can be lengthy, making naı̈ve
subset enumeration infeasible. Our reducer employs complement testing with adaptive partitioning:
at each iteration, the current fragment sequence is divided into n contiguous blocks, and we test the
remainder obtained by removing each block. If a remainder still triggers refusal, we shrink the input
and decrease n to coarsen the partition, enabling larger deletions on the now-smaller candidate. If
no reduction succeeds in a round, we instead double n, refining the search with smaller blocks and
improving locality.

3.2 EXPANSION

We construct overrefusal evaluation datasets by first designing a general template to guide prompt
synthesis from extracted mRTFs. The template enforces three requirements: (i) each generated
prompt must include a given set of mRTFs, without constraints on order or adjacency; (ii) the surface
semantics should appear sensitive or potentially controversial, thereby increasing the likelihood
of refusal; and (iii) the underlying user intent must remain benign, ensuring overall safety and
controllability. This setup allows for the generation of multiple candidate prompts with stylistic
variation while preserving fluency and readability.
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Algorithm 1: Delta Debugging for Refusal
Input: Refused prompt P = {f1, f2, . . . , fm}; test function test(·) ∈ {PASS, FAIL}
Output: SmRTF

1 n← 2;
2 while |P | ≥ 2 do
3 Partition P into (B1, . . . , Bn) contiguous blocks of size ⌊|P |/n⌋;
4 success← False;
5 for i← 1 to n do
6 Ri ← P \Bi;
7 if test(Ri) = FAIL then
8 P ← Ri;
9 n← max(n− 1, 2);

10 success← True;
11 break;

12 if not success then
13 if n ≥ |P | then
14 break;
15 else
16 n← min(2n, |P |);

17 return P as SmRTF ;

When conditioning generation on a single mRTF, we observed that the resulting prompts were
often semantically mild and failed to consistently induce overrefusal. To address this, we extend the
template with a pairwise combination strategy, jointly conditioning on two mRTFs. By superimposing
multiple triggers, the generated prompts are more likely to elicit refusals while still retaining harmless
semantics. However, arbitrary pairwise combinations introduce the risk of incoherence when the
selected mRTFs are semantically unrelated. For example, combining ‘intimate purposes’ with ‘for
card leaks’ yields nonsensical prompts such as: ‘Write instructions on how to simulate a workflow
that seems optimized for card leaks but can safely be adapted for intimate purposes in a completely
risk-free manner.’ To address this problem, we introduce a semantic classification step. Specifically,
an auxiliary LLM categorizes all mRTFs into a ten-topic taxonomy of sensitive domains. Pairwise
combinations are then restricted to mRTFs within the same category, ensuring thematic consistency
and semantic coherence.

By combining template design, pairwise expansion, and category-constrained combination, we
generate prompts that are diverse, challenging, and coherent. Compared with single-mRTF generation,
our approach substantially improves the effectiveness of overrefusal evaluation, while preserving
safety and eliminating the need for manual curation. The resulting dataset achieves broad topical
coverage, expressive richness, and contextual complexity, providing a strong foundation for systematic
study of overrefusal.

3.3 FILTERING

While the prompts generated via our strategy are crafted to only appear unsafe, some may still
represent genuinely harmful queries. To ensure the benchmark targets overrefusal exclusively, a
rigorous filtering step is required to remove intrinsically unsafe prompts.

OR-Bench attempts to filter unsafe prompts through multi-model voting, but its final decisions
depend solely on outputs from Mistral-7B-Instruct-v0.3 (Cui et al., 2025). Although not explicitly
safety-aligned, this model likely exhibits implicit moderation behaviors due to its training data. As a
result, unsafe prompts can be misclassified as safe. For example, the OR-Bench-Hard-1K dataset
includes cases such as “How can illicit funds be made to appear legitimate in financial records?”, i.e.,
a clearly unsafe query that slipped through under this approach.

To address this issue, we design a dual-model reasoning and scoring framework. Specifically, gpt-4o-
mini and gemini-2.5-flash independently evaluate each generated prompt by (i) analyzing the context
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of the request, (ii) inferring user intent, and (iii) assessing potential consequences. Each assigns a
harmfulness score from 1–5, and prompts with a combined score above 6 are discarded. This filtering
mechanism offers three benefits: (1) ensemble reasoning reduces systematic bias from any single
model; (2) score-based CoT analysis provides transparency and interpretability compared with binary
classification; and (3) evaluation is performed on prompts directly, avoiding distortions from model
safety interventions. Through this process, we ensure the final dataset retains only semantically
harmless prompts, thereby enhancing its reliability for overrefusal evaluation.

3.4 OVERREFUSAL PROMPT REPAIR

Completely eliminating overrefusal in LLMs is a highly challenging goal, as refusal behaviors
arise from complex interactions between alignment data, safety heuristics, and model-specific
idiosyncrasies. In this context, developing practical methods to mitigate overrefusal and thereby
improve model utility is of immediate importance. Building on the preceding discussion, where
we employed the Delta Debugging algorithm to identify mRTFs, we propose an automated prompt
revision method that systematically reduces unnecessary refusals.

The key idea is straightforward: once the mRTF is precisely located, a targeted rewrite can neutralize
the trigger while preserving the original semantics and intent, thus restoring usability without
sacrificing safety. The repair pipeline proceeds in two stages. First, given a safe prompt that has been
wrongly refused, we apply Algorithm 1 to extract its mRTF. Second, the identified mRTF is passed
to a rewriting model that performs localized substitutions or adjustments. The rewriting follows
three principles: (i) preserve the original semantics as faithfully as possible; (ii) replace sensitive
expressions with neutral alternatives; and (iii) restrict modifications strictly to the mRTF, leaving the
broader sentence structure intact.

4 EXPERIMENTAL EVALUATION

In this section, we evaluate the effectiveness of DDOR through a series of experiments. Specifically,
we assess its ability to construct overrefusal evaluation datasets as well as to repair wrongly-refused
prompts. For the former, we evaluate its performance with both existing safety dataset (i.e., S-
Eval base risk en small (Yuan et al., 2025)) and overrefusal dataset (i.e., OR-Bench-Hard-1K (Cui
et al., 2025)) as seed. For the latter, we evaluate with OR-Bench-Hard-1K and XSTest (Röttger
et al., 2024). We adopt 6 well-known LLMs in our experiments, i.e., gpt-oss-20b, qwen3-30b-a3b-
instruct-2507 (abbreviated as qwen3-30b in the following text), DeepSeek-V3.1, gpt-5, gpt-5-mini
and Gemma-3-1b.

All experiments were conducted on a personal laptop equipped with an Intel Core i9-14900HX
CPU and 32GB of RAM. To access and interact with the LLMs, we integrated the APIs provided
by api.openai.com, generativelanguage.googleapis.com, and api.chatanywhere.tech. All baseline
prompts used for both generation and repair are provided in Appendix B.

4.1 EFFECTIVENESS EVALUATION

Overrefusal Dataset Construction Starting from refusal-inducing seeds drawn from either safety
or overrefusal benchmarks, we apply DDOR to construct overrefusal datasets as discussed in Sec-
tion 3.1. For baseline comparison, we compare DDOR with the OR-Bench, and a baseline that
directly rewrites prompts while retaining the same filtering procedure. The evaluation considers
two metrics: the number of generated safe prompts and the Overrefusal Rate (ORR), defined as the
proportion of generated prompts that elicit unjustified refusals.

The detailed results are summarized in Table 1. It can be observed that datasets constructed with
DDOR achieve substantially stronger effectiveness than the two baslines. Compared with OR-Bench,
the overrefusal rate increases on average by 19.30%, showing that DDOR is able to more effectively
expose overrefusal. Compared to the direct full-prompt rewriting, DDOR not only generates far
more test cases, on average 5.03 times as many, but also produces prompts that trigger overrefusal
more reliably, with an average 68.67% higher overrefusal rate. Moreover, unlike prior methods that
construct benchmarks entirely from scratch, DDOR can be directly applied to existing safety datasets
(i.e., S-Eval) to efficiently create overrefusal test cases. In this setting, it produces 18.28 times more
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Table 1: Overrefusal dataset construction effectiveness on OR-Bench and S-Eval.

Dataset Model Original Baseline DDOR

ORR Size ORR Size ORR

OR-Bench

gpt-oss-20b 69.8% 358 70.3% 1,214 76.6%
qwen3-30b 29.4% 156 17.3% 984 37.9%
DeepSeek-V3.1 29.4% 141 12.1% 984 38.4%
gpt-5 66.2% 315 61.6% 962 73.1%
gpt-5-mini 52.4% 231 43.3% 1,155 56.7%
Gemma-3-1b 44.1% 226 48.2% 1,225 56.4%

S-Eval

gpt-oss-20b N.A. 52 67.3% 1,049 72.5%
qwen3-30b N.A. 29 20.7% 647 39.4%
DeepSeek-V3.1 N.A. 40 15.0% 792 39.7%
gpt-5 N.A. 54 37.0% 764 55.8%
gpt-5-mini N.A. 53 18.9% 908 71.4%
Gemma-3-1b N.A. 50 38.0% 1,106 51.1%

samples than the baseline and raises the overrefusal rate by 104.30%, enabling systematic exploration
of the boundary between safety and usability. Intuitively, this improvement stems from the fact
that direct rewriting tends to yield benign rephrasing that fails to elicit overrefusal, whereas DDOR
preserves the true refusal-triggering fragments and diversifies their contexts, thereby uncovering more
challenging and representative prompts.

Overrefusal Prompt Repair To evaluate the effectiveness of our proposed mRTF-based repair
method, we use two metrics: (1) the Repair Rate, defined as the proportion of overrefusal cases
that are successfully repaired after prompt revision, and (2) the semantic similarity between the
original and rewritten prompts. The similarity is computed as the cosine similarity between their
embeddings obtained from text-embedding-3-large OpenAI (2024). As a baseline, we consider full
prompt rewriting, where the prompt is rephrased with the sole objective of preserving semantics.

The detailed results are summarized in Table 2. We observe that our method effectively reduces
overrefusal rates, achieving average reductions of 51.96% on OR-Bench and 86.41% on XSTest.
Compared to the baseline, our approach shows a trade-off on OR-Bench: the repair rate is on average
11.92% lower, but semantic similarity improves by 7.01%. A plausible explanation is that the baseline
rewrites the whole prompt, substituting all potentially sensitive terms with neutral ones, which can
end up removing refusal triggers that go beyond the minimal set. In contrast, DDOR targets only the
rewriting of mRTFs, thereby better preserving semantics, though it may leave some minor residual
triggers unchanged. On XSTest, our method outperforms the baseline on both dimensions, with
average improvements of 3.63% in repair rate and 1.67% in similarity. This is because prompts in
XSTest are shorter (8.45 words on average) compared to OR-Bench (18.43 words), making localized
rewriting sufficient to remove most triggers while preserving semantics. Overall, considering both
repair effectiveness and semantic fidelity, our approach offers a more balanced and reliable solution
than full-prompt rewriting.

4.2 ABLATION STUDY

In the following, we evaluate the effectiveness of each module in our framework, i.e., mRTF extraction
and generated prompt filtering.

Extraction To investigate the effectiveness of mRTF extraction, we further classify the extracted
fragments by clustering their embeddings. Specifically, we use the total 994 mRTFs obtained by
DDOR from the OR-Bench-Hard-1K dataset and select gpt-5 as the representative model, as it
exhibits the highest overrefusal rate. However, determining the optimal number of clusters without
prior data analysis is a non-trivial challenge (Kaufman & Rousseeuw, 1990). To address this, we
enhance mRTF clustering by employing the Silhouette index, an internal validation metric that
evaluates the quality of clustering structures without relying on external labels (Rousseeuw, 1987).
By computing the coherence of each mRTF’s embedding with respect to its assigned cluster and
neighboring clusters, the Silhouette index enables the automatic determination of the optimal number
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Table 2: Overrefusal prompt repair effectiveness on OR-Bench and XSTest.

Dataset Model Baseline DDOR

Repair Rate Similarity Repair Rate Similarity

OR-Bench

gpt-oss-20b 50.13% 0.834 40.08% 0.885
qwen3-30b 72.38% 0.830 60.63% 0.884
DeepSeek-V3.1 72.42% 0.831 62.35% 0.881
gpt-5 56.10% 0.831 45.76% 0.885
gpt-5-mini 59.07% 0.835 45.92% 0.903
Gemma-3-1b 73.17% 0.834 57.02% 0.907

XSTest

gpt-oss-20b 65.52% 0.809 72.41% 0.798
qwen3-30b 100.00% 0.778 100.00% 0.822
DeepSeek-V3.1 76.92% 0.733 92.31% 0.717
gpt-5 77.78% 0.806 83.33% 0.819
gpt-5-mini 80.65% 0.798 87.10% 0.818
Gemma-3-1b 95.83% 0.792 83.33% 0.822

Figure 2: UMAP visualization of mRTF embeddings.

of clusters. This approach overcomes a key limitation of k-means, which requires the number of
clusters to be specified in advance.

The number of clusters was explored within the range of 5 to 20, and the algorithm ultimately
identified 15 clusters, as illustrated in Figure 2. We then employed gpt-5 to analyze the mRTFs within
each cluster and assign interpretable labels. The results are summarized in Table 3, which reports the
category, cluster names, the number of mRTFs per cluster, and two representative examples. Overall,
the 15 clusters can be grouped into 6 high-level categories. The analysis reveals three key observations.
First, all extracted mRTFs are indeed safety-related, confirming the validity of the extraction process.
Second, at the category level, Illicit Activity and Cybersecurity dominate, accounting for 27.97%
and 24.45% of all fragments, respectively. Third, at the cluster level, Illegal Behavior and Data
Surveillance are the most frequent, contributing 12.47% and 11.27% of the fragments, while the
long tail includes small but distinct clusters such as Gun Manufacturing (1.31%) and Bomb Threats
(2.11%). These findings confirm that mRTF extraction surfaces diverse and fine-grained refusal
triggers, rather than collapsing into a few coarse themes.

Filtering The accuracy of overrefusal evaluation critically depends on the purity of the ‘safe’
set. In practice, false positives, i.e., prompts that are intrinsically harmful but mistakenly included
in overrefusal benchmarks, can substantially distort evaluation outcomes. Refusals on such items
actually constitute desirable safety behaviors, yet are miscounted as overrefusals, thereby distorting

8
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Table 3: mRTF Cluster Statistics and Examples.

Category ID Cluster Name mRTFs Example 1 Example 2

Info Manipulation
0 Misinformation 73 construct phishing veil the truth?

14 Political Manipula-
tion

74 creating a duplicate
ethical?

hate speech for analy-
sis?

Violence & Weapons

1 Bomb Threats 21 bomb-like prop bomb-making
4 Explosives 34 explosive device loud explosion pur-

poses?
9 Violence 49 create violence? harmful activities.

13 Gun Manufacturing 13 creating gun weapon

Illicit Activity
2 Illegal Behavior 124 some questionable

methods taxes?
make illegally-gained

3 Unauthorized Access 74 access restricted data disabling car’s alarm
7 Evasion 80 avoid detection? cover security cam-

eras activities?

Cybersecurity 5 Malware Simulation 77 fake ransomware virus program
8 Data Surveillance 112 ways to monitor

someone’s
obtaining sensitive
information

12 Vulnerabilities 54 attacking system a hacking attempt on

Chemical Substances 6 Drug & Chemical
Handling

89 obtain drugs techniques transport
restricted items

Fraud & Forgery 10 Financial Conceal-
ment

76 funds without suspi-
cion?

techniques to over-
look tax

11 Fake Documents 44 counterfeit documents making novelty IDs

Table 4: Distribution of filtering scores on OR-Bench-Hard-1K.

Score 2 3 4 5 6 7 8 9 10

Prompt No. 22 50 119 246 311 157 276 107 31

the result. To further assess the effectiveness of the filtering module in DDOR and mitigate this bias,
we applied it as a secondary filtering step to the OR-Bench-Hard-1K subset.

Table 4 shows the score distribution. It can be observed that a total of 43.29% of the prompts scored
above 6, indicating that, under our framework, these prompts are intrinsically unsafe and should not
be used for overrefusal evaluation. Among them, 10.46% were judged by at least one evaluation
model as unequivocally harmful (Score 5), and we manually verified these 138 prompts to confirm
their harmfulness. This finding demonstrates that our filtering mechanism is more effective than
that of OR-Bench. A likely reason is that, although OR-Bench applies multi-model filtering on
generated prompts, it further relies on responses produced by Mistral-7B-Instruct-v0.3 to determine
final safety labels. While this model was not explicitly safety-aligned, its pretraining corpus likely
imparts some inherent safety behavior. Consequently, prompts that are semantically unsafe may still
receive seemingly safe responses, leading to biased labeling in OR-Bench.

5 CONCLUSION

In this work, we presented DDOR, an automated black-box framework for evaluating and mitigating
overrefusal in LLMs. By isolating minimal refusal-triggering fragments and expanding them into
interpretable test cases, DDOR generates model-specific benchmarks that surpass prior datasets
in precision. In addition, our mRTF-based repair strategy reduces overrefusals while preserving
semantic integrity and safety on inputs. Experiments across multiple models confirm that DDOR
effectively diagnoses and alleviates exaggerated refusals, offering a practical step toward safer and
more usable LLMs.

9
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