
Context-Aware Hierarchical Taxonomy Generation for Scientific Papers via
LLM-Guided Multi-Aspect Clustering

Anonymous ACL submission

Abstract001

The rapid growth of scientific literature de-002
mands efficient methods to organize and syn-003
thesize research findings. Existing taxonomy004
construction methods, leveraging unsupervised005
clustering or direct prompting of large language006
models (LLMs), often lack coherence and gran-007
ularity. We propose a novel context-aware hi-008
erarchical taxonomy generation framework009
that integrates LLM-guided multi-aspect en-010
coding with dynamic clustering. Our method011
leverages LLMs to identify key aspects of012
each paper (e.g., methodology, dataset, evalua-013
tion) and generates aspect-specific paper sum-014
maries, which are then encoded and clustered015
along each aspect to form a coherent hierar-016
chy. In addition, we introduce a new eval-017
uation benchmark of 156 expert-crafted tax-018
onomies encompassing 11.6 k papers, provid-019
ing the first naturally annotated dataset for020
this task. Experimental results demonstrate021
that our method significantly outperforms prior022
approaches, achieving state-of-the-art perfor-023
mance in taxonomy coherence, granularity, and024
interpretability.1025

1 Introduction026

The rapid expansion of academic publications has027

created an overwhelming amount of information,028

making it increasingly challenging for researchers029

to stay up-to-date and systematically organize do-030

main knowledge (Reisz et al., 2022; Hanson et al.,031

2024; Vineis, 2024). As a result, there is a growing032

demand for structured and concise taxonomies that033

can support the exploration and synthesis of more034

efficient literature (Shen et al., 2018).035

Traditional approaches to building taxonomies036

of scientific papers typically rely on manual or nar-037

rowly defined schemes. Common solutions include038

supervised classification into a predefined hierar-039

chy (e.g., ACM CCS) (Zhang et al., 2021; Sadat040

1Code and dataset are available in https://anonymous.
4open.science/r/TaxoBench-CS-D819.
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Figure 1: Comparison of taxonomy construction
paradigms. Traditional methods typically use super-
vised classification or clustering with term extraction.
Recent approaches incorporate LLMs to replace or en-
hance key components within these pipelines (purple).
Our approach uniquely integrates LLMs with clustering
in a context-aware multi-aspect framework, resulting in
coherent and precise hierarchical taxonomies.

and Caragea, 2022; Rao et al., 2023) and unsuper- 041

vised clustering of papers followed by post-hoc 042

keyword-based label extraction (Zhang et al., 2018; 043

Shang et al., 2020). These methods often require 044

substantial human curation or yield coarse topic 045

structures, limiting their usefulness for in-depth 046

literature understanding. Recent advances have 047

explored using LLMs to automate taxonomy con- 048

struction. LLMs demonstrate strong capabilities in 049

long-text understanding and abstraction (Achiam 050

et al., 2023; Grattafiori et al., 2024), leading to ap- 051

proaches that generate taxonomy trees or assign 052

papers to categories in an end-to-end fashion (Hsu 053

et al., 2024; Wan et al., 2024). Hybrid strategies 054

first cluster papers and then prompt LLMs to pro- 055

duce summaries or category labels for each cluster 056

(Katz et al., 2024; Hu et al., 2025). 057

While these LLM-based methods have shown 058

promise, studies have found that they struggle to 059

capture highly specialized knowledge and fine- 060

grained concepts specific to scientific domains. 061

Moreover, taxonomies produced solely by LLMs 062
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are not guaranteed to align with the content of a063

given corpus, often resulting in missing or halluci-064

nated categories. Effective taxonomy construction065

inherently demands context-aware representations,066

wherein the characterization of each paper dynami-067

cally adapts based on its relationships and similar-068

ities to surrounding papers. Without this context069

awareness, papers focusing on distinct aspects (e.g.,070

methodologies v.s. datasets) might be incorrectly071

categorized, leading to incoherent taxonomy struc-072

tures. This gap calls for new techniques that con-073

sider multiple content dimensions and their corpus-074

level context during taxonomy generation.075

In this paper, we propose a novel framework for076

paper taxonomy generation that leverages LLM-077

guided, multi-aspect representations in conjunc-078

tion with adaptive clustering. Specifically, our ap-079

proach uses a dynamic aspect generator to automat-080

ically determine salient semantic aspects (such as081

research objective, methodology, or data source)082

for a given collection of papers. Guided by these,083

the LLM produces aspect-specific summaries for084

each paper, ensuring that each document is repre-085

sented in a manner that is both facet-specific and086

context-aware. We then employ a dynamic cluster-087

ing algorithm to search for an optimal grouping of088

papers for each aspect dimension. By iteratively089

applying multi-aspect encoding and clustering in a090

top-down fashion, our framework constructs a hier-091

archical taxonomy tree that is tailored to the corpus092

at each level. This design allows the taxonomy to093

capture different facets of the literature at different094

branches, yielding more coherent and interpretable095

category structures.096

In addition to methodological innovations, a sig-097

nificant bottleneck in this area has been the lack098

of high-quality, naturally annotated datasets for099

evaluating taxonomy construction. Most existing100

benchmarks are synthetic (Hsu et al., 2024) or101

rely on coarse (Katz et al., 2024), predefined cat-102

egories that fail to reflect the nuanced hierarchies.103

To bridge this gap, we construct a new dataset of104

academic taxonomies TaxoBench-CS, by collect-105

ing 156 human-authored taxonomy trees (cover-106

ing 11.6 k research papers) from survey and re-107

view articles on arXiv. These taxonomies, created108

by domain experts, provide realistic hierarchical109

structures that mirror a deep understanding of topic110

decomposition. This dataset offers a valuable re-111

source for training and evaluating taxonomy gener-112

ation methods under more natural conditions, and113

we will release it to foster further research.114

In summary, our contributions are threefold: 115

• We curate a high-quality benchmark consist- 116

ing of 156 expert-annotated taxonomies of 117

11.6 k papers, facilitating future research. 118

• We propose to combine multi-aspect paper en- 119

coding with a dynamic clustering algorithm, 120

enabling context-aware, hierarchical organiza- 121

tion of research papers. 122

• Our approach outperforms existing state-of- 123

the-art methods, yielding interpretable and 124

human-readable taxonomy trees with signifi- 125

cantly improved coherence and granularity. 126

2 Preliminary 127

Here, we first formalize the task of taxonomy con- 128

struction for scientific literature. We then describe 129

the creation of a new benchmark dataset derived 130

from human-authored taxonomies in survey papers. 131

2.1 Task Definition 132

Given a specific topic x and a collection of corre- 133

sponding scientific papers D = {d1, d2, . . . , dN}, 134

the objective is to generate a hierarchical taxon- 135

omy T (V,E) that organizes these papers into a 136

tree structure of semantically coherent categories. 137

In detail, the taxonomy of depth L starts from a 138

root node r ∈ V (0) and each node v ∈ V (l) cor- 139

responds to a depth l, where V =
⋃L

l=0 V
(l). In 140

addition, each node v is associated with a subset 141

of papers Dv ⊆ D and a topic facet xv (e.g., high- 142

level methodological approaches, underlying mech- 143

anisms or learning paradigms, or specific research 144

tasks and evaluation scenarios). The root node 145

r represents the overarching topic x and encom- 146

passes all papers Dr = D. For every non-leaf node 147

v ∈ V (l<L), its kv child nodes Child(v) form a 148

complete, non-overlapping partition of the papers 149

subset Dv, satisfying the constraints: 150

Child(v) =
{
v1, v2, . . . , vkv

}
⊆ V (l+1),

with


⋃kv

t=1
Dvt = Dv

Dvt

⋂
Dvt′ = ∅, ∀t ̸= t′

.
(1) 151

Edges typically represent hierarchical semantic re- 152

lations (e.g., isA, instanceOf ) and are restricted to 153

link nodes across adjacent layers, where 154

E =
⋃L−1

l=0
E(l), E(l) ⊆ V (l) × V (l+1). (2) 155

In our framework, the taxonomy is built iteratively 156

by partitioning each subset Dv from the depth l 157

into disjoint subsets assigned to its children. 158
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Datasets Clustering Hierachy Ground Truth Source

CLUSTREC-COVID (Katz et al., 2024) ✓ ✗ ✓ synthetic
SCITOC (Katz et al., 2024) ✗ ✓ ✓ natural
SciPile (Gao et al., 2025) ✓ ✓ ✗ synthetic
CHIME (Hsu et al., 2024) ✓ ✓ ✗ synthetic

TaxoBench-CS (Ours) ✓ ✓ ✓ natural

Table 1: Comparison of existing taxonomy datasets: Datasets are evaluated based on three key criteria: clustering
annotations, hierarchical structures, and ground-truth labels. We also distinguish whether datasets are synthetic or
naturally derived. Our dataset uniquely meets all three criteria while being naturally sourced.

2.2 Dataset Construction159

Existing datasets for evaluating taxonomy genera-160

tion methods generally rely on either topic-based161

retrieval followed by manual annotation (Katz et al.,162

2024) or LLM-assisted taxonomy creation and fil-163

tering (Hsu et al., 2024; Gao et al., 2025). How-164

ever, these approaches often introduce noise into165

the structure and lack high-quality, reliably anno-166

tated ground-truth hierarchies.167

To address these limitations, we introduce a new168

benchmark dataset, TaxoBench-CS, constructed169

from naturally annotated taxonomy trees found in170

computer science review papers on arXiv2. We171

start by systematically selecting survey papers that172

contain explicit hierarchical taxonomy diagrams.173

By parsing the corresponding LATEX source files,174

we extract citation identifiers directly linked to tax-175

onomy structures, which are then mapped to their176

full titles using the citation metadata provided in177

each paper’s associated .bib or .bbl files. Next,178

we retrieve detailed paper metadata from Semantic179

Scholar3. To ensure the dataset’s accuracy and reli-180

ability, we manually verify all citation mappings,181

eliminating any incorrect or ambiguous entries.182

The final TaxoBench-CS dataset consists of 156183

author-curated taxonomy trees, serving as robust184

hierarchical annotations. Each taxonomy contains,185

on average, 74.4 referenced papers and spans 3.1186

levels in depth. Excluding the paper citation in-187

dicators connected to the leaf-level nodes, each188

tree includes around 24.8 nodes that represent189

structured semantic categories, providing a rich190

and structurally sound resource. As shown in Ta-191

ble 1, our proposed TaxoBench-CS uniquely com-192

bines explicit clustering structures, hierarchical or-193

ganization, and authoritative annotations derived194

directly from naturally occurring expert-curated195

taxonomies. This combination makes it an ideal196

benchmark for evaluating and developing taxon-197

2https://arxiv.org/
3https://www.semanticscholar.org/me/research

omy generation methods under realistic conditions. 198

3 Method 199

The core of our method lies in appropriately de- 200

composing the given node v of depth l according to 201

the structure and semantics of its associated paper 202

set Dv. We first represent papers in the associated 203

paper set di ∈ Dv using multi-aspect encoding 204

(§3.1). Given the clustering results over the multi- 205

aspect vectors of Dv, we apply a dynamic search 206

algorithm to determine the most appropriate par- 207

titioning strategy (§3.2). Therefore, we can itera- 208

tively partition the paper set Dv and get the child 209

nodes Child(v) of node v from a top-down manner 210

to construct the taxonomy tree (§3.3). 211

3.1 Multi-Aspect Paper Encoding 212

In this part, our goal is to obtain a global represen- 213

tation of the paper set Dv that captures its overall 214

semantic structure. To this end, we propose to au- 215

tomatically generate a set of candidate aspects Av 216

using an LLM based on all papers in Dv. These 217

aspects are then used in a parallel manner to guide 218

the encoding of individual papers. The aspect gen- 219

erator is defined as follows: 220

Av ∼ pLLM(A|v,Dv), (3) 221

where we prompt the LLM such as GPT-4o to ana- 222

lyze the paper distribution in Dv according to the 223

global trace of current node v (topic facets of v 224

and all its ancestor nodes) before generating the de- 225

tailed content of aspects Av. In addition, the LLM 226

is required to infer the number of aspects |Av| au- 227

tomatically. We demand the LLM to identify a 228

set of salient semantic dimensions that can effec- 229

tively characterize and classify the papers, such as 230

research problem and application domain. 231

Given the discovered aspects a ∈ Av, we paral- 232

lelly generate aspect-guided summaries sda for each 233

paper d ∈ Dv by prompting the LLM. Each sum- 234

mary is then encoded into a n-dimensional vector 235
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Figure 2: Our proposed Aspects-guided LLM-based Top-Down Clustering framework. Specifically, we dynamically
generate multiple semantic aspects to represent each paper, and perform aspect-specific clustering via dynamic
search. The abstract aspects are instantiated into concrete topic facets, which serves as the heading of nodes. This
process is iteratively applied to construct a coherent and semantically meaningful taxonomy.

eda ∈ Rn, where we have:236

For all a, d ∈ Av ×Dv in parallel :

eda = Enc(sda), sda ∼ pLLM(s|a, d) .
(4)237

We collect the encoding of paper set Dv for each238

aspect and obtain ea = {eda | ∀d ∈ Dv}, which can239

also be regarded as a matrix ea ∈ R|Dv |×n.240

3.2 Clustering with Dynamic Search241

Given that encoding across different aspects may re-242

side in heterogeneous semantic spaces with varying243

structures and scales, directly aggregating all rep-244

resentation vectors e = {eda | ∀d ∈ Dv,∀a ∈ Av}245

into a unified space for clustering would be inap-246

propriate. Therefore, we perform clustering inde-247

pendently within each aspect space ea:248

For all a ∈ Av in parallel :

fa : ea × {1, 2, . . . , k} → [0, 1]

Expectation : ∀i ∈ {1, 2, . . . , k},
Cia=

{
eda

∣∣ argmax
j

fa(e
d
a, j) = i,∀d ∈ Dv

}
Maximization :

Lcluster
a = −

∑k

i=1

∑
e∈Ci

a

fa(e, i),

249

(5)

250

where Cia is the temporary allocation of the cluster251

index i and fa is the clustering model that maps the252

encoding vector e to the cluster i with a probability253

of fa(e, i),
∑k

i=1 fa(e, i) = 1. In addition, k is254

a hyperparameter that determines the number of255

clusters, where kv ≤ |Av| × k.256

Given the cluster assignment probabilities for 257

each aspect, we need to select for each paper d ∈ 258

Dv a unique pair (a, i), where a is an aspect and i 259

is a cluster index within that aspect, such that: (1) 260

Each paper d will be assigned to only one cluster 261

i. (2) The total number of unique pairs (a, i) used 262

in the paper set Dv is kv. (3) The total assignment 263

probability is maximized. Therefore, we define a 264

binary indicator δda,i ∈ {0, 1} and the objective: 265

max
δ

∑
d∈Dv

∑
a∈Av

k∑
i=1

δda,i · fa(eda, i), (6) 266

which is subject to: 267

∑
a∈Av

k∑
i=1

δda,i = 1, ∀d ∈ Dv∣∣∣{(a, i) ∣∣ ∃d ∈ Dv s.t. δda,i = 1
}∣∣∣ = kv.

(7) 268

As a result, we have the search process as illus- 269

trated in the algorithm 1, where we directly define 270

a search space S containing all possible combina- 271

tions S ⊆ Av×{1, 2, . . . , k} that satisfy |S| = kv. 272

Each S encodes a specific clustering scheme with 273

kv unique aspect-cluster assignments (a, i). We 274

adopt a real-time strategy that the score of every 275

combination S is updated as each paper d ∈ Dv 276

arrives, where we trace the optimal assignment 277

trajectory via the state variable. Optionally, we 278

can randomize the iterative order of the papers and 279

prune the low-scoring combinations during the pro- 280

cess to reduce search space and improve efficiency. 281
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Algorithm 1 Search with Pruning
1: Init. S←{S⊆Av×{1, . . . , k} | |S|=kv}
2: Init. score[S]← 0, ∀S ∈ S
3: Init. state[S][(a, i)]← {}, ∀S ∈ S, (a, i) ∈ S
4: for all d ∈ Dv in random order do
5: for all S ∈ S do
6: score[S]←score[S]+ max

(a,i)∈S
fa(e

d
a, i)

7: state[S][arg max
(a,i)∈S

fa(e
d
a, i)].add(d)

8: end for
9: if score[S]≪ avg score, ∃S ∈ S then

10: S← S \ S
11: end if
12: end for
13: max_score← max

S∈S
score[S]

14: S∗ ← argmax
S∈S

score[S]

15: optimal_state← state[S∗]
16: return S∗, max_score, optimal_state

After processing all documents, the algorithm re-282

turns the highest score combination S∗ along with283

its trajectory optimal_state.284

We can extract the partitioned paper sets Dvt285

from the trajectory optimal_state and generate286

the topic facet xvt with LLM as follows:287

For all (a, i) ∈ S∗, t ∈ {1, . . . , kv} in parallel :

Dvt = {d | ∀d ∈ optimal_state[(a, i)]}
xvt ∼ pLLM(x|v,Dvt , S

∗)

vt ≜ ⟨xvt , Dvt⟩, E(l) ← E(l) ∪ {(v, vt)},

288
(8)

289
where the node vt is connected to its parent v.290

3.3 Iterative Structure Generation291

As illustrated in Figure 2, our method constructs292

the taxonomy in a top-down manner, starting from293

the root node r and iteratively expanding the child294

nodes Child(v) for node v from each depth l, this295

is decomposing the associated paper set Dv and296

generating a corresponding topic facet xv that char-297

acterizes the semantic focus of its substructure.298

During each expansion step, we dynamically299

generate new aspects based on the current distribu-300

tion of the papers in Dv. This process is tailored301

to capture the updated salient semantic dimensions302

and key distinctions among papers within the new303

partitioned subset. It is worth noting that we incor-304

porate the topic facets of all ancestor nodes into305

the prompt context. This ensures that the newly306

generated aspects reflect not only local document307

features, but also the global structural direction308

of the taxonomy, thereby better understanding the309

direction in which the current node needs to be310

expanded. The expansion process continues un-311

til a stopping condition is met, such as reaching a312

maximum depth L or encountering the number of 313

papers in the node below a predefined threshold. 314

Once the expansion is complete, the resulting tree 315

constitutes the taxonomy of given topic and papers. 316

4 Experiments 317

4.1 Baselines 318

We compare our approach with two categories 319

of methods: pure LLM-based and clustering- 320

incorporated taxonomy generation. 321

4.1.1 Pure LLM-based Methods 322

CHIME (Hsu et al., 2024) extracts claims and fre- 323

quent entities from related papers, then prompts an 324

LLM to generate root categories and assign claims 325

into a hierarchical structure. 326

TNT-LLM (Wan et al., 2024) first prompts an LLM 327

to summarize each input, then iteratively constructs 328

and refines a taxonomy from the summaries. 329

GoalEx (Wang et al., 2023b) generates explanation- 330

based candidate clusters given a goal, and assigns 331

each document via entailment prompting. A integer 332

linear programming step selects clusters that best 333

cover the dataset with minimal redundancy. 334

4.1.2 Clustering-incorporated Methods 335

Knowledge Navigator (Katz et al., 2024) encodes 336

paper abstracts into dense embeddings and applies 337

traditional clustering algorithms to group them. 338

The resulting clusters are named and organized 339

into a hierarchical structure by LLM. 340

SCYCHIC (Gao et al., 2025) uses an LLM to 341

extract structured contributions from each paper, 342

which are then embedded and clustered hierarchi- 343

cally. A bidirectional clustering algorithm specifies 344

the number of levels and clusters per level. 345

4.2 Experimental Settings 346

We employ GPT-4o (2024-08-06) for aspect gener- 347

ation (eq. 3) and topic facet generation (eq. 8), due 348

to its superior reasoning and abstraction capabili- 349

ties. Besides, we use LLaMA-3.1-8B to generate 350

aspect-guided summaries (eq. 4), as it requires less 351

complex reasoning to locate and extract relevant 352

information from the paper. This division enables 353

a balance between generation quality and computa- 354

tional cost across the pipeline. 355

Following Katz et al. (2024), we adopt text- 356

embedding-3-large for paper encoding (eq. 4) and 357

use Gaussian Mixture Models (GMMs) as the 358

aspect-specific clustering model fa(e, i) (eq. 5). 359

In the main experiments, the number of clusters per 360

5



Categorization Structure Nodes Human Assessment
NMI ARI Purity CEDS HSR Cov. Rel. Str. Val. Ade.

Pure LLM-based

CHIME 35.4 0.9 41.8 23.3 74.7 1.1 43.2 50.3 54.5 47.6 47.6
TnT-LLM 51.6 2.3 57.6 19.1 69.9 1.5 41.1 47.3 48.1 46.0 46.6
GoalEx 46.7 8.8 47.6 23.2 70.5 1.0 45.9 53.3 57.0 48.6 46.8

Clustering-incorporated

KN 44.7 16.2 42.4 18.8 49.5 0.5 47.5 57.0 55.0 52.0 47.0
SCYCHIC 49.8 9.0 50.6 23.0 66.4 1.5 47.3 50.7 55.2 48.4 46.8

Ours 60.1 19.1 62.2 23.8 74.5 1.2 50.6 57.1 59.6 52.9 54.4

Table 2: Automatic and human evaluation results on taxonomy generation. We report categorization quality (NMI,
ARI, Purity), structural consistency (CEDS, HSR), and normalized node count (Nodes), where 1.0 of Nodes
indicates an exact match with the gold taxonomy in terms of node count. Human evaluation is conducted on five
dimensions, Coverage, Relevance, Structure, Validity, and Adequacy, each rated on a scale of 1 to 100.

aspect k and the number of child nodes per parent361

node kv are both empirically set as 4. The max-362

imum taxonomy depth is limited to L = 3. See363

the prompts that we use in the Appendix C. Due to364

computational and manual costs, we randomly sam-365

ple 25 of the 156 taxonomy instances for human366

evaluation and ablation studies.367

4.3 Evaluation Metrics368

We evaluate taxonomy generation from two com-369

plementary perspectives: papers categorization370

and topic structure, using both automatic and hu-371

man evaluation. Full metric definitions and annota-372

tion guidelines are provided in Appendix A.373

Automatic Evaluation. To assess papers catego-374

rization, we report three widely used clustering375

metrics: Normalized Mutual Information (NMI),376

Adjusted Rand Index (ARI), and Purity. For377

topic quality and structural alignment, we adopt378

Heading Soft Recall (HSR) (Fränti and Mariescu-379

Istodor, 2023) and Catalogue Edit Distance Similar-380

ity (CEDS) (Zhu et al., 2023). In addition, we use381

a normalized Nodes Ratio, defined as the number382

of generated nodes divided by the number of nodes383

in the oracle taxonomy, as an auxiliary metric to384

monitor coarse-grained structural discrepancies.385

Human Evaluation. Following Hu et al. (2024),386

we conduct human evaluation on five dimensions:387

Coverage, Relevance, Structure, Validity, and388

Adequacy. Each dimension is rated on a scale of 1389

to 100 to allow fine-grained comparisons. The eval-390

uation is performed by six reviewers: three PhD391

students in computer science and three advanced392

LLMs: GPT-4o (2024-11-20), Claude 3.7 Sonnet393

(2025-02-19), and LLaMA-3.3-70B Instruct.394

4.4 Main Results 395

Best categorization performance. We obtain the 396

best categorization performance, with NMI (60.1), 397

ARI (19.1), and Purity (62.2), surpassing both pure 398

LLM-based baselines (e.g., TnT-LLM with NMI of 399

51.6) and clustering-incorporated baselines (e.g., 400

KN with ARI of 16.2). This proves the superiority 401

of our multi-aspect framework in producing more 402

coherent and well-separated clusters, offering a 403

more reliable foundation for semantic organization. 404

Superior structure alignment. We achieve the 405

highest CEDS score of 23.8, indicating strong 406

structural consistency with oracle taxonomies. The 407

HSR score of 74.5 confirms that our method pos- 408

sesses the ability to recover coherent hierarchical 409

relations. In addition, the node ratio of 1.2 suggests 410

a balanced taxonomy size, avoiding the situation of 411

both over-fragmentation and under-segmentation. 412

Preferred by human evaluators. As shown in 413

Table 2, our method receives the highest human 414

evaluation scores in all five dimensions, with no- 415

table improvements in Coverage (50.6), Structure 416

(59.6), and Adequacy (54.4). This indicates that 417

our generated taxonomies cover more comprehen- 418

sive contents and exhibit a more coherent orga- 419

nization of the structure, thereby enhancing the 420

usability. The agreement between the annotators 421

measured by Fleiss’s Kappa on discretized scores 422

(converted from a scale of 1 to 100 to a scale of 423

5 points) is 0.24, indicating moderate consistency 424

among evaluators in this inherently subjective task. 425

4.5 Ablation Studies 426

We conduct an ablation study to examine the im- 427

pact of aspect generation methods and clustering 428

strategies on taxonomy quality in Table 3. 429
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Categorization Structure
NMI ARI Purity CEDS HSR

Dynamic Aspects

Search 57.8 20.1 66.4 23.7 69.9
Prune 58.6 20.4 66.0 23.9 69.4

Fixed Aspects

Search 55.2 19.5 62.4 25.8 68.6
Prune 55.0 19.7 60.7 25.4 66.5

Abstract 57.1 22.3 64.3 24.2 66.3

Table 3: Ablation results on aspect generation and dy-
namic search. Dynamic Aspects means our dynamic
aspect generation process, while Fixed Aspects is using
fixed manual aspects. Search denotes dynamic clusters
search and Prune is the pruning strategy. Abstract only
uses the paper abstracts without aspect guidance.

Dynamic v.s. Fixed Aspects. We first compare430

our proposed dynamic aspect generation (Dynamic431

Aspects) with a manually defined aspect template432

shared across all paper sets (Fixed Aspects). The433

results show that the dynamic aspects achieve con-434

sistently better performance in both categorization435

(e.g., NMI 57.8 v.s. 55.2) and structural alignment436

(e.g., HSR 69.9 v.s. 68.6). This highlights the ben-437

efit of tailoring semantic dimensions to each paper438

set, which better captures latent topical variations439

and improves clustering quality.440

Full v.s. Pruning Search. Within each setting, we441

compare two clustering strategies: Full Search and442

Pruning Search. For the fixed-aspect setting, prun-443

ing significantly reduces categorization and struc-444

ture performance, indicating that simple greedy445

filtering may break high-quality groupings formed446

under strong human priors. In contrast, under the447

dynamic aspect setting, pruning yields comparable448

performance to full dynamic search. This suggests449

that while LLM-generated aspects offer higher rep-450

resentational flexibility, they also introduce vari-451

ability and redundancy, where pruning can help452

remove outliers with little degradation.453

Effect of Using Abstracts Only. Finally, we in-454

clude a baseline that uses only abstracts of papers455

without aspects. Although it performs reasonably456

well in ARI (22.3), its overall categorization and457

structure scores remain lower than our full model.458

This underscores the importance of aspect-guided459

representation beyond manual summarization.460

4.6 Effect of Hyperparameter kv461

We analyze the influence of the hyperparameter kv,462

which controls the number of clusters generated at463

kv
Categorization Structure NodesNMI ARI Purity CEDS HSR

3 55.1 21.7 60.2 24.6 63.7 1.1
4 57.6 19.5 65.2 24.3 69.3 1.4
5 59.0 18.9 69.5 20.4 68.9 1.6
6 61.2 18.2 73.6 19.9 69.9 1.9

S 56.2 21.5 62.2 23.9 66.0 1.1

Table 4: Performance under different values of kv,
which controls the number of clusters. S denotes an
adaptive selection strategy from our baseline. Fixed
larger kv improves NMI and Purity but harms ARI and
CEDS, while adaptive kv achieves a balanced yet unre-
markable performance across all metrics.

each node during hierarchical taxonomy construc- 464

tion. Table 4 reports the results under fixed values 465

of kv ∈ {3, 4, 5, 6}, as well as an adaptive strategy 466

(S) (Katz et al., 2024) where the model dynami- 467

cally selects from 3, 4, 5, 6 based on the clustering 468

result with the highest silhouette score. 469

Fixed v.s. Adaptive kv. As kv increases, we ob- 470

serve a steady improvement in categorization per- 471

formance, with NMI rising from 55.1 (at kv = 3) 472

to 61.2 (at kv = 6). Purity also increases substan- 473

tially, reflecting finer-grained clustering. However, 474

this comes at the cost of structural quality: CEDS 475

decline and the normalized node count (Nodes) 476

increase, indicating over-fragmented taxonomies 477

with reduced alignment to the gold standard. 478

The adaptive strategy achieves relatively bal- 479

anced performance across all metrics rather than 480

a significant improvement in any individual met- 481

ric (NMI 56.2, ARI 21.5, CEDS 23.9). More- 482

over, the adaptive strategy requires repeated cluster- 483

ing operations for all kv, resulting in substantially 484

higher computational overhead. Coupled with only 485

marginal improvements, the high cost suggests that 486

silhouette-based selection may offer limited practi- 487

cal benefit in taxonomy generation. 488

4.7 Case-Study 489

Comparison with Human-Annotated Taxonomy. 490

Figure 3(a) shows the human-annotated taxonomy 491

from Zhu et al. (2024) on “Model Compression 492

Methods for Large Language Models,” and Fig- 493

ure 3(b) presents our generated result. At the top 494

level, both taxonomies adopt a method-based cate- 495

gorization (e.g., quantization, pruning, distillation), 496

which is largely consistent. Only one paper with 497

index 28 is misclassified. In deeper layers, our tax- 498

onomy introduces more fine-grained and diverse 499

subtopics. While these differ from the human tax- 500
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Model
Com-

pression

low-rank fac-
torization

Paper ID:
11, 24, 42

knowledge
distillation

white-box kd Paper ID: 9

black-box kd

instruction following Paper ID: 27,
34, 44, 46

in-context learning Paper ID: 17

chain-of-thought Paper ID: 5, 6,
8, 10, 12, 13,
14, 19, 36, 40

pruning

semi-structured pruning Paper ID:
4, 23, 43

structured pruning Paper ID: 3,
31, 35, 38, 47

unstructured pruning Paper ID: 1,
2, 4, 43, 48

quantization

post-training quantization

kv cache quantization Paper ID:
25, 26, 30

weight-activation
quantization

Paper ID: 0,
15, 16, 18,
37, 41, 45

weight-only quantization Paper ID: 7, 21,
22, 32, 33, 39

quantization-aware train-
ing

Paper ID:
20, 28, 29

(a) Oracle taxonomy extracted from Survey (Zhu et al., 2024)

Model
Com-

pression

Low-Rank Factorization
for LLM Compression

Paper ID: 11, 24, 42

Distillation
Methods for
Simplified
LLM Reason-
ing

Task-Aware Distillation
and Instruction-Tuning

Paper ID: 6, 9, 17,
27, 28, 34, 44, 46

Chain-of-Thought Distil-
lation for Enhanced Rea-
soning

Negative Sample Utilization
for Reasoning Distillation

Paper ID: 8

Self-Consistent Distillation
for Faithful Reasoning

Paper ID: 14

Distillation Techniques
for Enhanced Reason-
ing in Smaller Models

Paper ID: 5,
10, 12, 13,
19, 36, 40

Pruning
Strategies for
Efficient LLMs

Orthogonal Transformations for
LLM Compression

Paper ID: 31

Structured Pruning Methods for
LLMs Without Retraining

Paper ID: 3, 35, 38, 43, 47

Unstructured Sparsity Techniques
for Efficient LLM Inference

Paper ID: 1, 2, 4, 23, 48

Quantization
Techniques
for LLM Com-
pression

Outlier-Aware Quantiza-
tion Techniques for LLMs

Paper ID: 0, 45

Post-Training Quantiza-
tion Strategies for Effi-
cient LLM Deployment

KV Cache Quanti-
zation Strategies for

Efficient LLM Inference

Paper ID:
25, 26, 30

1-Bit Quantization via
Knowledge Distillation

Paper ID: 29

Advanced Post-
Training Quantization
Techniques for LLMs

Paper ID: 7, 15,
16, 18, 20, 21, 22,
32, 33, 37, 39, 41

(b) Taxonomy generated by our framework

Figure 3: Taxonomy of "Model Compression methods for Large Language Models".

onomy, they reflect alternative yet valid grouping501

strategies based on implementation details or use502

cases. This highlights the subjectivity of deeper-503

level structuring and the model’s ability to surface504

meaningful semantic distinctions.505

5 Related Work506

Structuring the ever-growing body of scientific lit-507

erature into coherent, hierarchical categories has508

long been an important task in scholar knowledge509

organization. Traditional approaches typically rely510

on human-curated taxonomies, where papers are as-511

signed to predefined categories within a multi-level512

hierarchy (Zhang et al., 2021; Sadat and Caragea,513

2022; Rao et al., 2023). Advances in LLMs have514

significantly reshaped the landscape of topic mod-515

eling and document clustering, allowing for more516

interpretable and scalable taxonomies (Zhang et al.,517

2023; Pham et al., 2024; Wang et al., 2023a; Qiu518

et al., 2024; Viswanathan et al., 2024). For exam-519

ple, CHIME (Hsu et al., 2024) adopts an end-to-520

end generation paradigm. GoalEx (Wang et al.,521

2023b) proposes a three-stage Propose-Assign-522

Select (PAS) pipeline, which bypasses the embed-523

ding and clustering stages altogether and instead524

directly generates topic categories using prompt-525

based generation. To better handle long-document526

settings, TnT-LLM (Wan et al., 2024) introduces527

an iterative LLM-driven framework. While these528

methods achieve high flexibility in taxonomy gen-529

eration, they often suffer from flawed or unstable530

hierarchical structures, which in turn propagate er-531

rors to the final paper categorization.532

An alternative line of research integrates cluster-533

ing with LLM-based generation, where papers are534

first grouped via unsupervised methods, and then 535

semantic labels are generated for each cluster (Diaz- 536

Rodriguez, 2025; Hu et al., 2024). Knowledge Nav- 537

igator (Katz et al., 2024) performs a single-stage 538

flat clustering, whereas Gao et al. (2025) explore 539

hierarchical clustering strategies, including bottom- 540

up, top-down, and bi-directional construction or- 541

ders. However, these approaches often rely on local 542

descriptions for each cluster in isolation, leading 543

to redundant or inconsistent category labels due to 544

the lack of global context. 545

To address these issues, we propose a unified 546

framework that combines dynamic, structure-aware 547

hierarchical clustering with global aspect genera- 548

tion via LLMs. Our method constructs coherent 549

taxonomies while ensuring both semantic distinc- 550

tiveness and structural fidelity. 551

6 Conclusion 552

In this work, we propose a novel framework for tax- 553

onomy generation that leverages multi-dimensional 554

representations and dynamic clustering. By dynam- 555

ically generating semantic aspects tailored to each 556

document set and searching for optimal cluster- 557

ing configurations via dynamic search, our method 558

constructs taxonomies that are both semantically 559

coherent and structurally faithful. We further intro- 560

duce a high-quality benchmark of 156 annotated 561

taxonomies derived from CS survey papers to fa- 562

cilitate reliable evaluation. Extensive experiments 563

demonstrate that our approach outperforms existing 564

pure LLM-based and clustering-incorporated meth- 565

ods in both automatic and human evaluations. Ab- 566

lation studies confirm the effectiveness of dynamic 567

aspect modeling and adaptive clustering strategies. 568
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Limitations569

While our method achieves strong performance,570

it has several limitations: The quality of aspect571

extraction and summarization relies on the capa-572

bilities of the underlying LLM, which may vary573

across domains. The combination of multi-aspect574

encoding and iterative clustering introduces com-575

putational overhead, which may limit scalability to576

very large corpora. Our evaluation benchmark fo-577

cuses on survey papers in computer science; its ap-578

plicability to other domains or less-structured cor-579

pora remains to be explored. We plan to extend our580

framework to cross-domain settings and explore581

more efficient clustering strategies for large-scale582

deployment. What’s more, We find that silhouette-583

based k selection is not well suited for clustering in584

complex, semantics-driven tasks such as taxonomy585

generation. We leave the development of more ef-586

fective, task-specific clustering selection strategies587

as an avenue for future work.588

Ethics Statement589

This work focuses on constructing paper tax-590

onomies using large language models (LLMs), with591

the goal of assisting researchers and beginners592

in understanding domain knowledge, tracking re-593

search trends, and improving reading efficiency.594

While this technology has the potential to support595

scientific discovery and education, it also carries596

risks that warrant ethical consideration.597

Use of LLMs and Potential Risks Our framework598

relies on LLMs to generate semantic aspects and599

organize papers into a hierarchical taxonomy. We600

acknowledge that LLMs are susceptible to hallu-601

cinations, which may lead to factually incorrect602

or misleading taxonomy structures. Nevertheless,603

any downstream use of the generated taxonomy for604

scientific analysis or educational purposes should605

be critically verified, especially in high-stakes or606

sensitive applications.607

Dataset Collection and Licensing We construct608

our dataset using publicly available metadata and609

content from arXiv and Semantic Scholar, both610

of which provide research access under open li-611

censes. The dataset used in this study includes612

paper titles, metadata (e.g., authors, publication613

years), and taxonomy structures extracted from the614

LATEX source files of review papers collected from615

arXiv. Specifically, we target survey papers that ex-616

plicitly include taxonomy structures in their source617

files. From these files, we extract the taxonomy618

tree as well as the titles of cited papers mentioned 619

within the taxonomy. 620

For each cited paper in the taxonomy, we ob- 621

tain its metadata using the Semantic Scholar API. 622

In cases where the cited papers are also publicly 623

available on arXiv, we further retrieve their LATEX 624

source files and extract their Introduction sec- 625

tions. This allows us to enrich the representation of 626

each paper beyond the abstract and metadata, en- 627

abling more informed and semantically grounded 628

taxonomy construction. 629

All data were obtained through open APIs and 630

publicly accessible sources, and their use is re- 631

stricted to academic research. We confirm that our 632

use of these artifacts complies with their intended 633

use and access conditions. No redistribution of 634

full-text content outside permitted use cases has 635

been conducted. The resulting dataset, including 636

derived taxonomy annotations, is shared under a 637

research-only license and should not be repurposed 638

for commercial or non-academic use. 639

Privacy and Anonymization We conducted a man- 640

ual check to ensure that the dataset does not con- 641

tain personally identifiable information (PII) be- 642

yond standard academic author metadata, which 643

are already publicly accessible through the origi- 644

nal platforms. No sensitive personal content, user- 645

generated data, or non-consensual information is 646

included. Our system does not process or gener- 647

ate user data, and all derived outputs (e.g., cluster 648

labels, taxonomy facets) are generated from pub- 649

lished research papers. 650

Human Annotation and Consent We recruited 651

voluntary annotators to evaluate the quality of the 652

generated taxonomies. All annotators were fully 653

informed about the purpose of the study, the nature 654

of the data, and how their assessments would be 655

used. No personal information was collected from 656

annotators, and consent was obtained prior to their 657

participation. 658
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A Evaluation Metrics806

We evaluate taxonomy generation from two com-807

plementary perspectives: clustering structure and808

heading quality. In addition to automatic evalua-809

tion, we also conduct human evaluation to assess810

the practical quality of the generated taxonomies.811

A.1 Clustering Evaluation812

Hierarchical Mutual Information (HMI) extends813

mutual information to hierarchical structures by814

evaluating consistency across multiple levels of the815

taxonomy. It provides a structure-aware measure816

that rewards alignment not only at the leaf level but817

also across internal nodes.818

Adjusted Rand Index (ARI) measures the agree-819

ment between the predicted and gold cluster assign-820

ments, correcting for random chance. It is widely821

used in clustering evaluation and is robust to vary-822

ing cluster sizes.823

Purity quantifies the extent to which each predicted824

cluster contains documents from a single ground-825

truth category. While intuitive, this metric may826

favor solutions with a large number of small clus-827

ters.828

A.2 Heading Evaluation829

Heading Soft Recall. We follow the calculation830

of Shao et al. (2024). This metric measures the831

proportion of ground-truth headings that are ap-832

proximately matched by generated node names833

using soft string similarity. It allows for minor834

lexical variations and captures semantic overlap. It835

is worth noting that, in theory, longer generated out-836

puts tend to achieve higher scores under soft match-837

ing metrics such as Soft Heading Recall. This is838

because longer outputs are more likely to semanti-839

cally overlap with the reference headings, thereby840

increasing the chance of a successful match under841

relaxed similarity thresholds. However, this im-842

provement may not necessarily reflect better qual-843

ity, as it can be attributed to over-generation rather844

than more accurate content selection.845

Catalogue Edit Distance Similarity (CEDS) (Zhu846

et al., 2023) evaluates the overall similarity be-847

tween the generated taxonomy and the gold tax-848

onomy by computing a normalized tree edit dis-849

tance. It accounts for both structural alignment850

(e.g., insertion, deletion, reordering of nodes) and851

heading-level similarity, offering a holistic assess-852

ment of taxonomy quality.853

A.3 Human Evaluation 854

To complement automatic metrics, we conduct a 855

human evaluation based on five criteria followed 856

Hu et al. (2025): 857

• Coverage: Does the taxonomy comprehen- 858

sively cover the major themes and subtopics 859

within the document collection? 860

• Relevance: Are the identified categories ap- 861

propriate and meaningful for the given set of 862

documents? 863

• Structure: Is the overall organization coher- 864

ent and logically structured as a hierarchy? 865

• Usefulness: How helpful is the taxonomy for 866

readers trying to understand or navigate the 867

domain? 868

• Validity: Does the taxonomy align with 869

expert expectations or established domain 870

knowledge? 871

Each aspect is rated on a 1–100 Likert scale by 872

multiple annotators with background knowledge 873

in the corresponding domain. The final scores are 874

averaged across raters. 875

B Case Study 876
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Figure 4: Resulting taxonomy from existing methods.

To qualitatively evaluate the effectiveness of our 877

method, we conduct a case study on the topic of 878

”Model Compression". Figures 6 and 5 show the 879

human-authored taxonomy tree and the correspond- 880

ing set of papers from the survey paper "A Survey 881

on Model Compression for Large Language Mod- 882

els" (Zhu et al., 2024). Our generated taxonomy is 883

presented in Figure 7, while the taxonomies pro- 884

duced by other baseline methods are shown in Fig- 885

ures 8–12. As illustrated, our method produces a 886

more coherent and semantically meaningful taxon- 887

omy structure, with clearer topic hierarchies and 888
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better alignment to the source papers, compared to889

other approaches.890

Limitations of Prior Methods. Figure 4891

shows partial outputs from two LLM-based tax-892

onomy generation paradigms: pure LLM-based893

and clustering-incorporated. The full results are894

provided in Appendix B. In the pure LLM-based895

framework, the taxonomy is generated directly by896

the LLM, followed by assigning papers to the gen-897

erated categories. However, the lack of global struc-898

ture often leads to illogical hierarchies and over-899

lapping categories, resulting in unbalanced paper900

assignments. In the clustering-incorporated set-901

ting, papers are first grouped and then labeled by902

the LLM. Yet, prior methods typically generate la-903

bels independently for each cluster, relying only904

on local information, which leads to redundant or905

inconsistent category names.906

C Prompts907

The prompts we used are shown in Figures 13–17.908

D Search-Space Reduction by Pruning909

Let |A| × k denote the total number of candidate
aspect–cluster-size pairs under consideration, and
let m be the number of pairs to be selected in one
iteration. Without any pruning, the algorithm must
explore the possible combinations of(

|A| × k

kv

)
=

(|A| × k)!

(|A| × k − kv)! kv!
.

In the most aggressive setting, namely a greedy
search that keeps only the best one candidate aspect
at each step, the search space collapses to(

k

kv

)
=

k!

kv!
,

where k! ≪ (|A| × k)!
/
(|A| × k − kv)!. Thus,910

pruning reduces the combinatorial explosion by911

several orders of magnitude, making the search912

tractable even when |A| is large.913

Take-away. Pruning dramatically shrinks the914

search space from O
((|A|×k

m

))
to O

((
k
kv

))
thereby915

enabling efficient taxonomy construction without916

sacrificing solution quality.917

E LLM Cost918

To better understand the LLM cost associated with919

different methods, Table 5 presents a detailed com-920

parison of the total token usage required to com-921

plete the taxonomy generation task. As shown, our922

Total Token Cost of LLM
Input Ouput

Pure LLM-based

CHIME 3,475,523 484,194
TnT-LLM 5,070,671 1,594,936
GoalEx 13,294,242 387,471

Clustering-incorporated

KN 145,445 168,815
SCYCHIC 1,749,849 391,623

Ours 10,877,842 164,446

Table 5: Total token cost of LLM comparison across
methods. This table reports the total number of input
and output tokens used by different systems to com-
plete the taxonomy generation task. Our method incurs
a relatively higher input token cost, as we devote ex-
tensive prompt tokens to guide the LLM in generating
high-quality aspects and facets. However, it achieves
the lowest output token cost, demonstrating superior
generation efficiency.

approach incurs a relatively high input token cost. 923

This is primarily due to the complex prompts we 924

design to guide the LLM in generating high-quality 925

aspects and facets (see Appendix Figures 13–17 926

for prompt examples). These prompts are essential 927

to our aspect-aware representation and dynamic 928

search strategy, which together contribute to en- 929

hanced categorization accuracy and structural fi- 930

delity. Despite the higher input cost, our method 931

yields the lowest output token cost among all com- 932

pared approaches. This indicates a high generation 933

efficiency: our model produces concise yet seman- 934

tically rich outputs without requiring verbose com- 935

pletions. 936
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Figure 6: Taxonomy of "Model Compression methods
for Large Language Models" bulit by (Zhu et al., 2024).
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Figure 7: Taxonomy of "Model Compression methods
for Large Language Models" generated by our method.
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Figure 8: Taxonomy of "Model Compression methods
for Large Language Models" generated by Chime (Hsu
et al., 2024).
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Figure 9: Taxonomy of "Model Compression methods
for Large Language Models" generated by TnTLLM
(Wan et al., 2024).
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Figure 10: Taxonomy of "Model Compression meth-
ods for Large Language Models" generated by GoalEx
(Wang et al., 2023b).
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Figure 11: Taxonomy of "Model Compression methods
for Large Language Models" generated by Knowledge-
Navigator (Katz et al., 2024).
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Figure 12: Taxonomy of "Model Compression methods
for Large Language Models" generated by SCYCHIC
(Gao et al., 2025).
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{
    "Research Problem": "A brief statement of 
the problem addressed in this study and its 
significance.",
    "Key Contributions": "A summary of the main 
innovations and improvements introduced by this 
study.",
    "Method": "A concise summary of the 
methodological approach employed in the study",
    "Datasets": "The datasets used in the 
study, their sources, and their characteristics 
(size, type, domain).",
    "Experimental Setup": "Key details of the 
experiment, including training strategies, 
hyperparameter tuning, hardware setup, and 
baseline implementations.",
    "Evaluation Metrics": "The metrics used to 
assess performance (e.g., accuracy, BLEU, 
ROUGE, F1-score, MSE).",
    "Results & Findings": "Summary of the main 
experimental outcomes and how they compare with 
state-of-the-art methods."
}

Fixed Aspects

Figure 13: Fix aspects we used.

System
You are an expert in research survey writing and 
taxonomy design.

Your goal is to abstract and design high-level, 
generalizable dimensions to characterize a set of 
research papers collectively. 
Focus on identifying abstract dimensions, not on listing 
concrete topics, methods, or datasets.

Each dimension should have:
- A clear and concise name
- A short explanation of what the dimension captures (no 
more than 20 words)

Prioritize coherence and coverage when selecting 
dimensions: they should jointly cover the main aspects 
of the research without significant overlap.

You must output the results in strict JSON format: 
{"Dimension Name": "Explanation"}.

Be concise, formal, and highly structured. Avoid free 
text explanations.
Avoid mentioning any specific methods, dataset names, 
model architectures, task examples, or experimental 
details.

User
Here is a list of paper titles related to [TITLE]:

[PAPERS]

Analyze these papers based on their titles only. 
Design and output a set of general, abstract dimensions 
(no more than 10 and no less than 4) suitable for 
characterizing the research collectively according to 
the given instructions. 
- Do not list topics, methods, or datasets individually.
- Keep each explanation within 20 words. 
- Output only the dimension names and their explanations 
in JSON format.

First Level Aspects Generation 

System
You are an expert in research survey writing and 
taxonomy design.

Your task is to refine and extend an existing high-level 
analysis dimension by proposing a finer-grained 
categorization suitable for organizing research papers 
more precisely.

Given:
- A selected high-level analysis dimension (e.g., 
Research Focus, Methodology, or Evaluation Setting)
- A set of research papers, each with a brief 
description relevant to the selected dimension

Your task is to:
- Analyze the papers and their descriptions
- Propose several finer-grained sub-dimensions under the 
given high-level dimension
- Each sub-dimension must have:

- A clear and concise name
- A short explanation of what it captures

Guidelines:
- Sub-dimensions should be specific enough to 
differentiate papers within the topic
- They must be generalizable and reusable, not overly 
tied to individual papers
- Maintain formal academic tone
- Avoid listing specific paper names or copying text 
from descriptions
- Output must be structured strictly in JSON format: 
{"Sub-Dimension Name": "Short explanation"}

User
Here is the list of papers related to [TITLE] and their 
corresponding descriptions about high-level dimension 
[TOPIC]:

[PAPERS]

Task:
- Based on the descriptions, generate 2–6 sub-dimensions 
that fall under the given high-level dimension.
- Each sub-dimension should have a concise name and a 
short explanation.
- Output only the structured JSON as specified.

Other Level Aspects Generation 

System
You are a research analysis assistant tasked with 
generating concise, structured summaries of academic 
papers under specific analytical dimensions.

Given:
- A paper’s title, abstract, and optionally its 
introduction
- One or more predefined analytical dimensions (e.g., 
Research Focus, Methodology, Evaluation Setting)
- For each dimension, you may optionally be given a more 
specific sub-dimension (e.g., Research Focus → 
Hallucination Detection)

Your goal is to:
- Generate for each paper a short, informative, and 
targeted description under each given (sub-)dimension
- The description should be:

- Specific to the dimension
- Expressive of what the paper contributes, 

investigates, or demonstrates under that angle
- No longer than 100 words per dimension
- Not copied or directly paraphrased from the abstract

If no meaningful content relates to a dimension, return 
`"Not applicable"` as the value for that field.

Output must be structured JSON: {"Dimension Name or Sub-
Dimension Name": "Short description"}

User
Input Details 

I am going to provide the target paper as follows, 
extract and summarize the details: 
• Target aspects: [ASPECTS]

• Target paper title: [TITLE]

• Target paper abstract: [ABSTRACT]

• (Optional) Target paper introduction: [INTRODUCTION]

Aspect-based Summary Generation 

System
You are an expert in scientific research analysis. 

Your task is to generate meaningful and consistent names 
for multiple paper clusters under the same semantic 
topic path.

**Input Information**

- Title: [TITLE] — the broader research theme (e.g., 
LLMs for Causal Reasoning)

- Topic Path: [TOPIC] — the current semantic layer 
(e.g., Methodology or Methodology → LLMs as Reasoning 
Engines)

- Input: A dictionary of clusters, where each key is a 
cluster topic, and the value is a list of paper 
summaries

{
"cluster_1": [ {'Title': '...', 'Abstract': '...’}, 

...],
"cluster_2": [{'Title': '...', 'Abstract': '...’}, 

...],
...

}

**Your Tasks**

For each cluster, you must:

1. Carefully examine the topic path and understand the 
expected granularity:

- If the topic path is broad (e.g., Methodology), your 
output should be cluster names that describe the role, 
use, or behavior of LLMs, such as:

+ LLMs as Reasoning Engines
+ LLMs as Planning Assistants
+ LLMs as Helpers to Traditional Methods

- If the topic path is already specific (e.g., 
Methodology → LLMs as Reasoning Engines), your cluster 
names should reflect specific modeling or training 
strategies, such as:

+ Prompt Engineering
+ Chain-of-Thought Tuning
+ Knowledge-Augmented Fine-Tuning

2. Generate one precise and specific name for each 
cluster that captures its unifying theme.

**Output format (JSON)**:

{
"cluster_1": "LLMs as Symbolic Reasoning Agents",

Other Level Aspects Generation 

Figure 14: Prompt used for the first-level aspects gener-
ation.

System
You are an expert in research survey writing and 
taxonomy design.

Your goal is to abstract and design high-level, 
generalizable dimensions to characterize a set of 
research papers collectively. 
Focus on identifying abstract dimensions, not on listing 
concrete topics, methods, or datasets.

Each dimension should have:
- A clear and concise name
- A short explanation of what the dimension captures (no 
more than 20 words)

Prioritize coherence and coverage when selecting 
dimensions: they should jointly cover the main aspects 
of the research without significant overlap.

You must output the results in strict JSON format: 
{"Dimension Name": "Explanation"}.

Be concise, formal, and highly structured. Avoid free 
text explanations.
Avoid mentioning any specific methods, dataset names, 
model architectures, task examples, or experimental 
details.

User
Here is a list of paper titles related to [TITLE]:

[PAPERS]

Analyze these papers based on their titles only. 
Design and output a set of general, abstract dimensions 
(no more than 10 and no less than 4) suitable for 
characterizing the research collectively according to 
the given instructions. 
- Do not list topics, methods, or datasets individually.
- Keep each explanation within 20 words. 
- Output only the dimension names and their explanations 
in JSON format.

First Level Aspects Generation 

System
You are an expert in research survey writing and 
taxonomy design.

Your task is to refine and extend an existing high-level 
analysis dimension by proposing a finer-grained 
categorization suitable for organizing research papers 
more precisely.

Given:
- A selected high-level analysis dimension (e.g., 
Research Focus, Methodology, or Evaluation Setting)
- A set of research papers, each with a brief 
description relevant to the selected dimension

Your task is to:
- Analyze the papers and their descriptions
- Propose several finer-grained sub-dimensions under the 
given high-level dimension
- Each sub-dimension must have:

- A clear and concise name
- A short explanation of what it captures

Guidelines:
- Sub-dimensions should be specific enough to 
differentiate papers within the topic
- They must be generalizable and reusable, not overly 
tied to individual papers
- Maintain formal academic tone
- Avoid listing specific paper names or copying text 
from descriptions
- Output must be structured strictly in JSON format: 
{"Sub-Dimension Name": "Short explanation"}

User
Here is the list of papers related to [TITLE] and their 
corresponding descriptions about high-level dimension 
[TOPIC]:

[PAPERS]

Task:
- Based on the descriptions, generate 2–6 sub-dimensions 
that fall under the given high-level dimension.
- Each sub-dimension should have a concise name and a 
short explanation.
- Output only the structured JSON as specified.

Other Level Aspects Generation 

System
You are a research analysis assistant tasked with 
generating concise, structured summaries of academic 
papers under specific analytical dimensions.

Given:
- A paper’s title, abstract, and optionally its 
introduction
- One or more predefined analytical dimensions (e.g., 
Research Focus, Methodology, Evaluation Setting)
- For each dimension, you may optionally be given a more 
specific sub-dimension (e.g., Research Focus → 
Hallucination Detection)

Your goal is to:
- Generate for each paper a short, informative, and 
targeted description under each given (sub-)dimension
- The description should be:

- Specific to the dimension
- Expressive of what the paper contributes, 

investigates, or demonstrates under that angle
- No longer than 100 words per dimension
- Not copied or directly paraphrased from the abstract

If no meaningful content relates to a dimension, return 
`"Not applicable"` as the value for that field.

Output must be structured JSON: {"Dimension Name or Sub-
Dimension Name": "Short description"}

User
Input Details 

I am going to provide the target paper as follows, 
extract and summarize the details: 
• Target aspects: [ASPECTS]

• Target paper title: [TITLE]

• Target paper abstract: [ABSTRACT]

• (Optional) Target paper introduction: [INTRODUCTION]

Aspect-based Summary Generation 

System
You are an expert in scientific research analysis. 

Your task is to generate meaningful and consistent names 
for multiple paper clusters under the same semantic 
topic path.

**Input Information**

- Title: [TITLE] — the broader research theme (e.g., 
LLMs for Causal Reasoning)

- Topic Path: [TOPIC] — the current semantic layer 
(e.g., Methodology or Methodology → LLMs as Reasoning 
Engines)

- Input: A dictionary of clusters, where each key is a 
cluster topic, and the value is a list of paper 
summaries

{
"cluster_1": [ {'Title': '...', 'Abstract': '...’}, 

...],
"cluster_2": [{'Title': '...', 'Abstract': '...’}, 

...],
...

}

**Your Tasks**

For each cluster, you must:

1. Carefully examine the topic path and understand the 
expected granularity:

- If the topic path is broad (e.g., Methodology), your 
output should be cluster names that describe the role, 
use, or behavior of LLMs, such as:

+ LLMs as Reasoning Engines
+ LLMs as Planning Assistants
+ LLMs as Helpers to Traditional Methods

- If the topic path is already specific (e.g., 
Methodology → LLMs as Reasoning Engines), your cluster 
names should reflect specific modeling or training 
strategies, such as:

+ Prompt Engineering
+ Chain-of-Thought Tuning
+ Knowledge-Augmented Fine-Tuning

2. Generate one precise and specific name for each 
cluster that captures its unifying theme.

**Output format (JSON)**:

{
"cluster_1": "LLMs as Symbolic Reasoning Agents",

Other Level Aspects Generation 

Figure 15: Prompt used for the other-level aspects gen-
eration.
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System
You are an expert in research survey writing and 
taxonomy design.

Your goal is to abstract and design high-level, 
generalizable dimensions to characterize a set of 
research papers collectively. 
Focus on identifying abstract dimensions, not on listing 
concrete topics, methods, or datasets.

Each dimension should have:
- A clear and concise name
- A short explanation of what the dimension captures (no 
more than 20 words)

Prioritize coherence and coverage when selecting 
dimensions: they should jointly cover the main aspects 
of the research without significant overlap.

You must output the results in strict JSON format: 
{"Dimension Name": "Explanation"}.

Be concise, formal, and highly structured. Avoid free 
text explanations.
Avoid mentioning any specific methods, dataset names, 
model architectures, task examples, or experimental 
details.

User
Here is a list of paper titles related to [TITLE]:

[PAPERS]

Analyze these papers based on their titles only. 
Design and output a set of general, abstract dimensions 
(no more than 10 and no less than 4) suitable for 
characterizing the research collectively according to 
the given instructions. 
- Do not list topics, methods, or datasets individually.
- Keep each explanation within 20 words. 
- Output only the dimension names and their explanations 
in JSON format.

First Level Aspects Generation 

System
You are an expert in research survey writing and 
taxonomy design.

Your task is to refine and extend an existing high-level 
analysis dimension by proposing a finer-grained 
categorization suitable for organizing research papers 
more precisely.

Given:
- A selected high-level analysis dimension (e.g., 
Research Focus, Methodology, or Evaluation Setting)
- A set of research papers, each with a brief 
description relevant to the selected dimension

Your task is to:
- Analyze the papers and their descriptions
- Propose several finer-grained sub-dimensions under the 
given high-level dimension
- Each sub-dimension must have:

- A clear and concise name
- A short explanation of what it captures

Guidelines:
- Sub-dimensions should be specific enough to 
differentiate papers within the topic
- They must be generalizable and reusable, not overly 
tied to individual papers
- Maintain formal academic tone
- Avoid listing specific paper names or copying text 
from descriptions
- Output must be structured strictly in JSON format: 
{"Sub-Dimension Name": "Short explanation"}

User
Here is the list of papers related to [TITLE] and their 
corresponding descriptions about high-level dimension 
[TOPIC]:

[PAPERS]

Task:
- Based on the descriptions, generate 2–6 sub-dimensions 
that fall under the given high-level dimension.
- Each sub-dimension should have a concise name and a 
short explanation.
- Output only the structured JSON as specified.

Other Level Aspects Generation 

System
You are a research analysis assistant tasked with 
generating concise, structured summaries of academic 
papers under specific analytical dimensions.

Given:
- A paper’s title, abstract, and optionally its 
introduction
- One or more predefined analytical dimensions (e.g., 
Research Focus, Methodology, Evaluation Setting)
- For each dimension, you may optionally be given a more 
specific sub-dimension (e.g., Research Focus → 
Hallucination Detection)

Your goal is to:
- Generate for each paper a short, informative, and 
targeted description under each given (sub-)dimension
- The description should be:

- Specific to the dimension
- Expressive of what the paper contributes, 

investigates, or demonstrates under that angle
- No longer than 100 words per dimension
- Not copied or directly paraphrased from the abstract

If no meaningful content relates to a dimension, return 
`"Not applicable"` as the value for that field.

Output must be structured JSON: {"Dimension Name or Sub-
Dimension Name": "Short description"}

User
Input Details 

I am going to provide the target paper as follows, 
extract and summarize the details: 
• Target aspects: [ASPECTS]

• Target paper title: [TITLE]

• Target paper abstract: [ABSTRACT]

• (Optional) Target paper introduction: [INTRODUCTION]

Aspect-based Summary Generation 

System
You are an expert in scientific research analysis. 

Your task is to generate meaningful and consistent names 
for multiple paper clusters under the same semantic 
topic path.

**Input Information**

- Title: [TITLE] — the broader research theme (e.g., 
LLMs for Causal Reasoning)

- Topic Path: [TOPIC] — the current semantic layer 
(e.g., Methodology or Methodology → LLMs as Reasoning 
Engines)

- Input: A dictionary of clusters, where each key is a 
cluster topic, and the value is a list of paper 
summaries

{
"cluster_1": [ {'Title': '...', 'Abstract': '...’}, 

...],
"cluster_2": [{'Title': '...', 'Abstract': '...’}, 

...],
...

}

**Your Tasks**

For each cluster, you must:

1. Carefully examine the topic path and understand the 
expected granularity:

- If the topic path is broad (e.g., Methodology), your 
output should be cluster names that describe the role, 
use, or behavior of LLMs, such as:

+ LLMs as Reasoning Engines
+ LLMs as Planning Assistants
+ LLMs as Helpers to Traditional Methods

- If the topic path is already specific (e.g., 
Methodology → LLMs as Reasoning Engines), your cluster 
names should reflect specific modeling or training 
strategies, such as:

+ Prompt Engineering
+ Chain-of-Thought Tuning
+ Knowledge-Augmented Fine-Tuning

2. Generate one precise and specific name for each 
cluster that captures its unifying theme.

**Output format (JSON)**:

{
"cluster_1": "LLMs as Symbolic Reasoning Agents",

Other Level Aspects Generation 

Figure 16: Prompt used for aspected-based summary
generation.

System 
You are an expert in scientific research analysis. 

Your task is to generate meaningful and consistent names for 
multiple paper clusters under the same semantic topic path.

**Input Information**

- Title: [TITLE] — the broader research theme (e.g., LLMs 
for Causal Reasoning)

- Topic Path: [TOPIC] — the current semantic layer (e.g., 
Methodology or Methodology → LLMs as Reasoning Engines)

- Input: A dictionary of clusters, where each key is a 
cluster topic, and the value is a list of paper summaries

{
 "cluster_1": [ {'Title': '...', 'Abstract': '...’}, ...],
 "cluster_2": [{'Title': '...', 'Abstract': '...’}, ...],
 ...

}

**Your Tasks**

For each cluster, you must:

1. Carefully examine the topic path and understand the 
expected granularity:

- If the topic path is broad (e.g., Methodology), your 
output should be cluster names that describe the role, use, 
or behavior of LLMs, such as:

 + LLMs as Reasoning Engines
 + LLMs as Planning Assistants
 + LLMs as Helpers to Traditional Methods

- If the topic path is already specific (e.g., Methodology 
→ LLMs as Reasoning Engines), your cluster names should 
reflect specific modeling or training strategies, such as:

 + Prompt Engineering
 + Chain-of-Thought Tuning
 + Knowledge-Augmented Fine-Tuning

2. Generate one precise and specific name for each cluster 
that captures its unifying theme.

**Output format (JSON)**:

{
 "cluster_1": "LLMs as Symbolic Reasoning Agents",
 "cluster_2": "Prompt Engineering for Causal Inference 

Tasks",
 "cluster_3": "Fine-tuned LLMs for Structured Reasoning"

}

**Constraints**

- Cluster Name should be specific, functional, and grounded 
in the shared patterns of the papers

- Do not include generic names like “LLM Applications” or 
“Recent Advances”

- Maintain strict JSON format

User 
Here is the list of papers related to [TITLE] and their 
corresponding descriptions about high-level dimension 
[TOPIC]:

[PAPERS]

Task:
- Based on the descriptions, generate 2–6 sub-dimensions 
that fall under the given high-level dimension.
- Each sub-dimension should have a concise name and a short 
explanation.
- Output only the structured JSON as specified.

Topic Facets Generation 

Figure 17: Prompt used for topic facets generation.
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