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Abstract001

In this paper, we evaluate the capacity of002
current language technologies to understand003
Basque and Spanish language varieties. We004
use NLI as a pivot task and introduce a novel,005
manually-curated parallel dataset in Basque006
and Spanish and their corresponding variants.007
Empirical analysis of comprehensive crosslin-008
gual and in-context learning experiments with,009
respectively, encoder-only and decoder-based010
Large Language Models (LLMs), reveals a per-011
formance drop when processing linguistic vari-012
ations, with more pronounced effects observed013
in Basque. Error analysis indicates that lexical014
overlap plays no role, suggesting that linguistic015
variation represents the primary reason for the016
lower results. All data and code are publicly017
available1 under Attribution-NonCommercial018
4.0 International license.019

1 Introduction020

Variation is an intrinsic characteristic of language,021

influenced by multiple factors. Trask and Stock-022

well (2007) noted that “variation, far from being023

peripheral and inconsequential, is a vital part of024

ordinary linguistic behavior”. In sociolinguistics,025

three types of variability are considered (Coseriu,026

1956): (i) diatopic variation, or geographical vari-027

ation such as dialects, (ii) diastratic variation or028

speech of different societal groups, and (iii) diapha-029

sic variation or speech changes depending on the030

communicative environment. In this paper, we fo-031

cused on geographical variation in Basque, a low-032

resource language isolate with around 1 million033

speakers that is still undergoing the normalisation034

process (started in 1968), and in Spanish, a higher035

resourced language whose standardization process036

started in the XVIII century with around 600 mil-037

lion speakers.038

With the rise of Artificial Intelligence (AI) and039

Natural Language Processing (NLP), Hovy and040

1https://anonymous.4open.science/r/XNLIvar

Basque
Standard Variation

Zeharo hunkituta gelditu
nintzen ezusteko agur
honekin

Asko emoziona nintzen
ezusteko agur horregaz

Spanish
Me quedé completamente
conmovido con esta despe-
dida inesperada

Me quedé completamente
conmovío con ehta deh-
pedía inehperá

English
I was completely surprised by that unexpected goodbye

Table 1: Example from Standard to variation sentences
in Basque and Spanish.

Yang (2021) have highlighted the importance of 041

social factors of language in NLP systems. Thus, 042

developing NLP resources that not only process 043

standard language but also variations is crucial, as 044

this would alleviate any potential linguistic discrim- 045

ination by providing more linguistically-inclusive 046

resources. 047

In this context, although previous work on NLP 048

has primarily focused on standard language, recent 049

research has slightly shifted attention to the explo- 050

ration of language variation, e.g., Zampieri et al. 051

(2020) or Joshi et al. (2024) present a thorough 052

outline of variation-inclusive research. However, 053

due to a lack of data on linguistic variants, most of 054

the NLP research has focused on a narrow list of 055

languages and their variants, such as Arabic, Indic 056

languages, or German. Furthermore, other larger 057

efforts are either based on automatically obtained 058

data or do not provide fine-grained variant distinc- 059

tions for some large languages, such as Spanish 060

(Faisal et al., 2024; Alam et al., 2024). 061

Regarding Basque, the scarce work that has been 062

done has focused on historical dialects (Estarrona 063

et al., 2020) or northern Basque dialects (Uria and 064

Etxepare, 2012). In Spanish, all datasets with lin- 065

guistic variation have been automatically collected 066
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through geolocation techniques (España-Bonet and067

Barrón-Cedeño, 2024; Valentini et al., 2024).068

Consequently, the objective of this paper is to069

provide the first manually curated variation dataset070

for Basque and Spanish. To do so, we introduce071

XNLIvar, the first variation-inclusive NLI dataset072

in Basque and Spanish. An example of an instance073

from our dataset is in Table 1. Additionally, we aim074

to evaluate its performance with current state-of-075

the-art language models. We make the following076

contributions:077

1. The first publicly available manually-curated078

NLI dataset of Basque and Spanish with geo-079

graphic language variations.080

2. A comprehensive evaluation of encoder-only081

and decoder-based Large Language Models082

(LLMs) demonstrates substantially worse per-083

formance when processing language varia-084

tions, particularly in Basque. Detailed error085

analysis shows that lexical overlap has no im-086

pact on the performance drop, which means087

that linguistic variation must be considered088

the most significant factor.089

3. Empirical results suggest that the performance090

of LLMs with Spanish variants may be at-091

tributed to the substantial representation of092

Spanish-language content in pre-training cor-093

pora.094

To the best of our knowledge, no work has ex-095

tensively dealt with the automatic processing of096

current language variation of western and central097

Basque dialects in the task on NLI.098

2 Related Work099

This section presents previous work on language100

variation in the field of NLP, with specific focus on101

up-to-now research on Basque language variation.102

Language variation in NLP In recent years,103

there has been an increasing interest in dialects in104

several fields of NLP, such as dialect identification105

(Ramponi and Casula, 2023), sentiment analysis106

(Ball-Burack et al., 2021), Machine Translation107

(MT) (Kuparinen et al., 2023) and dialogue sys-108

tems (Alshareef and Siddiqui, 2020).109

Aepli and Sennrich (2022) explored cross-110

lingual transfer between closely related varieties by111

adding character level noise to high-resource data112

to improve generalization. Moreover, Ramponi113

and Casula (2023) pretrained LLMs for geographic114

variation of Italian tweets. Finally, Demszky et al.115

(2021) showed that BERT models trained on an- 116

notated corpora obtained high accuracy for Indian 117

English feature detection. 118

One of the primary limitations of these studies 119

is the scarcity of available dialectal data. There- 120

fore, research has largely focused on developing 121

resources such as lexicons and dialectal datasets: 122

Artemova and Plank (2023) propose a bilingual lex- 123

icon induction method for German dialects using 124

LLMs, while Hassan et al. (2017) introduce a syn- 125

thetic data creation method through embeddings by 126

transforming input data into its dialectic variant. 127

The lack of comprehensive dialectal data has 128

led to research on linguistic variation to be limited 129

to certain languages. The Arabic dialect family, 130

due to its relative data availability, has received 131

the most attention, followed by languages such as 132

Indic languages, Chinese and German. 133

Basque language variation In dialectology, 134

Zuazu (2008) established an extensive and com- 135

prehensive descriptive representation of features 136

of modern Basque dialects. In NLP, (Estarrona 137

et al., 2020) worked on a morpho-syntactically an- 138

notated corpus of Basque historical texts as an aid 139

in the normalization process. Moreover, (Uria and 140

Etxepare, 2012) introduced a corpus of syntactic 141

variation in northern Basque dialects. 142

Additionally, some dialectal benchmark works 143

have included Basque in their experimentation: 144

both Alam et al. (2024) and Faisal et al. (2024) pre- 145

sented benchmarks for MT with northern Basque 146

dialects. 147

Spanish language variation Several works have 148

dealt with Spanish varieties. For instance, España- 149

Bonet and Barrón-Cedeño (2024) automatically fil- 150

tered Open Super-large Crawled Aggregated coR- 151

pus (OSCAR) by geolocation into different Spanish 152

variants and performed a stylistic analysis. Valen- 153

tini et al. (2024) automatically collected Google 154

queries from several Spanish-speaking countries 155

and provided an Information Retrieval baseline for 156

Spanish varieties. 157

Additionally, some works, such as Lopetegui 158

et al. (2025), introduced a Cuban Spanish dataset 159

by collecting geolocated tweets from Twitter. They 160

focused their study on common examples, i.e., in- 161

stances that can be valid across several dialects. 162

They performed a manual annotation of tweets into 163

Cuban dialect, other dialect, or common example. 164

Similarly, Castillo-lópez et al. (2023) also collected 165

tweets from European and Latin American geolo- 166
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cations and annotated them specifically for hate167

speech.168

3 Data169

In this work, we introduce a novel dataset, XNLI-170

var, that expands the XNLI framework by gener-171

ating various dialectal variations for both Basque172

and Spanish languages. We choose Natural Lan-173

guage Inference (NLI) as an evaluation framework174

because it is considered to be a general benchmark175

for evaluating language understanding, which re-176

quires dealing with semantic relationships, logi-177

cal implications, world knowledge, and contextual178

nuances (Williams et al., 2018; Conneau et al.,179

2018; Artetxe et al., 2020), including figurative180

language (Naik et al., 2018; Stowe et al., 2022; Liu181

et al., 2022). NLI, or textual entailment, is a fun-182

damental NLP task that involves determining the183

semantic relationship between two text segments: a184

premise and a hypothesis. The objective is to clas-185

sify whether the hypothesis can be inferred from186

the premise into one of three categories: entail-187

ment (the hypothesis logically follows from the188

premise), contradiction (the hypothesis contradicts189

the premise), or neutral (the hypothesis neither fol-190

lows from nor contradicts the premise). The most191

popular dataset is the English MultiNLI (Williams192

et al., 2018), which has contributed significantly to193

advancing research in this field.194

XNLI provides an extension of MultiNLI in 15195

languages, among them Spanish (XNLIes). The au-196

thors collected 7,500 English examples via crowd-197

sourcing, which were then professionally trans-198

lated to create XNLI in two splits, the development199

(2500 instances) and the test set (5K instances).200

This parallel multilingual corpus has facilitated201

crosslingual NLI research beyond English-centric202

approaches by exploring model-transfer, translate-203

train, and translate-test techniques to alleviate the204

lack of annotated training data in a given target205

language (Artetxe et al., 2020, 2022).206

XNLIeu is a professionally translated version207

of the English XNLI set into Basque (Heredia208

et al., 2024), a language not included in the orig-209

inal XNLI dataset. Additionally, we also use210

XNLIeunative, an NLI dataset generated by col-211

lecting native Basque premises and hiring Basque212

annotators to create three hypotheses per premise213

(Heredia et al., 2024). The experimental results214

from XNLIeu demonstrate that Natural Language215

Inference (NLI) systems exhibit significant perfor-216

mance sensitivity to disparities between training 217

and testing data distributions, highlighting the crit- 218

ical role of data provenance (Artetxe et al., 2020; 219

Volansky et al., 2013). 220

3.1 XNLI with Geographic Variants 221

To investigate the impact of language variation via 222

evaluation in NLI, we developed two XNLIvar 223

novel datasets encompassing Basque and Span- 224

ish geographic-based linguistic variations, namely, 225

XNLIeuvar and XNLIesvar. The methodology in- 226

volved a language adaptation phase to ensure the 227

incorporation of variant diversity within the data. 228

These two variant datasets were developed taking 229

XNLIeunative as a starting point for dialectal aug- 230

mentation due to its authentic representation of 231

Basque language patterns and its suitable scale for 232

manual paraphrasing. 233

The adaptation process was the same for Basque 234

and Spanish languages, including native speak- 235

ers as linguistic informants for variant transfor- 236

mation. We wanted to analyze the variation that 237

naturally occurs among native speakers, employ- 238

ing minimally restrictive parameters to capture 239

authentic dialectal features. Thus, informants 240

were instructed to perform dialectal adaptations of 241

source sentences, with allowance for modifications 242

across multiple linguistic dimensions, including 243

lexical, grammatical, phonetic, and orthographic 244

alterations. The full adaptation guidelines are de- 245

tailed in Appendix A. 246

XNLIeuvar Twelve native Basque speakers were 247

recruited from diverse geographical regions. All 248

participants possessed expertise in NLP and held 249

university degrees in either Linguistics, Computer 250

Science, or Engineering. Each participant was 251

tasked with reformulating approximately 20 brief 252

sentences, with the resulting adaptations catego- 253

rized according to three major dialectal variants: 254

Western, Central, and Navarrese. To facilitate 255

cross-dialectal comparison, a subset of 10 iden- 256

tical sentences was assigned to selected annotators, 257

enabling parallel dialectal representations. The de- 258

mographic and professional characteristics of the 259

annotators, including age, gender, and educational 260

background, are detailed in Appendix B. 261

It should be noted that during the data collec- 262

tion a single annotator generated two types of 263

variants of each sentence, including both dialec- 264

tal variations and allocutive agreement forms in 265

Basque. The allocutive system in Basque requires 266
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morphological marking of the addressee’s gender267

(masculine/feminine) within the verbal form. Con-268

sequently, XNLIeuvar exhibits a higher instance269

count (894) compared to the original XNLIeunative270

dataset (621), as shown in Table 2.271

In terms of dialect distribution, 592 instances272

correspond to the Central dialect, usually associ-273

ated with the province of Gipuzkoa, 240 instances274

to the Western dialect (West Gipuzkoa and Biscay),275

and just 63 instances to the Navarrese dialect, com-276

prising 7% of the data. Thus, the Navarrese dialect277

is clearly under-represented in our data.278

XNLIesvar XNLIeunative was automatically trans-279

lated into Spanish using the LLM Claude 3.5280

Sonnet2, generating the XNLIeu2esnative dataset281

and facilitating the creation of a parallel corpus282

for Basque and Spanish texts with their respec-283

tive variants. Quality verification was conducted284

through manual review of the machine-generated285

translations, making sure that they constituted an286

authentic representation of Spanish language pat-287

terns. Finally, the translated corpus was provided288

to Spanish-language annotators for variant-specific289

adaptation.290

The adaptation task involved six independent an-291

notators, each assigned a set of 50 sentences for292

dialectal adaptation into their respective Spanish293

variants. The annotators represented four distinct294

geographical locations: Cuba, Ecuador, Spain, and295

Uruguay. Two annotators from Spain performed296

adaptations into separate dialectal variants (Andalu-297

sian and Tenerife), resulting in a total of five Span-298

ish dialectal variations in the final dataset. The299

demographic and professional characteristics of300

the annotators, including age, gender, and educa-301

tional background, are documented in Appendix302

B.303

It is worth mentioning that some annotators ex-304

perienced difficulties during the adaptation. This305

could be due to the high number of common ex-306

amples in Spanish varieties (Lopetegui et al., 2025;307

Zampieri et al., 2024). In other words, the distinc-308

tions between Spanish varieties tend to be more309

homogeneous and thus contain less variation com-310

pared to Basque.311

As it was the case in the Basque adaptation, mul-312

tiple dialectal variants were documented by some313

annotators. These variants exhibited phonological314

phenomena such as word-final /s/ deletion (e.g.,315

2https://www.anthropic.com/news/
claude-3-5-sonnet

Train
dataset Instances

MNLI 392k
MNLIeu 392k
MNLIes 392k

Test
XNLIeu 5010
XNLIes 5010

XNLIeunative 621
XNLIeu2esnative 621

XNLIeuvar 894
XNLIesvar 666

Table 2: Datasets used for training and testing

digamos → digamo) and /s/ to /j/ substitution in 316

word-final position (resulting in digamoj). Conse- 317

quently, the XNLIesvar dataset contains 666 exam- 318

ples, representing a marginally higher count than 319

the base dataset. 320

Table 2 provides an overview of the datasets used 321

for experimentation, including our newly generated 322

XNLIvar, consisting of XNLIeuvar and XNLIesvar. 323

4 Experimental settings 324

Empirical research was conducted utilizing the 325

aforementioned datasets to evaluate the impact of 326

dialectal variation incorporation on NLI perfor- 327

mance. The experimental methodology consisted 328

of both discriminative and generative modeling ap- 329

proaches. 330

Discriminative experiments Table 3 illustrates 331

the experiments performed using encoder-only 332

Transformer models and the datasets specified in 333

Table 2. 334

• Model transfer: The train split of the original 335

MNLI (English) is used to fine-tune multilin- 336

gual encoder models. Evaluation is performed 337

on the test sets for Basque and Spanish speci- 338

fied in Table 2. 339

• Translate-train: The MNLI training is au- 340

tomatically translated into Basque and Span- 341

ish (MNLIeu and MNLIes); multilingual and 342

monolingual encoders are then fine-tuned us- 343

ing the translated training data and evaluated 344

in each of the target languages. 345

• Translate-test: Tests in the target languages 346

are translated into English and evaluated using 347

the MNLI fine-tuned encoders (in English). 348
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Configuration Train Test
Model transfer English Target language

Translate-train Target language Target language

Translate-test English Target → English

Table 3: Discriminative model configurations and data.
→: Translated to.

Summarizing, training is always done with349

MNLI, either in its original English form or us-350

ing the automatically translated versions to Basque351

and Spanish. Moreover, there are three differ-352

ent test data types: (i) XNLI test data profession-353

ally translated into the target languages (XNLIeu,354

XNLIes) (ii) the manually created native Basque355

data and its translation to Spanish (XNLIeunative,356

XNLIeu2esnative) and, (iii) the native datasets357

adapted to different variations for each of the target358

languages (XNLIeuvar, XNLIesvar).359

We employed two multilingual encoder-only360

language models for our target languages: XLM-361

RoBERTa large (Conneau et al., 2020) and mDe-362

BERTa (He et al., 2021). The hyperparameter con-363

figuration followed Heredia et al. (2024), imple-364

menting differential learning rates of 5e-5 and 10e-365

6 for BERT and RoBERTa architectures, respec-366

tively. All other parameters were maintained at367

their default values. The training process consisted368

of 10 epochs across all model configurations.369

Generative experiments We experimented with370

LLMs (generative) to evaluate the decoders’ abil-371

ity to perform the NLI when language variation is372

present. We started with a zero-shot setting, where373

we prompt LLMs to identify the NLI relation.374

Alternative prompting methodologies were eval-375

uated, specifically few-shot and Chain of Thought376

(CoT) approaches. The few-shot prompt imple-377

mented single examples for each classification cate-378

gory. The CoT methodology incorporated detailed379

task-specific contextual information alongside a380

single example for each label.381

To further evaluate the linguistic comprehension382

capabilities of LLMs with respect to Basque and383

Spanish variants, we implemented an alternative384

methodological approach by transforming the NLI385

task into a Question-Answering (QA) framework.386

In this experimental configuration, the input prompt387

was restructured as a question, wherein the LLM388

was given a question to answer given three labels.389

The three previously established prompting strate-390

gies were maintained across this methodological 391

adaptation. The complete set of prompt templates 392

used across all task formulations has been docu- 393

mented and is available for reference in the Ap- 394

pendix C. 395

We selected Llama-3.1-Instruct (8B and 70B ver- 396

sions) (Dubey et al., 2024) and Gemma 2 instruct 397

(9B and 27B versions) (Mesnard et al., 2024) due 398

to their strong performance in both Basque and 399

Spanish languages3 (Etxaniz et al., 2024; Figueras 400

et al., 2025). 401

5 Results 402

We first report the results obtained in the discrim- 403

inative settings, while in Section 5.2, we discuss 404

the results obtained by applying in-context learning 405

with LLMs. 406

5.1 Discriminative Experiments 407

By looking at the results reported in Table 4, the 408

empirical results demonstrate a significant perfor- 409

mance degradation when comparing XNLIeu and 410

XNLIes against the native and variation datasets. 411

This observation aligns with existing literature doc- 412

umenting the adverse effects of train-test distribu- 413

tion shifts in cross-lingual settings (Artetxe et al., 414

2020; Volansky et al., 2013). When comparing 415

native and variation data results, where the only 416

difference is the presence of dialectal data, we see 417

a decrease in results. Therefore, results show that 418

language models perform worse when variants are 419

included in the NLI task. 420

By doing a cross-configuration analysis, we 421

see that for Basque, the best results are obtained 422

with XLM-RoBERTa in the translate-train for 423

XNLIeu (83.42) and XNLIeuvar (73.21), while 424

for XNLIeunative (75.85), the train-test provides 425

slightly better scores. Overall, the empirical re- 426

sults demonstrate that the translate-train approach 427

with XLM-RoBERTa yielded the best overall per- 428

formance for Spanish and Basque. This finding 429

suggests that conducting both training and evalua- 430

tion in the target language constitutes the optimal 431

method, irrespective of whether the data includes 432

standard or variation-inclusive linguistic content in 433

either target language. 434

Looking at the native and variant results, the 435

analysis reveals a consistent pattern in which Span- 436

ish performances exceed those of Basque across 437

3https://hf.co/spaces/la-leaderboard/
la-leaderboard
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Basque

Model transfer Translate-train Translate-test

XNLIeu XNLIeunative XNLIeuvar XNLIeu XNLIeunative XNLIeuvar XNLIeu XNLIeunative XNLIeuvar

XLM-RoBERTa large 80.00 72.09 68.24 83.42 75.63 73.21 + 75.85 71.63
mDeBERTa 78.95 70.21 67.26 81.42 72.14 69.77 + 72.68 70.28

Spanish

XNLIes XNLIeu2esnative XNLIesvar XNLIes XNLIeu2esnative XNLIesvar XNLIes XNLIeu2esnative XNLIesvar

XLM-RoBERTa large 83.05 74.02 73.07 84.69 74.61 73.72 + 73.86 71.77
mDeBERTa 82.02 74.13 71.57 83.27 72.25 70.77 + 72.30 69.89

Table 4: Accuracy results for Basque and Spanish discriminative experiments.

Llama-3.1-Instruct-70B Gemma-2-it-27B

nli-zero nli-few qa-zero qa-few chain nli-zero nli-few qa-zero qa-few chain

XNLIeu 33.65 53.17 33.31 54.89 55.25 61.10 62.81 61.84 65.27 58.28
XNLIeunative 38.81 56.68 39.61 58.61 60.71 64.90 66.67 65.70 68.28 66.99
XNLIeuvar 33.78 48.66 31.54 50.11 49.22 57.61 60.96 57.49 61.52 58.05

(a) Accuracy results with generative LLMs on Basque data.

Llama-3.1-Instruct-70B Gemma-2-it-27B

nli-zero nli-few qa-zero qa-few chain nli-zero nli-few qa-zero qa-few chain

XNLIes 54.65 62.18 51.54 65.69 73.97 66.75 71.28 70.52 73.05 68.88
XNLIeu2esnative 62.96 62.48 62.16 70.69 77.29 71.50 72.62 73.91 73.43 76.97
XNLIesvar 59.42 62.32 54.27 69.24 75.52 70.37 72.30 72.79 72.14 74.56

(b) Accuracy results with generative LLMs on Spanish data.

Table 5: Results with LLMs.

all experimental settings and evaluation datasets.438

The data indicates that Spanish exhibits greater439

resilience to linguistic variation, as evidenced by440

the minimal performance degradation observed be-441

tween standard data (XNLIeu2esnative) and varia-442

tion datasets (XNLIesvar). Quantitative analysis of443

Basque performance shows substantial degradation,444

with model transfer and translate-test approaches445

experiencing approximately 4 percentage points de-446

crease (from XNLIeunative to XNLIeuvar), while the447

translate-train methodology exhibits a more mod-448

erate reduction of 2.5 percentage points. In con-449

trast, the drop in performance for Spanish remains450

minimal, with model-transfer and translate-train451

approaches showing less than 1 percentage point452

reduction, although the translate-test methodology453

demonstrates a decrease of 2 percentage points.454

These results show that when English is the455

source training data, model-transfer provides com-456

petitive results for a high-resource, structurally sim-457

ilar language such as Spanish, while for a low-458

resource and morphologically different language459

such as Basque, the data-transfer (translate-train)460

strategy remains preferable (Agerri et al., 2020;461

Artetxe et al., 2020; García-Ferrero et al., 2022). 462

Finally, we also experimented with two Basque 463

monolingual models, RoBERTa-Euscrawl (Artetxe 464

et al., 2022) and BERTeus (Agerri et al., 2020), in 465

the translate-train setting. However, while competi- 466

tive, results did not outperform those obtained by 467

XLM-RoBERTa large. Further details can be found 468

in Appendix D. 469

5.2 Generative Experiments 470

Table 5 presents the evaluation results for LLMs 471

in the task on variation-inclusive NLI. We limit 472

our discussion to the results obtained by the largest 473

LLMs tested, namely, Llama-3.1-Instruct-70B and 474

Gemma-2-it-27B. 475

A first observation reveals a significant 476

performance degradation across all evaluated 477

LLMs when transitioning from standard datasets 478

(XNLIeunative and XNLIeu2esnative) to their vari- 479

ant counterparts (XNLIeuvar and XNLIesvar). This 480

suggests a substantial limitation in the capacity of 481

LLMs to process and comprehend linguistic vari- 482

ations within the task. The data indicates that the 483

incorporation of examples in the prompt engineer- 484
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ing process yields positive effects (in qa-few and485

Chain-of-Thought (CoT) methodologies). Notably,486

for Spanish, the CoT approach demonstrates su-487

perior performance compared to XLM-RoBERTa488

large on XNLIeu2esvar and XNLIesvar datasets.489

Concerning Basque, the experimental results490

demonstrate that Gemma 2 exhibits better perfor-491

mance compared to Llama 3.1. Moreover, for492

XNLIeuvar Gemma’s optimal performance (61.52)493

experiences a reduction of 6.5 percentage points494

relative to the standard XNLIeunative (68.28). In495

contrast, Llama 3.1 exhibits a more substantial de-496

cline of 10 percentage points in XNLIeuvar perfor-497

mance. These findings indicate that Gemma main-498

tains greater robustness against linguistic variation499

compared to Llama 3.1.500

Regarding Spanish, Table 5b shows that CoT501

prompting seems to generally obtain the highest502

accuracy results. Moreover, the variation-inclusive503

evaluation dataset (XNLIesvar) obtains very close504

results to XNLIesnative, with 75.77 and 77.29 for505

Llama 3.1 and 74.56 and 76.56 in Gemma 2, re-506

spectively. However, variation still slightly hinders507

accuracy results in Spanish. In any case, Llama 3.1508

performs slightly better than Gemma 2, although509

the difference is minimal.510

The empirical evidence obtained from these anal-511

yses of Basque and Spanish language understand-512

ing indicates that LLMs exhibit significant limi-513

tations in their capacity to comprehend linguistic514

content when confronted with dialectal and geo-515

graphical variations.516

6 Error analysis517

This section presents a quantitative error analysis to518

evaluate the XLM-RoBERTa large’s performance519

with respect to variation-inclusive evaluation data.520

Dialect to standard distance The Levenshtein521

distance metric, which quantifies the minimum522

number of single-character operations (insertions,523

deletions, or substitutions) necessary for string524

transformation, was computed between dialectal525

and standard sentences. An analysis in Figure 1526

of the resultant scores demonstrates that Basque527

dialectal variants exhibit significantly greater diver-528

gence from the standard form compared to Span-529

ish variants, which display higher proximity to530

their standardized counterpart. The observed inter-531

dialectal variation patterns suggest a more pro-532

nounced linguistic differentiation within Basque533

dialectal systems relative to Spanish dialectal vari-534
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(b) Spanish results

Figure 1: Standard to dialectal Levenshtein distance vs
accuracy of best discriminative models.

eties. This emphasizes the difference in variation 535

between languages and highlights the importance 536

of language-specific analysis in the field of lan- 537

guage variation processing in NLP. 538

Accuracy per dialect We analyzed the accuracy 539

results for each individual dialect level, in order to 540

see if some dialects are more difficult to process 541

than others. The relation between the accuracy 542

for each dialect and the distance from standard to 543

dialect is illustrated in Figure 1. 544

In the case of Basque (Figure 1a), we see that, in 545

terms of string distance, the western dialect is the 546

one that is the most different from the standard, fol- 547

lowed by the central and Navarrese dialects. How- 548

ever, the lowest accuracy is accounted for in the 549

Navarrese dialect, which is the dialect label that 550

seems to be closest to the standard form language. 551

This could be because of its under-representation 552

in our dataset, as Navarrese examples comprise 553

only 7% of our data (Appendix B). When focusing 554
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(a) Premise-Hypothesis distance and accuracy for
Basque
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(b) Premise-Hypothesis distance and accuracy for
Spanish

Figure 2: Levenshtein distance from premise to hypothesis and accuracy of discriminative models

on western and central dialects, it can be observed555

that, as the distance from standard to dialectal gets556

higher, accuracy gets lower, suggesting that dialects557

further from the standard are harder to process.558

Analysis of Spanish dialectal variations revealed559

no significant correlation between accuracy and560

edit distance. This observation may be attributed561

to two primary factors. First, differences in the562

manifestation of linguistic variations, with certain563

languages demonstrating greater inherent variabil-564

ity than others. Second, the extensive training565

data available for Spanish, a high-resource lan-566

guage, may have exposed the models to a broader567

spectrum of Spanish varieties, thereby affecting568

their performance characteristics. Detailed accu-569

racy metrics for individual dialect classifications570

are presented in Appendix E.571

Premise and hypothesis lexical overlap To in-572

vestigate the potential correlation between lexical573

overlap and accuracy results, we calculated the Lev-574

enshtein distance between premises and hypothe-575

ses. The analysis of the data in Figure 2 indicates576

that the degree of lexical overlap between premise577

and hypothesis remains relatively constant across578

standard and dialectal language varieties. However,579

a substantial decrease in accuracy was observed580

in both Basque and Spanish datasets. These find-581

ings suggest that while lexical overlap appears to582

have minimal impact on accuracy metrics, linguis-583

tic variation emerges as a significant factor affect-584

ing performance. Therefore, the observed pattern585

implies that dialectal variations, rather than lexical586

similarities, may be the primary factor of accuracy587

degradation in this context.588

In fact, Figure 2a demonstrates a more pro-589

nounced decrease in accuracy for Basque compared 590

to Spanish, underscoring both the critical need to 591

improve Basque representation in multilingual dis- 592

criminative models and the necessity for additional 593

investigation into language variation processing 594

methodologies. 595

7 Concluding Remarks 596

This paper presents a novel dataset that includes 597

geographical variants of Basque and Spanish. The 598

dataset represents the first documented instance of 599

a manually-curated, variation-inclusive corpus for 600

these languages, facilitating research and evalua- 601

tion on linguistic variants via Natural Language 602

Inference (NLI). The investigation involved the em- 603

pirical evaluation of both discriminative and gen- 604

erative language models across various NLI task 605

configurations. Results demonstrate a significant 606

inverse correlation between model performance 607

and the inclusion of linguistic variation. This per- 608

formance degradation is particularly pronounced in 609

Basque variants, where linguistic variation is higher 610

compared to Spanish variants. Furthermore, the 611

performance drop intensifies proportionally with 612

the linguistic distance between dialectal variants 613

and their respective standardized forms. Finally, 614

the lexical overlap between premises and hypothe- 615

ses appears to have minimal impact, suggesting that 616

lower performance is due to linguistic variation. 617

Limitations 618

In this paper we have focused on geographic 619

variants of language due to their low representa- 620

tion in NLP. We conducted our experiments for a 621

lesser-resourced language, Basque, and a higher- 622

8



resourced language, Spanish. However, we have623

only represented some of the variations of these624

languages, and our variation datasets have been625

created by 12 speakers for Basque and 6 speakers626

for Spanish. We tried to include the most repre-627

sentative dialects with different kind of speakers,628

but we are aware that all the speakers have lin-629

guistic and NLP background and laypeople could630

contribute differently.631

We have empirically shown that in our variation632

dataset the accuracy drops in NLI, but to general-633

yse this we should include more data from other634

variants and test it in other NLP tasks.635

In the future, we plan to augment the dataset636

with more geographical variants of Basque and637

Spanish and add other languages. We are looking638

for more speakers with different backgrounds that639

could enrich the dataset with their variations. We640

also plan to test the performance of NLP tools and641

LLMs with dialectal and register information in642

other tasks. Research on variation-inclusive mono-643

lingual models could be an interesting future direc-644

tion.645

References646

Noëmi Aepli and Rico Sennrich. 2022. Improving zero-647
shot cross-lingual transfer between closely related648
languages by injecting character-level noise. In Find-649
ings of the Association for Computational Linguis-650
tics: ACL 2022, pages 4074–4083, Dublin, Ireland.651
Association for Computational Linguistics.652

Rodrigo Agerri, Iñaki San Vicente, Jon Ander Cam-653
pos, Ander Barrena, Xabier Saralegi, Aitor Soroa,654
and Eneko Agirre. 2020. Give your text represen-655
tation models some love: the case for Basque. In656
Proceedings of the Twelfth Language Resources and657
Evaluation Conference, pages 4781–4788, Marseille,658
France. European Language Resources Association.659

Md Mahfuz Ibn Alam, Sina Ahmadi, and Antonios660
Anastasopoulos. 2024. CODET: A benchmark for661
contrastive dialectal evaluation of machine transla-662
tion. In Findings of the Association for Computa-663
tional Linguistics: EACL 2024, pages 1790–1859,664
St. Julian’s, Malta. Association for Computational665
Linguistics.666

Tahani Alshareef and Muazzam Ahmed Siddiqui. 2020.667
A seq2seq neural network based conversational agent668
for gulf arabic dialect. In 2020 21st International669
Arab Conference on Information Technology (ACIT),670
pages 1–7.671

Ekaterina Artemova and Barbara Plank. 2023. Low-672
resource bilingual dialect lexicon induction with large673
language models. In Proceedings of the 24th Nordic674

Conference on Computational Linguistics (NoDaL- 675
iDa), pages 371–385, Tórshavn, Faroe Islands. Uni- 676
versity of Tartu Library. 677

Mikel Artetxe, Itziar Aldabe, Rodrigo Agerri, Olatz 678
Perez-de Viñaspre, and Aitor Soroa. 2022. Does cor- 679
pus quality really matter for low-resource languages? 680
In Proceedings of the 2022 Conference on Empiri- 681
cal Methods in Natural Language Processing, pages 682
7383–7390, Abu Dhabi, United Arab Emirates. As- 683
sociation for Computational Linguistics. 684

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2020. 685
Translation artifacts in cross-lingual transfer learning. 686
In Proceedings of the 2020 Conference on Empirical 687
Methods in Natural Language Processing (EMNLP), 688
pages 7674–7684, Online. Association for Computa- 689
tional Linguistics. 690

Ari Ball-Burack, Michelle Seng Ah Lee, Jennifer Cobbe, 691
and Jatinder Singh. 2021. Differential tweetment: 692
Mitigating racial dialect bias in harmful tweet detec- 693
tion. In Proceedings of the 2021 ACM Conference on 694
Fairness, Accountability, and Transparency, FAccT 695
’21, page 116–128, New York, NY, USA. Association 696
for Computing Machinery. 697

Galo Castillo-lópez, Arij Riabi, and Djamé Seddah. 698
2023. Analyzing zero-shot transfer scenarios across 699
Spanish variants for hate speech detection. In Tenth 700
Workshop on NLP for Similar Languages, Varieties 701
and Dialects (VarDial 2023), pages 1–13, Dubrovnik, 702
Croatia. Association for Computational Linguistics. 703

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, 704
Vishrav Chaudhary, Guillaume Wenzek, Francisco 705
Guzmán, Edouard Grave, Myle Ott, Luke Zettle- 706
moyer, and Veselin Stoyanov. 2020. Unsupervised 707
cross-lingual representation learning at scale. In Pro- 708
ceedings of the 58th Annual Meeting of the Asso- 709
ciation for Computational Linguistics, pages 8440– 710
8451, Online. Association for Computational Lin- 711
guistics. 712

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina 713
Williams, Samuel Bowman, Holger Schwenk, and 714
Veselin Stoyanov. 2018. XNLI: Evaluating cross- 715
lingual sentence representations. In Proceedings of 716
the 2018 Conference on Empirical Methods in Nat- 717
ural Language Processing, pages 2475–2485, Brus- 718
sels, Belgium. Association for Computational Lin- 719
guistics. 720

Eugenio Coseriu. 1956. La geografía lingüística, vol- 721
ume 11. Universidad de la República, Facultad de 722
Humanidades y Ciencias. 723

Dorottya Demszky, Devyani Sharma, Jonathan Clark, 724
Vinodkumar Prabhakaran, and Jacob Eisenstein. 725
2021. Learning to recognize dialect features. In 726
Proceedings of the 2021 Conference of the North 727
American Chapter of the Association for Computa- 728
tional Linguistics: Human Language Technologies, 729
pages 2315–2338, Online. Association for Computa- 730
tional Linguistics. 731

9

https://doi.org/10.18653/v1/2022.findings-acl.321
https://doi.org/10.18653/v1/2022.findings-acl.321
https://doi.org/10.18653/v1/2022.findings-acl.321
https://doi.org/10.18653/v1/2022.findings-acl.321
https://doi.org/10.18653/v1/2022.findings-acl.321
https://aclanthology.org/2020.lrec-1.588/
https://aclanthology.org/2020.lrec-1.588/
https://aclanthology.org/2020.lrec-1.588/
https://aclanthology.org/2024.findings-eacl.125/
https://aclanthology.org/2024.findings-eacl.125/
https://aclanthology.org/2024.findings-eacl.125/
https://aclanthology.org/2024.findings-eacl.125/
https://aclanthology.org/2024.findings-eacl.125/
https://doi.org/10.1109/ACIT50332.2020.9300059
https://doi.org/10.1109/ACIT50332.2020.9300059
https://doi.org/10.1109/ACIT50332.2020.9300059
https://aclanthology.org/2023.nodalida-1.39/
https://aclanthology.org/2023.nodalida-1.39/
https://aclanthology.org/2023.nodalida-1.39/
https://aclanthology.org/2023.nodalida-1.39/
https://aclanthology.org/2023.nodalida-1.39/
https://doi.org/10.18653/v1/2022.emnlp-main.499
https://doi.org/10.18653/v1/2022.emnlp-main.499
https://doi.org/10.18653/v1/2022.emnlp-main.499
https://doi.org/10.18653/v1/2020.emnlp-main.618
https://doi.org/10.1145/3442188.3445875
https://doi.org/10.1145/3442188.3445875
https://doi.org/10.1145/3442188.3445875
https://doi.org/10.1145/3442188.3445875
https://doi.org/10.1145/3442188.3445875
https://doi.org/10.18653/v1/2023.vardial-1.1
https://doi.org/10.18653/v1/2023.vardial-1.1
https://doi.org/10.18653/v1/2023.vardial-1.1
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/2021.naacl-main.184


Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,732
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,733
Akhil Mathur, Alan Schelten, Amy Yang, Angela734
Fan, Anirudh Goyal, Anthony S. Hartshorn, Aobo735
Yang, Archi Mitra, Archie Sravankumar, Artem Ko-736
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Au-737
rélien Rodriguez, Austen Gregerson, Ava Spataru,738
Bap tiste Roziere, Bethany Biron, Binh Tang, Bobbie739
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe740
Bi, Chris Marra, Chris McConnell, Christian Keller,741
Christophe Touret, Chunyang Wu, Corinne Wong,742
Cristian Cantón Ferrer, Cyrus Nikolaidis, Damien Al-743
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,744
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,745
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,746
Egor Lakomkin, Ehab A. AlBadawy, Elina Lobanova,747
Emily Dinan, Eric Michael Smith, Filip Raden-748
ovic, Frank Zhang, Gabriele Synnaeve, Gabrielle749
Lee, Georgia Lewis Anderson, Graeme Nail, Gré-750
goire Mialon, Guanglong Pang, Guillem Cucurell,751
Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo752
Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Is-753
abel M. Kloumann, Ishan Misra, Ivan Evtimov, Jade754
Copet, Jaewon Lee, Jan Laurens Geffert, Jana Vranes,755
Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer756
van der Linde, Jennifer Billock, Jenny Hong, Jenya757
Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Ji-758
awen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe759
Spisak, Jongsoo Park, Joseph Rocca, Joshua John-760
stun, Joshua Saxe, Ju-Qing Jia, Kalyan Vasuden Al-761
wala, K. Upasani, Kate Plawiak, Keqian Li, Ken-591762
neth Heafield, Kevin Stone, Khalid El-Arini, Krithika763
Iyer, Kshitiz Malik, Kuen ley Chiu, Kunal Bhalla,764
Lauren Rantala-Yeary, Laurens van der Maaten,765
Lawrence Chen, Liang Tan, Liz Jenkins, Louis Mar-766
tin, Lovish Madaan, Lubo Malo, Lukas Blecher,767
Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,768
Mahesh Babu Pasupuleti, Mannat Singh, Manohar769
Paluri, Marcin Kardas, Mathew Oldham, Mathieu770
Rita, Maya Pavlova, Melissa Hall Melanie Kam-771
badur, Mike Lewis, Min Si, Mitesh Kumar Singh,772
Mona Hassan, Naman Goyal, Narjes Torabi, Niko-773
lay Bashlykov, Nikolay Bogoychev, Niladri S. Chat-774
terji, Olivier Duchenne, Onur cCelebi, Patrick Al-775
rassy, Pengchuan Zhang, Pengwei Li, Petar Vasić, Pe-776
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2023. Dialect-to-standard normalization: A large- 969
scale multilingual evaluation. In Findings of the As- 970
sociation for Computational Linguistics: EMNLP 971
2023, pages 13814–13828, Singapore. Association 972
for Computational Linguistics. 973

Emmy Liu, Chenxuan Cui, Kenneth Zheng, and Graham 974
Neubig. 2022. Testing the ability of language models 975
to interpret figurative language. In Proceedings of 976
the 2022 Conference of the North American Chap- 977
ter of the Association for Computational Linguistics: 978
Human Language Technologies, pages 4437–4452. 979

11

https://api.semanticscholar.org/CorpusID:271571434
https://api.semanticscholar.org/CorpusID:271571434
https://api.semanticscholar.org/CorpusID:271571434
https://doi.org/10.18653/v1/2024.naacl-long.204
https://doi.org/10.18653/v1/2024.naacl-long.204
https://doi.org/10.18653/v1/2024.naacl-long.204
https://aclanthology.org/2020.vardial-1.8/
https://aclanthology.org/2020.vardial-1.8/
https://aclanthology.org/2020.vardial-1.8/
https://api.semanticscholar.org/CorpusID:268513057
https://api.semanticscholar.org/CorpusID:268513057
https://api.semanticscholar.org/CorpusID:268513057
https://api.semanticscholar.org/CorpusID:268513057
https://api.semanticscholar.org/CorpusID:268513057
https://aclanthology.org/2017.iwslt-1.12/
https://aclanthology.org/2017.iwslt-1.12/
https://aclanthology.org/2017.iwslt-1.12/
https://arxiv.org/abs/2111.09543
https://arxiv.org/abs/2111.09543
https://arxiv.org/abs/2111.09543
https://arxiv.org/abs/2111.09543
https://arxiv.org/abs/2111.09543
https://doi.org/10.18653/v1/2024.naacl-long.234
https://doi.org/10.18653/v1/2024.naacl-long.234
https://doi.org/10.18653/v1/2024.naacl-long.234
https://doi.org/10.18653/v1/2021.naacl-main.49
https://doi.org/10.18653/v1/2021.naacl-main.49
https://doi.org/10.18653/v1/2021.naacl-main.49
https://doi.org/10.18653/v1/2021.naacl-main.49
https://doi.org/10.18653/v1/2021.naacl-main.49
https://arxiv.org/abs/2401.05632
https://arxiv.org/abs/2401.05632
https://arxiv.org/abs/2401.05632
https://doi.org/10.18653/v1/2023.findings-emnlp.923
https://doi.org/10.18653/v1/2023.findings-emnlp.923
https://doi.org/10.18653/v1/2023.findings-emnlp.923


Javier A. Lopetegui, Arij Riabi, and Djamé Seddah.980
2025. Common ground, diverse roots: The diffi-981
culty of classifying common examples in Spanish982
varieties. In Proceedings of the 12th Workshop on983
NLP for Similar Languages, Varieties and Dialects,984
pages 168–181, Abu Dhabi, UAE. Association for985
Computational Linguistics.986

Gemma Team Thomas Mesnard, Cassidy Hardin,987
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,988
L. Sifre, Morgane Rivière, Mihir Kale, J Christo-989
pher Love, Pouya Dehghani Tafti, L’eonard Hussenot,990
Aakanksha Chowdhery, Adam Roberts, Aditya991
Barua, Alex Botev, Alex Castro-Ros, Ambrose Slone,992
Am’elie H’eliou, Andrea Tacchetti, Anna Bulanova,993
Antonia Paterson, Beth Tsai, Bobak Shahriari, Char-994
line Le Lan, Christopher A. Choquette-Choo, Clé995
ment Crepy, Daniel Cer, Daphne Ippolito, David996
Reid, Elena Buchatskaya, Eric Ni, Eric Noland, Geng997
Yan, George Tucker, George-Christian Muraru, Grig-998
ory Rozhdestvenskiy, Henryk Michalewski, Ian Ten-999
ney, Ivan Grishchenko, Jacob Austin, James Keel-1000
ing, Jane Labanowski, Jean-Baptiste Lespiau, Jeff1001
Stanway, Jenny Brennan, Jeremy Chen, Johan Fer-1002
ret, Justin Chiu, Justin Mao-Jones, Kather ine Lee,1003
Kathy Yu, Katie Millican, Lars Lowe Sjoesund, Lisa1004
Lee, Lucas Dixon, Machel Reid, Maciej Mikuła,1005
Mateo Wirth, Michael Sharman, Nikolai Chinaev,1006
Nithum Thain, Olivier Bachem, Oscar Chang, Oscar1007
Wahltinez, Paige Bailey, Paul Michel, Petko Yotov,1008
Pier Giuseppe Sessa, Rahma Chaabouni, Ramona1009
Comanescu, Reena Jana, Rohan Anil, Ross McIl-1010
roy, Ruibo Liu, Ryan Mullins, Samuel L. Smith, Se-1011
bastian Borgeaud, Sertan Girgin, Sholto Douglas,1012
Shree Pandya, Siamak Shakeri, Soham De, Ted Kli-1013
menko, Tom Hennigan, Vladimir Feinberg, Wojciech1014
Stokowiec, Yu hui Chen, Zafarali Ahmed, Zhitao1015
Gong, Tris Warkentin, Ludovic Peran, Minh Giang,1016
Clément Farabet, Oriol Vinyals, Jeffrey Dean, Koray1017
Kavukcuoglu, Demis Hassabis, Zoubin Ghahramani,1018
Douglas Eck, Joelle Barral, Fernando Pereira, Eli1019
Collins, Armand Joulin, Noah Fiedel, Evan Senter,1020
Alek Andreev, and Kathleen Kenealy. 2024. Gemma:1021
Open models based on gemini research and technol-1022
ogy. ArXiv, abs/2403.08295.1023

Aakanksha Naik, Abhilasha Ravichander, Norman1024
Sadeh, Carolyn Rose, and Graham Neubig. 2018.1025
Stress test evaluation for natural language inference.1026
In Proceedings of the 27th International Conference1027
on Computational Linguistics, pages 2340–2353.1028

Alan Ramponi and Camilla Casula. 2023. DiatopIt: A1029
corpus of social media posts for the study of diatopic1030
language variation in Italy. In Tenth Workshop on1031
NLP for Similar Languages, Varieties and Dialects1032
(VarDial 2023), pages 187–199, Dubrovnik, Croatia.1033
Association for Computational Linguistics.1034

Kevin Stowe, Prasetya Utama, and Iryna Gurevych.1035
2022. IMPLI: Investigating NLI models’ perfor-1036
mance on figurative language. In Proceedings of the1037
60th Annual Meeting of the Association for Compu-1038
tational Linguistics (Volume 1: Long Papers), pages1039
5375–5388.1040

Robert Lawrence Trask and Peter Stockwell. 2007. Lan- 1041
guage and linguistics: The key concepts. Routledge. 1042

Larraitz Uria and Ricardo Etxepare. 2012. Hizkeren 1043
arteko aldakortasun sintaktikoa aztertzeko metodolo- 1044
giaren nondik norakoak: Basyque aplikazioa. La- 1045
purdum. Euskal ikerketen aldizkaria| Revue d’études 1046
basques| Revista de estudios vascos| Basque studies 1047
review, (16):117–135. 1048

Francisco Valentini, Viviana Cotik, Damián Ariel 1049
Furman, Ivan Bercovich, Edgar Altszyler, and 1050
Juan Manuel P’erez. 2024. Messirve: A large- 1051
scale spanish information retrieval dataset. ArXiv, 1052
abs/2409.05994. 1053

Vered Volansky, Noam Ordan, and Shuly Wintner. 2013. 1054
On the features of translationese. Digital Scholarship 1055
in the Humanities, 30(1):98–118. 1056

Adina Williams, Nikita Nangia, and Samuel Bowman. 1057
2018. A broad-coverage challenge corpus for sen- 1058
tence understanding through inference. In Proceed- 1059
ings of the 2018 Conference of the North American 1060
Chapter of the Association for Computational Lin- 1061
guistics: Human Language Technologies, Volume 1062
1 (Long Papers), pages 1112–1122, New Orleans, 1063
Louisiana. Association for Computational Linguis- 1064
tics. 1065

Marcos Zampieri, Preslav Nakov, and Yves Scherrer. 1066
2020. Natural language processing for similar lan- 1067
guages, varieties, and dialects: A survey. Natural 1068
Language Engineering, 26(6):595–612. 1069

Marcos Zampieri, Kai North, Tommi Jauhiainen, Mari- 1070
ano Felice, Neha Kumari, Nishant Nair, and Yash Ma- 1071
hesh Bangera. 2024. Language variety identification 1072
with true labels. In Proceedings of the 2024 Joint 1073
International Conference on Computational Linguis- 1074
tics, Language Resources and Evaluation (LREC- 1075
COLING 2024), pages 10100–10109, Torino, Italia. 1076
ELRA and ICCL. 1077

Koldo Zuazu. 2008. Euskalkiak. Euskararen dialektoak. 1078
Elkar. 1079

12

https://aclanthology.org/2025.vardial-1.13/
https://aclanthology.org/2025.vardial-1.13/
https://aclanthology.org/2025.vardial-1.13/
https://aclanthology.org/2025.vardial-1.13/
https://aclanthology.org/2025.vardial-1.13/
https://api.semanticscholar.org/CorpusID:268379206
https://api.semanticscholar.org/CorpusID:268379206
https://api.semanticscholar.org/CorpusID:268379206
https://api.semanticscholar.org/CorpusID:268379206
https://api.semanticscholar.org/CorpusID:268379206
https://doi.org/10.18653/v1/2023.vardial-1.19
https://doi.org/10.18653/v1/2023.vardial-1.19
https://doi.org/10.18653/v1/2023.vardial-1.19
https://doi.org/10.18653/v1/2023.vardial-1.19
https://doi.org/10.18653/v1/2023.vardial-1.19
https://api.semanticscholar.org/CorpusID:272550762
https://api.semanticscholar.org/CorpusID:272550762
https://api.semanticscholar.org/CorpusID:272550762
https://doi.org/10.1093/llc/fqt031
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.1017/S1351324920000492
https://doi.org/10.1017/S1351324920000492
https://doi.org/10.1017/S1351324920000492
https://aclanthology.org/2024.lrec-main.882/
https://aclanthology.org/2024.lrec-main.882/
https://aclanthology.org/2024.lrec-main.882/

	Introduction
	Related Work
	Data
	XNLI with Geographic Variants

	Experimental settings
	Results
	Discriminative Experiments
	Generative Experiments

	Error analysis
	Concluding Remarks

