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Abstract— Pretraining deep neural networks has become very
popular and has led to the recent trend of foundation models.
For perception, pretraining has mostly been constrained to 2D
feature learning. 3D representation learning has yet to have
its breakthrough moment. Data is more heterogeneous and
harder to come by. 3D learning algorithms are still behind
their 2D counterparts and the right 3D self-supervised learning
objectives are yet to be discovered.

In this paper, we take a look at a recent trend in 3D rep-
resentation learning where features extracted from 2D images
are grounded into a 3D representation through a 3D feature
field. We discuss recent results, highlight some open problems
in the field and suggest some potential avenues to solve these
problems.

I. INTRODUCTION

With the rise of large-scale pre-training of foundation
models in computer vision, methods have been proposed to
ground the representations produced by such models into a
3D representation that could be leveraged by robots.

Directly learning 3D representations has proven hard, as
learning algorithms that work directly on 3D representations
are challenging to train and methods working on 2D vision
tasks face many subtle issues when extending to 3D. One
challenge with 3D representation learning, is that there
are many very different ways of representing 3D data. A
common choice is a global point cloud of the entire scene. A
full reconstruction might not be available at runtime and large
ones are hard to process. Others include voxelized represen-
tations, which can be expensive to process and have limited
fidelity. Yet another option are partial representations, such
as point clouds captured from individual viewpoint, which
have to then be aggregated to get a persistent representation.

The dominance of 2D representation learning has a lot
to do with the fact that we have extremely widely used
standards for representing RGB images, such as JPEG. Im-
ages are widely supported by the billions of devices in every
person’s pocket and are shared at unprecedented rates on the
internet. As these pictures are shared with some semantic
context, we can train vision-language models [1] to infer
semantic information from images. This vision-language pre-
training paradigm has been shown to be much more effective
than previously dominant ImageNet pre-training [2]. This
is because the datasets involved are so much larger and
they contain much more diverse examples since they aren’t
constrained by expert annotation time and can simply be
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collected automatically from the web. Another challenge
facing 3D representations is that 3D sensors are still very
much developing and differences in characteristics between
one sensor and the next are much larger than between RGB
cameras. An automotive LiDAR will produce very different
output than the time-of-flight sensors embedded within high-
end smartphones which again produce different output than
structured-light based sensors. Learning on one of these does
not necessarily transfer well to the other.

In robotics, 2D representations only take you so far.
Robots operate in 3D environments and need to be able
to reason about the geometry of a scene and plan through
the representation to solve tasks. Some success has been
achieved by training visuomotor policies [3], [4], bypassing
the 3D representation problem. Such methods can work well,
but even these methods might benefit from 3D representa-
tions, should useful ones become available.

Recently, neural implicit feature fields have emerged as
a way to take 2D features and ground them in a 3D
representation, encoded by a neural implicit function which
is learned by minimizing a photo- and featuremetric loss with
the optional addition of direct depth supervision. Feature
fields were initially introduced by [5] and [6] as a method
to decompose, segment and edit neural radiance fields.
They have since been extended to automate interactive 3D
segmentation [7], [8].

To enable CLIP-like semantic vision-language queries on
point clouds, a similar quasi-feature field idea was intro-
duced by CLIP-Fields [9]. [10] tackles the same problem,
but learns to fuse features onto points using a 3D point
cloud network. These point cloud based open vocabulary
scene querying methods present some promising results, but
require a separate step to estimate the point cloud. Neural
implicit methods have been developed that can jointly learn
the scene geometry and with a semantic feature field [11],
[12]. The feature outputs, enable zero-shot segmentation,
object detection, retrieval and more. [13] similarly explored
grounding vision-language features on 3D representations,
but by optimizing features in a parameterized voxel grid.
On top of the feature grid, they define a set of operators to
find, count and reason about objects in the scene. [14] uses
a similar approach to learn multi-modal maps, combining
LSeg features with audio and object information. Other work
on grounding features onto 3D representations include [15]–
[17].

The focus of this paper is to specifically highlight and
discuss the open problems we have identified during our
work in developing 3D feature fields. A summary of the gen-
eral methodology and our experimental setup are provided



in Sections II and III; the interested reader is directed to [11]
for full details. The core contribution of this paper is Sec-
tion IV, which offers an in-depth analysis of the limitations,
challenges and future possibilities of these methods.

II. VISION-LANGUAGE FEATURE FIELDS

At the core of feature fields is a NeRF-like [18] neural
implicit representation with an additional feature output in
the MLP. The representation consists of two parameterized
parts, a positional encoder and a multi-layer perceptron,
which maps encodings to color, density and feature outputs.
The multi-layer perceptron maps the encoded position to
density σ, color c and a feature output f .

The feature outputs are learned in the same away as
the color using volumetric rendering and a transmittance
function computed from the density output of the MLP. To
produce rendered quantities from the MLP outputs, we define
a rendering function R:

R(r, h) =

N∑
i=1

Ti(1− exp(−σiδi))h(xi), (1)

Ti = exp

−
i−1∑
j=1

σjδj

 , (2)

where h is a function outputting a vector or scalar quantity
for points xi within the volume, Ti is the transmittance
function, δj is the distance between samples and σi is the
predicted density for encoded point samples xi along a ray
r. We use R to produce aggregated outputs for each ray:

ĉ(r) = R(r, c),

d̂(r) = R(r, z),

f̂(r) = R(r, f),

(3)

Here, z is the depth along the ray.
To encode positions, in our framework, we use hybrid

positional encoding [7]. Hybrid positional encoding com-
bines the low frequencies of frequency encoding [18] with
the hierarchical volumetric grid of parameters introduced by
[19]. The volumetric parameters are learned jointly with the
MLP parameters to fit a scene.

Finally, to learn the representation, we minimize a com-
bined photometric, depth and feature error, by minimizing
the L2 distance between rendered color ĉ and ground truth
color c̄, L1 loss betweeen rendered depth d̂ and ground truth
depth d̄ and L2 loss between rendered feature f̂ and extracted
features f̄ . We minimize this loss by randomly sampling
mini-batches of pixel locations and corresponding rays from
input images, mimimizing parameters using stochastic gra-
dient descent.

As such a framework is capable of making use of arbitrary
pixel-aligned feature maps, to create vision-language feature
fields, we choose to use learned features for which the
similarity with text prompts can be computed through a
simple dot product. For example, LSeg [20] is suitable for
this purpose. Once trained, the feature field can be used for
downstream tasks such as object discovery, segmentation and

Fig. 1. The left column shows predictions and the right side ground truth
annotations for point clouds in the ScanNet validation set.

planning tasks. In particular, since the vision-language fea-
tures of LSeg apply open vocabulary training, feature fields
trained with these targets can work with natural language
class prompts at runtime, by assigning feature field features
to the closest text prompt embedding encoded with the LSeg
text encoder.

III. EXPERIMENTS

We run some experiments using LSeg features [20] on the
validation set of the ScanNet dataset [21] using the 20 eval-
uation classes to test the 3D open-vocabulary segmentation
performance of the resulting representation. We first train our
representation on each scene for 20 000 iterations on color,
depth and extracted features. We then evaluate against the
ground truth point cloud by querying our representation at
each point and comparing against the ground truth label.

Table I shows the mIoU agreement with the ScanNet
validation set segmentation labels. As can be seen, the
method performs well on many of the classes, but completely
fails on others. Specifically, the “desk” class is almost always
classified as “table” and similarly, “shower curtain” as the
“curtain” class. Figure 1 shows a qualitative example of this
misalignment between the features and the dataset semantics.
The bathtub visible in the bottom right and labeled as “other
furniture”, is also missed by our approach.

IV. OPEN PROBLEMS

A. Learning good pixel-aligned features

A key component of learning good feature fields is having
high quality pixel-aligned features to supervise on. Not
only do these features have to capture the desired object
or semantic properties, they ideally would be viewpoint
invariant to facilitate the convergence of the learned feature
field.

In the case of open-vocabulary scene understanding, the
current state-of-the-art pixelwise methods, are fine-tuned
on closed-set datasets, reversing a lot of the learning that



mIoU top classes mIoU bottom classes mIoU all
Floor Bed Wall Chair Picture Desk Other furniture Shower curtain Mean
75.8 66.3 61.5 60.2 2.4 1.5 0.1 0.0 47.4

TABLE I
MEAN INTERSECTION OVER UNION ON SCANNET VALIDATION SET FOR BEST AND WORSE CLASSES.

was done on the open-set pre-training task [17], [22]. As
can be seen in Table I, while the LSeg [20] features do
reasonably well on most classes, they completely fail on
others. Additionally, similar classes are easily confused,
which is likely due to the bias induced by the ADE20K [23]
dataset on which LSeg is fine-tuned. Some of the confusion
between classes might be possible to fix by aligning the
query embeddings for each class on some labeled examples.

Methods such as CLIP [24] learn their visual models
through global vector valued embeddings which are corre-
lated against natural language feature embeddings. While
this type of supervision is readily available from datasets
scraped from the internet, they do not learn dense visual
features which could be directly segmented or grounded
in a feature field. Some methods have opted to solve this
problem via multi-scale fusion and effectively convolving
the learned CLIP visual encoder over the image at multiple
scales [12]. This has proven to work reasonably well, but
does come with a high upfront preprocessing cost and
doesn’t currently lend itself to real-time methods. Others
have studied how to learn more fine-grained outputs using
a CLIP style contrastive objective [25], [26]. Such methods
have yet to be demonstrated for higher output resolutions,
but with some further improvements, might lead to scalable
self-supervised methods which yield pixel-aligned features
that are robust in the long tail of classes that are not present
in curated, closed-set datasets. Combining self-supervised
objectives with knowledge distilled from more specialized
models [27] could be a path forward. [1] provides a com-
prehensive survey on the current state of vision-language
pretraining.

Non-feature-based open-set semantic segmentation meth-
ods such as X-Decoder [28], which uses a transformer to
produce the final segmentation given visual and text encod-
ings, could potentially also be adapted to 3D representations.

B. Learning downstream layers

Foundation models have proven useful for other 2D com-
puter vision tasks, especially for zero and few-shot learning.
Feature fields present the opportunity to apply these few-
shot learning methods in the 3D domain. At its most simple,
this means learning downstream layers on top of the 3D fea-
ture field to tackle few-shot object detection, segmentation,
object re-identification and other tasks from a few sparse
examples. Such methods could either operate on individual
features of the feature field or they could make predictions
over a neighborhood of features. [29] already learned grasp
detection on top of NeRF. Segmenting instances of objects
reliably from each other remains unsolved. Panoptic Lifting
[30] defines surrogate ID outputs to a radiance field which

are learned through a remapping of the possibly noisy 2D
instance labels to achieve 3D instance segmentation. For
open-set vision-language feature fields, object instance is
query dependent, complicating the representation learning
and run-time 3D inference task. For example, the instance
segmentation is different if the scene is queried for “couch”
vs. “sofa cushion”.

C. Having the 3D supervise the 2D

Recently we have seen how the representation learned
by neural implicit methods can be used to supervise object
descriptor learning [31] and stereo matching [32]. Feature
maps rendered from 3D feature fields could be used as
a regression target to either learn 3D-aware or viewpoint-
invariant versions of the original 2D feature maps. Alterna-
tively, they could be used to distill the information into more
efficient, embedded versions of the heavy foundation models
used to learn the original 3D representations.

D. Real-time deployment on robots

The core challenges for deploying feature fields onboard
real robots are largely related to computation. While current
state-of-the-art NeRF implementations are able to run in
real-time on high-end workstations [19], they consume a lot
of computational resources. When adding additional feature
heads and models to extract features from incoming images,
the cost increases and takes further floating point operations
to learn.

E. Learning representations incrementally

This brings us to the related issue of how to build
scene representations incrementally. Current neural implicit
implementations all jointly optimize both volumetric param-
eters and the MLP parameters. As the MLP parameters are
constantly updated, the full buffer of keyframes used for the
scene have to be kept around and sampled from. As the
MLP parameters change over the course of the optimization,
the volumetric parameters change their meaning. This could
be solved by pretraining the rendering network MLP on a
few scenes, and only optimizing the volumetric parameters
on subsequent scenes. This would mean that once a certain
region of the volume has been optimized to convergence, the
images and feature maps used could be discarded to cap the
memory use.

There are cases where retrieving previously collected
views of a part of the scene might be useful, such as when
the loop is closed and the robot returns to observe an area
of the scene which was previously viewed. In such a case,
retrieving the frames which observed that part of the scene
from a different viewpoint could yield a better representation.



Another possible approach would be to not directly opti-
mize the latent volumetric parameters through the MLP, but
actually predict them or otherwise optimize them given the
recently collected viewpoints. This could yield benefits such
as being able to infer unobserved geometry and semantics,
but might result in lower fidelity scene representations and
could cause hallucinations. At the very least, this could be
done for unobserved parts of the scene, to guess what might
be there before observing it, as has been done in traditional
volumetric mapping [33].

F. Integrating with SLAM

Typical neural implicit scene implementations assume
ground truth camera poses, which in practice are often
computed using COLMAP [34]. In a real-time system,
these have to be estimated on the fly. We have obtained
reasonable results by naı̈vely integrating with state-of-the-
art sparse visual-inertial SLAM systems, but some drift
inevitably happens causing error to accumulate in the map
[11]. Neural implicit SLAM systems have been developed
[35], [36] which directly estimate camera poses through a
neural implicit representation. Using the features which are
learned in the feature field (semantic or otherwise) could
help refine poses in addition to the typical photometric
and geometric losses, akin to what is done in [37]. Hybrid
systems combining the benefits of traditional sparse feature-
based and neural implicit SLAM could also be a promising
direction.

G. Dealing with dynamic scenes

Dynamic scenes remain a challenge for neural implicit
representations. In order to deal with changes in the scene,
neural implicit representations either have to forget outdated
information or changes need to be explicitly tracked. Opti-
mizing the volumetric representation on a sliding window
of frames might be feasible for coarse changes in the
scene, but tracking more real-time effects such as humans or
dynamic objects remains difficult. Some works have explored
composing multiple neural radiance fields [38]–[40], which
combined with real-time pose estimation could yield a high
fidelity object-level SLAM system. The pose estimation itself
could be done using a feature field representation of the
objects of interest. Something like this is already explored
by [41]. Furthermore, in a neural implicit object-level SLAM
system, dealing with noisy segmentation and object detection
remains challenging [42].

H. Planning through feature fields

An important component of high-level task and motion
planning from natural language instructions, is disambiguat-
ing objects from one another [43]–[45]. Many high-level
planning frameworks assume a rich and accurate scene
representation is available [46].

The rich semantic scene understanding capabilities
promised by feature field-based methods offer unprecedented
opportunities for high-level planning. Being able to query

a scene using arbitrary text queries could help solve open-
ended planning problems. Some early results have already
been shown for planning from natural language prompts [47],
and language informed navigation [9], [48]–[53]. Previous
natural language grounded planners have made use of object
detectors [47], [54]. To our knowledge, no previous effort
has yet tackled planning through semantic feature fields.

V. CONCLUSIONS
As we have detailed in this short report, neural implicit

feature fields are an exciting and emerging tool that enables
a number of downstream applications. We presented some
results we have obtained using our vision-language feature
field framework. We highlighted many of the shortcomings
we identified in our work as well as in related methods. We
discussed several promising and exciting future directions
and open problems in the field. We also believe that there
are likely to be many more applications that we could not
foresee here and we look forward to reading about them.

The general framework of feature fields that we detailed
can be used with any type of pixel-aligned features. We
showed that this framework provides very good zero-shot
scene understanding performance in the form of segmenta-
tion. Given the pace of innovation in the visual representation
learning community in the past years, we expect orders of
magnitude better pixel-aligned visual-language models to be
become available in the next couple of years. We therefore
predict that the static case of semantic scene understanding
will be very close to solved within a couple years time. We
also believe that foundation model approaches that distill
information from massive weakly supervised datasets will
surpass current supervised methods which are learned on
these small scale 3D datasets.
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