
From Tools to Teammates: Evaluating LLMs
in Multi-Session Coding Interactions

Anonymous ACL submission

Abstract

Large Language Models (LLMs) are increas-001
ingly used in working environments for a wide002
range of tasks, excelling at solving individ-003
ual problems in isolation. However, are they004
also able to effectively collaborate over long-005
term interactions? To investigate this, we in-006
troduce MEMORYCODE, a synthetic multi-007
session dataset designed to test LLMs’ ability008
to track and execute simple coding instructions009
amid irrelevant information, simulating a realis-010
tic setting. While all the models we tested han-011
dle isolated instructions well, even the perfor-012
mance of state-of-the-art models like GPT-4o013
deteriorates when instructions are spread across014
sessions. Our analysis suggests this is due to015
their failure to retrieve and integrate informa-016
tion over long instruction chains. Our results017
highlight a fundamental limitation of current018
LLMs, restricting their ability to collaborate019
effectively in long interactions.020

1 Introduction021

Current efforts to improve the performance of large022

language models (LLMs) mostly focus on their abil-023

ity to solve increasingly harder tasks autonomously.024

Examples of this research include solving complex025

math (Wang et al.; Gao et al., 2024; Trinh and026

Luong, 2024), coding (Chen et al., 2021; Austin027

et al., 2021; Tao et al., 2024; Puerto et al., 2024),028

or reasoning problems (Hao et al., 2023; Wang029

and Zhou, 2024; Renze and Guven, 2024). Since030

many of these tasks are relevant to real-world ap-031

plications, LLMs are widely adopted in industry,032

where they have been reported to significantly en-033

hance productivity (Weber et al., 2024; Cambon034

et al., 2023). This extensive adoption of LLM as-035

sistants into the daily working routine is effectively036

converting them from mere tools to fully-fledged037

teammates. For LLMs to behave as such, though,038

complementary skills related to collaboration and039

interaction are needed. One such ability is retain-040

Figure 1: A simplified but realistic example of a long-
term interaction between a human and an LLM-based
‘teammate’. In this example, each day represents a sin-
gle session. The LLM teammate must remember a piece
of information—in red—learned during the session on
Day 1 to correctly perform a task on Day 20, while also
receiving irrelevant information—in blue—on Day 5.

ing relevant information from multiple interactions 041

with human users and leveraging it for future tasks. 042

In this paper, we investigate this challenge by 043

introducing MEMORYCODE, a synthetic dataset 044

of multi-session dialogue histories designed to eval- 045

uate models’ ability to track simple coding instruc- 046

tions provided amid irrelevant information, and 047

execute them in future coding tasks. Each dialogue 048

history is a chronological sequence of dialogues, or 049

sessions, between a mentor and a mentee. Through- 050

out the sessions, the mentor passes critical infor- 051

mation for solving a task to a mentee. Crucially, 052

this information is interspersed with a substantial 053

amount of unrelated content, thus reflecting the 054

real-life scenario of working in an office. Further- 055

1

more, the information needed to perform a task can056

be updated multiple times throughout the dialogue057

history.058

MEMORYCODE mimics natural interactions be-059

tween coworkers. Figure 1 shows an example060

of such interactions, where various coding con-061

ventions and rules arise (Convertino et al., 2008;062

Chumg et al., 2022) that are passed on to new team063

members (Day 1), often among other pieces of in-064

formation irrelevant to coding tasks (Day 5). New-065

comers are expected to comply with such rules066

when performing future tasks (Day 20), unless rules067

are deprecated or changed. MEMORYCODE tests068

whether current models behave like new human069

teammates by consistently adhering to such rules070

across many sessions.071

Similar to previous work (Nelson et al., 2024;072

Epstein et al., 2024; Maharana et al., 2024), the073

primary goal of our benchmark is to retrieve impor-074

tant information from a long conversational history.075

In contrast to previous datasets, MEMORYCODE re-076

quires to use retrieved information in practical tasks077

while not being explicitly cued to do so. This is078

more challenging than cued retrieval of static infor-079

mation, as it requires prospective memory and spon-080

taneous retrieval (McDaniel and Einstein, 2007;081

Brandimonte et al., 2014). Additionally, MEMO-082

RYCODE requires an integration of information re-083

trieved from different parts of the dialogue history,084

as rules can be updated, with only the last update085

being eventually relevant. At the same time, the086

rules in it (e.g., adding a date at the start of every087

new code) are simple to execute, which allows for088

disentangling a model’s retrieval capabilities from089

other complex skills. To the best of our knowledge,090

MEMORYCODE is the first multi-session dataset091

that tests this practically highly relevant skill.092

We test several proprietary and open-source093

SotA models on MEMORYCODE, and show that:094

(i) Even small models succeed in executing the sin-095

gle coding instructions in MEMORYCODE when096

prompted without additional complex context, in-097

dicating that such instructions are well within the098

reach of current LLMs; (ii) As we increase the099

complexity and provide a full mentor-mentee ses-100

sion, including several instructions and irrelevant101

information, only larger models continue to per-102

form well, while the performance of smaller mod-103

els drops significantly; (iii)When we provide the104

full dialogue history, even strong proprietary mod-105

els struggle to follow our simple instructions, with106

GPT-4o showing a dramatic 67% drop in accu-107

racy compared to its performance with instructions 108

alone. This reveals that MEMORYCODE is a chal- 109

lenging benchmark even for the best available mod- 110

els, that struggle to retrieve and incrementally up- 111

date relevant information. 112

We argue that solving MEMORYCODE requires 113

more than simply scaling models even further. In- 114

stead, our results indicate a pressing need to de- 115

velop dedicated mechanisms to enhance LLMs’ 116

abilities, such as improved long-term memory re- 117

tention strategies, prospective memory, or addi- 118

tional reasoning mechanisms. The dataset and code 119

are available in the supplementary material. The 120

dataset will be released under the Apache 2.0 li- 121

cense. 122

2 Related work 123

2.1 Long-Context Evaluation 124

Early approaches to evaluating long-context 125

understanding date back to the pre-LLM era. One 126

such example is LAMBADA (Paperno et al., 2016), 127

which includes high-quality human-annotated 128

samples with an average length of 75 tokens. 129

As context lengths increased, new datasets were 130

created by repurposing or expanding existing NLP 131

datasets (An et al., 2024; Bai et al., 2024b; Dong 132

et al., 2024). More recently, controlled-length 133

synthetic evaluation frameworks, such as Needle- 134

in-a-Haystack (Kamradt, 2023) and LTM (Castillo 135

et al., 2024), have been widely adopted for 136

evaluating long-context understanding (Anil et al., 137

2023; Anthropic, 2024). In these frameworks, the 138

models are tasked with retrieving information from 139

long distractor texts. RULER (Hsieh et al., 2024) 140

extends Needle-in-the-Haystack by varying the 141

types and numbers of needles and adding new tasks 142

like variable tracking and frequent word extraction. 143

LOFT (Lee et al., 2024) adds many real-world 144

tasks, such as Retrieval-Augmented Generation 145

and SQL-like tasks, that require context up to 146

millions of tokens. Similar to these approaches, in 147

this work we evaluate long-context understanding 148

in conversational settings. Unlike other works, 149

though, we do not ask the models to retrieve a 150

piece of information, but rather challenge them to 151

retrieve the most up-to-date instructions dispersed 152

across the dialogue history to accomplish a task. 153

154

2

2.2 Long-term Dialogue Evaluation155

Multi-turn and multi-session interactions are the156

de facto standard setup in which LLMs are used.157

Accordingly, several datasets have been introduced158

to evaluate long contexts in conversations. Zheng159

et al., 2024 introduced MT-Bench, a high-quality,160

multi-turn question dataset across 8 knowledge cat-161

egories, but with only two turns per session. Many162

benchmarks have been proposed to expand or im-163

prove upon MT-Bench (Sun et al., 2024; Bai et al.,164

2024a; Kwan et al., 2024). For example, MT-Eval165

(Kwan et al., 2024) evaluates different aspects of166

multi-turn dialogue such as the ability to under-167

stand follow-up questions. MINT (Wang et al.,168

2024) focuses on tool use and natural language169

feedback evaluation, while Duan et al., 2024 intro-170

duce a framework where three different evaluation171

strategies are proposed: evaluating each multi-turn172

dialogue separately, comparing the quality of two173

generated dialogues, and comparing two dialogues174

to determine which one is the human conversation.175

Most similar to our work, MMMT-IF (Epstein176

et al., 2024) extends multi-turn and multi-modal177

datasets to measure instruction-following abilities178

and shows that the main challenge for LLMs is179

not in following instructions, but rather in retriev-180

ing instructions. In multi-session dialogues, many181

datasets were also created synthetically; for exam-182

ple, Conversation Chronicles (Jang et al., 2023),183

which includes 200K conversations of about 5 ses-184

sions each, or LoCoMo (Maharana et al., 2024),185

a multi-modal dataset based on a framework that186

leverages personas and temporal event graphs. Kim187

et al. (2024a) and Kim et al. (2024b) utilized movie188

scripts to construct complex multi-session dialogue189

datasets having, for example, multi-party conversa-190

tions and shared memories between speakers. Most191

of the works mentioned above focus on expanding192

the number of turns and sessions or on introduc-193

ing more complex tasks that are challenging for194

LLMs. Similarly, our work evaluates the perfor-195

mance of LLMs in multi-turn/session dialogues,196

but with very simple tasks and more focus on prac-197

tical, real-world settings in which information is198

constantly changing.199

2.3 Synthetic Dialogue Generation200

Synthetic data generation via LLMs addresses lim-201

itations of human-based dataset construction such202

as high costs (Gilardi et al., 2023) and privacy con-203

cerns (Kurakin et al., 2023). Precisely because of204

these advantages, we decided to adopt synthetic 205

generation for the creation of MEMORYCODE. Ex- 206

amples of widely adopted synthetic datasets in- 207

clude SODA (Kim et al., 2023), an open-domain 208

dialogue dataset grounded on commonsense knowl- 209

edge, containing millions of utterances generated 210

by GPT3.5; DialHalu (Chen et al., 2024), a dataset 211

to evaluate different subtypes of hallucination in 212

language models; and MoralDial (Sun et al., 2023), 213

which evaluates moral values in language models. 214

Wu and Goldwasser (2024) proposed a dialogue 215

generation framework that provides control over 216

many attributes of the speakers, such as personality, 217

age group, and profession. Finally, Rakotonirina 218

and Baroni (2024) introduced a synthetic dataset 219

consisting of sequences of realistic facts that may 220

be updated over time. Their dataset is designed 221

to evaluate LLMs’ ability to track specific pieces 222

of information amid distractors. While similar in 223

spirit to these approaches, our dataset is novel as it 224

is composed of interactions set in practical business 225

contexts and with a focus on coding. Additionally, 226

our evaluation emphasizes the model’s ability to 227

follow well-defined instructions rather than simply 228

retrieving facts. 229

3 Dataset 230

We simulate a scenario in which the model assumes 231

the role of a new hire (henceforth, the mentee) 232

who undergoes an onboarding process in a given 233

company. The mentee interacts with a mentor in 234

chronologically ordered sessions. A session is a 235

multi-turn dialogue in which the mentor passes 236

the mentee various information. In a session, the 237

mentor can give instructions about relevant coding 238

practices in Python that the mentee should follow 239

when performing a task. For example, in Figure 1, 240

the instruction is the text in red on Day 1. Once 241

introduced, an instruction can be updated over time: 242

in the case of Figure 1, an update might be to not 243

add the date anymore. When the mentee is asked to 244

perform a task, it should remember and follow all 245

the relevant instructions. Sessions can also include 246

topics irrelevant to the target tasks: We refer to 247

these topics as fillers (in Figure 1, the information 248

in blue provided by the mentor). Finally, a dialogue 249

history is the concatenation of all the sessions be- 250

tween the mentee and the mentor. 251

The dataset evaluates the models’ ability to lever- 252

age the relevant instructions received throughout 253

the history to perform the assigned tasks. To cre- 254

3

ate dialogue histories we relied on both manual255

and automatic labor, thus optimizing quality and256

minimizing costs and effort, as described below.257

3.1 Seeds258

A dialogue history is created based on a few crucial259

elements, or seeds. We use four types of seeds:260

instructions, fillers, mentor and mentee personas,261

and names. For each seed, we define a set of pos-262

sible values, from which we sample to generate263

histories (see Figure 2). The possible seed values264

were manually defined by the authors to ensure265

high quality. Below, we describe each seed.266

Instructions These are the coding instructions267

that the mentee must follow when generating a268

piece of code. An example is: always start func-269

tion names with ‘g_’. Instructions are designed to270

be as simple as possible—recall that we are inter-271

ested in assessing the models’ ability to leverage272

the information that emerged during interactions,273

not their ability to perform complex tasks.274

Each instruction applies to a specific Python ob-275

ject (e.g., function). Also, for some instructions, we276

define updates: For example, the instruction above277

would be updated to always start function names278

with ‘h_’. Then, for each instruction, we create279

an evaluation query and a test function.1 Queries280

are specifically designed to trigger code genera-281

tion that is relevant to the instruction (e.g., write a282

function that merges two sorted lists). Test func-283

tions are regular expressions: they only assess if284

the relevant instructions were followed (e.g., if the285

function starts with the required letter), and not the286

overall quality of the generated code. We manually287

crafted 51 instructions, 16 of which can be updated288

up to 8 times, while the remaining ones do not have289

updates. We report the full list of instructions in290

Table 5 of Appendix A.291

Fillers In real-world scenarios, interactions be-292

tween colleagues can also include topics that do not293

necessarily impact daily tasks. To simulate this, we294

use fillers, which can be of two types. The first type295

contains general information about common topics296

at work such as remote work policy. The second297

contains instructions similar to those introduced298

above, but not strictly related to code generation,299

like use GitHub as the main version control system.300

These latter fillers are meant to be harder distrac-301

1Note that the evaluation query is the same for an instruc-
tion and for its updates.

Parameter Range

Sessions (n) {1,2,3,4,5,10,15,
20,30,40,50,100}

Sessions with instr. (%) [50, 70]
Instr. in a session (n) {1, 2, 3}
Instr. updates (%) [30, 70]
Filler updates (%) [50, 70]

Table 1: Parameters for dialogue history generation.

tors, as a model, recognizing them as instructions, 302

might focus on them. 303

Fillers can be updated throughout sessions, 304

however—unlike instructions—they are never eval- 305

uated.2 We manually gathered 80 fillers, 50 of the 306

first type, and 30 of the second. A filler can be 307

updated up to 4 times. The full list of fillers are in 308

Table 6 of Appendix A. 309

Personas Personas define the personality traits 310

of the mentor and the mentee. By having different 311

personas and combining them, we can generate con- 312

versations that are more diverse and thus increase 313

the variety of the dataset. We define 6 personas for 314

the mentor and 5 for the mentee (see Table 9 and 315

Table 8 of Appendix A). 316

Names We define lists of fictitious names for 317

mentors, mentees, and companies, from which we 318

randomly sample to generate the conversations (see 319

Table 7 of Appendix A). 320

3.2 Dialogue Histories 321

We generate the dialogue histories in two steps: we 322

first create templates by sampling different com- 323

binations of seeds and other parameters, and then 324

generate the actual histories based on these tem- 325

plates using an LLM, as shown in Figure 2. 326

Template generation We initially sample a 327

name and a persona for the mentor and mentee, 328

and a name for the company from our seeds. We 329

then randomly pick a value for each of the follow- 330

ing parameters: (i) sessions: how many sessions 331

will be included in the dialogue history; (ii) ses- 332

sions with instructions: the percentage of sessions 333

that will include an instruction. Since we set the 334

maximum value to 70%, some sessions will only 335

have fillers; (iii) instructions in session: how many 336

instructions a session will include (min 1; max 3); 337

2For this reason, from now on, ‘instructions’ will always
refer to coding ones—not fillers—unless differently specified.

4

Company name: HEXA
Names (Mentor; Mentee): Alice; Bob
Personas (Mentor; Mentee): patient and supportive; social
and outgoing
Num. sessions: 10
Num. instruction: 6
Num. updates (instruction; filler): 3; 2
Instructions: (instruction: [‘start functions with f_’, ‘start
function with g_’], Object: function, Regex: [‘^f_.*’, ‘^g_.*’], Query:
write a function that merges two lists), …
Fillers: Remote work policy, …

Template

Pivots
Pivots

Personas
Pivots

Pivots
Names

Pivots
Pivots

Instructions
Pivots

Pivots
Fillers

sample

Seeds Dialogue history

Session 1

Session 2

Session 10

…

LLM

generate

Figure 2: Dataset generation process. First, we randomly sample from our seeds to fill the variables of the template.
The LLM is then prompted with this template to generate the dialogue history.

Parameter Short dataset Long dataset
(<15 sessions) (>15 sessions)

Sessions 5.71 (±4.65) 48.00 (±27.85)

Sessionsw/ instr. 3.38 (±2.66) 28.13 (±16.56)

Instr. 4.98 (±4.10) 42.24 (±25.37)

Instr.added 3.56 (±2.62) 24.82 (±15.06)

Instr.updated 1.41 (±1.97) 17.42 (±11.93)

Fillers 5.04 (±4.75) 45.06 (±29.36)

Filleradded 3.36 (±2.92) 24.63 (±12.70)

Fillerupdated 1.52 (±1.81) 18.86 (±13.48)

Tokens 3.20k (±2.71k) 26.15k (±15.50k)

Vocabulary 8.54k 14.24k

Table 2: Summary statistics (averages and standard de-
viations) for the ‘short’ and ‘long’ datasets.

(iv) instructions and update ratio: the actual in-338

structions that will be included, and how many of339

them will be updated; (v) fillers and update ra-340

tio: same as for instructions. Table 1 presents the341

parameters range we used to generate the dataset.342

Dialogue history generation For each session,343

we automatically construct a prompt incorporating344

the information from the template. The prompt in-345

troduces the company, the mentor, and the mentee,346

as well as the instructions and fillers of the session.347

We then use Command R+ (Cohere, 2024b) to gen-348

erate the session. We report examples of prompts349

in Table 10 and 11 of Appendix F.350

The resulting dataset contains 360 dialogue his-351

tories, 30 for each of the following number of ses-352

sions: 1, 2, 3, 4, 5, 10, 15, 20, 30, 40, 50, 100. In353

what follows, we use ‘short’ to refer to histories354

with fewer than 15 sessions (54% of the total), and355

‘long’ to those with more than 15 sessions (46%).356

Note that the longest history contains 63k tokens,357

which still fits the context window of all the models358

we used. In Table 2, we report the main statistics of359

the dataset. During the dataset creation, to ensure 360

quality, we performed several generation rounds 361

that we manually assessed and used to further opti- 362

mize the prompting. Manual inspection of the final 363

generated dialogue histories confirmed the overall 364

quality and coherence of the dataset. 365

4 Experiments 366

We evaluate models on MEMORYCODE on three 367

evaluation setups, each of them including a differ- 368

ent kind of textual input. 369

INSTRUCTION The input consists of a single in- 370

struction (e.g., in Figure 1, ‘add the current date to 371

the start of every function’). This setting is included 372

to assess how good models are at performing cod- 373

ing tasks without any conversational setup. 374

SESSION The input is an entire session (in Fig- 375

ure 1, a whole-day mentor-mentee interaction). In 376

this setup, the model output is correct only if the 377

model simultaneously adheres to all the instruc- 378

tions introduced in the session. 379

HISTORY The input of the model is the 380

whole dialogue history, i.e., the concatenation 381

of all sessions (in Figure 1, the entire 20-day 382

mentor-mentee interaction). This setup is the most 383

challenging one, as it evaluates the ability to recall 384

information from previous sessions and to use it 385

together with new information to correctly perform 386

the task. As such, it mimics realistic working sce- 387

narios, where colleagues interact over long periods. 388

389

Given an instruction and the model output, we 390

assess it using the corresponding regex function. 391

The model receives a score of 1 only if the in- 392

struction is correctly applied to all instances of the 393

relevant Python object and there are no syntax er- 394

rors.3 For example, if the instruction is always start 395

3Additionally, if the relevant Python object is not present

5

Llama-3.1-8B
Llama-3.1-70B

Llama-3.1-405B
Command R+ GPT-4o

0.0

0.2

0.4

0.6

0.8

1.0
Sc

or
e

Instruction Session Short History Long History

Figure 3: Average INSTRUCTION, SESSION, and HIS-
TORY scores per model. For the latter, ‘short’ includes
dialogue histories with less than 15 sessions, ‘long’
those with 16 to 100 sessions.

function names with ‘g_’, all functions in the gener-396

ated code must start with ‘g_’. The overall model’s397

performance is computed using macro-averaged398

accuracy.399

4.1 Models400

We test several recent LLMs on our benchmark,401

namely, three versions of Llama-3.1 (8B-Instruct,402

70B-Instruct, and 405B-Instruct; Dubey et al.,403

2024), Command R+ (Cohere, 2024b), and GPT-404

4o (OpenAI, 2024). Our model selection includes405

both proprietary and open-weights models, cover-406

ing a broad range of model sizes. This provides407

us with a comprehensive overview of how various408

types of LLMs perform on our dataset. We note409

that all the models have been trained on code and410

tested on Python coding benchmarks such as Hu-411

manEval (Chen et al., 2021) and MBPP (Austin412

et al., 2021). The details to reproduce the results413

are provided in Appendix C.414

5 Results415

In this section, we report the performance of the416

models across the evaluation setups described in417

Section 4. Figure 3 shows the average score for418

each model. The exact numbers are included in419

Table 4 of Appendix B.420

INSTRUCTION As shown in Figure 3, all mod-421

els achieve high or very high accuracy on this422

setup. This aligns with our goals of having rel-423

atively easy instructions. In particular, all the large424

models approach or exceed 0.9 accuracy—reported425

in the [0, 1] scale. While the results of Llama-8B426

in the generated code (<1% of the cases), the instruction is not
taken into account when averaging the scores.

are lower, they still show that even a small, non- 427

specialized model achieves good performance, con- 428

firming the easiness of the task. 429

As a sanity check, we run a set of experiments in 430

which we do not prompt the models with the neces- 431

sary instructions (e.g., use CamelCase), but directly 432

run the evaluation (in this case, we check if Camel- 433

Case was used).4 This setup verifies that models 434

do not solve MEMORYCODE through their default 435

behavior. Models fail spectacularly, achieving an 436

extremely low average accuracy (consistently lower 437

than 0.01), confirming that the instructions we pro- 438

vide are crucial to executing the tasks correctly. 439

SESSION The performance in this setup is very 440

similar to INSTRUCTION for the larger Llama mod- 441

els and GPT-4o, indicating that these models have 442

no difficulties at retrieving the relevant information 443

in a single session. Command R+ shows a larger 444

drop of 0.22 (25% relative drop compared to IN- 445

STRUCTION), while Llama-3.1-8B shows a major 446

drop of 0.34 (48%), which indicates its inability to 447

retrieve relevant information across multiple turns. 448

HISTORY Things change dramatically in this 449

setup, with a degradation in performance across the 450

board already for ‘short’ dialogue histories. In par- 451

ticular, GPT-4o shows a drop of 0.14, a value that 452

increases for the other models: 0.47 (67% relative 453

drop compared to INSTRUCTION) for Llama-3.1- 454

8B and 0.48 (54%) for Command R+. These results 455

indicate that as the number of sessions increases, 456

even the best-in-class models have difficulties in 457

identifying and applying the relevant instructions. 458

A more dramatic drop is observed in the ‘long’ 459

setup. Here, all the models struggle, with the best 460

GPT-4o only achieving 0.30 accuracy, which in- 461

dicates a relative drops of 61% from the ‘short’ 462

setup and of 67% from INSTRUCTION. The drop is 463

even more significant for the other models: the per- 464

formance of Llama-3.1-405B drops by 78% com- 465

pared to INSTRUCTION, Command R+ by 87%. 466

Crucially, this happens even though the tasks on 467

which models are evaluated are identical to those 468

in the INSTRUCTION and SESSION setups, where 469

the models achieved nearly-perfect accuracy. The 470

difference in performance, hence, is to be ascribed 471

to models’ inability to retrieve and reason over rel- 472

evant pieces of information present in their input. 473

4Due to budget limits, we only used Command R+ for this
experiment and for the analysis in Section 6.2. We expect the
results to be representative of all other models’ behavior.

6

6 Analysis474

In this section, we conduct an analysis aimed at475

understanding which factors influence model per-476

formance on the MEMORYCODE benchmark. We477

focus on the HISTORY setup, the most important478

and challenging one.479

Figure 4: Score per number of sessions.

6.1 Effect of Number of Sessions480

In Figure 4, we show how the performance de-481

creases with an increasing number of sessions.482

Consistently with the aggregated patterns shown in483

Figure 3, relevant variations can be observed across484

models when the number of sessions is rather low,485

which reflects the differences observed in the ‘short’486

setup. However, all models converge to a similarly,487

extremely low accuracy (around 0.1) when the num-488

ber of sessions approaches 100. This confirms that489

all models are similarly bad at handling requests490

involving long-context inputs.491

This weakness could be due to limitations in re-492

trieving the relevant information from the dialogue493

history, reasoning about a chain of instructions and494

updates, or both. Below, we shed light on this issue.495

6.2 Retrieval or Reasoning Problem?496

If the poor performance in the HISTORY setup was497

due to retrieval, then passing models only the full498

chain of instructions and updates—without any in-499

tervening irrelevant text—should solve the issue.500

Vice versa, if the issue was about reasoning over501

such a chain, they should still perform poorly. We502

test these assumptions by feeding Command R+503

with only the entire chain of instructions needed to504

solve a task. We name this setup INSTRUCTIONS-505

CHAIN. As shown in Figure 5, the trend is strik-506

ingly similar to the one observed in HISTORY, with507

the model still struggling even if only the relevant508

information is provided, with no dialogue history. 509

This indicates that models’ drop in performance is 510

mainly due to their inability to reason composition- 511

ally over a sequence of instructions. 512

Retrieval from the dialogue history also plays 513

a role, as indicated by the slightly higher per- 514

formance in INSTRUCTIONS-CHAIN over HIS- 515

TORY. To mitigate this retrieval issue, we ex- 516

perimented with Retrieval Augmented Generation 517

(RAG), where instead of providing as input the 518

whole history, we retrieve its relevant parts only 519

and feed them to the model. However, we did not 520

observe any improvement over HISTORY (see Ap- 521

pendix D). 522

Figure 5: Per-sessions score for INSTR.-CHAIN.

6.3 Effect of Instruction Updates 523

After uncovering models’ reasoning limitations, we 524

now explore whether they are due to the inability 525

to cope with instruction updates. We hypothesize 526

that the higher the number of updates an instruction 527

goes through, the harder it is for the model to keep 528

track of such updates and eventually adhere to the 529

updated instruction when performing a task. 530

We define the update rank of an instruction 531

as the number of times the instruction is updated 532

throughout the dialogue history, for both ‘short’ 533

and ‘long’ setups. An update rank of 0 means that 534

the instruction was never updated. Figure 6 reports 535

for each update rank the average score, computed 536

across all models, of the instructions with that rank. 537

We observe that the score of an instruction de- 538

creases as its number of updates increases. This 539

result is consistent with our hypothesis that models 540

struggle to incrementally update their instruction 541

representations through multiple reasoning steps. 542

7

DIALOGUE HISTORY

(1) Yoon-Seo: Alexander, it’s great to finally
meet you. I’m Yoon-Seo, your mentor . . .
(2) Yoon-Seo: . . . One of our key practices is to
always add comments to your code . . .

Yoon-Seo: . . . Another convention we follow is
to end variable names with ‘_n’ . . .
(3) Yoon-Seo: . . . All variable names should
now end with ‘_z’ . . .

(4) Yoon-Seo: . . . When naming attributes , [...]

include the string ‘chx’ in the name . . .

EVALUATION QUERY

Write a function that checks if a string is a valid
palindrome

MODEL OUTPUT

def is_palindrome_ chx (s_ chx):

Initialize two pointers

left_ chx _n = 0

right_ chx _n = len(s_ chx) - 1
. . .

Table 3: A 4-session dialogue history (session id
in parenthesis). GPT-4o correctly applies the in-
struction about comments but not the one about
attribute names and the update on variable names .

6.4 Instruction Difficulty543

We finally assess if, besides the updates, the very544

nature of each instruction makes it more challeng-545

ing than others. For this, we compute the average546

per-instruction score of the best-performing model,547

GPT-4o, for both the initial instruction and their up-548

dates. The results reveal notable variations across549

instructions: In particular, instructions and updates550

that are less common in practice—like including a551

digit in object names—tend to obtain lower scores552

compared to more common ones such as using553

docstrings or annotations. Figure 8 and 9 in Ap-554

pendix E report the results of this analysis. Overall,555

this suggests that the models’ ability to retrieve and556

update relevant instructions is modulated by their557

characteristics and that familiarity is likely to play558

a role. An example (from GPT-4o) is shown in559

Table 3. In this case, the model correctly follows560

the instruction on comments, but not those about561

attribute and variable names.562

Figure 6: Score as a function of update rank.

7 Conclusions 563

In this paper, we proposed MEMORYCODE, a new 564

benchmark to assess state-of-the-art LLMs in their 565

ability to retrieve and reason over pieces of infor- 566

mation in multi-session dialogue histories reflect- 567

ing real-world scenarios. Differently from many 568

existing datasets, the tasks in MEMORYCODE do 569

not require any complex reasoning, and are easily 570

solved by the models when provided in isolation. 571

The main challenge of MEMORYCODE lies in the 572

ability to keep track of multiple simple instruc- 573

tions received throughout a multi-session interac- 574

tion, and to jointly apply them to perform a task. 575

When the number of sessions is small (<15), SotA 576

models like GPT-4o manage to perform the task 577

well. However, as the number grows up to 100, 578

even these models face a dramatic drop in perfor- 579

mance. Our analysis shows that this is mainly due 580

to their failure to reason over a long chain of simple 581

instructions. 582

Overall, our results show a severe limitation of 583

current LLMs. The inability to keep track of simple 584

information as the interaction with a human unfolds 585

effectively hinders their adoption in real-world sce- 586

narios and restricts their usage to addressing single, 587

self-contained problems. We argue that effective 588

long-term collaboration cannot be achieved by fur- 589

ther scaling model and input context window sizes. 590

Rather, we believe that new mechanisms to han- 591

dle and retrieve from long-term memory need to 592

be developed. MEMORYCODE contributes to this 593

challenging and yet crucial goal, by providing a 594

robust benchmark for developing and testing such 595

methods. 596

8

Limitations597

While MEMORYCODE and our experimental setup598

enable us to identify key strengths and weak-599

nesses of current models, certain limitations re-600

main, which could inspire future research. First,601

MEMORYCODE is based on synthetic data. This602

choice was driven by both cost considerations—as603

collecting real interactions would have been much604

more expensive—, and the need for greater control605

over the factors influencing model performance.606

However, future work could explore more realistic607

interactions by relaxing the constraints imposed608

in MEMORYCODE. Second, our experiments do609

not establish a human performance upper bound.610

This could be an interesting direction for future611

investigation for future work, as it would provide612

useful information on human limitations at keeping613

track of relevant information provided over long614

periods of time and amidst large amount of irrele-615

vant information. Third, our dataset only focus on616

a specific kind of task, namely, coding. This kind617

of task was chosen due to it being very common618

in real-world scenarios and very easy to evaluate.619

However, future work should expand to other do-620

mains, to assess if results are consistent with those621

that we report. While we are aware of the limi-622

tations above, and that others possibly exist, we623

believe these do not impact the robustness of our624

findings.625

References626

Chenxin An, Shansan Gong, Ming Zhong, Xingjian627
Zhao, Mukai Li, Jun Zhang, Lingpeng Kong, and628
Xipeng Qiu. 2024. L-eval: Instituting standardized629
evaluation for long context language models. In Pro-630
ceedings of the 62nd Annual Meeting of the Associa-631
tion for Computational Linguistics (Volume 1: Long632
Papers), pages 14388–14411, Bangkok, Thailand.633
Association for Computational Linguistics.634

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-635
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan636
Schalkwyk, Andrew M Dai, Anja Hauth, Katie637
Millican, et al. 2023. Gemini: A family of638
highly capable multimodal models. arXiv preprint639
arXiv:2312.11805, 1.640

Anthropic. 2024. Introducing the next generation of641
Claude.642

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten643
Bosma, Henryk Michalewski, David Dohan, Ellen644
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.645
Program synthesis with large language models. arXiv646
preprint arXiv:2108.07732.647

Ge Bai, Jie Liu, Xingyuan Bu, Yancheng He, Jia- 648
heng Liu, Zhanhui Zhou, Zhuoran Lin, Wenbo Su, 649
Tiezheng Ge, Bo Zheng, and Wanli Ouyang. 2024a. 650
MT-bench-101: A fine-grained benchmark for evalu- 651
ating large language models in multi-turn dialogues. 652
In Proceedings of the 62nd Annual Meeting of the 653
Association for Computational Linguistics (Volume 1: 654
Long Papers), pages 7421–7454, Bangkok, Thailand. 655
Association for Computational Linguistics. 656

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, 657
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao 658
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, 659
and Juanzi Li. 2024b. LongBench: A bilingual, mul- 660
titask benchmark for long context understanding. In 661
Proceedings of the 62nd Annual Meeting of the As- 662
sociation for Computational Linguistics (Volume 1: 663
Long Papers), pages 3119–3137, Bangkok, Thailand. 664
Association for Computational Linguistics. 665

Maria A Brandimonte, Gilles O Einstein, and Mark A 666
McDaniel. 2014. Prospective memory: Theory and 667
applications. Psychology Press. 668

Alexia Cambon, Brent Hecht, Ben Edelman, Donald 669
Ngwe, Sonia Jaffe, Amy Heger, Mihaela Vorvore- 670
anu, Sida Peng, Jake Hofman, Alex Farach, et al. 671
2023. Early LLM-based tools for enterprise infor- 672
mation workers likely provide meaningful boosts to 673
productivity. Microsoft Research. MSR-TR-2023-43. 674

David Castillo, Joseph Davidson, Finlay Gray, José 675
Solorzano, and Marek Rosa. 2024. Introducing 676
GoodAI LTM Benchmark. https://www.goodai. 677
com/introducing-goodai-ltm-benchmark/. Ac- 678
cessed: 2024-12-15. 679

Kedi Chen, Qin Chen, Jie Zhou, Yishen He, and Liang 680
He. 2024. Diahalu: A dialogue-level hallucination 681
evaluation benchmark for large language models. 682
arXiv preprint arXiv:2403.00896. 683

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 684
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka- 685
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 686
Greg Brockman, et al. 2021. Evaluating large 687
language models trained on code. arXiv preprint 688
arXiv:2107.03374. 689

Hao-Fan Chumg, Jia-Wen Shin, Hsiu-Yen Chiang, and 690
Man-ting Ho. 2022. What drives working habits 691
for sharing knowledge in virtual teams? an orga- 692
nizational embeddedness perspective. SAGE Open, 693
12(1):21582440221079924. 694

Cohere. 2024a. Cohere’s rerank model. 695

Cohere. 2024b. Command r and command r+ model 696
card. 697

Gregorio Convertino, Helena M Mentis, Mary Beth 698
Rosson, John M Carroll, Aleksandra Slavkovic, and 699
Craig H Ganoe. 2008. Articulating common ground 700
in cooperative work: content and process. In Pro- 701
ceedings of the SIGCHI conference on human factors 702
in computing systems, pages 1637–1646. 703

9

https://doi.org/10.18653/v1/2024.acl-long.776
https://doi.org/10.18653/v1/2024.acl-long.776
https://doi.org/10.18653/v1/2024.acl-long.776
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://doi.org/10.18653/v1/2024.acl-long.401
https://doi.org/10.18653/v1/2024.acl-long.401
https://doi.org/10.18653/v1/2024.acl-long.401
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.acl-long.172
https://doi.org/10.18653/v1/2024.acl-long.172
https://www.goodai.com/introducing-goodai-ltm-benchmark/
https://www.goodai.com/introducing-goodai-ltm-benchmark/
https://www.goodai.com/introducing-goodai-ltm-benchmark/
https://docs.cohere.com/v2/docs/rerank-2
https://docs.cohere.com/docs/responsible-use
https://docs.cohere.com/docs/responsible-use
https://docs.cohere.com/docs/responsible-use

Zican Dong, Tianyi Tang, Junyi Li, Wayne Xin Zhao,704
and Ji-Rong Wen. 2024. BAMBOO: A comprehen-705
sive benchmark for evaluating long text modeling ca-706
pacities of large language models. In Proceedings of707
the 2024 Joint International Conference on Compu-708
tational Linguistics, Language Resources and Eval-709
uation (LREC-COLING 2024), pages 2086–2099,710
Torino, Italia. ELRA and ICCL.711

Haodong Duan, Jueqi Wei, Chonghua Wang, Hong-712
wei Liu, Yixiao Fang, Songyang Zhang, Dahua Lin,713
and Kai Chen. 2024. BotChat: Evaluating LLMs’714
capabilities of having multi-turn dialogues. In Find-715
ings of the Association for Computational Linguis-716
tics: NAACL 2024, pages 3184–3200, Mexico City,717
Mexico. Association for Computational Linguistics.718

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,719
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,720
Akhil Mathur, Alan Schelten, Amy Yang, Angela721
Fan, et al. 2024. The llama 3 herd of models. arXiv722
preprint arXiv:2407.21783.723

Elliot L Epstein, Kaisheng Yao, Jing Li, Xinyi Bai, and724
Hamid Palangi. 2024. Mmmt-if: A challenging mul-725
timodal multi-turn instruction following benchmark.726
arXiv preprint arXiv:2409.18216.727

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo728
Miao, Qingxiu Dong, Lei Li, Chenghao Ma, Liang729
Chen, Runxin Xu, et al. 2024. Omni-math: A univer-730
sal olympiad level mathematic benchmark for large731
language models. arXiv preprint arXiv:2410.07985.732

Fabrizio Gilardi, Meysam Alizadeh, and Maël Kubli.733
2023. Chatgpt outperforms crowd workers for734
text-annotation tasks. Proceedings of the National735
Academy of Sciences, 120(30):e2305016120.736

Shibo Hao, Yi Gu, Haodi Ma, Joshua Hong, Zhen737
Wang, Daisy Wang, and Zhiting Hu. 2023. Rea-738
soning with language model is planning with world739
model. In Proceedings of the 2023 Conference on740
Empirical Methods in Natural Language Processing,741
pages 8154–8173.742

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shan-743
tanu Acharya, Dima Rekesh, Fei Jia, and Boris Gins-744
burg. 2024. RULER: What’s the real context size of745
your long-context language models? In First Confer-746
ence on Language Modeling.747

Jihyoung Jang, Minseong Boo, and Hyounghun Kim.748
2023. Conversation chronicles: Towards diverse tem-749
poral and relational dynamics in multi-session con-750
versations. arXiv preprint arXiv:2310.13420.751

Gregory Kamradt. 2023. Needle in a haystack - pressure752
testing llms.753

Eunwon Kim, Chanho Park, and Buru Chang. 2024a.754
Share: Shared memory-aware open-domain long-755
term dialogue dataset constructed from movie script.756
arXiv preprint arXiv:2410.20682.757

Hyunwoo Kim, Jack Hessel, Liwei Jiang, Peter West, 758
Ximing Lu, Youngjae Yu, Pei Zhou, Ronan Bras, 759
Malihe Alikhani, Gunhee Kim, Maarten Sap, and 760
Yejin Choi. 2023. SODA: Million-scale dialogue dis- 761
tillation with social commonsense contextualization. 762
In Proceedings of the 2023 Conference on Empiri- 763
cal Methods in Natural Language Processing, pages 764
12930–12949, Singapore. Association for Computa- 765
tional Linguistics. 766

Jiho Kim, Woosog Chay, Hyeonji Hwang, Daeun 767
Kyung, Hyunseung Chung, Eunbyeol Cho, Yohan 768
Jo, and Edward Choi. 2024b. Dialsim: A real-time 769
simulator for evaluating long-term dialogue under- 770
standing of conversational agents. arXiv preprint 771
arXiv:2406.13144. 772

Alexey Kurakin, Natalia Ponomareva, Umar Syed, Liam 773
MacDermed, and Andreas Terzis. 2023. Harnessing 774
large-language models to generate private synthetic 775
text. arXiv preprint arXiv:2306.01684. 776

Wai-Chung Kwan, Xingshan Zeng, Yuxin Jiang, Yufei 777
Wang, Liangyou Li, Lifeng Shang, Xin Jiang, Qun 778
Liu, and Kam-Fai Wong. 2024. Mt-eval: A multi- 779
turn capabilities evaluation benchmark for large lan- 780
guage models. arXiv preprint arXiv:2401.16745. 781

Jinhyuk Lee, Anthony Chen, Zhuyun Dai, Dheeru Dua, 782
Devendra Singh Sachan, Michael Boratko, Yi Luan, 783
Sébastien MR Arnold, Vincent Perot, Siddharth 784
Dalmia, et al. 2024. Can long-context language mod- 785
els subsume retrieval, rag, sql, and more? arXiv 786
preprint arXiv:2406.13121. 787

Adyasha Maharana, Dong-Ho Lee, Sergey Tulyakov, 788
Mohit Bansal, Francesco Barbieri, and Yuwei Fang. 789
2024. Evaluating very long-term conversational 790
memory of LLM agents. In Proceedings of the 62nd 791
Annual Meeting of the Association for Computational 792
Linguistics (Volume 1: Long Papers), pages 13851– 793
13870, Bangkok, Thailand. Association for Compu- 794
tational Linguistics. 795

Mark A McDaniel and Gilles O Einstein. 2007. Prospec- 796
tive memory: An overview and synthesis of an emerg- 797
ing field. 798

Elliot Nelson, Georgios Kollias, Payel Das, Subhajit 799
Chaudhury, and Soham Dan. 2024. Needle in the 800
haystack for memory based large language models. 801
arXiv preprint arXiv:2407.01437. 802

OpenAI. 2024. Hello gpt-4o. 803

Denis Paperno, Germán Kruszewski, Angeliki Lazari- 804
dou, Ngoc Quan Pham, Raffaella Bernardi, Sandro 805
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel 806
Fernández. 2016. The LAMBADA dataset: Word 807
prediction requiring a broad discourse context. In 808
Proceedings of the 54th Annual Meeting of the As- 809
sociation for Computational Linguistics (Volume 1: 810
Long Papers), pages 1525–1534, Berlin, Germany. 811
Association for Computational Linguistics. 812

10

https://aclanthology.org/2024.lrec-main.188
https://aclanthology.org/2024.lrec-main.188
https://aclanthology.org/2024.lrec-main.188
https://aclanthology.org/2024.lrec-main.188
https://aclanthology.org/2024.lrec-main.188
https://doi.org/10.18653/v1/2024.findings-naacl.201
https://doi.org/10.18653/v1/2024.findings-naacl.201
https://doi.org/10.18653/v1/2024.findings-naacl.201
https://doi.org/10.1073/pnas.2305016120
https://doi.org/10.1073/pnas.2305016120
https://doi.org/10.1073/pnas.2305016120
https://openreview.net/forum?id=kIoBbc76Sy
https://openreview.net/forum?id=kIoBbc76Sy
https://openreview.net/forum?id=kIoBbc76Sy
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://doi.org/10.18653/v1/2023.emnlp-main.799
https://doi.org/10.18653/v1/2023.emnlp-main.799
https://doi.org/10.18653/v1/2023.emnlp-main.799
https://doi.org/10.18653/v1/2024.acl-long.747
https://doi.org/10.18653/v1/2024.acl-long.747
https://doi.org/10.18653/v1/2024.acl-long.747
https://openai.com/index/hello-gpt-4o/
https://doi.org/10.18653/v1/P16-1144
https://doi.org/10.18653/v1/P16-1144
https://doi.org/10.18653/v1/P16-1144

Haritz Puerto, Martin Tutek, Somak Aditya, Xiaodan813
Zhu, and Iryna Gurevych. 2024. Code prompting814
elicits conditional reasoning abilities in Text+Code815
LLMs. In Proceedings of the 2024 Conference on816
Empirical Methods in Natural Language Processing,817
pages 11234–11258, Miami, Florida, USA. Associa-818
tion for Computational Linguistics.819

Nathanael Carraz Rakotonirina and Marco Baroni. 2024.820
MemoryPrompt: A light wrapper to improve context821
tracking in pre-trained language models. In Pro-822
ceedings of the 2024 Joint International Conference823
on Computational Linguistics, Language Resources824
and Evaluation (LREC-COLING 2024), pages 11187–825
11195, Torino, Italia. ELRA and ICCL.826

Matthew Renze and Erhan Guven. 2024. Self-reflection827
in LLM agents: Effects on problem-solving perfor-828
mance. arXiv preprint arXiv:2405.06682.829

Hao Sun, Zhexin Zhang, Fei Mi, Yasheng Wang, Wei830
Liu, Jianwei Cui, Bin Wang, Qun Liu, and Minlie831
Huang. 2023. MoralDial: A framework to train and832
evaluate moral dialogue systems via moral discus-833
sions. In Proceedings of the 61st Annual Meeting of834
the Association for Computational Linguistics (Vol-835
ume 1: Long Papers), pages 2213–2230, Toronto,836
Canada. Association for Computational Linguistics.837

Yuchong Sun, Che Liu, Kun Zhou, Jinwen Huang,838
Ruihua Song, Wayne Xin Zhao, Fuzheng Zhang,839
Di Zhang, and Kun Gai. 2024. Parrot: Enhancing840
multi-turn instruction following for large language841
models. In Proceedings of the 62nd Annual Meet-842
ing of the Association for Computational Linguistics843
(Volume 1: Long Papers), pages 9729–9750.844

Tianhua Tao, Junbo Li, Bowen Tan, Hongyi Wang,845
William Marshall, Bhargav M Kanakiya, Joel Hest-846
ness, Natalia Vassilieva, Zhiqiang Shen, Eric P. Xing,847
and Zhengzhong Liu. 2024. Crystal: Illuminating848
LLM abilities on language and code. In First Confer-849
ence on Language Modeling.850

Trieu Trinh and Thang Luong. 2024. AlphaGeome-851
try: An Olympiad-level AI system for geometry.852
https://deepmind.google/discover/blog/853
alphageometry-an-olympiad-level-ai-system-for-geometry/.854

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun855
Luo, Weikang Shi, Renrui Zhang, Linqi Song,856
Mingjie Zhan, and Hongsheng Li. MathCoder:857
Seamless code integration in LLMs for enhanced858
mathematical reasoning. In The Twelfth International859
Conference on Learning Representations.860

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen,861
Lifan Yuan, Hao Peng, and Heng Ji. 2024. MINT:862
Evaluating LLMs in multi-turn interaction with tools863
and language feedback. In The Twelfth International864
Conference on Learning Representations.865

Xuezhi Wang and Denny Zhou. 2024. Chain-of-866
thought reasoning without prompting. arXiv preprint867
arXiv:2402.10200.868

Thomas Weber, Maximilian Brandmaier, Albrecht 869
Schmidt, and Sven Mayer. 2024. Significant pro- 870
ductivity gains through programming with large lan- 871
guage models. Proceedings of the ACM on Human- 872
Computer Interaction, 8(EICS):1–29. 873

Chengfei Wu and Dan Goldwasser. 2024. " hiding 874
in plain sight": Designing synthetic dialog gener- 875
ation for uncovering socially situated norms. arXiv 876
preprint arXiv:2410.00998. 877

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 878
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 879
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024. 880
Judging llm-as-a-judge with mt-bench and chatbot 881
arena. Advances in Neural Information Processing 882
Systems, 36. 883

11

https://doi.org/10.18653/v1/2024.emnlp-main.629
https://doi.org/10.18653/v1/2024.emnlp-main.629
https://doi.org/10.18653/v1/2024.emnlp-main.629
https://doi.org/10.18653/v1/2024.emnlp-main.629
https://doi.org/10.18653/v1/2024.emnlp-main.629
https://aclanthology.org/2024.lrec-main.976
https://aclanthology.org/2024.lrec-main.976
https://aclanthology.org/2024.lrec-main.976
https://doi.org/10.18653/v1/2023.acl-long.123
https://doi.org/10.18653/v1/2023.acl-long.123
https://doi.org/10.18653/v1/2023.acl-long.123
https://doi.org/10.18653/v1/2023.acl-long.123
https://doi.org/10.18653/v1/2023.acl-long.123
https://openreview.net/forum?id=kWnlCVcp6o
https://openreview.net/forum?id=kWnlCVcp6o
https://openreview.net/forum?id=kWnlCVcp6o
https://deepmind.google/discover/blog/alphageometry-an-olympiad-level-ai-system-for-geometry/
https://deepmind.google/discover/blog/alphageometry-an-olympiad-level-ai-system-for-geometry/
https://deepmind.google/discover/blog/alphageometry-an-olympiad-level-ai-system-for-geometry/
https://openreview.net/forum?id=jp3gWrMuIZ
https://openreview.net/forum?id=jp3gWrMuIZ
https://openreview.net/forum?id=jp3gWrMuIZ
https://openreview.net/forum?id=jp3gWrMuIZ
https://openreview.net/forum?id=jp3gWrMuIZ

Figure 7: Score as a function of number of sessions.

A Seeds884

Instructions We used 51 instructions during data885

generation, as shown in Table 5. Each instruction is886

applied to a specific Python object, and for pivots887

that can be updated, the update values are provided888

in brackets.889

Fillers The list of all 80 fillers used during data890

generation is provided in Table 6. Some fillers can891

be updated over time.892

Names The list of mentor, mentee and company893

names used during data generation is provided in894

Table 7.895

Personas The lists of mentor and mentee per-896

sonas are provided in Table 8 and Table 9.897

B Detailed scores898

We provide the detailed scores of the different mod-899

els evaluated on Instruction, Session, Short History900

and Long History in Table 4.901

C Hyperparameters902

We use Command R+ with a temperature of 0.9 and903

a top-p value of 0.9 to generate the conversations.904

During evaluation, we use a temperature of 0 for905

all models.906

D RAG experiments907

We performed the Retrieval-augmented Generation908

(RAG) experiments using the rerank-english-v3.0909

model (Cohere, 2024a). The basic unit for retrieval910

were the previous sessions. We also tried with dif-911

ferent retrieval units, such as paragraphs and turns,912

and obtained similar results. We provide the model 913

the top-k retrieved sessions, where k was defined as 914

the number of sessions with pivots. Note that, by 915

dynamically defining k in this way, rathr than using 916

a fix value, we facilitate the retrieval of the relevant 917

sessions only, eliminating potential noise. We re- 918

port the results of RAG in Figure 7, together with 919

those of Instructions-only and Cumulative. RAG 920

provides a marginal improvement over cumulative 921

for ‘short’ conversations, but it then converges with 922

Cumulative for the ‘long’ ones. 923

E Per-Instruction Scores 924

We report in Figure 8 the average results for each 925

instruction, and in Figure 9 those for each update. 926

Remember that only some of the instructions have 927

an update (See Section 3.1). 928

F Examples 929

We provide examples of dialogue histories along 930

with their corresponding prompts. The first one, 931

shown in Table 12, is a 3-session history with 3 932

pivots, and its prompt is provided in Table 10. 933

The second one, presented in Table 13, consists 934

of 4 sessions with 3 pivots, with its prompt shown 935

in Table 11. The system prompt and the session- 936

level prompts were designed to ensure consistency 937

across sessions. Additionally, we provide examples 938

of prompts to get the model output for the Instruc- 939

tionm History and Instructions-Chains settings in 940

Tables 14, 15 and 16. 941

G Computational budget 942

The prompts used to generate the dataset consist 943

of a total of 0.9M tokens, while the dataset itself 944

contains 4.6M tokens. The total cost of generating 945

the dataset using Command R+ through Cohere’s 946

API is approximately $50. The cost of evaluating a 947

single model on the Instruction, Session and Cumu- 948

lative settings using online APIs is approximately 949

$50. 950

H Ethics statement 951

The dataset we are releasing is synthetic and, there- 952

fore, does not contain any personally identifiable in- 953

formation. Moreover, we did not recruit any human 954

participants, as we manually validated the quality 955

of the dataset ourselves. 956

12

Figure 8: Average per-instruction insertion scores for GPT-4o

13

Model Instruction Session Short History Long History

Command R+ 0.89 (±0.13) 0.66 (±0.24) 0.40 (±0.35) 0.11 (±0.07)

Llama-3.1-8B 0.71 (±0.25) 0.36 (±0.25) 0.23 (±0.28) 0.12 (±0.06)

Llama-3.1-70B 0.92 (±0.12) 0.88 (±0.16) 0.64 (±0.33) 0.12 (±0.07)

Llama-3.1-405B 0.95 (±0.09) 0.90 (±0.12) 0.70 (±0.29) 0.20 (±0.10)

GPT-4o 0.94 (±0.10) 0.93 (±0.10) 0.79 (±0.24) 0.30 (±0.16)

Table 4: Average (standard deviation) Instruction, Session, Short History and Long History scores per model.

Figure 9: Average per-instruction update scores for GPT-4o

14

Instruction Object
use {all UPPERCASE, CamelCase, snake_case} for class names class
include the string ’chx’ in function names function
start function names with {’a_’, ’b_’, ’c_’, ’d_’, ’x_’, ’y_’, ’fn_’, ’gn_’} function
end function names with {’_a’, ’_b’, ’_c’, ’_d’, ’_x’, ’_y’, ’_fn’, ’_gn’} function
include the string ’chx’ in variable names variable
start variable names with {’x_’, ’y_’, ’z_’, ’w_’, ’m_’, ’n_’, ’vr_’, ’wr_’} variable
end variable names with {’_x’, ’_y’, ’_z’, ’_w’, ’_m’, ’_n’, ’_vr’, ’_wr’} variable
start method names with {’x_’, ’n_’, ’o_’, ’p_’, ’a_’, ’b_’, ’md_’, ’ud_’} method
end method names with {’_x’, ’_n’, ’_o’, ’_p’, ’_a’, ’_b’, ’_md’, ’_ud’} method
include the string ’chx’ in method names method
include the string ’chx’ in attribute names attribute
start attribute names with {’q_’, ’r_’, ’s_’, ’t_’, ’i_’, ’j_’, ’at_’, ’xt_’} attribute
end attribute names with {’_q’, ’_r’, ’_s’, ’_t’, ’_i’, ’_j’, ’_at’, ’_xt’} attribute
start function argument names with {’e_’, ’f_’, ’g_’, ’h_’, ’i_’, ’j_’, ’x_’, ’a_’} function argument
end function argument names with {’_e’, ’_f’, ’_g’, ’_h’, ’_i’, ’_j’, ’_x’, ’_a’} function argument
include the string ’chx’ in function argument names function argument
use annotations for functions function annotation
include try statements in functions function try
include assert statements in functions function assert

15

use docstrings in functions function docstring
add the ’@retry’ decorator from the ’pedantic’ module to all functions function decorator
add the ’@count_calls’ decorator from the ’pedantic’ module to all functions function decorator
add the ’@rename_kwargs’ decorator from the ’pedantic’ module to all functions function decorator
add the ’@require_kwargs’ decorator from the ’pedantic’ module to all functions function decorator
add the ’@timer’ decorator from the ’pedantic’ module to all functions function decorator
use annotations for methods method annotation
include try statements in methods method try
include assert statements in methods method assert
use docstrings in methods method docstring
add the ’@retry’ decorator from the ’pedantic’ module to all methods method decorator
add the ’@count_calls’ decorator from the ’pedantic’ module to all methods method decorator
add the ’@rename_kwargs’ decorator from the ’pedantic’ module to all methods method decorator
add the ’@require_kwargs’ decorator from the ’pedantic’ module to all methods method decorator
add comments in your code comment
import the ’secrets’ module even if it is not used import
import the ’locale’ module even if it is not used import
import the ’mailbox’ module even if it is not used import
import the ’bz2’ module even if it is not used import
import the ’gzip’ module even if it is not used import
import the ’hashlib’ module even if it is not used import

Table 5: List of all the instructions used in pivots.

16

Filler
Contract renewal negotiations and finalization

Planning engaging social activities for the upcoming holidays

Flexible work hours and their impact on work-life balance

Troubleshooting internet connectivity issues across different locations

Promoting a harmonious workplace through effective conflict resolution

Salary increase opportunities and performance appraisals

Preparing extensively for a high-stakes client meeting

Requesting upgraded technology, including computers and software

Happy hour events to foster better relationships between managers and employees

Remote work policies, challenges, and best practices

Understanding comprehensive social security and health insurance benefits

Performance evaluation criteria, feedback mechanisms, and recognition programs

Encouraging professional development through workshops, courses, and certifications

Implementing wellness initiatives to support the physical and mental well-being of employees

Ensuring health and safety in the workplace, including COVID-19 protocols and emergency response
plans

Participating in company-sponsored volunteer programs to give back to society

Ergonomic assessments and improvements to ensure comfortable and healthy workspaces

Travel arrangements and logistics for client meetings, conferences, and business trips

Team-building activities to strengthen collaboration, communication, and trust within teams

Reinforcing and embodying the company’s core values in day-to-day operations and decision-making

Analyzing client feedback to improve products, services, and overall customer satisfaction

Implementing effective meeting strategies and time management techniques to optimize productivity

Cultivating a feedback culture and providing performance improvement plans for continuous growth

Providing conflict resolution training to employees to foster a peaceful and respectful work environment

Hosting company-wide town hall meetings to share updates and foster transparency

Discussing casual dress code policies and special event themes to boost employee morale

Planning team outings and off-site adventures to promote team bonding and relaxation

Celebrating employee birthdays, work anniversaries, and achievements with recognition and rewards

Introducing new employee benefits, perks, and incentives to attract and retain top talent

Launching diversity and inclusion initiatives to create a more equitable and inclusive workplace

Conducting exit interviews to gather feedback and insights for improving retention and engagement

Developing a mentorship program to support career growth and development for employees

Building a culture of innovation and creativity through idea-sharing and experimentation

Creating a knowledge-sharing platform to facilitate learning and collaboration among employees

17

Implementing agile methodologies to improve project management and delivery processes

Designing a performance dashboard to track key metrics and KPIs for business success

Conducting team-building workshops and leadership training to develop future leaders

Facilitating cross-functional collaboration and communication to break down silos and improve effi-
ciency

Promoting work-life balance through flexible work schedules and remote work options

Implementing a rewards and recognition program to motivate and engage employees

Developing a culture of continuous learning and improvement through training and development
programs

Creating a culture of accountability and ownership to drive results and achieve goals

Fostering a culture of diversity, equity, and inclusion to create a more inclusive and welcoming
workplace

Building a culture of trust and transparency through open communication and feedback

Offering free food and snacks to employees to boost morale and productivity

Developing a culture of innovation and creativity to drive growth and competitiveness

Creating a culture of collaboration and teamwork to achieve shared goals and objectives

Promoting a culture of customer-centricity and service excellence to drive customer satisfaction

Building a culture of adaptability and resilience to navigate change and uncertainty

Fostering a culture of sustainability and social responsibility to make a positive impact on society

Developing a culture of empowerment and autonomy to enable employees to take ownership of their
work

Use vim as the preferred ide
Use emacs as preferred ide
Use vscode as preferred ide
Use pycharm as preferred ide

Use zoom for video calls
Use google meet for video calls
Use microsoft teams for video calls
Use skype for video calls

Always use a virtual environment
Never use a virtual environment

Always use the gpus for training neural networks
Never use the gpus for training neural networks but use the tpus instead

Always write long and descriptive commit messages
Never write long and descriptive commit messages

Use github as the main version control system
Use gitlab as the main version control system
Use bitbucket as the main version control system

Never use a password manager
Always use a password manager

Do not commit directly to the dev branch

18

Commit directly to the dev branch

Always use a linter
Never use a linter

Always use a formatter when writing code
Never use a formatter when writing code

Always use a pre-commit hook
Never use a pre-commit hook

Use github copilot as the coding assistant
Use tabnine as the coding assistant
Use codewhisperer as the coding assistant
Use codestral as the coding assistant

Always use a debugger
Never use a debugger but only print statements

Always use a profiler
Never use a profiler

Use only a single monitor when coding
Use two monitors when coding
Use three or more monitors when coding

Use a macbook as the main computer
Use a windows laptop as the main computer
Use a linux desktop as the main computer

Use slack for communication
Use microsoft teams for communication
Use discord for communication

Always use a vpn when working remotely
Never use a vpn when working remotely

Always take all the vacation days per year
Take at least half of the vacation days per year
Take at least 7 days of vacation per year

Always take a break every 50 minutes
Always take a break every 60 minutes
Always take a break every 70 minutes
Always take a break every 80 minutes

Always go to the dedicated office on the third floor to work
Always go to the common area to work
Always go to the it room to work

Never work from home
Work from home at most once a week
Work from home at most twice a week
Work from home at most three times a week

Communicate with the team regularly
Communicate with the team only when necessary
Communicate with the team only when asked

Always set up ci/cd pipelines

19

Never set up ci/cd pipelines

Always use the ticketing system
Never use the ticketing system

Use trello as the project management tool
Use asana as the project management tool
Use jira as the project management tool
Use monday as the project management tool

Always use a whiteboard for brainstorming
Never use a whiteboard for brainstorming

Always use a notebook for taking notes
Never use a notebook for taking notes

Always do pair programming with a colleague
Never do pair programming with a colleague

Use their personal phone for work calls
Use the company phone for work calls

Table 6: List of all fillers.

20

Mentor Mentee Company
Alice Bob NEXT
Juan Luke INNOVADE
Sara Eva TECHNO
Luis Kiyotaka CODEME

Maria David STARTED
Carlos Sofia GROWTHX
Yuichi Pablo DEVS
Pedro Marta CODEM
Djibril Jorge CHEETAH

Jean-Aimé Lucas VATO
Emma Oliver LEAP

Michael Ella ZENITH
Yoon-Seo Alexander AXIOM

Ethan Rado ORBIT
Harena Jacob VERSA
Sylvie Sophia PACE
Sophie Liam UNITE
Naivo Dera SYNERGY
Daniel Noah FORTUNA

Table 7: List of mentors, mentees, and their respective companies.

Mentor persona
[mentor] is a patient and supportive mentor. [mentor] enjoys helping others and sharing their
knowledge and experience. [mentor] is always looking for ways to empower and inspire
their mentee.

[mentor] is a strict and demanding mentor. [mentor] has high expectations for their mentee.
[mentor] goes straight to the point and is very clear.

[mentor] is a caring and nurturing mentor. [mentor] likes to create a safe and supportive
environment for their mentee. [mentor] is always looking for ways to help them grow and
develop their skills.

[mentor] is a passionate and energetic mentor. [mentor] thrives on helping others and their
enthusiasm is contagious. [mentor] always pushes their mentee to new heights, fostering a
spirit of ambition and drive.

[mentor] is a structured and goal-oriented mentor. [mentor] helps their mentee to set realistic,
achievable goals. [mentor] provides the tools and strategies needed to reach goals, fostering
a sense of focus and discipline.

Table 8: List of mentor personas. [mentor] is replaced with the name of the mentor in the prompts.

21

Mentee persona
[mentee] is shy and wants to improve their coding skills. [mentee] just graduated from
college and [mentee] is eager to learn from their mentor.

[mentee] is a confident and ambitious software engineer. [mentee] is always looking for new
challenges and opportunities to grow. [mentee] has been working in the industry for a few
years now.

[mentee] is a perfectionist with great attention to detail. [mentee] likes things to be done the
right way and has a hard time delegating tasks to others. [mentee] is critical of himself and
of others.

[mentee] is a social and outgoing person. [mentee] enjoys working in teams and collaborating
with others. [mentee] is always looking for ways to connect with their colleagues and builds
strong relationships.

[mentee] is a quiet and introverted individual. [mentee] prefers to work alone and is not very
comfortable in social situations. [mentee] struggles to communicate their ideas and thoughts
to others.

[mentee] is a creative and innovative thinker. [mentee] likes to experiment with new ideas
and approaches. [mentee] is not afraid to take risks and try new things.

Table 9: List of mentee personas. [mentee] is replaced with the name of the mentee in the prompts.

22

Prompt to generate dialogue history 70
SYSTEM PROMPT

Task and Context
You are a helpful and obedient AI that follows its system prompt and takes it very seriously.
Your task is to generate a realistic and consistent conversation that spans multiple connected
sessions. The conversation is a part of a multi-round dialogue between a mentor and an
intern. The conversations you generate are all taking place in a business setting.
Jean-Aimé is a mentor in a big software company called VATO. Lucas is a new employee.
They are both part of the software engineering team of the company. Jean-Aimé is a
passionate and energetic mentor. Jean-Aimé thrives on helping others and their enthusiasm
is contagious. Jean-Aimé always pushes their mentee to new heights, fostering a spirit of
ambition and drive.
Lucas is a creative and innovative thinker. Lucas likes to experiment with new ideas and
approaches. Lucas is not afraid to take risks and try new things.
The main programming language used in the company is Python.

Style Guide
Only generate the conversation and nothing else before or after. Do not add numbers before
each turn. Do not add quotes to the conversation turns. Use a professional and formal
tone. The conversation flow should be natural and smooth. When switching topics, do it
in a smooth way. There are no special characters between the turns. The conversations are
dialogues and not narrations of events.
Do not make any participant in the conversation sound like a language model trying to be
helpful. Make them sound as human as possible.
It is the mentor that leads the conversation. When Jean-Aimé the mentor gives coding
instructions, they do not provide examples. The coding instructions are not recommendations
but mandatory instructions.

SESSION 1

Generate a short conversation between Jean-Aimé and Lucas. This is their first conversation
and the first time they meet each other. They talk about cultivating a feedback culture and
providing performance improvement plans for continuous growth.

SESSION 2

Generate a long conversation between Jean-Aimé and Lucas. This is not their first conversa-
tion. They had 1 conversations before. Jean-Aimé gives some specific coding instructions
to Lucas. Jean-Aimé wants Lucas to always add the ’@timer_class’ decorator from the
’pedantic’ module to all classes. Jean-Aimé wants Lucas to always start function names with
’x_’. Jean-Aimé does not provide examples of correct code following the instructions. They
do not show how to implement the instructions. Jean-Aimé never says ’for example’. Jean-
Aimé does not give any other coding instructions. Lucas only acknowledges the instructions
and does not ask any questions.

SESSION 3

23

Generate a medium-length conversation between Jean-Aimé and Lucas. This is not their
first conversation. They had 2 conversations before. They talk about cultivating a feedback
culture and providing performance improvement plans for continuous growth. They had a
previous conversation about this before. After that, Jean-Aimé gives some specific coding
instructions to Lucas. Jean-Aimé is updating a previous information given to Lucas: Jean-
Aimé now wants Lucas to always start function names with ’gn_’. Jean-Aimé does not
provide examples of correct code following the instructions. They do not show how to
implement the instructions. Jean-Aimé never says ’for example’. Jean-Aimé does not give
any other coding instructions. Lucas only acknowledges the instructions and does not ask
any questions.

Table 10: Prompts to generate dialogue history 70 which contains 3 sessions.

24

Prompt to generate dialogue history 108
SYSTEM PROMPT

Task and Context
You are a helpful and obedient AI that follows its system prompt and takes it very seriously.
Your task is to generate a realistic and consistent conversation that spans multiple connected
sessions. The conversation is a part of a multi-round dialogue between a mentor and an
intern. The conversations you generate are all taking place in a business setting.
Yuichi is a mentor in a big software company called DEVS. Pablo is a new employee. They
are both part of the software engineering team of the company. Yuichi is a caring and
nurturing mentor. Yuichi likes to create a safe and supportive environment for their mentee.
Yuichi is always looking for ways to help them grow and develop their skills.
Pablo is a perfectionist with great attention to detail. Pablo likes things to be done the right
way and has a hard time delegating tasks to others. Pablo is critical of himself and of others.
The main programming language used in the company is Python.

Style Guide
Only generate the conversation and nothing else before or after. Do not add numbers before
each turn. Do not add quotes to the conversation turns. Use a professional and formal
tone. The conversation flow should be natural and smooth. When switching topics, do it
in a smooth way. There are no special characters between the turns. The conversations are
dialogues and not narrations of events.
Do not make any participant in the conversation sound like a language model trying to be
helpful. Make them sound as human as possible.
It is the mentor that leads the conversation. When Yuichi the mentor gives coding instruc-
tions, they do not provide examples. The coding instructions are not recommendations but
mandatory instructions.

SESSION 1

Generate a short conversation between Yuichi and Pablo. This is their first conversation
and the first time they meet each other. Yuichi wants Pablo to never use a whiteboard for
brainstorming. Yuichi gives some specific coding instructions to Pablo. Yuichi wants Pablo
to always end method names with ’_o’. Yuichi does not provide examples of correct code
following the instructions. They do not show how to implement the instructions. Yuichi
never says ’for example’. Yuichi does not give any other coding instructions. Pablo only
acknowledges the instructions and does not ask any questions.

SESSION 2

Generate a medium-length conversation between Yuichi and Pablo. This is not their first
conversation. They had 1 conversations before. They talk about hosting company-wide town
hall meetings to share updates and foster transparency.

SESSION 3

25

Generate a medium-length conversation between Yuichi and Pablo. This is not their first
conversation. They had 2 conversations before. Yuichi is updating a previous information
given to Pablo. Yuichi now wants Pablo to always use a whiteboard for brainstorming. Yuichi
gives some specific coding instructions to Pablo. Yuichi wants Pablo to always include
assert statements in functions. Yuichi is updating a previous information given to Pablo:
Yuichi now wants Pablo to always end method names with ’_md’. Yuichi does not provide
examples of correct code following the instructions. They do not show how to implement
the instructions. Yuichi never says ’for example’. Yuichi does not give any other coding
instructions. Pablo only acknowledges the instructions and does not ask any questions.

SESSION 4

Generate a medium-length conversation between Yuichi and Pablo. This is not their first
conversation. They had 3 conversations before. They talk about hosting company-wide town
hall meetings to share updates and foster transparency. They had a previous conversation
about this before.

Table 11: Prompts to generate dialogue history 108 which contains 4 sessions.

26

Dialogue history 70
SESSION 1

Jean-Aimé: Lucas, it’s a pleasure to finally meet you. I’m Jean-Aimé, your mentor here at
VATO. I’m excited to work with you and help you develop your skills.
Lucas: Thank you, Jean-Aimé. I’m looking forward to learning from you. I’ve heard great
things about your mentorship from other interns.
Jean-Aimé: Well, I believe that mentorship is a two-way street. I’m here to guide and
support you, but I also want to create an environment where we can exchange ideas and
feedback freely.
Lucas: Absolutely. Feedback is essential for growth. I’m open to constructive criticism and
always looking for ways to improve.
Jean-Aimé: That’s fantastic to hear, Lucas. At VATO, we foster a culture of continuous im-
provement. We believe that providing and receiving feedback is crucial for our development
as professionals.
Lucas: I completely agree. So, how does the feedback process work here? Are there any
specific procedures or guidelines?
Jean-Aimé: Great question. At VATO, we have a performance improvement plan that serves
as a framework for our feedback conversations. It’s a structured approach that helps us
identify areas of strength and areas that need development.
Lucas: That sounds really helpful. Could you tell me more about how this performance
improvement plan works?
Jean-Aimé: Certainly. The plan is tailored to each individual and their specific role.
For software engineers like yourself, we focus on several key areas, including technical
proficiency, problem-solving skills, and collaboration.
Lucas: That makes a lot of sense, considering the nature of our work.
Jean-Aimé: Exactly. We set clear goals and objectives, and then we work together to create
an action plan to help you develop in those areas. It’s a collaborative process, and your input
is highly valued.
Lucas: I appreciate the emphasis on collaboration. It makes the growth process more
engaging and meaningful. So, what’s the first step in this performance improvement plan?
Jean-Aimé: The first step is a comprehensive skills assessment. This helps us establish a
baseline understanding of your strengths and the areas you want to develop further. From
there, we can tailor the plan to your specific needs and goals.
Lucas: That sounds like a great way to get started. I’m excited to dive into this process and
see where it takes me.
Jean-Aimé: Your enthusiasm is contagious, Lucas! Remember, my door is always open if
you have any questions or concerns along the way. Let’s schedule our first skills assessment
session for later this week and get the ball rolling!
Lucas: That sounds perfect! I’ll make sure to prepare for it. Thank you for your guidance
and support, Jean-Aimé.
Jean-Aimé: You’re very welcome, Lucas. This is going to be a fantastic journey, and I can’t
wait to see your growth and development as a software engineer here at VATO.

SESSION 2

Jean-Aimé: Lucas, how are you finding your way around our code base? Any challenges
you’d like to discuss?
Lucas: Hey, Jean-Aimé. I’m doing well, thanks. I’ve been exploring the code and I think
I’m starting to get a hang of things. I have a question, though. Are there any specific coding
conventions or standards that I should be following? I want to make sure my code aligns
with the team’s expectations.

27

Jean-Aimé: That’s fantastic to hear, Lucas! Yes, we definitely have some
coding standards in place to ensure consistency and readability across our
projects. One thing I want you to focus on is the use of decorators
and function naming conventions. Always add the ’@timer_class’ decorator from the

’pedantic’ module to all your classes. This helps us profile and optimize the code.
Lucas: Absolutely, I’ll make sure to include the ’@timer_class’ decorator from now on.
Jean-Aimé: Great! Now, for function names, I’d like you to start them with ’x_’. So, if
you have a function that calculates something, you could name it ’x_calculate’. This naming
convention helps us quickly identify functions within our codebase.
Lucas: Understood. I’ll start implementing this naming convention right away. Are there
any other standards or best practices I should be aware of?
Jean-Aimé: That covers the main points for now. Just remember, consistency is key. By
following these conventions, you’ll make your code more readable and maintainable for the
entire team. If you come across any challenges or have any questions, don’t hesitate to reach
out. That’s what I’m here for!
Lucas: Thanks for your guidance, Jean-Aimé. I really appreciate your support and mentor-
ship. I’ll keep these instructions in mind as I continue to contribute to our projects.
Jean-Aimé: You’re very welcome, Lucas. I’m glad to help. Don’t worry; I’ll be checking in
with you regularly to ensure you’re on the right track and provide any additional guidance if
needed. Now, go forth and code with confidence!
Lucas: Will do! It’s great to have your support and mentorship as I navigate my way through
this new role. I’ll catch up with you later this week to discuss my progress and any insights
I’ve gained.
Jean-Aimé: Sounds like a plan! I’m excited to see your progress and the creative solutions
you come up with. Remember, if you have any "a-ha!" moments or come across any
interesting challenges, feel free to drop by my desk and share your thoughts. Have a
productive week!
Lucas: You too, Jean-Aimé!

SESSION 3

Jean-Aimé: Feedback is a crucial aspect of our work here at VATO, and I want to ensure that
we foster an environment where we’re constantly learning and growing. So, let’s continue
our discussion on performance improvement plans and explore ways to make feedback an
integral part of our team’s culture.
Lucas: Absolutely! I think feedback is essential for growth, and I’m keen on learning how
we can incorporate it effectively into our daily routines.
Jean-Aimé: Fantastic! Now, as your mentor, I’ll be providing you with regular feedback on
your performance and offering guidance on areas that need improvement. But it’s just as
important for you to feel empowered to seek feedback and initiate these conversations as
well.
Lucas: Definitely! I appreciate the feedback and guidance you’ve given me so far. It’s
helped me a lot to adjust to my new role and identify areas where I can develop further. I’m
committed to improving and always looking for ways to grow.
Jean-Aimé: That’s wonderful to hear, Lucas. Remember, feedback is a two-way
street. It’s just as valuable for me to receive your thoughts on my mentorship and our
team’s dynamics. Don’t hold back on sharing your insights and suggestions. Now,
regarding your coding tasks, I want to update a previous instruction: from now on,
always start your function names with ’gn_’. This is to maintain consistency and improve

code readability.
Lucas: Understood. I’ll make sure to start my function names with ’gn_’ from now on.

28

Jean-Aimé: Great! Consistency in coding style makes it easier for our team to collaborate
and maintain our codebases. Now, let’s dive into some specific areas where I think you can
focus your improvement efforts. Are you ready?
Lucas: Yes, I’m all ears. I’m eager to hear your feedback and work on my development
plan.

EVALUATION QUERIES

Write a Quadratic discriminant analysis class.
Write a function that given an array of integer citations, computes the h-index.

Table 12: dialogue history 70 with 3 sessions and 3 pivots. Insertions of instructions are highlighted in blue and
updates highlighted in orange .

29

Dialogue history 108
SESSION 1

Yuichi: Pablo, it’s great to finally meet you. I’m Yuichi, your mentor here at DEVS. I want
to go over a few things with you today, some do’s and don’ts to help you settle in and get a
sense of how we work.
Pablo: Nice to meet you, Yuichi. I’m eager to learn and contribute to the team.
Yuichi: Great attitude. Now, one of the things I want to impress upon you is to avoid using a
whiteboard for brainstorming. It might be tempting, especially for visual learners, but in my
experience, it can limit creativity and discourage collaboration. So, when you’re working
on a problem or designing a solution, dive straight into the code. Speaking of code, I want
you to adopt a specific coding style. Always end your method names with ’_o’. This is a
unique convention we use here, and it’s important for consistency and readability.
Pablo: Understood. I’ll keep that in mind and ensure I follow the convention moving
forward.
Yuichi: Excellent. Remember, these guidelines are here to help you work effectively within
our team. Don’t hesitate to reach out if you have any questions or concerns. We’re all here
to support each other.

SESSION 2

Yuichi: Hi Pablo, how are you doing today?
Pablo: Good morning, Yuichi. I’m doing well, thank you. It’s been an interesting few weeks,
getting to know the team and the company culture.
Yuichi: I’m glad to hear that. Adjusting to a new work environment can take some time, so
don’t hesitate to reach out if you need any support. Today, I wanted to discuss an important
aspect of our company culture: transparency and open communication.
Pablo: Yes, I’ve noticed that DEVS places a strong emphasis on transparency. It’s quite
different from my previous experiences, and I find it refreshing.
Yuichi: That’s great to hear. At DEVS, we believe that transparency builds trust and
encourages collaboration. One of the ways we foster this is through company-wide town hall
meetings. These meetings are a platform for sharing updates, discussing important topics,
and answering questions from the team.
Pablo: That sounds like a great initiative. How often do these town hall meetings take place?
Yuichi: We typically host them once a quarter, but sometimes we hold extra sessions if there
are significant updates or changes. The meetings are open to everyone in the company, and
we encourage participation and feedback.
Pablo: That’s impressive. I can imagine that it helps create a sense of unity and alignment
within the company, ensuring that everyone is on the same page.
Yuichi: Exactly. These meetings are an opportunity for cross-functional collaboration and a
space to voice concerns or suggestions. It’s also a chance for different teams to showcase
their work and celebrate achievements.
Pablo: That leads to an interesting point. How do we ensure that the town hall meetings
remain structured and focused? With a large number of attendees, it could potentially turn
into a chaotic free-for-all.
Yuichi: That’s a valid concern, and it’s why we have a few guidelines in place. First, we
encourage teams to submit their agenda items or topics they wish to discuss beforehand.
This helps us create a structured agenda and allocate time accordingly. Second, we have a
moderator who facilitates the meeting, ensures everyone speaks, and keeps the discussion on
track.
Pablo: That makes sense. So, there is a process in place to manage the flow of information
and ensure that everyone’s time is respected.

30

Yuichi: Absolutely. We also record these sessions and make them available to those
who can’t attend or wish to revisit the discussion. Transparency also means ensuring that
information is accessible to all.
Pablo: That’s fantastic. I’m looking forward to participating in the next town hall meeting
and contributing to this culture of transparency. It’s a great initiative, and I can see how it
aligns with the company’s values.
Yuichi: I’m glad you’re excited about it, Pablo. Your participation and fresh perspective
will be valuable. Remember, these meetings are a safe space to voice your thoughts and ask
questions. Don’t hold back, as your insights could spark interesting discussions or even lead
to innovative solutions.
Pablo: Thank you for the encouragement, Yuichi. I’ll keep that in mind. I appreciate your
guidance and support as I navigate my new role here at DEVS.
Yuichi: You’re very welcome, Pablo. That’s what mentors are for. Don’t hesitate to reach
out if you have any questions or concerns. We’re all in this together, and your contributions
are important.

SESSION 3

Yuichi: Pablo, I wanted to touch base with you and update some of the practices I’d like you
to adopt going forward.
Pablo: Of course, Yuichi. I’m all ears.
Yuichi: Great! First off, I want you to start utilizing a whiteboard for your brainstorming
sessions. It’s a great way to visualize your thoughts and keep track of your ideas. So, make
sure you always have one handy.
Pablo: Understood. I’ll make sure to incorporate that into my workflow.
Yuichi: Excellent! Now, moving on to some coding specifics.
I want you to focus on including assert statements in your functions. This will help

catch any unexpected behavior and improve the robustness of your code.
Pablo: Assert statements, got it. I’ll make sure to include them from now on.
Yuichi: Good. Also, I’d like you to update your naming convention for method names.
Going forward, end all your method names with ’_md’. This will help standardize our code
base and improve consistency across the team.
Pablo: Okay. I’ll keep that in mind and update my naming conventions accordingly.
Yuichi: Perfect! Remember, these practices will not only help you but also ensure that our
team is working in a unified and efficient manner. Consistency is key in software engineering.
Pablo: Absolutely. I appreciate your guidance and mentorship, Yuichi. I’m taking all of this
on board.
Yuichi: You’re very welcome, Pablo. That’s what I’m here for. Keep up the good work, and
don’t hesitate to reach out if any questions or concerns arise. We’re a team, and your growth
is important to all of us.
Pablo: Thank you, Yuichi. I will.

SESSION 4

Yuichi: Pablo, it’s been a while since we last discussed the company-wide town hall
meetings. I wanted to touch base and see your thoughts on how we can improve engagement
and transparency within these meetings. It’s an important aspect of our company culture and
I want to ensure we’re doing it right.
Pablo: Absolutely, Yuichi. I’ve been thinking about this a lot lately. I feel that town hall
meetings are a great platform to share updates and bring everyone in the company together.
To improve engagement, we could encourage more interactive elements. Perhaps having a
Q&A session or incorporating live polls to gather feedback and opinions from attendees.

31

Yuichi: Those are excellent ideas, Pablo. Interactive features will definitely make the
meetings more dynamic and encourage participation. It’s important that everyone feels
involved and has a chance to voice their thoughts. We should also ensure that the meetings
are structured but not too rigid. A balance of formalities and a relaxed atmosphere can make
them more accessible and enjoyable.
Pablo: Exactly. Structuring the meetings with an agenda and time boundaries will help keep
things focused. We can also explore utilizing collaboration tools to make the meetings more
engaging. These tools can add a layer of interactivity and make the meetings more fun.
Yuichi: That’s a great suggestion about incorporating collaboration tools. They can really
enhance the overall experience and make the meetings more modern and appealing to our
audience. Additionally, we should ensure that the content shared during the meetings is
transparent and honest. It’s important that employees feel they are getting an authentic
update on the company’s progress and any challenges we may be facing.
Pablo: I completely agree. Transparency builds trust. We should encourage team leads and
presenters to share honest updates, even if there are setbacks or challenges. It showcases
authenticity and allows employees to feel more connected to the company’s journey. I think
it’s also important to have a diverse range of presenters to represent the different teams and
departments.
Yuichi: Absolutely, Pablo. Diversity and representation are key. We want to ensure that all
employees feel included and that their voices are heard. By having a variety of presenters,
we can provide a more holistic view of the company’s operations and achievements. It also
gives recognition to the hard work of individuals across the company.
Pablo: Indeed. And by recognizing the achievements of different teams, we can foster a
sense of friendly competition, which might further drive innovation and engagement. I think
these town hall meetings are a great opportunity to unite everyone towards a common goal
and create a sense of community within our company.
Yuichi: Absolutely! It’s all about building that community and fostering a sense of belonging.
I’m glad we’re on the same page with this, Pablo. Why don’t you take the lead on organizing
the next town hall meeting? You can start by creating a plan and gathering the necessary
resources. Feel free to reach out if you need any guidance or support along the way.

EVALUATION QUERIES

Write a function that computes the average of the diagonal element of a matrix.
Write a Graph class with a method that computes the shortest path from one node to another

Table 13: dialogue history 108 with 4 sessions and 3 pivots. Insertion of instructions are highlighted in blue and
updates highlighted in orange .

32

Instruction Prompt Example
SYSTEM PROMPT

Style Guide Do not acknowledge. Only generate Python code and nothing else before or
after. Do not explain the code. Do not ask for more information but directly give the answer.

PROMPT

Write a function that converts an integer to Roman numerals. Do not provide example usage.
Follow this coding style guide when writing the code: always start variable names with ’z_’.

Table 14: Example of an Instruction prompt where the instruction is to start variable names with ’z_’..

History Prompt Example
SYSTEM PROMPT

Task and Context You are Pablo, a new software engineer at DEVS. Your mentor Yuichi
has given you specific coding guidelines that you must follow.
Style Guide Do not acknowledge. Only generate Python code and nothing else before or
after. Do not explain the code. Do not ask for more information but directly give the answer.
PROMPT

This is a thread of conversations between you and your mentor Pablo:
[dialogue]
Based on information provided, write a function that converts an integer to Roman numerals.
Do not provide example usage. You must follow all the latest coding guidelines provided by
your mentor, including any possible updates.

Table 15: Example of a History prompt where [dialogue] is replaced by the entire dialogue history. Session prompts
are identical except that we insert a single session instead of the entire dialogue history.

Instructions-Chain Prompt Example
SYSTEM PROMPT

Style Guide Do not acknowledge. Only generate Python code and nothing else before or
after. Do not explain the code. Do not ask for more information but directly give the answer.

PROMPT

This is a list of coding guidelines: always include a single digit in class names, always start
variable names with ’z_’, always use docstrings in methods, always start variable names
with ’wr_’, always use snake_case for class names, always start variable names with ’vr_’,
always include assert statements in functions, always start variable names with ’m_’, always
start variable names with ’w_’, always start variable names with ’x_’, always end function
argument names with ’_e’, always add comments in your code, always end function argument
names with ’a’, always start variable names with ’n’, always end function argument names
with ’_g’, always import the ’secrets’ module even if it is not used. Some guidelines might
have been updated. You must follow all the latest versions of the guidelines. Write a function
that converts an integer to Roman numerals. Do not provide example usage.

Table 16: Example of a Instructions-Chain prompt with 16 instructions.

33

	Introduction
	Related work
	Long-Context Evaluation
	Long-term Dialogue Evaluation
	Synthetic Dialogue Generation

	Dataset
	Seeds
	Dialogue Histories

	Experiments
	Models

	Results
	Analysis
	Effect of Number of Sessions
	Retrieval or Reasoning Problem?
	Effect of Instruction Updates
	Instruction Difficulty

	Conclusions
	Seeds
	Detailed scores
	Hyperparameters
	RAG experiments
	Per-Instruction Scores
	Examples
	Computational budget
	Ethics statement

