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ABSTRACT

We consider the problem of training a global model in a distributed setting and
develop an unbiased estimate of the overall true risk minimizer of multiple clients
under challenging inter-client and intra-client label shifts as a stepping stone to
provably address distribution shifts in real world. We generalize the family of
Maximum Likelihood Label Shift (MLLS) density estimation methods inspired by
a board family of Integral Probability Metrics and introduce the Variational Regu-
larized Label Shift (VRLS) family of density ratio estimation methods and show
all MLLS methods are special cases of VRLS under specific latent spaces. Our
theory shows high-probability estimation error bounds achieved through a versatile
regularization term in VRLS. Our extensive numerical experiments demonstrate
that VRLS establishes a new SotA in density ratio estimation surpassing all base-
lines in MNIST, Fashion MNIST, CIFAR-10 datasets and relaxed label shifts as
a proxy of real-world settings. In distributed settings, our importance-weighted
empirical risk minimization with VRLS outperforms federated averaging and other
baselines in imbalanced settings under drastic and challenging label shifts.1

1 INTRODUCTION

Supervised learning trains a machine learning model, e.g., a neural network, given access to training
samples, each as a pair of (feature, label). The cornerstone of classical learning theory hinges on
the assumption that data samples, both in training and test time, are independently and identically
distributed (i.i.d.). However, such i.i.d. premise becomes overly idealistic in the context of real-world
settings where training and test data can be drawn from different distributions, which may change
dynamically as the operation environment evolves. As initial attempts to address joint distribu-
tion shifts in real world, two models for distribution shifts are common: covariate shift and label

Figure 1: MSE on CIFAR-10 under Re-
laxed Label Shift.

shift (Sugiyama et al., 2007; Lipton et al., 2018; Garg et al.,
2022; Mani et al., 2022; Zhou et al., 2023). Covariate shift
assumes the conditional distribution of labels y given features
x remains the same across train and test, i.e., ptr(y|x) =
pte(y|x) := p(y|x). Label shift assumes the marginal train
distribution ptr(y) and test distribution pte(y) can be arbitrar-
ily different; while the conditional distribution p(x|y) remains
relatively stable. The evolving COVID-19 pandemic, charac-
terized by fluctuating infection rates across regions, serves as
a tangible example of label shift. This scenario can aptly be
modeled under a federated learning framework, given the local-
ized nature of outbreaks and developments. Another example
for label shift is variations in text sentiments over time with
economy status. Intuitively, label shift arises when labels y
cause features x (Zhang et al., 2013; Lipton et al., 2018; Rabanser et al., 2019; Garg et al., 2020;
2023). In this paper, we focus on addressing label shift both in a single client and federated settings.

Federated Learning (FL) emerges as a robust and privacy-preserving framework for collaboratively
learning a machine learning model across multiple clients such as hospitals and smartphones without
sharing clients’ local data, where distribution shifts generally exist. To train the model, current FL

1We will release the code publicly along with the final version.

1



Under review as a conference paper at ICLR 2024

literature has primarily adopted the empirical risk minimization (ERM), tacitly assuming identity
of training and test data distributions for each client. This simplifying assumption does not address
statistical heterogeneity in realistic settings. This heterogeneity is manifested in the form of inter-
client distribution shifts (variations among clients) and intra-client distribution shifts (variations
within a single client). To rigorously and properly address statistical heterogeneity in realistic FL
settings, it is crucial to look beyond ERM. In this paper, we propose an Importance-weighting ERM
(IW-ERM) framework to address joint intra-client and inter-client label shifts with generalization
guarantees. Our IW-ERM handles intra-processor and inter-processor distribution shifts in any
distributed platform including cloud computing, supercomputing, and volunteer computing.

The main technical challenge to provably handle label shifts is to efficiently and accurately estimate
density ratios pte(y)/ptr(y) for all labels taking into account both intra- and inter-client label shifts.
Having access to labeled training data and sufficient number of unlabeled test samples, techniques
such as Black Box Shift Estimation (BBSE) of Saerens et al. (2002); Lipton et al. (2018); Rabanser
et al. (2019) and Regularized Learning under Label Shift (RLLS) of Azizzadenesheli et al. (2019)
employ a confusion matrix strategy to estimate these ratios. Garg et al. (2020) has proposed the
Maximum Likelihood Label Shift Estimation (MLLS) method, which unifies both BBSE and RLLS
with a maximum likelihood estimation framework and learning a predefined predictor f through either
expectation-maximization (EM) of Saerens et al. (2002) or other first-order optimization variants.
Empirical results showcase that MLLS paired with a post-hoc calibration method, e.g, Bias-Corrected
Calibration (BCT) of Alexandari et al. (2020) outperforms vanilla BBSE.

A canonical calibrated predictor is essential for ratio estimation in MLLS (Garg et al., 2020). Concur-
rently, domain alignment stands as a common strategy in handling domain adaptation issues (Fernando
et al., 2013; Kumar et al., 2018). Nonetheless, applying alignment directly in FL settings presents
challenges; the variability of label shifts across clients and accessing unlabeled test data violates strin-
gent privacy requirements. To improve estimation error and generalization of the MLLS family, we
introduce a distinct latent variable z, different from that in MLLS family and reformulate the unified
MLLS by incorporating a regularization term for the predictor f . This term ensures consistency of
predicted labels in our designated latent space z between two predefined input latent distributions.
Subsequently, we employ parameterized variational distributions to approximate the true input latent
distributions to minimize the discrepancy within the latent space z under the worst-case scenario.
The MLLS family can be degenerated from our method under special settings.

In FL, we propose an Importance Weighted ERM (IW-ERM) framework with generalization guaran-
tees and same privacy guarantees as ERM baselines. Our method of density ratio estimation trains the
pre-defined predictor exclusively using local training data. For ratio estimation, the communication
between clients involves only the estimated marginal label distribution, instead of data, ensuring
privacy preservation and negligible communication overhead.

1.1 SUMMARY OF CONTRIBUTIONS

• We show that performance disparity among variants of MLLS reported in (Garg et al., 2020) is
indeed due to implementation issues. We empirically demonstrate that MLLS, under varying shift
parameters, when paired with both EM and convex optimization, outperforms the gradient-based
methods and reach to the same optimal solution, which matches the theory (Fig. 1).

• We propose a novel method for density ratio estimation in two stages that employs variational
inference with dual latent variables. This method uniquely combines a Dirichlet prior and integrates
a versatile regularization term for the predictor, rooted in the broad family of Integral Probability
Metrics (IPM) (Sriperumbudur et al., 2009) and metric space similarity comparisons. Moreover,
we implement our method using Maximum Mean Discrepancy (MMD) (Gretton et al., 2012) with
various kernels.

• We show importance weighting does not negatively impact the convergence rates and communica-
tion guarantees in a broad range of importance optimization settings.

• Our empirical results over MNIST, Fashion MNIST, and CIFAR-10 datasets showcase the superior
performance of our ratio estimation in reducing estimation errors compared all MLLS baselines.
Furthermore, our approach exhibits enhanced robustness in scenarios involving relaxed label shifts
(Fig. 1) and demonstrates improved performance under stringent worst-case sampling conditions.
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• We have successfully incorporated our ratio estimation into FL, demonstrating close performance
to an upper bound with true ratios on Fashion MNIST and CIFAR-10 datasets with 5 and 100
clients. Our IW-ERM framework adeptly handles both inter- and intra-client label shifts while
preserving privacy and ensuring generalization guarantees and shows up to 20% improvements in
terms of average test error over current baselines.

1.2 RELATED WORK

In this section, we overview summary of related work. See Appendix A for complete discussion.

Federated Learning. The current FL research predominantly centers around the minimization of
the empirical risk, operating under the assumption that each client maintains the same training/test
data distribution and heuristic-based personalization methods to handle statistical heterogeneity across
clients (Kairouz et al., 2021). In contrast, we aim to minimize overall test error under intra-client and
inter-client label shifts, which is a major challenge in real-world scenarios (Garg et al., 2023).

Importance Weighting, Label Shift, and MLLS Family. Shimodaira (2000) has shown that the
IW-ERM estimator is asymptotically unbiased. Recently, Ramezani-Kebrya et al. (2023) introduced
FTW-ERM, which integrates density ratio estimation to handle covariate shifts in FL. In this paper,
we focus on label shifts and show that our IW-ERM with VRLS performs very close to the upper
bound under true ratios in (Ramezani-Kebrya et al., 2023) without sharing any local data.

Density ratio estimation for label shifts has been tackled by solving a linear system (Lipton et al.,
2018; Azizzadenesheli et al., 2019) and by minimizing distribution divergence (Garg et al., 2020) for
one client. In (Saerens et al., 2002; Lipton et al., 2018; Azizzadenesheli et al., 2019; Garg et al., 2020),
the conditional distribution p(x|y) is strictly constant across train and test. Saerens et al. (2002);
Lipton et al. (2018) have proposed BBSE and RLLS by designating a discrete latent space z and
introduce a confusion matrix-based estimation method to compute the ratios. BBSE is straightforward
and has been proven consistency even when the predictor is not calibrated. However, its subpar
performance is attributed to the information loss inherent in the confusion matrix (Garg et al., 2020).
Garg et al. (2020) has introduced MLLS with a continuous latent space, resulting in a significant
enhancement in estimation performance, especially when combined with a post-hoc calibration
method (Shrikumar et al., 2019). In this work, we focus on overall generalization performance on
multiple clients under both intra-client and inter-client label shifts in FL compared to (Garg et al.,
2020), we consider a more general latent space and extend our consideration to relaxed label shift.

Notation: We use E[·] to denote the expectation and ∥ · ∥ to represent the Euclidean norm of a vector.
We use lower-case bold font to denote vectors. Sets and scalars are represented by calligraphic and
standard fonts, respectively. We use [n] to denote {1, . . . , n} for an integer n. We use ≲ to ignore
terms up to constants and logarithmic factors.

2 LABEL SHIFT AND IW-ERM

Let X ⊆ Rd0 be a compact metric space for input features, Y be a discrete label space with |Y| = m,
and K be the number of clients in an FL setting. Let Sk = {(xtr

k,i, y
tr
k,i)}

ntr
k

i=1 denote the training
set of client k with ntr

k samples drawn i.i.d from a probability distribution ptrk on X × Y . The test
data of client k, is drawn from another probability distribution ptek on X × Y . We assume that the
class-conditional distribution ptrk (x|y) = ptek (x|y) := p(x|y) remains the same for all client k. This
is a common assumption and holds when label shifts primarily affect the prior distribution of the
labels p(y) rather than the underlying feature distribution given the labels and holds when the way
features are generated given a label remains constant (Zadrozny, 2004; Huang et al., 2006; Sugiyama
et al., 2007). Note that ptrk (y) and ptek (y) can be arbitrarily different, which gives rise to intra-client
and inter-client label shifts (Zadrozny, 2004; Huang et al., 2006; Sugiyama et al., 2007; Garg et al.,
2023). To better model realistic settings, in Section 5, we extend our consideration to relaxed label
shift notion of Garg et al. (2023).

Our primary goal is to find an unbiased estimate of the overall true risk minimizer of multiple clients
under intra-client and inter-client label shifts, i.e., to find a hypothesis hw ∈ H : X → Y , e.g., a
neural network parameterized by w, such that hw(x) is a good approximation of the label y ∈ Y
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corresponding to a fresh sample x ∈ X drawn from the aggregated test data. Let ℓ : X × Y → R+

denote a loss function. Client k aims to learn a hypothesis hw that minimizes its true (expected) risk:

Rk(hw) = E(x,y)∼pte
k (x,y)[ℓ(hw(x),y)].

We now modify the classical ERM and formulate IW-ERM to find a predictor that minimizes the
aggregate true risk over all clients:

min
hw∈H

K∑
k=1

λk

ntr
k

ntr
k∑

i=1

∑K
j=1 p

te
j (ytr

k,i)

ptrk (y
tr
k,i)

ℓ(hw(xtr
k,i),y

tr
k,i) (IW-ERM)

where
∑K

k=1 λk = 1 and λk ≥ 0.

Proposition 1. Let λ ⪰ 0 with 1⊤λ = 1. The (IW-ERM) is consistent and the learned function hw

converges in probability to the optimal function in terms of minimizing the overall true risk
∑K

k=1 Rk.

Proof. See Appendix C. The convergence in probability is followed the arguments in (Shimodaira,
2000)[Section 3] and (Sugiyama et al., 2007)[Section 2.2] using the law of large numbers. ■

3 DENSITY RATIO ESTIMATION

To solve Eq. (IW-ERM), client k should have access to an accurate estimate of rk(y) =∑K
j=1 p

te
j (y)/ptrk (y). For rotational simplicity, we first consider the scenario where we have only

one client under label shifts and then extend to multiple clients. The goal is to estimate this ratio:

r(y) =
pte(y)

ptr(y)
. (Ratio)

3.1 REGULARIZED RATIO ESTIMATION

We introduce a distinct latent space, denoted as Z , which represents the kernel-transformed predictor
output. Subsequently, we define a novel pre-determined function h(x) = g(f(x)) to approximate
ptr(z|x) =

∑
y p

tr(z|y)ptr(y|x)as an alternative to using f(x) for approximating ptr(y|x) as in
BBSE and MLLS. Within this framework, the predictor f is employed to approximate ptr(y|x), and
the outer mapping g is used to approximate ptr(z|y). Given these approximations, we formulate the
following optimization problem to estimate density ratios:

rf := argmax
r∈R

(
Ete

[
log(f(x)T r) + log g(f(x))

])
(Reg-Est)

where r includes estimates of Eq. (Ratio) for all classes and R is the constraint set defined similar
to (Garg et al., 2020). In Eq. (Reg-Est), the first term aligns with the MLLS objective, while the
second term serves as a regularization component for the predictor f . This regularization is defined
over the test distribution within the latent space Z . Given a fixed predictor f w.r.t. r, Eq. (Reg-Est)
degenerates to MLLS family objective. Recognizing the inherent regularization properties, we
strategically incorporate the regularization term into the training process without accessing to test
distribution. This allows us to utilize it as a robust regularization component, thereby improving
estimation error. By replacing g with δargmax(·), Eq. (Reg-Est) reduces to MLLS_CM. Removing the
regularization term, e.g., by assuming g(f(x)) is deterministic, Eq. (Reg-Est) yields MLLS family of
Eq. (B.6) in Appendix B.

To solve Eq. (Reg-Est), we first focus on the second term and optimize the predictor f using training
samples with the cross-entropy loss and a regularization parameter λ > 0 in Eq. (3.1). Upon obtaining
improved f in Eq. (Reg-Est), the ratios are obtained by Eq. (3.2):

θ⋆ = argmin
θ

Etr [ℓCE(f(x;θ),y)− λ · log g(f(x;θ))] , (3.1)

rf⋆ = argmax
r∈R

Ete

[
log(f(x;θ⋆)⊤r)

]
. (3.2)
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3.2 VARIATIONAL APPROXIMATION WITH WORST-CASE SAMPLING

In Eq. (3.1), we establish the following lower bound on the second term by introducing two indepen-
dent dual latent variables z1 and z2:

Etr[log g(f(x))] ≥ EtrEq(z1,z2|x)
[log(g(f(x)))] + KL (q(z1, z2 | x)||p(z1, z2 | x)) . (3.3)

Given that g(f(x)) is strictly positive with a radial basis function (RBF) kernel selection, q(z1, z2 |x)
serves as an approximation to the true p(z1, z2 |x), and KL (q(z1, z2 |x)∥p(z1, z2 |x)) is positive.
We then optimize the lower bound by aligning g(f(x)) with z1 and z2 in Z and minimizing some
loss function ℓ(g(f(x))).

In label shift contexts, variations in p(y) influence p(x) through p(x) =
∑

y p(x|y)p(y). We adjust
to label distribution changes with a latent distribution parameterized by a Dirichlet distribution and
controlling parameter α over all classes. We approximate the true posteriors p(z1 |x) and p(z2 |x)
with variational distributions q(z1 |x, α) and q(z2 |x, α). Hence, the objective Eq. (3.1) becomes:

argmin
θ

Etr

[
ℓCE(f(x;θ),y) + λ · Eq(z1,z2|x,α) [ℓ(g(f(x;θ)))]

]
. (3.4)

3.2.1 WORST-CASE SAMPLING

To enhance the robustness w.r.t. q(z1, z2 | x, α), we generalize the objective in Eq. (3.4) as fol-
lows (Zhu et al., 2021):

θ⋆ = argmin
θ

Etr

[
ℓCE(f(x;θ),y) + λ · argmax

q(z1,z2|x,α)
Eq(z1,z2|x,α)ℓ(g(f(x;θ)))

]
(3.5)

where the worst-case latent variables z1, z2 are identified by maximizing over α while minimizing
the loss function ℓ(g(f(x;θ)).

Direct optimization of α to pinpoint the worst-case latent distributions is challenging due to the non-
differentiable nature of the process involving the determination of label marginal distribution p(y),
and data sampling. This challenge is mitigated by setting α based on a narrow normal distribution
around zero for “Pseudo-test” samples and α = ∞ for “Pseudo-training” samples. Here, under
λ = 0, Eq. (3.5) degenerates to the predictor in MLLS family.

3.3 SIMILARITY COMPARISON WITH IPM

For the loss function ℓ(g(f(x;θ))) in Eq. (3.5), we introduce a function g acting as a kernel function,
defining similarity within the Reproducing Kernel Hilbert Space (RKHS) (Zhu et al., 2021) using a
selected kernel and the MMD loss (Gretton et al., 2012):

Eq [ℓ(g(f(x;θ)))] = Eq

[
MMD2

f (z1, z2 | x)
]

:= Eq2 [k(f(x), f(x))]− 2Eq[k(f(x), f(x))] + Eq1 [k(f(x), f(x))]
(3.6)

where k(·, ·) denotes the RKHS defined by the kernel function g, and Eq , Eq1 , and Eq2 are notations
for Eq(z1,z2|x,α), Eq(z1|x,α), and Eq(z2|x,α), respectively. Importantly, we compute the Gram matrix
using data from both q1 and q2, rather than explicitly computing g(f(x)). The VRLS steps are
in Algorithm 1 in Appendix D.

3.4 RATIO ESTIMATION FOR FL UNDER LABEL SHIFTS

Having defined our density ratio estimation under label shifts, we further generalize this estimation
to FL settings under stringent privacy requirements. To estimate the ratios in Eq. (IW-ERM), each
client could potentially first train a predictor on local training data using Eq. (3.4) without sharing any
local data. The server then broadcasts the parameters of the predictor to each client. Clients employ
their local data to estimate both test and training label marginal distributions using the EM method.
This approach avoids the need to share any local data, with only test label marginal distributions
being shared among all clients. The ratios in Eq. (IW-ERM) are calculated by clients locally and
in parallel. The ratio estimation without sharing local data is described in Listing 1 in Appendix D.
Experiments in Section 5 validate that our IW-ERM framework significantly improves average test
error without sharing any local data and with negligible communication and computation overhead
over the baselines.
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4 THEORETICAL GUARANTEES

In this section, we provide guarantees on the finite sample errors incurred during the
estimation of rf⋆ and θ⋆. Indeed, in practice, we only dispose of a finite num-
ber of labeled samples {(xi,yi)}ni=1. These samples serve to compute the follow-
ing estimates: θ̂n = argmin

θ∈Θ

1
n

∑n
i=1 [ℓCE(f(xi;θ),yi)− λ · log g(f(xi;θ))], and r̂n =

argmax
r∈R

1
n

∑n
i=1

[
log(f(x; θ̂n)

⊤r)
]
. We will show that the errors of these estimates can be con-

trolled. The following assumptions are necessary to establish our results.
Assumption 1 (Boundedness). The data and the parameter space Θ are bounded, i.e, there exists
bX , bΘ > 0 such that

∀x ∈ X , ∥x∥2 ≤ bX and ∀θ ∈ Θ, ∥θ∥2 ≤ bΘ.

Assumption 2 (Calibration). Let θ⋆ be as defined in Eq. (3.5). There exists µ > 0 such that

E
[
f(x;θ⋆)f(x;θ⋆)⊤

]
⪰ µIm.

The calibration Assumption 2 first appears in Garg et al. (2020). It is necessary for the ratio estimation
procedure to be consistent and we refer the reader to Section 4.3 of Garg et al. (2020) for more details.
We further need Assumption 1 because, unlike (Garg et al., 2020), the empirical estimator r̂n is
estimated using another estimator θ̂n. Uniform bounds are therefore needed to control finite sample
error as we cannot directly apply concentration inequalities, as is done in the proof of (Garg et al.,
2020, Lemma 3), since we do not have independence of the terms appearing in the empirical sums.
We nonetheless prove a similar result in the following theorem.
Theorem 1. Let δ ∈ (0, 1) and F := {x 7→ r⊤f(x,θ), (r,θ) ∈ R × Θ}. Under Assumptions 1
and 2, there exists constants L > 0, B > 0 such that with probability at least 1− δ:

∥r̂n − rf⋆∥2 ≤ 2

µpmin

(
4√
n
Rad(F) + 4B

√
log(4/δ)

n

)
+

4L

µpmin
E
[
∥θ̂n − θ⋆∥2

]
.

where pmin = miny ptr(y) and Rad(F) = 1√
n
Eσ1,...,σn

[
sup(r,θ)∈R×Θ

∣∣∑n
i=1 σir

⊤f(xi,θ)
∣∣].

The Rademacher complexity appearing in the bound will depend on the architecture chosen for f .
Moreover as regularization often encourages lower complexity functions, this complexity can be
reduced because of the presence of the regularization term in the estimation of θ in our setting.

We now establish convergence rates for Eq. (IW-ERM) with VRLS and show our proposed importance
weighting achieves the same rates with the data-dependent constant terms increase linearly with
maxy∈Y supf rf (y) = rmax under negligible communication overhead over the baseline ERM-
solvers without importance weighting. In Appendix F, we establish tight convergence rates and
communication guarantees for Eq. (IW-ERM) with VRLS in a broad range of importance optimization
settings including convex optimization, second-order differentiability, composite optimization with
proximal operator, optimization with adaptive step-sizes, and nonconvex optimization, along the lines
of e.g., (Woodworth et al., 2020; Haddadpour et al., 2021; Glasgow et al., 2022; Liu et al., 2023; Hu
and Huang, 2023; Wu et al., 2023; Liu et al., 2023).
Theorem 2 (Convergence-Communication). Let maxy∈Y supf rf (y) = rmax. Suppose Algorithm 2
is run for T iterations. Then Algorithm 2 achieves a convergence rate of O(rmaxh(T )) where
O(h(T )) denotes the rate of ERM-solver baseline without importance weighting. Throughout the
course of optimization, Algorithm 2 has the same overall communication guarantees as the baseline.

Theorem 2 shows that importance weighting does not negatively impact the convergence rates and
communication guarantees throughout the course of optimization.

5 EXPERIMENTS

The experiments are roughly split into two sections: 1) Density ratio estimation performed on a single
client under intra-client label shift; 2) FL settings with 5 and 100 clients.
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Density Ratio Estimation. We begin by evaluating VRLS on MNIST (LeCun et al., 1998) and
CIFAR-10 (Krizhevsky) datasets in a single-client scenario, focusing on estimation error. We simulate
the test dataset using a Dirichlet distribution with varying alpha parameters, following the setup of
(Lipton et al., 2018). Higher α implies a smoother transition, and lower values indicate abrupt shifts.
The training dataset is uniformly distributed across all classes.

Initially, with a sample size of 5,000, we investigate 20 α values in the range of 10−1 to 101.
Subsequently, with a fixed α of 1.0 or 0.1, we explore 50 sample sizes between 200 and 10,000.
Both scenarios are run 100 times, calculating the mean squared error (MSE) between true ratios. For
pseudo-training samples, we maintain a uniform class distribution and select batch sizes like 100,
divisible by the number of classes. The choice of α for pseudo-test samples is informed by a normal
distribution, defining the label distribution p(y) and determining the number of samples per class
after fixing α. Experimental details and additional experiment are in Appendix H.

To evaluate relaxed label shift, we consider a distributional distance D and ϵ > 0. Garg et al. (2023)
define this as maxy D (ptr(x | y), pte(x | y)) ≤ ϵ. Instead of using temporally distinct datasets
(Garg et al., 2023) like CIFAR-10 and CIFAR-10.1_v6 (Torralba et al., 2008; Recht et al., 2018), we
employ a mild test data augmentation strategy to control the relaxation degree. To assess worst-case
robustness in Eq. (3.5), we introduce variations in the pseudo-test sampling parameter α by using
different means (-0.25, 0.0, 0.5) of the normal distribution for log_alpha selection.

A two-layer MLP is used on MNIST and ResNet-18 (He et al., 2016) on CIFAR-10 with post-hoc
calibration same as MLLS. The kernels employed are linear for MNIST and RBF with a deviation of
0.25 for CIFAR-10.

Fig. 2 illustrates the comparable and superior performance of MLLS with convex optimization
(MLLS_L1 and MLLS_L2 with convex solver) and the EM method (MLLS_EM), especially under
severe shifts, relative to the gradient-based method (MLLS_CG with conjugate gradient descent). We
later designate MLLS_EM and MLLS_L2 as baselines, and Fig. 3 shows our method consistently
achieves lower MSE loss under various label shifts and sample sizes. Even under relaxed label shift
conditions, our method outperforms the baselines, as shown in Fig. 4.

Lastly, ablation studies in Fig. 5 depicts the decline in performance with negative steering of the
normal distribution of α, indicating worsened scenarios and increased MSE.

FL Settings. We further apply VRLS in a FL context, addressing intra- and inter-client label shifts.
Initially, experiments are conducted with 5 clients, utilizing predefined label distributions on Fashion
MNIST (Xiao et al., 2017) and CIFAR-10, as illustrated in Table 7 and Table 8 (complete results
in Appendix H). A sophisticated MLP with dropout serves as the predictor for Fashion MNIST. For
the global training with IW-ERM, LeNet (LeCun et al., 1998) and ResNet-18 are adopted on Fashion
MNIST and CIFAR-10 (Ramezani-Kebrya et al., 2023), respectively. We run experiments with three
seeds, average the accuracy across clients, and compare IW-ERM with VRLS to FedAvg and FedBN
baselines, as well as IW-ERM with the true ratios Upper Bound. All hyper-parameters are maintained
consistent with those outlined in (McMahan et al., 2017; Li et al., 2021a; Ramezani-Kebrya et al.,
2023).

Subsequently, we execute experiments involving 100 clients on CIFAR-10, selecting five clients
randomly at each iteration to simulate a scenario closer to real-world FL. Here, IW-ERM with the
true ratios does not act as the upper bound due to client sampling. The experiment is conducted once,
and the average accuracy across clients is noted, with the label distribution detailed in Table 9.

Despite the reported slow convergence of FedBN in (Ramezani-Kebrya et al., 2023), for a fair
comparison, we retain 15,000 and 10,000 iterations for both FedAvg and FedBN on Fashion MNIST
and CIFAR-10, respectively, while limiting IW-ERM to 5,000 iterations with both true and our
estimated ratios, owing to their rapid convergence.

Table 1 demonstrates that our IW-ERM surpasses the FedAvg and FedBN baselines by over 20% in
average accuracy with only a third of the iterations on Fashion MNIST. Similarly, Table 2 reveals
that our IW-ERM nearly reaches the upper bound on CIFAR-10, outperforming both baselines. The
individual accuracy for each client is detailed in Table 5 and Table 6. In the 100-client scenario, our
IW-ERM continues to exhibit superiority, requiring only half the iterations, as shown in Table 3. It is
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Figure 2: MSE analysis on MNIST for MLLS baselines. Left: Performance evaluation across different alpha
values, comparing the MLLS_EM, MLLS_L1, and MLLS_L2 methods with MLLS_CG with conjugate gradient
descent. Both the EM and convex optimization methods demonstrate similar and superior performance compared
to the gradient-based method, especially under severe label shift conditions. Middle: MSE analysis at an α
of 1.0, highlighting the comparable performance of various methods, with the exception of MLLS_CG. Right:
Analysis at α = 0.1 illustrating that MLLS_CG is significantly inferior to both the EM and convex optimization
methods, consistent with the left plot.

(a) (b) (c) (d)

Figure 3: MSE analysis on MNIST and CIFAR-10 for VRLS (ours) compared to baselines. Figs. 3a and 3c
illustrate the consistent superiority of VRLS over MLLS baselines across varying alpha values on both datasets.
Figs. 3b and 3d demonstrate VRLS performance improvement with different test sizes on both MNIST and
CIFAR-10.

noteworthy that the use of true ratios does not necessarily signify FTW-ERM, given the stochastic
nature of client selection for training in each iteration.

Table 1: We employ LeNet on Fashion MNIST, addressing label shifts across 5 clients. For FedAvg, FedBN,
FedProx and SCAFFOLD, we run 15,000 iterations, while running only 5,000 iterations for both Upper Bound
(IW-ERM with true ratios) employing true ratios and our IW-ERM with VRLS. It is worth mentioning that, for
training our predictor, we utilize a simple MLP with dropout and incorporate a linear kernel. Detailed results are
documented in Table 5.

Method Avg.accuracy

Our IW-ERM 0.7520 ± 0.0209

FedAvg 0.5472 ± 0.0297

FedBN 0.5359 ± 0.0306

FedProx 0.5606 ± 0.0070

SCAFFOLD 0.5774± 0.0036

Upper Bound 0.8273 ± 0.0041

6 CONCLUSIONS AND FUTURE WORK

We have addressed intra- and inter-client label shifts as a major challenge in FL by developing an
efficient and privacy-preserving IW-ERM. Our density ratio estimation incorporates regularization di-
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(a) (b) (c) (d)

Figure 4: Extended MSE analysis on CIFAR-10 illustrating the impact of simulated relaxed label shift conditions
effected through slight data augmentations applied to the test dataset. Figs. 4a and 4b test data augmentation
with a 30% chance of occurrence: Gaussian blur (kernel size: 3; σ: 0.1–0.5) and brightness adjustment (factor:
±0.1), instilling a degree of real-world variability. Figs. 4c and 4d showcase a 50% probability of similar
augmentation but with attenuated parameters for blur (σ: 0.1–0.7) and brightness (factor: ±0.2), exploring the
impacts of more subtle adjustments.

Figure 5: Ablation studies by varying α’s and test sizes on CIFAR-10 for VRLS (ours). Left: The analysis
conducted under three scenarios differentiated by the means of the Dirichlet parameter log_alphas sampled
with the same RBF configuration: RBF_1 (mean=0.0, std=0.25), RBF_2 (mean=-0.25, std=0.25), and RBF_3
(mean=0.5, std=0.25), suggesting a negative mean direction enhances performance. Center: We assess
performance across varying test sizes at α = 1.0, using three different log_alpha setups. The results indicate a
performance improvement trajectory from RBF_3 to RBF_1, culminating in the highest performance at RBF_2.
Right: Analysis conducted at α = 0.1, illustrating the same trend observed at α = 1.0.

Table 2: We deploy ResNet-18 on CIFAR-10 to handle label shift across 5 clients. The predictor is also a
ResNet-18, equipped with an RBF kernel, maintaining consistency with the single-client scenario. To ensure a
fair comparison, we conduct 5,000 iterations for IW-ERM with VRLS and true ratios, while running 10,000
iterations for both FedAvg and FedBN. Detailed results are documented in Table 6.

CIFAR-10 Our IW-ERM FedAvg FedBN Upper Bound

Avg. accuracy 0.5640 ± 0.0241 0.4515 ± 0.0148 0.4263 ± 0.0975 0.5790 ± 0.0103

Table 3: We present the average client accuracies from the CIFAR-10 target shift experiment conducted across
100 and 200 clients, with 5 clients randomly sampled to participate in each training round. Our IW-ERM with
VRLS runs for 5,000 and 10,000 iterations individually, while FedAvg and FedBN each runs 10,000 iterations.

CIFAR-10 Our IW-ERM FedAvg FedBN

Avg. accuracy (100 clients) 0.5354 0.3915 0.1537

Avg. accuracy (200 clients) 0.6216 0.5942 0.1753

rectly into the predictor training process along with a similarity comparison task designed specifically
for label shift assumptions. Our empirical results highlight significant performance improvements
of our VRLS compared to the MLLS family baselines across several datasets in a single-client
scenario as well as the superiority over all FL baselines. Overall, our VRLS with IW-ERM presents a
significant advancement in addressing label shifts challenges in FL.
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7 ETHICS STATEMENT

Developing privacy-preserving learning algorithms forms a cornerstone of responsible and ethical
AI practices. Our work addresses FL by developing innovative algorithms designed to potentially
eliminate the risk of data leakage with importance weighting. However, the long-term implications
of our schemes remain contingent upon the manner in which machine learning is implemented and
utilized within society.
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The supplementary part is organized as follows:

• All related work are provided in Appendix A.

• Additional details of prior work of BBSE and MLLS are in Appendix B.

• Mathematical proof for label shifts with multiple clients and IW-ERM is given in Ap-
pendix C.

• General algorithmic description is in Appendix D.

• Proof of Theorem 1 is in Appendix E.

• Proof of Theorem 2 and Convergence-Communication-Privacy guarantees for Eq. (IW-ERM)
are provided in Appendix F.

• We provide the comparison of Latent Distribution in Appendix G.

• Additional experiments and experimental details are provided in Appendix H.

• Complexity analysis is in Appendix I.

• Mathematical notations are summarized in Appendix J.

• Limitations are discussed in Appendix K.

A RELATED WORK

In the context of FL with label shifts, importance ratio estimation is tackled either by solving a
linear system as in (Lipton et al., 2018; Azizzadenesheli et al., 2019) or by minimizing distribution
divergence as in (Garg et al., 2020). In this section, we overview complete related work.

Federated learning. Much of the current research in FL predominantly centers around the min-
imization of empirical risk, operating under the assumption that each client maintains the same
training/test data distribution (Li et al., 2020; Kairouz et al., 2021; Wang et al., 2021). Prominent
methods in FL (Kairouz et al., 2021; Li et al., 2020; Wang et al., 2021) include FedAvg (McMahan
et al., 2017) and FedBN (Li et al., 2021a). FedAvg and its variants such as (Huang et al., 2021;
Karimireddy et al., 2020) have been the subject of thorough investigation in optimization litera-
ture, exploring facets such as communication efficiency, client participation, and privacy assurance
(Ramezani-Kebrya et al., 2023).Subsequent work, such as the study by de Luca et al. (2022), explores
Federated Domain Generalization and introduces data augmentation to the training. This model aims
to generalize to both in-domain datasets from participating clients and an out-of-domain dataset from
a non-participating client. Additionally, Gupta et al. (2022) introduces FL Games, a game-theoretic
framework designed to learn causal features that remain invariant across clients. This is achieved
by employing ensembles over clients’ historical actions and enhancing local computation, under
the assumption of consistent training/test data distribution across clients. The existing strategies
to address statistical heterogeneity across clients during training primarily rely on heuristic-based
personalization methods, which currently lack theoretical backing in statistical learning (Smith et al.,
2017; Khodak et al., 2019; Li et al., 2021b). In contrast, we aim to minimize overall test error amid
both intra-client and inter-client distribution shifts, a situation frequently observed in real-world
scenarios. Techniques ensuring communication efficiency, robustness, and secure aggregations serve
as complementary.

Importance ratio estimation Classical Empirical Risk Minimization (ERM) seeks to minimize
the expected loss over the training distribution using finite samples. When faced with distribution
shifts, the goal shifts to minimizing the expected loss over the target distribution, leading to the
development of Importance-Weighted Empirical Risk Minimization (IW-ERM)(Shimodaira, 2000;
Sugiyama et al., 2006; Byrd and C. Lipton, 2019; Fang et al., 2020). Shimodaira (2000) established
that the IW-ERM estimator is asymptotically unbiased. Moreover, Ramezani-Kebrya et al. (2023)
introduced FTW-ERM, which integrates density ratio estimation.

Label shift and MLLS family For theoretical analysis, the conditional distribution p(x|y) is held
strictly constant across all distributions (Lipton et al., 2018; Garg et al., 2020; Saerens et al., 2002).
Both BBSE (Lipton et al., 2018) and RLLS (Azizzadenesheli et al., 2019) designate a discrete latent
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space z and introduce a confusion matrix-based estimation method to compute the ratio w by solving
a linear system (Saerens et al., 2002; Lipton et al., 2018). This approach is straightforward and has
been proven consistent, even when the predictor is not calibrated. However, its subpar performance is
attributed to the information loss inherent in the confusion matrix (Garg et al., 2020).

Consequently, MLLS (Garg et al., 2020) introduces a continuous latent space, resulting in a significant
enhancement in estimation performance, especially when combined with a post-hoc calibration
method (Shrikumar et al., 2019). It also provides a consistency guarantee with a canonically calibrated
predictor. This EM-based MLLS method is both concave and can be solved efficiently.

Discrepancy Measure In information theory and statistics, discrepancy measures play a critical role
in quantifying the differences between probability distributions. One such measure is the Bregman
Divergence (Banerjee et al., 2005), defined as

Dϕ(x∥y) = ϕ(x)− ϕ(y)− ⟨∇ϕ(y),x− y⟩,

which encapsulates the difference between the value of a convex function ϕ at two points and the
value of the linear approximation of ϕ at one point, leveraging the gradient at another point.

Discrepancy measures are generally categorized into two main families: Integral Probability Metrics
(IPMs) and f -divergences. IPMs, including Maximum Mean Discrepancy (Gretton et al., 2012)
and Wasserstein distance (Villani, 2009), focus on distribution differences P − Q. In contrast,
f -divergences, such as KL-divergence (Kullback and Leibler, 1951) and Total Variation distance,
operate on ratios P/Q and do not satisfy the triangular inequality. Interconnections and variations
between these families are explored in studies like (f,Γ)-Divergences (Birrell et al., 2022), which
interpolate between f -divergences and IPMs, and research outlining optimal bounds between them
(Agrawal and Horel, 2020).

MLLS (Garg et al., 2020) employs f -divergence, notably the KL divergence, which is not a metric as
it doesn’t satisfy the triangular inequality, and requires distribution P to be absolutely continuous
with respect to Q. Concerning IPMs, while MMD is reliant on a kernel function, it can suffer from the
curse of dimensionality when faced with high-dimensional data. On the other hand, the Wasserstein
distance can be reformulated using Kantorovich-Rubinstein duality (Dedecker et al., 2006; Arjovsky
et al., 2017) as a maximization problem subject to a Lipschitz constrained function f : Rd → R.

B BBSE AND MLLS FAMILY

In this part, we conclude the contributions from (Lipton et al., 2018; Garg et al., 2020). Our goal
is to estimate the ratio pte(y)/ptr(y). In our setup, we set |Y| = m since we have m possible label
classes, denoted as y = i, for i ∈ [m] and [m] = {1, 2, . . . ,m}. Let r⋆ = [r⋆1 , . . . , r

⋆
m]⊤ denote the

true ratios. Each r⋆i is defined as r⋆i = pte(y = i)/ptr(y = i) (Garg et al., 2020). Then we first define
a a family of distributions over Z parameterized by r = [r1, . . . , rm]⊤ ∈ Rm, with ri being the i-th
element:

pr(z) :=

m∑
i=1

pte(z|y = i) · ptr(y = i) · ri (B.1)

where ri ≥ 0 for i ∈ [m] and
∑m

i=1 ri · ptr(y = i) =
∑m

i=1 p
te(y = i) = 1 as constraints. When

r = r⋆ (ri = r⋆i for i ∈ [m]), we have pr(z) = pr⋆(z) = pte(z) Garg et al. (2020). So our task is to
find r such that

m∑
i=1

pte(z|y = i) · ptr(y = i) · ri =
m∑
i=1

ptr(z, y = i) · ri = pte(z) (B.2)

Lipton et al. (2018); Garg et al. (2020) proposed Black Box Shift Estimation (BBSE) to solve this
problem. With a pre-defined predictor f trained on classification task, this approach assumes Z to
be discrete latent space and set p(z|x) = δargmax f(x) where the output of f(x) is m-digit simplex.
BBSE estimates the pte(z|y) as a confusion matrix using training and validation data, ptr(y = i)
with training set and pte(z) with test data. Then we just need to solve the equation:

Aw = B (B.3)
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where |Z| = m, A ∈ Rm×m with Aji = pte(z = j|y = i) · ptr(y = i), and B ∈ Rm with
Bj = pte(z = j) for i ∈ [m] and j ∈ [m].

The estimation of the confusion matrix in terms of pte(z|y) leads to the loss of calibration information
(Garg et al., 2020). Furthermore, when defining Z as a continuous latent space, the confusion matrix
becomes intractable since z has infinitely many values. Therefore, MLLS directly minimizes the
divergence between pte(z) and pr(z), instead of solving the linear system Eq. (B.3).

Within the f -divergence family, MLLS seeks to find a weight vector r by minimizing the KL-
divergence KL (pte(z), pr(z)) = Ete [log p

te(z)/pr(z)], for pr(z) defined in Eq. (B.1). Lever-
aging on the properties of the logarithm, this is equivalent to maximizing the log-likelihood:
r := argmaxr∈R Ete [log pr(z)]. Expanding pr(z), we have

Ete [log pr(z)] = Ete

[
log(

m∑
i=1

ptr(z, y = i)ri)

]

= Ete

[
log(

m∑
i=1

ptr(y = i | z)ri) + log ptr(z)

]
.

(B.4)

Therefore the unified form of MLLS can be formulated as:

r := argmax
r∈R

Ete

[
log(

m∑
i=1

ptr(y = i | z)ri)

]
. (B.5)

This is a convex optimization problem and can be solved efficiently using methods such as EM,
an analytic approach, and also iterative optimization methods like gradient descent with labeled
training data and unlabeled test data. MLLS defines the p(z|x) as δx, plugs in the pre-defined f to
approximate ptr(y|x) and optimizes the following objective:

rf := argmax
r∈R

ℓ(r, f) := argmax
r∈R

Ete

[
log(f(x)T r)

]
. (B.6)

With the Bias-Corrected Calibration (BCT) (Shrikumar et al., 2019) strategy, they adjust the logits
f̂(x) of f(x) element-wise for each class, and the objective becomes:

rf := argmax
r∈R

ℓ(r, f) := argmax
r∈R

Ete

[
log(g ◦ f̂(x))T r)

]
, (B.7)

where g is a calibration function.

By defining p(z|x) as δargmax f(x) and plugging in the predictor f as well as the post-hoc calibration
term, we derive the objective of MLLS-CM:

rf := argmax
r∈R

ℓ(r, f) := argmax
r∈R

Ete

[
log((g ◦ f̂(x))C)T r)

]
. (B.8)

where C ∈ Rm×m is the confusion matrix approximator of ptr(f̂(x)|y). MLLS-CM can be imple-
mented using EM with a transformed predictor (g ◦ f̂(x))C instead of g ◦ f̂(x) in MLLS.

C PROOF OF PROPOSITION 1

In the following, we consider four typical scenarios under various distributions shifts and formulate
their IW-ERM with a focus on minmizing R1.
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Table 4: Details of scenarios described in Section 2

Scenario #Clients Assumptions on Distributions Ratio Client i Needs
No-LS in (C.1) 2 ptr1 (y) = pte1 (y) and ptr1 (y) ̸= ptr2 (y) ptr1 (y)/p

tr
2 (y)

LS on single in (C.2) 2 ptr1 (y) ̸= pte1 (y) and ptr2 (y) = pte2 (y) pte1 (y)/ptr1 (y) and pte1 (y)/ptr2 (y)

LS on both in (C.2) 2 ptr1 (y) ̸= pte1 (y) and ptr2 (y) ̸= pte2 (y) pte1 (y)/ptr1 (y) and pte1 (y)/ptr2 (y)

LS on multi in (C.3) K ptrk (y) ̸= pte1 (y) for all k pte1 (y)/ptrk (y) for all k

C.1 NO INTRA-CLIENT LABEL SHIFT

For description simplicity, we assume that there are only 2 clients but our results can be directly
extended to multiple clients. This scenario assumes ptrk (y) = ptek (y) for k = 1, 2, but ptr1 (y) ̸=
ptr2 (y). Client 1 aims to learn hw assuming ptr

1 (y)
ptr
2 (y)

is given. We consider the following IW-ERM that
is proved to be consistent in terms of minimizing R1:

min
hw∈H

1

ntr
1

ntr
1∑

i=1

ℓ(hw(xtr
1,i),y

tr
1,i) +

1

ntr
2

ntr
2∑

i=1

ptr1 (y
tr
2,i)

ptr2 (y
tr
2,i)

ℓ(hw(xtr
2,i),y

tr
2,i). (C.1)

Here H is the hypothesis class of hw. The scenario is short for No-LS.

C.2 LABEL SHIFT ONLY FOR CLIENT 1

(short for LS on single) Here we consider label shift only for client 1, i.e., ptr1 (y) ̸= pte1 (y) and
ptr2 (y) = pte2 (y). We consider the following IW-ERM:

min
hw∈H

1

ntr
1

ntr
1∑

i=1

pte1 (ytr
1,i)

ptr1 (y
tr
1,i)

ℓ(hw(xtr
1,i),y

tr
1,i) +

1

ntr
2

ntr
2∑

i=1

pte1 (ytr
2,i)

ptr2 (y
tr
2,i)

ℓ(hw(xtr
2,i),y

tr
2,i). (C.2)

This scenario is short for LS on single.

C.3 LABEL SHIFT FOR BOTH CLIENTS

Here we assume ptr1 (y) ̸= pte1 (y) and ptr2 (y) ̸= pte2 (y), i.e., label shift for both clients. The
corresponding IW-ERM is the same as Eq. (C.2). This scenario is short for LS on both.

Without loss of generality and for simplicity of notation, in this section, we set l = 1. We consider
four typical scenarios under various distribution shifts and formulate their IW-ERM with a focus on
minmizing R1. The details of these scenarios are summarized in Table 4.

C.4 MULTIPLE CLIENTS

Here we consider a general scenario with K clients. We assume both intra-client and inter-client
label shifts by the following IW-ERM:

min
hw∈H

K∑
k=1

λk

ntr
k

ntr
k∑

i=1

pte1 (ytr
k,i)

ptrk (y
tr
k,i)

ℓ(hw(xtr
k,i),y

tr
k,i), (C.3)

where
∑K

k=1 λk = 1 and λk ≥ 0. This scenario is short for LS on multi.
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For the scenario without intra-client label shift, the IW-ERM in Eq. (C.1) can be expressed as

1

ntr
2

ntr
2∑

i=1

ptr1 (y
tr
2,i)

ptr2 (y
tr
2,i)

ℓ(hw(xtr
2,i),y

tr
2,i)

ntr
2 →∞−−−−−→ Eptr

2 (x,y)

[
ptr1 (y)

ptr2 (y)
ℓ(hw(x),y)

]
=

∫
Y

ptr1 (y)

ptr2 (y)
Ep(x|y)[ℓ(hw(x),y)]ptr2 (y) dy

=

∫
Y
ptr1 (y)Ep(x|y)[ℓ(hw(x),y)] dy

=

∫
Y
pte1 (y)Ep(x|y)[ℓ(hw(x),y)] dy

= Epte
1 (x,y) [ℓ(hw(x),y)]

= R1(hw).

(C.4)

where the second equality holds due the assumption of the label shift setting and Bayes’ theorem:
p(x,y) = p(x|y) · p(y), the fourth equality holds by the assumption that ptr1 (y) = pte1 (y) in No-LS
setting.

For the scenario with label shift only for Client 1 or for both clients, the IW-ERM in Eq. (C.2) admits

1

ntr
2

ntr
2∑

i=1

pte1 (ytr
2,i)

ptr2 (y
tr
2,i)

ℓ(hw(xtr
2,i),y

tr
2,i)

ntr
2 →∞−−−−−→ Eptr

2 (x,y)

[
pte1 (y)

ptr2 (y)
ℓ(hw(x),y)

]
=

∫
Y

pte1 (y)

ptr2 (y)
Ep(x|y)[ℓ(hw(x),y)]ptr2 (y) dy

=

∫
Y
pte1 (y)Ep(x|y)[ℓ(hw(x),y)] dy

= Epte
1 (x,y) [ℓ(hw(x),y)]

= R1(hw).

For multiple clients, let k ∈ [K]. Similarly, we have

1

ntr
k

ntr
k∑

i=1

pte1 (ytr
k,i)

ptrk (y
tr
k,i)

ℓ(hw(xtr
k,i),y

tr
k,i)

ntr
k →∞−−−−−→ R1(hw).

Then we have

K∑
k=1

λk

ntr
k

ntr
k∑

i=1

pte1 (ytr
k,i)

ptrk (y
tr
k,i)

ℓ(hw(xtr
k,i),y

tr
k,i)

ntr
1 ,...,ntr

K→∞−−−−−−−−−→ R1(hw).

Note that to solve Eq. (C.3), client 1 needs to estimate pte
1 (y)

ptr
k (y)

for all clients k with λk > 0 in (C.3).

The consistency of Eq. (IW-ERM), i.e., convergence in probability, is followed the standard arguments
in e.g., (Shimodaira, 2000)[Section 3] and (Sugiyama et al., 2007)[Section 2.2] using the law of large
numbers.

D ALGORITHMIC DESCRIPTION

1 # Split the training dataset on each client
2 trainsets = target_shift.split_dataset(trainset.data, trainset.targets,

client_label_dist_train, transform=transform_train)
3

4 # Split the test dataset on each client
5 testsets = target_shift.split_dataset(testset.data, testset.targets,

client_label_dist_test, transform=transform_test)
6
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Algorithm 1 Variational Regularized Label Shift (VRLS) Density Estimation

1: Initialization:
• Initialize the predictor f .
• Select an appropriate kernel.

2: Data Preparation:
• Arrange the training data and establish the training loader.
• Pseudo-training Data:

– Sample uniformly across classes from training data.
– Set up the pseudo-training mini-batch.

• Pseudo-test Data:
– Sample a Dirichlet distribution parameter α.
– Sample marginal label distributions.
– Sample from training data and set up the pseudo-test mini-batch.

3: Training Loop:
• Compute the cross-entropy loss.
• Compute the MMD loss between the predictions for pseudo-training and pseudo-test data.
• Optimize f using both losses until the cross-entropy loss falls beneath a threshold or the

maximum number of epochs is reached.
4: Output: The predictor f .
5: Label Shift Estimation:

• Utilize f and the unlabeled test data to address the Eq. (3.2) objective via methods such as
the EM algorithm or convex optimization.

6: Final Output: Estimated label shift ratio.

Algorithm 2 IW-ERM with VRLS for FL

1: Initialization: Initialize the global model.
2: Data Preparation: Distribute labeled training and unlabeled test data among local clients.
3: Label Shift Ratio Estimation:

• Predictor Training: Method A or B
– Method A: Distributed Training (preferred)

* Train a global predictor in a distributed manner.
* Broadcast the global model parameters to each client.

– Method B: Centralized Training (default)
* Each client uploads its training data to the server.
* Train the predictor on the server.
* Broadcast the predictor parameters to clients.

• Inference:
– Perform inference in each client to estimate the test label marginal distributions and

send them to the server.
– Calculate the training label marginal distribution locally in each client.

• The server broadcasts the received distributions to all clients.
• Each client calculates the sum of all test label distributions.

4: Computing Ratios: Compute ratios rk on each client.
5: IW-ERM: Each client applies its own ratio rk for IW-ERM to adjust its local model.
6: Output: Optimized global model.
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7 # Training of the predictor, output net and calibration
8 net, calibration = initialize_fmnist()
9

10 # Initilize the estimator
11 estimator = LS_RatioModel(net, calibration)
12

13 # Initialize a tensor to store the estimated values for each client.
14 estimated_values = torch.zeros(client_num, nclass)
15

16 # Iterate through each client’s testset to calculate the estimated values
locally.

17

18 for i, testset in enumerate(testsets):
19 estimated_values[i] = estimator(testset.data.cpu().numpy()/255.0)
20

21 # Broadcast and sum of all test label marginal distributions on each
client

22 estimated_values = torch.sum(estimated_values, dim=0, keepdim=True)
23

24 # Initialize a tensor to store the marginal value for each client
25 marginal_values = torch.zeros(client_num, nclass)
26

27 # Iterate through each client’s trainset to calculate the marginal value
28 for i, trainset in enumerate(trainsets):
29 marginal_values[i] = marginal(trainset.targets)
30

31 # Obtain the ratios
32 ratios = (estimated_values / marginal_values).to(args.device)

Listing 1: Our VRLS in FL. Here, client_label_dist_train and client_label_dist_test are predefined. The
estimated_values are estimated locally and the dimensionality is only clients_num*nclass.

E PROOF OF THEOREM 1

Proof. Let H(r,θ,x) = − log(f(x,θ)⊤r). From the strong convexity Lemma 3, we have that

∥r̂n − rf⋆∥22 ≤ 2

µpmin
(Lθ⋆(r̂n)− Lθ⋆(rf⋆)) (E.1)

Now focusing on the term on the right hand side, we find by invoking Lemma 4 that

Lθ⋆(r̂n)− Lθ⋆(rf⋆) ≤ E
[
H(r̂n, θ̂n,x)

]
− E

[
H(rf⋆ , θ̂n,x)

]
+ 2LE

[
∥θ̂n − θ⋆∥2

]
= E

[
H(r̂n, θ̂n, x)

]
− 1

n

n∑
i=1

H(r̂n, θ̂n,xi) +
1

n

n∑
i=1

H(r̂n, θ̂n,xi)

− E
[
H(rf⋆ , θ̂n,x)

]
+ 2LE

[
∥θ̂n − θ⋆∥2

]
≤ E

[
H(r̂n, θ̂n,x)

]
− 1

n

n∑
i=1

H(r̂n, θ̂n,xi) +
1

n

n∑
i=1

H(rf⋆ , θ̂n,xi)

− E
[
H(rf⋆ , θ̂n,x)

]
+ 2LE

[
∥θ̂n − θ⋆∥2

]
where in the last inequality we used the fact that r̂n is a minimizer of r 7→ 1

n

∑n
i=1 H(r, θ̂n,xi).

Finally by using lemmas Lemma 5 and Lemma 6 with δ/2 each, we have that with probability 1− δ,

Lθ⋆(r̂n)− Lθ⋆(rf⋆) ≤ 4√
n
Rad(F) + 2LE

[
∥θ̂n − θ⋆∥2

]
+ 4B

√
log(4/δ

n

Plugging this back into Eq. (E.1), we have that

∥r̂n − rf⋆∥22 ≤ 2

µpmin

(
4√
n
Rad(F) + 4B

√
log(4/δ)

n

)
+

4L

µpmin
E
[
∥θ̂n − θ⋆∥2

]
.

■
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Lemma 1. For any r ∈ R, θ ∈ Θ, x ∈ X , we have that

r⊤f(x,θ) ≤ 1

pmin
.

Proof. Applying Hölder’s inequality we have that

r⊤f(x,θ) ≤ ∥r∥∞∥f(x,θ)∥1 = ∥r∥∞.

Moreover, since r ∈ R, we have that
∑

y ryptr(y) = 1 This implies that ∥r∥∞ ≤ 1
pmin

, which yields
the result. ■

Lemma 2 (Implication of Assumption Assumption 1). Under Assumption 1, there exists B > 0 such
that for any r ∈ R, θ ∈ Θ, x ∈ X ,

| log(r⊤f(x,θ))| ≤ B.

Proof. Since r ∈ R, it has at least one non-zero coordinate and f(x,θ) is the output of a softmax
layer so all of its coordinates are non-zero. Consequently,

r⊤f(x,θ) > 0

So by Assumption 1, the function (r,θ,x) 7→ log(r⊤f(x,θ)) is defined and continuous over a
compact set, so there exists a constant B giving us the result. ■

Lemma 3 (Population strong convexity). Let H(r,θ,x) = − log(r⊤f(x,θ)). Under assumption
Assumption 2, the function

Lθ⋆ : r 7→ E [H(r,θ⋆,x)]

is µpmin-strongly convex.

Proof. We first compute the hessian of L to find that

∇2L(r) = E
[

1

(r⊤f(x,θ⋆))2
f(x,θ⋆)f(x,θ⋆)⊤

]
.

Since by Lemma 1, we have that r⊤f(x,θ⋆) ≤ p−1
min, we have that

∇2L(r) ⪰ pminE
[
f(x,θ⋆)f(x,θ⋆)⊤

]
⪰ µpminIm.

■

Lemma 4 (Lipschitz parametrization). Let H(r,θ,x) = − log(f(x,θ)⊤r). There exists L > 0 such
that for any θ1,θ2 ∈ Θ, and r ∈ R, we have that

|H(r,θ1,x)−H(r,θ2,x)| ≤ L∥θ1 − θ2∥2.

Proof. The gradient of H with respect to θ is given by

∇θH(r,θ,x) = − 1

f(x,θ)⊤r
∇θf(x,θ)

Reasoning like in Lemma 1, we know that 1
f(x,θ)⊤r

is defined and continous over the compact set
of its parameters, we also know that f is a neural network parametrized by θ, hence ∇θf(x,θ) is
bounded when θ and x are bounded. Consequently, under Assumption 1 there exists a constant
L > 0 such that

∥∇θH(r,θ,x)∥2 ≤ L.

■

Lemma 5 (Uniform bound 1). Let δ ∈ (0, 1), with probability 1− δ, we have that

E
[
H(r̂n, θ̂n,x)

]
− 1

n

n∑
i=1

H(r̂n, θ̂n,xi) ≤
2√
n
Rad(F) + 2B

√
log(4/δ)

n
.
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Proof. Let δ ∈ (0, 1). As r̂n is learnt from the samples xi, we do not have independence which
would have allowed us to apply a concentration inequality. Hence, we will derive a uniform bound as
follows. We begin by observing that

E
[
H(r̂n, θ̂n,x)

]
− 1

n

n∑
i=1

H(r̂n, θ̂n,xi) ≤ sup
r,θ

(
E [H(r,θ,x)]− 1

n

n∑
i=1

H(r,θ,xi)

)
Now since Lemma 2 holds, we can apply McDiarmid’s Inequality to get that with probability 1− δ,
we have that

sup
r,θ

(
E [H(r,θ,x)]− 1

n

n∑
i=1

H(r,θ,xi)

)

≤ E

[
sup
r,θ

(
E [H(r,θ,x)]− 1

n

n∑
i=1

H(r,θ,xi)

)]
+ 2B

√
log(2/δ)

n

The expectation of the supremum on the right hand side can be bounded by the Rademacher com-
plexity of F := {x 7→ r⊤f(x,θ), (r,θ) ∈ R×Θ} and we obtain that

sup
r,θ

(
E [H(r,θ,x)]− 1

n

n∑
i=1

H(r,θ,xi)

)
≤ 2√

n
Rad(F) + 2B

√
log(2/δ)

n
.

■

Lemma 6 (Uniform bound 2). Let δ ∈ (0, 1), with probability 1− δ, we have that

E
[
H(rf⋆ , θ̂n,x)

]
− 1

n

n∑
i=1

H(rf⋆ , θ̂n,xi) ≤
2√
n
Rad(F) + 2B

√
log(2/δ)

n

Proof. The proof is identical to that of Lemma 5. ■

F PROOF OF THEOREM 2 AND CONVERGENCE-COMMUNICATION
GUARANTEES FOR EQ. (IW-ERM)

We now establish convergence rates for Eq. (IW-ERM) with VRLS and show our proposed importance
weighting achieves the same rates with the data-dependent constant terms increase linearly with
maxy∈Y supf rf (y) = rmax under negligible communication overhead over the baseline ERM-
solvers without importance weighting. In Appendix F, we establish tight convergence rates and
communication guarantees for Eq. (IW-ERM) with VRLS in a broad range of importance optimization
settings including convex optimization, second-order differentiability, composite optimization with
proximal operator, optimization with adaptive step-sizes, and nonconvex optimization, along the lines
of e.g., (Woodworth et al., 2020; Haddadpour et al., 2021; Glasgow et al., 2022; Liu et al., 2023; Hu
and Huang, 2023; Wu et al., 2023; Liu et al., 2023).

By estimating the ratios locally and absorbing into local losses, we note that the properties of the
modified local loss w.r.t. the neural network parameters w, e.g., convexity and smoothness, do not
change. The data-dependent parameters such as Lipschitz and smoothness constants for ℓ ◦ hw

w.r.t. w are scaled linearly by rmax. Our method of density ratio estimation trains the pre-defined
predictor exclusively using local training data, which implies Eq. (IW-ERM) with VRLS achieves
the same privacy guarantees as the baseline ERM-solvers without importance weighting. For ratio
estimation, the communication between clients involves only the estimated marginal label distribution,
instead of data, ensuring negligible communication overhead. Given the size of variables to represent
marginal distributions, which is by orders of magnitude smaller than the number of parameters
of the underlying neural networks for training and the fact that ratio estimation involves only one
round of communication, the overall communication overhead for ratio estimation is masked by the
communication costs of model training. The communication costs for Eq. (IW-ERM) with VRLS
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over the course of optimization are exactly the same as those of the baseline ERM-solvers without
importance weighting. All in all, importance weighting does not negatively impact communication
guarantees throughout the course of optimization, which proves Theorem 2.

In the following, we establish tight convergence rates and communication guarantees for Eq. (IW-
ERM) with VRLS in a broad range of importance optimization settings including convex optimization,
second-order differentiability, composite optimization with proximal operator, optimization with
adaptive step-sizes, and nonconvex optimization.
Assumption 3 (Convex and Smooth). 1) A minimizer w⋆ exists with bounded ∥w⋆∥2; 2) The ℓ ◦ hw

is β-smoothness and convex w.r.t. w; 3) The stochastic gradient g(w) = ∇̃wℓ(hw) is unbiased, i.e.,
E[g(w)] = ∇wℓ(hw) for any w ∈ W with bounded variance E[∥g(w)−∇wℓ(hw)∥22].

For convex and smooth optimization, we establish convergence rates for Eq. (IW-ERM) with VRLS
and local updatingz along the lines of e.g., (Woodworth et al., 2020, Theorem 2).
Theorem 3 (Upper Bound for Convex and Smooth). Let D = ∥w0 −w⋆∥, τ denote the number
of local steps (number of stochastic gradients per round of communication per client), R denote
the number of communication rounds, and maxy∈Y supf rf (y) = rmax. Under Assumption 3,
suppose Algorithm 2 with τ local updates is run for T = τR total stochastic gradients per client with
an optimally tuned and constant step-size. Then we have the following upper bound:

E[ℓ(hwT
)− ℓ(hw⋆)] ≲

rmaxβD
2

τR
+

(rmaxβD
4)1/3

(
√
τR)2/3

+
D√
KτR

.

Assumption 4 (Convex and Second-order Differentiable). 1) The ℓ(hw(x),y) is β-smoothness
and convex w.r.t. w for any (x,y); 2) The stochastic gradient g(w) = ∇̃wℓ(hw) is unbiased, i.e.,
E[g(w)] = ∇wℓ(hw) for any w ∈ W with bounded variance E[∥g(w)−∇wℓ(hw)∥22].

For convex and second-order Differentiable optimization, we establish a lower bound on the conver-
gence rates for Eq. (IW-ERM) with VRLS and local updating along the lines of e.g., (Glasgow et al.,
2022, Theorem 3.1).
Theorem 4 (Lower Bound for Convex and Second-order Differentiable). Let D = ∥w0 − w⋆∥,
τ denote the number of local steps, R denote the number of communication rounds, and
maxy∈Y supf rf (y) = rmax. Under Assumption 4, suppose Algorithm 2 with τ local updates
is run for T = τR total stochastic gradients per client with a tuned and constant step-size. Then we
have the following lower bound:

E[ℓ(hwT
)− ℓ(hw⋆)] ≳

rmaxβD
2

τR
+

(rmaxβD
4)1/3

(
√
τR)2/3

+
D√
KτR

.

Assumption 5 (PL with Compression). 1) The ℓ(hw(x),y) is β-smoothness and convex w.r.t. w
for any (x,y) and satisfies Polyak-Łojasiewicz (PL) condition (there exists αℓ > 0 such that, for all
w ∈ W , we have ℓ(hw) ≤ ∥∇wℓ(hw)∥22/(2αℓ); 2) The compression scheme Q is unbiased with
bounded variance, i.e., E[Q(x)] = x and E[∥Q(x) − x∥22 ≤ q∥x∥22]; 3) The stochastic gradient
g(w) = ∇̃wℓ(hw) is unbiased, i.e., E[g(w)] = ∇wℓ(hw) for any w ∈ W with bounded variance
E[∥g(w)−∇wℓ(hw)∥22].

For nonconvex optimization with PL condition and communication compression, we establish
convergence and communication guarantees for Eq. (IW-ERM) with VRLS, compression, and local
updating along the lines of e.g., (Haddadpour et al., 2021, Theorem 5.1).
Theorem 5 (Convergence and Communication Bounds for Nonconvex Optimization with PL).
Let κ denote the condition number, τ denote the number of local steps, R denote the number of
communication rounds, and maxy∈Y supf rf (y) = rmax. Under Assumption 5, suppose Algorithm 2
with τ local updates and communication compression (Haddadpour et al., 2021, Algorithm 1) is run
for T = τR total stochastic gradients per client with fixed step-sizes η = 1/(2rmaxβγτ(q/K + 1))
and γ ≥ K. Then we have E[ℓ(hwT

)− ℓ(hw⋆)] ≤ ϵ by setting

R ≲
( q

K
+ 1
)
κ log

(1
ϵ

)
and τ ≲

( q + 1

K(q/K + 1)ϵ

)
.
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Assumption 6 (Nonconvex Optimization with Adaptive Step-sizes). 1) The ℓ ◦ hw is β-smoothness
with bounded gradients; 2) The stochastic gradients g(w) = ∇̃wℓ(hw) is unbiased with bounded
variance E[∥g(w) − ∇wℓ(hw)∥22]; 3) Adaptive matrices At constructed as in (Wu et al., 2023,
Algorithm 2) are diagonal and the minimum eigenvalues satisfy λmin(At) ≥ ρ > 0 for some ρ ∈ R+.

For nonconvex optimization with adaptive step-sizes, we establish convergence and communication
guarantees for Eq. (IW-ERM) with VRLS and local updating along the lines of e.g., (Wu et al., 2023,
Theorem 2).

Theorem 6 (Convergence and Communication Guarantees for Nonconvex Optimization with Adap-
tive Step-sizes). Let τ denote the number of local steps, R denote the number of communication
rounds, and maxy∈Y supf rf (y) = rmax. Under Assumption 6, suppose Algorithm 2 with τ local
updates is run for T = τR total stochastic gradients per client with an adaptive step-size similar
to (Wu et al., 2023, Algorithm 2). Then we E[∥∇wℓ(hwT

)∥2] ≤ ϵ by setting:

T ≲
rmax

Kϵ3
and R ≲

rmax

ϵ2
.

Assumption 7 (Composite Optimization with Proximal Operator). 1) The ℓ ◦ hw is smooth and
strongly convex with condition number κ; 2) The stochastic gradients g(w) = ∇̃wℓ(hw) is unbiased.

For composite optimization with strongly convex and smooth functions and proximal operator, we
establish an upper bound on oracle complexity to achieve ϵ error on the Lyapunov function defined as
in (Hu and Huang, 2023, Section 4) for Gradient Flow-type transformation of Eq. (IW-ERM) with
VRLS in the limit of infinitesimal step-size.

Theorem 7 (Oracle Complexity of Proximal Operator for Composite Optimization). Let κ denote the
condition number. Under Assumption 7, suppose Gradient Flow-type transformation of Algorithm 2
with VRLS and Proximal Operator evolves in the limit of infinitesimal step-size (Hu and Huang,
2023, Algorithm 3). Then it achieves O

(
rmax

√
κ log(1/ϵ)

)
Proximal Operator Complexity.

We finally establish high-probability convergence bounds for Eq. (IW-ERM) with VRLS along
the lines of e.g., (Liu et al., 2023, Theorem 4.1). To show the impact of importance weighting
on convergence rate decoupled from the impact of number of clients and obtain the current SotA
high-probability bounds for nonconvex optimization, we focus on Eq. (IW-ERM) with K = 1.

We assume the following mild assumptions in nonconvex optimization (Liu et al., 2023).

Assumption 8 (Sub-Gaussian Noise). 1) A minimizer w⋆ exists; 2) The stochastic gradients g(w) =

∇̃wℓ(hw) is unbiased, i.e., E[g(w)] = ∇wℓ(hw) for any w ∈ W ; 3) The noise ∥g(w)−∇wℓ(hw)∥2
is σ-sub-Gaussian (Vershynin, 2018).

Theorem 8 (High-probability Bound for Nonconvex Optimization). Let δ ∈ (0, 1) and T ∈ Z+.
Let K = 1 and maxy∈Y supf rf (y) = rmax. Under Assumption 8 and β-smoothness of nonconvex

ℓ ◦hw, suppose Algorithm 2 is run for T iterations with a step-size min
{

1
rmaxβ

,
√

1
σ2rmaxβT

}
. Then

with probability 1− δ, gradient norm squareds satisfy:

1

T

T∑
t=1

∥∇wℓ(hwt
)∥22 = O

(
σ

√
rmaxβ

T
+

σ2 log(1/δ)

T

)
.

Theorem 8 shows that when the stochastic gradients are too noisy σ = Ω(
√
rmaxβ/ log(1/δ)) such

that the second term in the rate dominates, then importance weighting does not have any negative
impact on the convergence rate.

Proof. We note that density ratios do not depend on the model parameters w and the Lipschitz and
smoothness constants for ℓ ◦ hw w.r.t. w are scaled by rmax. The rest of the proof follows the
arguments of (Liu et al., 2023, Theorem 4.1). ■
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G COMPARISON OF LATENT DISTRIBUTION

Dirac Delta on Input:
p(z|x) = δx (G.1)

This definition implies that the latent variable z is directly equal to the input x, i.e z = x in MLLS.
Here, the distribution in this latent space is a Dirac delta function centered at data point x.

Dirac Delta on Predictor Output:

p(z|x) = δargmax f(x) (G.2)

In this scenario, z is essentially the class (or dimension) with the maximum output value from f(x).
Conceptually, as BBSE proposed, z represents the predicted class, and its distribution is a Dirac delta
function centered on the class with the highest probability.

Kernel-Transformed Predictor Output:

p(z|x) = g(f(x)) (G.3)

Here, z represents a distribution in a latent space, which is transformed from the outputs f(x) by the
kernel function g. The specific nature of this distribution is contingent on the kernel g. For example,
when g is an RBF kernel, the latent space possesses a Gaussian distribution centered at the values of
f(x). This can be conceptualized as a generalized version of a Dirac delta function. Intriguingly,
with a linear kernel, no prior distribution is defined on the output of f(x). Nevertheless, the linear
kernel is still utilized by us for similarity comparisons on MNIST and Fashion MNIST datasets.

These representations offer a range of choices for modeling the latent space, each with its own
characteristics. The choice between them determines different definitions of calibration methods.

In addition to the MMD, by employing the Kantorovich-Rubinstein Duality (Dedecker et al., 2006),
analogous to the approach used in Wasserstein GANs (Arjovsky et al., 2017), we can define a
Wasserstein Distance as:

W(z1, z2 | x, α) = sup
∥g∥≤1

(
Eq(z1|x,α)[g(f(x))]− Ez2|x,α[g(f(x))]

)
(G.4)

where g : Rm → R is a learnable function satisfying the 1-Lipschitz constraint. Practically, the sup
operation is approximated by argmax. Minimizing this distance entails a min-max game: given
a fixed f , we aim to maximize the discrepancy with respect to g, and with a fixed g, we seek to
minimize the discrepancy with respect to f .

H EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS

In this section, we provide experimental details and additional experiments. In particular, we validate
our theory on multiple clients in a federated setting and show that our IW-ERM outperforms FedAvg
and FedBN baselines i under drastic and challenging label shifts.

H.1 EXPERIMENTAL DETAILS

In single-client experiments, a simple MLP without dropout is used as the predictor for MNIST, and
ResNet-18 for CIFAR-10.

For experiments in a federated learning setting, both MNIST (LeCun et al., 1998) and Fashion
MNIST (Xiao et al., 2017) datasets are employed, each containing 60,000 training samples and
10,000 test samples, with each sample being a 28 by 28 pixel grayscale image. The CIFAR-10
dataset (Krizhevsky) comprises 60,000 colored images, sized 32 by 32 pixels, spread across 10
classes with 6,000 images per class; it is divided into 50,000 training images and 10,000 test images.
In this setting, the objective is to minimize the cross-entropy loss. Stochastic gradients for each
client are calculated with a batch size of 64 and aggregated on the server using the Adam optimizer.
LeNet is used for experiments on MNIST and Fashion MNIST with a learning rate of 0.001 and a
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Figure 6: In this experiment with MNIST, we compare VRLS with MLLS, EM and RLLS.

Figure 7: In this experiment with Fashion MNIST, as menthoned previously, a linear kernel and a simple MLP
with dropout were employed. For the sake of privacy in Federated Learning (FL) applications, we selectively
chose a setting wherein our EM method exhibited a low MSE, and thus, only results from the EM method are
depicted. It’s important to clarify that the main objective of this illustration is not a comparative analysis
between MLLS and VRLS, hence a configuration yielding lower MSE loss for VRLS_EM was adopted.

weight decay of 1 × 10−6. For CIFAR-10, ResNet-18 is employed with a learning rate of 0.0001
and a weight decay of 0.0001. Three independent runs are implemented for 5-client experiments
on Fashion MNIST and CIFAR-10, while for 10 clients, one run is conducted on CIFAR-10. All
experiments are performed using a single GPU on an internal cluster and Colab.

Importantly, the training of the predictor for ratio estimation on both the baseline MLLS and our
VRLS is executed with identical hyperparameters and epochs for CIFAR-10 and Fashion MNIST.
The training is halted once the classification loss reaches a predefined threshold on MNIST.

H.2 ADDITIONAL EXPERIMENTS

In this section, we provide supplementary results, visualizations of accuracy across clients and tables
showing dataset distribution in FL setting.

I COMPLEXITY ANALYSIS

In our algorithm, the ratio estimation is executed only once prior to IW-ERM in parallel.

In experiments, we used simple network to estimate the ratios in advance, whose training is not
computationally extensive compared to training the global model. Compared to baseline FedAvg, the
additional computational complexity of our IW-ERM with VRLS leads to substantial improvements
of the overall generalization in settings under challenging label shifts.
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Table 5: LeNet on Fashion MNIST with label shift across 5 clients. 15000 iterations for FedAvg and FedBN;
5000 for Upper Bound (FTW-ERM) using true ratios and our IW-ERM. To mention, to train our predictor, we
use a simpliest MLP and employ linear kernel.

FMNIST Our IW-ERM FedAvg FedBN Upper Bound

Avg. accuracy 0.7520 ± 0.0209 0.5472 ± 0.0297 0.5359 ± 0.0306 0.8273 ± 0.0041
Client 1 accuracy 0.7162 ± 0.0059 0.3616 ± 0.0527 0.3261 ± 0.0296 0.8590 ± 0.0062
Client 2 accuracy 0.9266 ± 0.0125 0.9060 ± 0.0157 0.9035 ± 0.0162 0.9357 ± 0.0037
Client 3 accuracy 0.6724 ± 0.0467 0.3279 ± 0.0353 0.3612 ± 0.0814 0.7896 ± 0.0109
Client 4 accuracy 0.7979 ± 0.0448 0.6858 ± 0.0105 0.6654 ± 0.0121 0.8098 ± 0.0112
Client 5 accuracy 0.6468 ± 0.0248 0.4548 ± 0.0655 0.4234 ± 0.0387 0.7426 ± 0.0257

Table 6: ResNet-18 on CIFAR-10 with label shift across 5 clients. For fair comparison, we run 5000 iterations
for our method and Upper Bound, while 10000 for FedAvg and FedBN.

CIFAR-10 Our IW-ERM FedAvg FedBN Upper Bound

Avg. accuracy 0.5640 ± 0.0241 0.4515 ± 0.0148 0.4263 ± 0.0975 0.5790 ± 0.0103
Client 1 accuracy 0.6410 ± 0.0924 0.5405 ± 0.1845 0.5321 ± 0.0620 0.7462 ± 0.0339
Client 2 accuracy 0.8434 ± 0.0359 0.3753 ± 0.0828 0.4656 ± 0.2158 0.7509 ± 0.0534
Client 3 accuracy 0.4591 ± 0.1131 0.3973 ± 0.1333 0.2838 ± 0.1055 0.5845 ± 0.0854
Client 4 accuracy 0.4751 ± 0.1241 0.5007 ± 0.1303 0.5256 ± 0.1932 0.3507 ± 0.0578
Client 5 accuracy 0.4013 ± 0.0430 0.4429 ± 0.1195 0.5603 ± 0.1581 0.4627 ± 0.0456

Table 7: Label distribution on Fasion MNIST with 5 clients, with the majority of classes possessing a limited
number of training and test images across each client.

Class
0 1 2 3 4 5 6 7 8 9

Client 1 Train 34 34 34 34 34 5862 34 34 34 34
Test 977 5 5 5 5 5 5 5 5 5

Client 2 Train 34 34 34 34 34 34 5862 34 34 34
Test 5 977 5 5 5 5 5 5 5 5

Client 3 Train 34 34 34 34 34 34 34 5862 34 34
Test 5 5 977 5 5 5 5 5 5 5

Client 4 Train 34 34 34 34 34 34 34 34 5862 34
Test 5 5 5 977 5 5 5 5 5 5

Client 5 Train 34 34 34 34 34 34 34 34 34 5862
Test 5 5 5 5 977 5 5 5 5 5

J MATHEMATICAL NOTATIONS

In this appendix, we provide a summary of mathematical notations used in this paper in Table 10:

K LIMITATIONS

• The merits of our approach are not entirely elucidated as the maximization over variational
distributions is non-differentiable. Rather, we explicitly define a worst-case scenario and
accordingly select the Dirichlet parameter from a Gaussian distribution. Choosing alternative
forms of distributions, such as long-tail distributions primarily skewed towards the negative
direction, could more aptly address the “worst-case” scenario. However, for the purposes of
this study, we have opted to employ the simplest case.

• As a proxy of real-world settings, we artificially implemented a mild test data augmentation
to satisfy the relaxed label shift assumptions and control ratio estimation errors for both
baselines and our method. It is an interesting future problem to develop variants of VRLS to
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Figure 8: The average, best-client, and worst-client accuracy, along with their standard deviations, are derived
from Table 5. Our method exhibits the lowest standard deviation, showcasing the most robust accuracy amongst
the compared methods.

Figure 9: The average, best-client, and worst-client accuracy, along with their standard deviations, are derived
from Table 6.

provably handle general distribution shifts in more challenging settings such as CIFAR-10.1
dataset (Recht et al., 2018; Torralba et al., 2008) as discused in (Garg et al., 2023).

• In the federated learning experiments conducted on CIFAR-10, as similarly reported in
(Ramezani-Kebrya et al., 2023), the presence of high standard deviation renders the results
less reliable. Tuning the hyper-parameters carefully for training can facilitate more robust
global training and thereby enhance the reliability of the results. Additionally, to maintain a
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Table 8: Label distribution on CIFAR-10 with 5 clients, with the majority of classes possessing a limited number
of training and test images across each client.

Class
0 1 2 3 4

Client 1-10 Train 95/100 5/9 5/9 5/9 5/9
Test 5/9 5/9 5/9 5/9 5/9

Client 11-20 Train 5/9 95/100 5/9 5/9 5/9
Test 5/9 5/9 5/9 5/9 5/9

Client 21-30 Train 5/9 5/9 95/100 5/9 5/9
Test 5/9 5/9 5/9 5/9 5/9

Client 31-40 Train 5/9 5/9 5/9 95/100 5/9
Test 5/9 5/9 5/9 5/9 5/9

Client 41-50 Train 5/9 5/9 5/9 5/9 95/100
Test 5/9 5/9 5/9 5/9 5/9

Client 51-60 Train 5/9 5/9 5/9 5/9 5/9
Test 5/9 5/9 5/9 5/9 95/100

Client 61-70 Train 5/9 5/9 5/9 5/9 5/9
Test 5/9 5/9 5/9 95/100 5/9

Client 71-80 Train 5/9 5/9 5/9 5/9 5/9
Test 5/9 5/9 95/100 5/9 5/9

Client 81-90 Train 5/9 5/9 5/9 5/9 5/9
Test 5/9 95/100 5/9 5/9 5/9

Client 91-100 Train 5/9 5/9 5/9 5/9 5/9
Test 95/100 5/9 5/9 5/9 5/9

Class
5 6 7 8 9

Client 1-10 Train 5/9 5/9 5/9 5/9 5/9
Test 5/9 5/9 5/9 5/9 95/100

Client 11-20 Train 5/9 5/9 5/9 5/9 5/9
Test 5/9 5/9 5/9 95/100 5/9

Client 21-30 Train 5/9 5/9 5/9 5/9 5/9
Test 5/9 5/9 95/100 5/9 5/9

Client 31-40 Train 5/9 5/9 5/9 5/9 5/9
Test 5/9 95/100 5/9 5/9 5/9

Client 41-50 Train 5/9 5/9 5/9 5/9 5/9
Test 95/100 5/9 5/9 5/9 5/9

Client 51-60 Train 95/100 5/9 5/9 5/9 5/9
Test 5/9 5/9 5/9 5/9 5/9

Client 61-70 Train 5/9 95/100 5/9 5/9 5/9
Test 5/9 5/9 5/9 5/9 5/9

Client 71-80 Train 5/9 5/9 95/100 5/9 5/9
Test 5/9 5/9 5/9 5/9 5/9

Client 81-90 Train 5/9 5/9 5/9 95/100 5/9
Test 5/9 5/9 5/9 5/9 5/9

Client 91-100 Train 5/9 5/9 5/9 5/9 95/100
Test 5/9 5/9 5/9 5/9 5/9

Table 9: Label distribution on CIFAR-10 with 100 clients, wherein groups of 10 clients share the same
distribution and ratios. The majority of classes possess a limited quantity of training and test images on each
client.

fair comparison, we did not allow additional training iterations for FedBN, despite its slower
convergence.
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Table 10: Math Symbols

Math Symbol Definition

X Compact metric space for features
Y Discrete label space with |Y| = m
K Number of clients in an FL setting
Sk All samples in the training set of client k
hw Hypothesis function hw : X → Y
H Hypothesis class for hw

Z Mapping space from X , which can be discrete or continuous

• Within the FL framework, VRLS has the potential to require absolutely no data sharing,
including the training data. This can be accomplished through a distributed training of the
predictor, as illustrated in Algorithm 2. The training data from each client can be regarded
as a mini-batch. However, a significant label shift across individual clients can adversely
affect the ratio estimation accuracy. Future work can explore a balance between accurate
ratio estimation and preserving privacy.
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