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ABSTRACT

This paper proposes a joint convolutional attention and Transformer block, which
deeply couples the convolutional layer and Vision Transformer into one block, as
the basic unit to construct our depth completion model in a pyramidal structure.
This hybrid structure naturally benefits both the local connectivity of convolutions
and the global context of the Transformer in one single model. As a result, our
CompletionFormer outperforms state-of-the-art CNNs-based methods on the out-
door KITTI Depth Completion benchmark and indoor NYUv2 dataset, achieving
significantly higher efficiency (near 1/3 FLOPs) compared to pure Transformer-
based methods. Especially when the captured depth is highly sparse, the perfor-
mance gap with other methods gets much larger.

(a) RGB (b) Pure CNNs (d) CompletionFormer(c) Pure Transformer 

Figure 1: Comparison of attention maps of pure CNNs, Vision Transformer, and the proposed
CompletionFormer with joint CNNs and Transformer structure. The pixel highlighted with
a yellow cross in RGB image (a) is the one we want to observe how the network predicts it. Pure
CNNs architecture (b) activates discriminative local regions (i.e., the region on the fire extinguisher),
whereas pure Transformer based models (c) activate globally yet fail on local details. In contrast,
our full CompletionFormer (d) can retain both the local details and global context.

1 INTRODUCTION

Active depth sensing has achieved significant gains in performance and demonstrated its utility in nu-
merous applications, such as autonomous driving and augmented reality. Although depth maps cap-
tured by existing commercial depth sensors (e.g. Microsoft Kinect Microsoft, Intel RealSense Ke-
selman et al. (2017)) or depths points within the same scanning line of LiDAR sensors are dense, the
distance between valid/correct depth points could still be far owing to the sensor noises, challenging
conditions such as transparent, shining, and dark surfaces, or the limited number of scanning lines
of LiDAR sensors. To address these issues, depth completion Cheng et al. (2020); Lin et al. (2022);
Park et al. (2020); Rho et al. (2022), which targets at completing and reconstructing the whole depth
map from sparse depth measurements and a corresponding RGB image (i.e. RGBD), has gained
much attention in the latest years.

For depth completion, one key point is to get the depth affinity among neighboring pixels so that
reliable depth labels can be propagated to the surroundings Cheng et al. (2020; 2018); Hu et al.
(2021); Lin et al. (2022); Park et al. (2020). Based on the fact that the given sparse depth could be
highly sparse due to noise or even no measurement being returned from the depth sensor, it requires
depth completion methods to be capable of 1) detecting depth outliers by measuring the spatial
relationship between pixels in both local and global perspectives; 2) fusing valid depth values from
close or even extremely far distance points. All these properties ask the network for the potential
to capture both local and global correlations between pixels. Current depth completion networks
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Figure 2: CompletionFormer Architecture. Given the sparse depth and corresponding RGB im-
age, a U-Net backbone strengthened with Joint Convolutional Attention and Transformer Block is
used to perform the depth and image information interaction at multiple scales. Features from dif-
ferent stages are fused at full resolution and fed for initial prediction. Finally, a spatial propagation
network (SPN) is exploited for final refinement.

collect context information with the widely used convolution neural networks (CNNs) Cheng et al.
(2020; 2018); Hu et al. (2021); Van Gansbeke et al. (2019); Lin et al. (2022); Qiu et al. (2019);
Park et al. (2020); Zhu et al. (2022) or graph neural network Zhao et al. (2021); Xiong et al. (2020).
However, both the convolutional layer and graph models can only aggregate within a local region,
e.g. square kernel in 3× 3 for convolution and kNN-based neighborhood for graph models Zhao
et al. (2021); Xiong et al. (2020), making it still tough to model global long-range relationship, in
particular within the shallowest layers of the architecture. Recently, GuideFormer Rho et al. (2022)
resorts fully Transformer-based architecture to enable global reasoning. Unfortunately, since Vision
Transformers project image patches into vectors through a single step, this causes the loss of local
details, resulting in ignoring local feature details in dense prediction tasks Peng et al. (2021); Xu
et al. (2021). For depth completion, the limitations affecting pure CNNs or Transformer based
networks also manifest, as shown in Fig. 1. Despite any distance the reliable depth points could
be distributed at, exploring an elegant integration of these two distinct paradigms, i.e. CNNs and
Transformer, has not been studied for depth completion yet.

In this work, we propose CompletionFormer, a pyramidal architecture coupling CNN-based local
features with Transformer-based global representations for enhanced depth completion. Generally,
there are two gaps we are facing: 1) the content gap between RGB and depth input; 2) the semantic
gap between convolution and Transformer. As for the multimodal input, we propose embedding the
RGB and depth information at the early network stage. Thus our CompletionFormer can be imple-
mented in an efficient single-branch architecture as shown in Fig. 2 and multimodal information can
be aggregated throughout the whole network. Considering the integration of convolution and Trans-
former, following the design of CBAM Woo et al. (2018) and Pyramid Vision Transformer Wang
et al. (2021), we embrace convolutional attention and Transformer into one block as shown in Fig. 3
and use it as the basic unit to construct our network in multi-scale style. As a result, without any
extra module to bridge these gaps Peng et al. (2021); Lee et al. (2022); Rho et al. (2022), every
convolution and Transformer layer in the proposed block can access the local and global features.
Hence, information exchange and fusion happen at every block of our network.

To summarize, our main contributions are as follows:

• We propose integrating Vision Transformer with convolution layers into one block for depth
completion, enabling the network to possess both local and global receptive fields for multi-
modal information interaction and fusion.

• Taking the proposed joint convolutional attention and Transformer block as the basic unit,
we introduce a single-branch network structure, i.e. CompletionFormer. This elegant de-
sign leads to a comparable computation cost to current CNN-based methods while present-
ing significantly higher efficiency when compared with pure Transformer based methods.

• Our CompletionFormer yields substantial improvements to depth completion compared to
state-of-the-art methods, especially when the provided depth is sparse, as often occurs in
practical applications.
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Figure 3: Joint Convolutional Attention and Transformer Block. We illustrate the proposed joint
convolutional attention and Transformer block which contains two parallel streams, i.e. convolu-
tional attention and Transformer layer respectively.

2 RELATED WORK

Depth Completion. Scene depth completion has become a fundamental task in computer vision
with the emergence of active depth sensors. Recently, following the advance of deep learning,
fully-convolutional network has been the prototype architecture for current state-of-the-art on depth
completion. Ma et al. Ma & Karaman (2018); Ma et al. (2019) utilize a ResNet He et al. (2016) based
encoder-decoder architecture, i.e. U-Net, within either a supervised or self-supervised framework
to predict the dense output. To preserve the accurate measurements in the given sparse depth and
also perform refinement over the final depth map, CSPN Cheng et al. (2018) appends a convolutional
spatial propagation network (SPN Liu et al. (2017)) at the end of U-Net to refine its coarse prediction.
Based on CSPN, learnable convolutional kernel sizes and a number of iterations are proposed to
improve the efficiency Cheng et al. (2020), and the performance could be further improved by using
unfixed local neighbors Xu et al. (2020); Park et al. (2020) and independent affinity matrix for each
iteration Lin et al. (2022). For all these SPN-based methods, while a larger context is observed
within recurrent processing, the performance is limited by the capacity of the convolutional U-Net
backbone. Accordingly, we strengthen the expressivity of the U-Net backbone with local and global
coherent context information, proving effective in improving performance.

Rather than depending on a single branch, multi-branch networks Van Gansbeke et al. (2019); Liu
et al. (2021a); Hu et al. (2021); Tang et al. (2020); Qiu et al. (2019); Nazir et al. (2022); Zhang
& Funkhouser (2018) are also adopted to perform multi-modal fusion. The common way to fuse
the multi-modal information is simple concatenation or element-wise summation operation. More
sophisticated strategies like image-guided spatially-variant convolution Tang et al. (2020); Yan et al.
(2022), channel-wise canonical correlation analysis Zhong et al. (2019), neighbour attention mech-
anism Zhang et al. (2020) and attention-based graph propagation Zhao et al. (2021); Xiong et al.
(2020) were also proposed to enhance local information interaction and fusion. Instead of pixel-
wise operation or local fusion, recently, GuideFormer Rho et al. (2022) proposed a dual-branch
fully Transformer-based network to embed the RGB and depth input separately, and an extra mod-
ule is further designed to capture inter-modal dependencies. The independent design for each input
source leads to huge computation costs (near 2T FLOPs with the 352×1216 input). In contrast, our
CompletionFormer in one branch brings significant efficiency (559.5G FLOPs), and the included
convolutional attention layer complements the disadvantage of a Transformer in local details.

Vision Transformer. Transformers Lee et al. (2022); Liu et al. (2021b) are first introduced in nat-
ural language processing Vaswani et al. (2017), then also showing great potential in the fields of
image classification Dosovitskiy et al. (2020), object detection Liu et al. (2021b); Lee et al. (2022);
Xu et al. (2021) and semantic segmentation Xie et al. (2021). Tasks related to 3D vision have also
benefited from the enriched modeling capability of Transformer, such as stereo matching Li et al.
(2021; 2022a), supervised Ranftl et al. (2021); Li et al. (2022b) and unsupervised monocular depth
estimation Zhao et al. (2022), optical flow Sui et al. (2022); Jiang et al. (2021) and also depth com-
pletion Rho et al. (2022). Instead of relying on pure Vision Transformer Rho et al. (2022), in this
paper, we explore the combination of Transformer and convolution into one block for depth comple-
tion. Compared to the general backbone networks (e.g. fully CNN-based ResNet He et al. (2016),
pure Transformer-based Swin Transformer Liu et al. (2021b) and MPViT Lee et al. (2022) which
contains both convolutional and Transformer paths), our proposed joint convolutional attention and
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CompletionFormer #Layers Params (M) FLOPs (G)

Tiny [2, 2, 2, 2] 41.5 191.7
Small [3, 3, 6, 3] 78.3 231.8
Base [3, 3, 18, 3] 142.4 301.9

Table 1: CompletionFormer Configurations. #Layers denotes the number of our joint blocks in
each stage. For all model variants, the channels of 4 stages are 64, 128, 320, 512, respectively.
FLOPs are measured using 480×640 input image.

Transformer block achieves much higher efficiency and performance on public benchmarks Silber-
man et al. (2012); Uhrig et al. (2017)

3 METHOD

In practical applications, depth maps captured by sensors present various levels of sparsity and noise.
Our goal is to introduce both the local features and global context information into the depth com-
pletion task so that it can gather reliable depth hints from any distance. The overall diagram of
our CompletionFormer is shown in Figure 2. After obtaining depth and RGB image embedding, a
backbone constructed by our joint convolutional attention and Transformer block is used for fea-
ture extraction at multiple scales. Then, a decoder enhanced by spatial and channel-wise attention
provides full-resolution features for initial depth prediction. Finally, we refine the initial estimation
with a spatial propagation network.

3.1 RGB AND DEPTH EMBEDDING

For depth completion, multimodal information fusion at an early stage has several advantages, 1) it
makes the feature vector of each pixel possess both the RGB and depth information so that pixels
with invalid depth still have a chance to be corrected by reliable depth measurements according
to appearance similarity; 2) only one branch is required for the following network, which enables
much efficient implementation. Therefore, we firstly use two separate convolutions to encode the
input sparse depth map S and RGB image I. The outputs are concatenated and further processed by
another convolution layer to get the raw feature containing contents from both sources.

3.2 JOINT CONVOLUTIONAL ATTENTION AND TRANSFORMER ENCODER

For depth completion, it has been extensively studied how to build connections between pixels to
implement depth propagation from reliable pixels while avoiding incorrect ones. Recently, convolu-
tion layer Cheng et al. (2020; 2018); Hu et al. (2021); Van Gansbeke et al. (2019); Lin et al. (2022);
Qiu et al. (2019); Park et al. (2020); Zhu et al. (2022) or attention based graph propagation Zhao
et al. (2021); Xiong et al. (2020) has been the dominant operation for this purpose. Although a
fully Transformer-based network Rho et al. (2022) has also been adopted for this purpose, it shows
worse results and much higher computational cost compared to pure CNNs-based methods. Con-
sidering the complementary properties of these two-style operations, within CompletionFormer, we
propose a joint design to take advantage of both the local details of convolutions and the global
dependencies of Transformer, while enjoying less computation cost compared to fully CNNs-based
or Transformer-based networks as shown in Tab. 2.

Specifically, our Transformer encoder takes five stages, allowing features representation at different
scales to communicate with each other effectively. In the first stage, to decrease the computation
cost and memory overhead introduced by the Transformer layer, we use a series of BasicBlocks from
ResNet34 He et al. (2016) to process and finally get downsampled feature map F1 at half resolution.
For the next four stages, we introduce our proposed joint convolutional attention and Transformer
block as the basic unit for framework design.

Basically, for each stage i ∈ {2,3,4,5}, it consists of a patch embedding module and Li repeated
joint convolutional attention and Transformer blocks. The patch embedding module firstly divides
the feature map Fi−1 from previous stage i− 1 into patches with size 2× 2. We implement it with
a 3× 3 convolution layer and stride set to 2 as Wang et al. (2021), so it actually halves resolution
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for features Fi−1 and thus allows for obtaining a features pyramid {F2,F3,F4,F5}, whose resolutions
are {1/4,1/8,1/16,1/32} with respect to the input image. Furthermore, position embedding is also
included in the embedded patches and passed through the following joint blocks.

Joint Convolutional Attention and Transformer Block. Although Vision Transformer Liu et al.
(2021b); Dosovitskiy et al. (2020); Wang et al. (2021) has been proved to be effective in long-range
dependencies modelling, it is likely to ignore local relationships even with position embedding in
each patch. To cope with the issue raised by irregularly spaced and sparse depth measurements
from sensors, we integrate the Transformer layer and a convolutional attention layer into one block
for feature extraction, in which the convolutional attention layer is responsible for local details. In
overview, our block is organized in a parallel manner as shown in Fig. 3. The Transformer layer
is implemented in an efficient way as in Pyramid Vision Transformer Wang et al. (2021), which
contains a spatial-reduction attention (SRA) layer with multi-head mechanism and a feed-forward
layer (FNN). Given input features F ∈ RHi×Wi×C from the patch embedding module or last joint
block (with Hi and Wi height and width of features at stage i, and C number of channel), we firstly
normalize it with layer normalization Ba et al. (2016) (LN) and then flatten it into vector tokens
X ∈ RN×C, where N is the number of tokens and equals to Hi ×Wi, i.e. the number of all pixels in
the F . Using learned linear transformations W Q, W K , and WV ∈ RC×C, tokens X are projected into
corresponding query Q, key K, and value vectors V ∈ RN×C. Here, the spatial scale of K and V is
further reduced to decrease memory consumption, and then self-attention is performed as:

Attention(Q,K,V ) = Softmax(
QKT
√

Chead
)V, (1)

with Chead the channel dimension of each attention head in SRA. According to Eq. (1), each token in
the entire input space F is matched with any tokens, including itself. Our depth completion network
benefits from the self-attention mechanism in two folds: 1) it extends the receptive field of our
network to the full image in each Transformer layer; 2) as we have embedded each token with both
depth and RGB image information, the self-attention mechanism explicitly compare the similarity
of each pixel not only by appearance, but also by depth with dot-product operation. Thus, reliable
depth information can be broadcasted to the whole image, enabling to correct erroneous pixels.

Inspired by CBAM Woo et al. (2018), we boost the representation power of the convolutional path
with channel and spatial attention. On the one hand, it helps to model locally accurate attention and
reduce noise. On the other hand, due to the semantic gap between convolution and Transformer, the
increased modeling capacity by using the attention mechanism enables this path to focus on impor-
tant features provided by the Transformer layer while suppressing the unnecessary ones. Finally, by
concatenating the reshaped feature from the Transformer-based path, we fuse the two paths with a
3×3 convolution and send it to the next block or stage.

Taking the proposed joint block as the basic unit, we build stages 2-5 with repeated configurations.
As reported in Tab. 1, we scale-up the 4 stages in CompletionFormer from tiny, small to base scale.
Results shown in Tab. 2 demonstrate the superiority of our design compared to recent Vision Trans-
formers Lee et al. (2022); Liu et al. (2021b); Wang et al. (2021) in depth completion task.

3.3 DECODER AND MULTISCALE FUSION MODULE

In the decoder, outputs from each encoding layer are concatenated and further processed by the
corresponding decoding layers via skip connections. To accommodate diverse scale features better,
the features from last decoder layer is upsampled to current scale with a deconvolution layer and
convolutional attention mechanism Woo et al. (2018) is also exploited to strengthen feature fusion
in channel and spatial dimensions. Finally, the fused result from the decoder is concatenated with
features from stage one and fed to the first convolution layer of the prediction head. Its output is
concatenated with the raw feature from RGB and depth embedding module (Sec. 3.1) and sent to
another convolution, which is in charge of initial depth prediction D0.

3.4 SPN REFINEMENT AND LOSS FUNCTION

Depth by direct regression from U-Net is still blurry and misaligned with the given image structure.
Here, we adopt the non-local spatial propagation network Park et al. (2020) (NLSPN) for further
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refinement. Specifically, let Dt = (dt
u,v) ∈ RH×W denotes the 2D depth map updated by spatial

propagation at step t, where dt
u,v denotes the depth value at pixel (u,v), and H,W denotes the height

and width of the Dt respectively. The propagation of dt
u,v at step t with its non-local neighbors NNL

u,v
is defined as follows:

dt
u,v = wu,v(0,0)dt−1

u,v + ∑
(i, j)∈NNL

u,v ,i̸=0, j ̸=0

wu,v(i, j)dt−1
i, j , (2)

where wu,v(i, j) ∈ (−1,1) describes the affinity weight between the reference pixel at (u,v) and
its neighbor pixel at (i, j), and wu,v(0,0) = 1−∑(i, j)∈Nu,v,i̸=0, j ̸=0 wu,v(i, j) stands for how much the
original depth dt−1

u,v will be preserved. Moreover, the affinity matrix w is modulated by a predicted
confidence map to prevent less confident pixels from propagating into neighbors regardless of how
large the affinity is.

Similar to NLSPN Park et al. (2020), features from U-Net backbone are shared for estimating affinity
matrix w, non-local neighbors NNL

u,v , confidence map and initial depth D0 estimation. Specifically,
the prediction is achieved by several separate heads, taking almost the same design used to estimate
D0, and only the output channel is changed according to the output type. After K steps (K is set to
6 in our CompletionFormer) spatial propagation, we get the final refined depth map DK .

Finally, following Park et al. (2020), a combined L1 and L2 loss is employed to supervise the network
training as follows:

L(D̂,Dgt) =
1
|V | ∑

v∈V

(
|D̂v −Dgt

v |+ |D̂v −Dgt
v |2

)
, (3)

where D̂ = DK , and V is the set of pixels with valid depth in ground truth depth Dgt , and |V | denotes
the size of set V .

4 EXPERIMENTS

4.1 DATASETS

NYUv2 Dataset Silberman et al. (2012): it consists of RGB and depth images captured by Mi-
crosoft Kinect Microsoft in 464 indoor scenes. Following the similar setting of previous depth
completion methods Park et al. (2020); Zhu et al. (2022), our method is trained on 50,000 images
uniformly sampled from the training set and tested on the 654 images from the official labeled test
set for evaluation. For both training and test sets, the original frames of size 640× 480 are half
down-sampled with bilinear interpolation and then center-cropped to 304× 228. The sparse input
depth is generated by random sampling from the dense ground truth.

KITTI Depth Completion (DC) Dataset Uhrig et al. (2017): it contains 86 898 training data,
1 000 selected for validation, and 1 000 for testing without ground truth. The original depth map
obtained by the Velodyne HDL-64e is sparse, covering about 5.9% pixels. The dense ground truth is
generated by collecting LiDAR scans from 11 consecutive temporal frames into one, producing near
30% annotated pixels. These registered points are verified with the stereo image pairs to eliminate
noisy values. Since there is no LiDAR return at the top of the image, following Park et al. (2020),
input images are bottom center-cropped to 240×1216 for training, validation and testing phases.

4.2 IMPLEMENTATION DETAILS

We implement our model in PyTorch Paszke et al. (2019) on 4 NVIDIA 3090 GPUs, using
AdamW Loshchilov & Hutter (2017) as optimizer with an initial learning rate of 0.001, β1 =
0.9, β2 = 0.999, weight decay of 0.01. The batch size per GPU is set to 3 and 12 on KITTI DC and
NYUv2 datasets, respectively. On the NYUv2 dataset, we train the model for 72 epochs and decay
the learning rate by a factor of 0.5 at epochs 36, 48, 60, 72. For the KITTI DC dataset, the model is
trained with 100 epochs, and we reduce the learning rate by half at epochs 50, 60, 70, 80, 90. The
Appendix outlines more details about network parameters.
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Backbone Attention Refinement RMSE↓ MAE↓ Params.↓ FLOPs ↓
Type Decoder (mm) (mm) (M) (G)

(A) ResNet34 ✗ NLSPN 92.3 36.1 26.4 542.2
(B) ResNet34 ✓ NLSPN 91.4 35.5 28.1 582.1
(C) Swin-Tiny ✓ NLSPN 92.6 36.4 38.1 634.8
(D) PVT-Large ✓ NLSPN 90.7 35.2 66.0 410.3
(E) MPViT-Base ✓ NLSPN 91.0 35.5 83.1 1259.3
(F) Ours-Tiny ✓ NLSPN 90.9 35.3 45.8 389.4
(G) Ours-Small ✓ NLSPN 90.0 35.0 82.6 429.6
(H) Ours-Base ✓ NLSPN 90.1 35.1 146.7 499.6

(I) ResNet34 ✓ ✗ 106.5 57.8 28.1 581.5
(J) Ours-Small ✓ ✗ 100.9 51.9 82.6 429.0
(K) Ours-Small ✓ CSPN++ 90.3 34.9 82.7 446.4
(L) Ours-Small w/ dual-branch encoders 94.0 36.4 161.0 661.4
(M) Ours-Small w/o CNN branch 90.7 35.3 29.2 374.6
(N) Ours-Small w/o Transformer branch 90.6 35.4 59.9 407.7

Scanning Method RMSE↓ MAE↓ iRMSE↓ iMAE↓
Lines (mm) (mm) (1/km) (1/km)

1

NLSPN 3507.7 1849.1 13.8 8.9
DySPN 3625.5 1924.7 13.8 8.9

Ours-ViT 3507.2 1807.7 12.1 7.8
Ours 3250.2 1582.6 10.4 6.6

4

NLSPN 2293.1 831.3 7.0 3.4
DySPN 2285.8 834.3 6.3 3.2

Ours-ViT 2241.2 795.9 5.8 2.9
Ours 2150.0 740.1 5.4 2.6

16

NLSPN 1288.9 377.2 3.4 1.4
DySPN 1274.8 366.4 3.2 1.3

Ours-ViT 1268.9 360.7 3.3 1.3
Ours 1218.6 337.4 3.0 1.2

64

NLSPN 889.4 238.8 2.6 1.0
DySPN 878.5 228.6 2.5 1.0

Ours-ViT 872.0 226.2 2.5 1.0
Ours 848.7 215.9 2.5 0.9

(a) Ablation study on network architecture. (b) Ablation study on scanning lines of LiDAR sensor.

Table 2: Ablation study on (a) NYU Depth v2 Silberman et al. (2012) and (b) KITTI DC Uhrig
et al. (2017) datasets. In (a), we ablate the settings of our network in the following aspects: the
backbone type (including ResNet34 He et al. (2016), Swin-Tiny Liu et al. (2021b), PVT-Large Wang
et al. (2021), and MPViT-Base Lee et al. (2022)), the convolutional attention mechanism in decoder
and SPN Refinement module. FLOPs are measured with input resolution 480× 640. In (b), Ours-
ViT denotes that only the Transformer layer is enabled in our proposed block.

4.3 EVALUATION METRICS

Following the KITTI benchmark and existing depth completion methods Park et al. (2020); Zhu et al.
(2022), given the prediction D̂ and ground truth Dgt , we use the standard metrics for evaluation: (1)
root mean square error (RMSE); (2) mean absolute error (MAE); (3) root mean squared error of
the inverse depth (iRMSE); (4) mean absolute error of the inverse depth (iMAE); (5) mean absolute
relative error (REL).

4.4 ABLATION STUDIES AND ANALYSES

We assess the impact of the main components of our CompletionFormer on NYUv2 dataset Sil-
berman et al. (2012). Following previous methods Lin et al. (2022); Park et al. (2020), we ran-
domly sample 500 depth pixels from the ground truth depth map and input them along with the
corresponding RGB image for network training. As reported in Tab. 2(a), in RMSE, our novel
CompletionFormer in small scale (G) outperforms pure CNNs based method (B) and those pure
Transformer-based variants (C, D) counting comparable FLOPs with respect to our model. In par-
ticular, compared to the recent MPViT-Base Lee et al. (2022) model (E) which also integrates CNNs
and Transformer for feature extraction, our network is not limited to higher accuracy, but also to
much lower computational overhead (429.6G FLOPs, while MPViT-Base counts 1259.3G FLOPs).
Compared to our baseline (A), i.e. NLSPN Park et al. (2020), introducing spatial and channel at-
tention for feature fusion in the decoder (B) further improves the results, with negligible FLOPs
increase. Moreover, our models in various scales (E, G, H), benefiting from local and global cues,
achieve significant improvement compared to the pure CNN-based baseline (A), while counting
fewer FLOPs. To trade-off between accuracy and efficiency, we select our model in small scale (G)
as our final architecture for the remaining experiments.

Refinement is also crucial for depth completion methods. Here we ablate the influence of refinement
on our CompletionFormer. Compared to a pure CNNs-based network (I), our model with CNNs and
Transformer is less affected by the disabling of the NLSPN Park et al. (2020) refinement. Even
when we replace the non-local refinement in NLSPN with fixed neighbors in CSPN++ Cheng et al.
(2020) (K), the accuracy remains almost the same. It indicates that our CompletionFormer can learn
good affinity locally and globally, thus helping to eliminate the problem raised by the limited and
fixed range of affinity aggregation in CSPN++ Cheng et al. (2020).

Furthermore, as for previous methods Rho et al. (2022); Tang et al. (2020), we test the dual-branch
architecture, which encodes the RGB and depth information separately (L). For feature communi-
cation between two branches, we include the spatial and channel attention mechanism Woo et al.
(2018) at the end of each stage in the encoder. However, the worse results compared to our one-
branch design (G) demonstrates that embedding the multimodal information at the early stage is
much more effective and efficient. By individually disabling the convolutional attention (M) and
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(a) RGB + Sparse LiDAR (b) NLSPN (c) Ours-ViT (d) Ours

4  Scanning Lines

16 Scanning Lines

Figure 4: Qualitative results on KITTI DC selected validation dataset with 4 and 16 LiDAR
scanning lines. We attach the subsampled LiDAR lines to the corresponding RGB image for better
visualization. Ours-ViT denotes that only the Transformer layer is enabled in our proposed block.
A colder color in depth and error maps denotes a lower value.

RMSE↓ (m)
Method PackNet-SAN GuideNet NLSPN Ours-ViT Ours

Sample Number 200 0.155 0.142 0.129 0.130 0.127
500 0.120 0.101 0.092 0.091 0.090

Table 3: Sparsity Studies on the NYUv2 Dataset. Evaluation with 200 and 500 samples.

Transformer layers (N), we witness performance drops in RMSE and MAE. It confirms that local
and global contexts are vital for depth completion.

4.5 SPARSITY LEVEL STUDIES AND ANALYSES

Depth maps captured by sensors such as Microsoft Kinect Microsoft and Velodyne LiDAR sensor
are unevenly distributed and often contain outliers. To compare the effectiveness of our Comple-
tionFormer with current state-of-the-art methods Guizilini et al. (2021); Tang et al. (2020); Park
et al. (2020); Lin et al. (2022) when dealing with this challenging input depth, we manually gen-
erate sparse data at different settings for network training and testing. As for noise, since captured
depth maps are often corrupted by sensor noise or displacement between RGB camera and depth
sensor Qiu et al. (2019), we do not add extra noise to the input depth for experiments.

Outdoor Scene. We conduct exhaustive experiments on the KITTI DC dataset Uhrig et al. (2017)
to illustrate the robustness of our CompletionFormer when input with different sparsity levels. For
all experiments, we train on randomly selected 10 000 RGB and LiDAR pairs from official training
data (due to resource constraints) and test on the selected validation dataset provided by KITTI. Fur-
thermore, following Imran et al. (2021), we sub-sample the raw LiDAR points captured by Velodyne
HDL-64e in azimuth-elevation space into 1, 4, 16 and 64 lines to simulate the LiDAR-like patterns.
All methods have been fully retrained using the authors’ code with variable lines of LiDAR in-
puts (For DySPN Lin et al. (2022), as no public code available, the results have been provided to
us by the author using the same selected training list). To get a throughout understanding of the
local details encoded by convolution and global context gathered by Transformer, we present the
results estimated by pure CNN-based methods (i.e. NLSPN and DySPN), a fully Transformer-based
variant of our network (Ours-ViT) and our CompletionFormer complete architecture (Ours), which
integrates both paradigms. As reported in Tab. 2(b), thanks to the global correlations built by Trans-
formers, our model relying on these blocks only (Ours-ViT) exhibits better results in all metrics as
the LiDAR points get sparser. However, solely using Transformer layers makes it difficult to distin-
guish the objects from the background, as shown in Fig. 4. By coupling the local features and global
representations, our complete model (Ours) significantly decreases the errors in all metrics.

Indoor Scene. On the NYUv2 dataset Silberman et al. (2012), following Tang et al. (2020), we
randomly sample 200 and 500 points from the ground truth depth map to mimic different depth
sparsity levels while keeping the ground truth depth used for supervision unchanged. Both our model
and NLSPN with publicly available code are retrained for a fair comparison, while the results of

8
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Method
KITTI DC NYUv2

PublicationMAE↓ iMAE↓ iRMSE↓ RMSE↓ RMSE↓
(mm) (1/km) (1/km) (mm) (m) REL↓

CSPN Cheng et al. (2018) 279.46 1.15 2.93 1019.64 0.117 0.016 ECCV18
DeepLiDAR Qiu et al. (2019) 226.50 1.15 2.56 758.38 0.115 0.022 CVPR19
GuideNet Tang et al. (2020) 218.83 0.99 2.25 736.24 0.101 0.015 TIP20
NLSPN Park et al. (2020) 199.59 0.84 1.99 741.68 0.092 0.012 ECCV20
PENet Hu et al. (2021) 210.55 0.94 2.17 730.08 - - ICRA21
ACMNet Zhao et al. (2021) 206.09 0.90 2.08 744.91 0.105 0.015 TIP21
TWISE Imran et al. (2021) 195.58 0.82 2.08 840.20 0.097 0.013 CVPR21
RigNet Yan et al. (2022) 203.25 0.90 2.08 712.66 0.090 0.013 ECCV22
GuideFormer Rho et al. (2022) 207.76 0.97 2.14 721.48 - - CVPR22
DySPN Lin et al. (2022) 192.71 0.82 1.88 709.12 0.090 0.012 AAAI22
Ours 183.88 0.80 1.89 764.87 0.090 0.012 -

Table 4: Quantitative evaluation on KITTI DC and NYUv2 Datasets.

CompletionFormer (Ours)NLSPN DySPNRigNetRGB Image

Figure 5: Qualitative results on the KITTI depth completion test set. Comparisons of our method
against state-of-the-art methods including RigNet Yan et al. (2022), NLSPN Park et al. (2020),
DySPN Lin et al. (2022) are presented. We provide RGB images, dense predictions, zoom-in views
of challenging areas and corresponding error maps for better visualization.

GuideNet Tang et al. (2020) and PackNet-SAN Guizilini et al. (2021) are taken from the original
papers. In Tab. 3, CompletionFormer with both CNNs and Transformers consistently outperforms
all other methods in any cases. Qualitative results are provided as Appendix .

4.6 COMPARISON WITH SOTA METHODS

This section comprehensively assesses the performance of state-of-the-art (SOTA) methods. On
indoor, i.e. NYUv2 dataset Silberman et al. (2012), CompletionFormer achieves the best results as
reported in Tab. 4. When moving to outdoor dataset, we empirically find that our model trained
with only L1 loss achieves the best results on two among four metrics on KITTI depth completion
(DC) dataset Uhrig et al. (2017). Specifically, by the time of submission, our network ranks first
on the KITTI benchmark on iMAE and MAE metrics and achieves the second-best result on the
iRMSE metric among all methods listed in Tab. 4. Qualitative results on the KITTI DC test dataset
are provided in Fig. 5. By integrating convolutions and Transformers, our model performs better
near depth missing areas (e.g. the zoom-in visualization on the second and fourth rows), textureless
objects (e.g. the cars on the first row) and small objects (e.g. the pillars and tree stem far in the
distance, on second and fourth rows).

5 CONCLUSIONS

This paper proposed a single-branch depth completion network, CompletionFormer, seamlessly in-
tegrating convolutions and Transformers into one block. Extensive ablation studies demonstrate the
effectiveness and efficiency of our model in depth completion when the input is sparse. This novel
design yields state-of-the-art results on indoor and outdoor datasets.
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A APPENDIX

A.1 QUALITATIVE RESULTS ON NYUV2 DATASET

Qualitative results concerning the NYUv2 dataset Silberman et al. (2012) are provided in Fig. 6.
In both visualized cases, we can notice the improved results yielded by our CompletionFormer
compared to NLSPN Park et al. (2020). Especially for the transparent regions near the windows in
both cases, with local details of convolution and global cues of Transformer, our complete model
(Ours) predicts clear object boundaries while NLSPN and Ours-ViT give blurry estimations.

(a) GT Depth / RGB (b) NLSPN (c) Ours-ViT (d) Ours

Figure 6: Qualitative results on NYUv2 dataset. Comparisons of our method against state-of-
the-art method, i.e. NLSPN Park et al. (2020) are presented. We provide RGB images, and dense
predictions. The colder the colors of the error map, the lower the errors. Ours-ViT denotes that only
the Transformer layer is enabled in our proposed block.

A.2 MODEL ARCHITECTURE DETAILS

To better understanding our architecture and to ease reproducibility, we present the network param-
eters of our CompletionFormer in Tab. 5. We will make code avaliable in case of acceptance.
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Name Layer setting Output dimension

RGB and Depth Embedding

input RGB Image: H ×W ×3
Sparse Depth: H ×W ×1

conv separate Conv 3×3,48 for RGB Image
Conv 3×3,16 for Sparse Depth

RGB Feature: H ×W ×48
Sparse Depth Feature: H ×W ×16

conv1 concat [RGB, Sparse Depth Feature]
Conv3×3,64 H ×W ×64

Joint Convolutional Attention and Transformer Encoder
conv2 ResNet34 He et al. (2016) BasicBlock ×3 H ×W ×64
conv3 ResNet34 He et al. (2016) BasicBlock ×4 1

2 H × 1
2W ×128

conv4 Joint Convolutional Attention and Transformer Block ×3 1
4 H × 1

4W ×64
conv5 Joint Convolutional Attention and Transformer Block ×3 1

8 H × 1
8W ×128

conv6 Joint Convolutional Attention and Transformer Block ×6 1
16 H × 1

16W ×320
conv7 Joint Convolutional Attention and Transformer Block ×3 1

32 H × 1
32W ×512

Decoder

dec6 ConvTranspose 3×3, stride = 2, 256
Convolutional Attention Layer

1
16 H × 1

16W ×256

dec5
concat [dec6, conv6]

ConvTranspose 3×3, stride = 2, 128
Convolutional Attention Layer

1
8 H × 1

8W ×128

dec4
concat [dec5, conv5]

ConvTranspose 3×3, stride = 2, 64
Convolutional Attention Layer

1
4 H × 1

4W ×64

dec3
concat [dec4, conv4]

ConvTranspose 3×3, stride = 2, 64
Convolutional Attention Layer

1
2 H × 1

2W ×64

dec2
concat [dec3, conv3]

ConvTranspose 3×3, stride = 2, 64
Convolutional Attention Layer

H ×W ×64

Initial Depth, Confidence, Non-local Neighbors, Affinity Prediction Head

dec1 concat [dec2, conv2]
Conv 3×3,64 H ×W ×64

dec0 concat [dec1, conv1]
Conv 3×3,η H ×W ×η

SPN Refinement
refine Spatial Propagation Network Park et al. (2020) with recurrent time K = 6 H ×W ×1

Table 5: Network parameters of CompletionFormer. ‘concat’ means performing concatenate opera-
tion at Channel dimension. For each prediction head, it takes almost the same design, and only the
output channel η is dependent on the output type, e.g. η = 1 for initial depth prediction.
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