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Abstract

In general, large datasets enable deep learning
models to perform with good accuracy and gen-
eralizability. However, massive high-fidelity sim-
ulation datasets (from molecular chemistry, as-
trophysics, computational fluid dynamics (CFD),
etc.) can be challenging to curate due to dimen-
sionality and storage constraints. Lossy compres-
sion algorithms can help mitigate limitations from
storage, as long as the overall data fidelity is pre-
served. To illustrate this point, we demonstrate
that deep learning models, trained and tested on
data from a petascale CFD simulation, are ro-
bust to errors introduced during lossy compres-
sion in a semantic segmentation problem. Our
results demonstrate that lossy compression al-
gorithms offer a realistic pathway for exposing
high-fidelity scientific data to open-source data
repositories for building community datasets. In
this paper, we outline, construct, and evaluate the
requirements for establishing a big data frame-
work, demonstrated at https://blastnet.
github.io/, for scientific machine learning.

1. Introduction
Accuracy and generalizability are the requirements of predic-
tive machine learning (ML) models. One way to achieve this
is to rely on a wealth of sufficiently high quality data (Sun
et al., 2017). In fields such as computer vision, massive and
diverse datasets (∼170 GB, 1.4M images, 1,000 classes)
such as ImageNet (Deng et al., 2009), which is shared via
Kaggle (Goldbloom & Hamner, 2010), have enabled deep
learning models (He et al., 2016) to outperform human ca-
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pabilities in image recognition (Russakovsky et al., 2015).

In contrast, high-fidelity simulation datasets found in the
natural and applied sciences, such as the Johns Hopkins
Turbulence Database (Li et al., 2008) are not as diverse
(9 simulation cases), but are orders of magnitude greater
in size (∼500 TB) due to increased dimensionality and
grid resolution requirements. As such, open-source public
ML data repositories such as Kaggle (with a size limit of
O(100) GB per dataset) are not feasible. Instead, signifi-
cant resources and infrastructure must be dedicated towards
building and maintaining data storage facilities. Since ac-
cess to scientific data can be limited, many fields, including
material sciences (Zhang & Ling, 2018), experimental chem-
istry (Thawani et al., 2020), and the aforementioned flow
physics, have applied ML in the small data regime, where
ideas such as knowledge-guided ML (Karniadakis et al.,
2021) are popular.

In fields where high-fidelity simulations are prevalent, the
wealth of data required to operate in the big data regime
does exist. For example, Ihme et al. (2022) identified over
200 high-fidelity simulation cases that could serve as a foun-
dation for a big dataset for turbulent reacting flows. Thus, if
these challenges in data storage can be overcome, ML in the
natural and applied sciences could more effectively leverage
advances from the broader ML community – which focuses
on big data, big models (Yuan et al., 2022), and foundation
models (Bommasani et al., 2021) – towards predictive tasks
in scientific problems. We must note that both small and
big data paradigms do not necessarily compete, and that
effective data-driven models, in fields such as material sci-
ence (Lu et al., 2020), flow physics (Wu et al., 2018), and
astro-physics (Khan et al., 2020), have been developed by
combining ideas from both paradigms.

Here, we propose lossy compression methods (Cappello
et al., 2019) towards compressing data into tractable sizes,
suitable for sharing via public repositories, at the cost of
introducing errors (typically controllable via error-bounded
algorithms) to a dataset. This is complemented by a recent
study (Northcutt et al., 2021) which demonstrated that Im-
ageNet and other popular benchmark datasets contain up
to 10% label errors. Despite these errors in training data,
ML continues to perform with remarkable accuracy because
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Figure 1. BLASTNet: A path towards public datasets in scientific ML. URL: https://blastnet.github.io/.

modern deep learning algorithms are inherently robust to
noisy data (Rolnick et al., 2017; Mahajan et al., 2018). This
means that lossy compression could be applied towards
mitigating storage limits in public repositories.

In this work, we propose a realistic pathway for building
high-fidelity scientific datasets required to operate in the
big data regime. This Bearable Large Accessible Scientific
Training Network-of-Datasets (BLASTNet) framework –
combining lossy compression, community outreach, and
public repositories – is summarized in Figure 1. A prelim-
inary step before data collection involves either (i) iden-
tifying target supervised learning problems, where labels
can be defined, or (ii) choosing to simply share raw scien-
tific data. Next, the data is collected and compressed into
a consistent data format at a desired level of error. Then,
the compressed dataset (O(100) GB each) from different
scientific investigators can be uploaded onto a public ML
repository. A link and description of the dataset can then
be shared to a data administrator, who curates the links
and metadata from the network of distributed datasets on
a community-hosted webpage. In this work, we present a
proof-of-concept of this webpage (Chung et al., 2022) on
https://blastnet.github.io/.

This webpage also provides tutorials for sharing/accessing
scientific data and provides standards for the shared data. A
discussion forum is hosted to receive community feedback
and to provide user support. To ensure that fair attribution is
provided in this open-source project, a version update will
be applied each time a new dataset is contributed so that
each individual contributor is included into BLASTNet’s
author list, which is a common practice in open-source
software (Goodwin et al., 2022). For the first iteration of
BLASTNet, we envision a network-of-datasets for high-

fidelity simulation data of reacting and non-reacting flow
configurations, covering ∼100 different configurations with
a total of ∼1000 different snapshots in order to curate suf-
ficiently massive and diverse datasets, with later versions
considering other forms of scientific data.

This big scientific data framework relies on the (i) the size
and quality of the compressed data, and (ii) the robustness
of deep learning models to errors introduced during lossy
compression. To address these concerns, we quantify the er-
rors and reduction offered by a lossy compression algorithm,
SZ2 (Liang et al., 2018b), and demonstrate that deep learn-
ing is still effective after training on lossy data extracted
from a petascale turbulent reacting flow simulation, in a
semantic segmentation problem. Within turbulent reacting
flows, this type of classification can be useful for detecting
catastrophic rare events (Cellier et al., 2021), optimizing nu-
merical computations (Chung et al., 2021), and identifying
combustion regimes (Wan et al., 2020). In other scien-
tific fields, semantic segmentation have been explored for
processing data extracted from microscopes (Ronneberger
et al., 2015), radio-astronomical measurements (Pino et al.,
2021), and neutrino experiments (Abratenko et al., 2021).
The present data is further described in Section 2, while
the lossy compression algorithm and the 3-D convolutional
neural network (CNN) employed are detailed in Section 3.
We present our results and conclusions in Section 4 and
Section 5, respectively.

2. Data Description
A three-dimensional direct numerical simulation (DNS)
dataset for a turbulent lifted hydrogen jet flame in heated
co-flow air (Jung et al., 2021) is used in this study. This
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Figure 2. Present 3-D CNN architecture. Number of filters per layer C are described at the bottom of each layer.

simulation data was generated by solving the compressible
Navier-Stokes equations, along with species continuity and
total energy conservation equations, using a high-order nu-
merical solver (Chen et al., 2009), with a detailed 9-species
and 21-reaction hydrogen-air chemical mechanism (Li et al.,
2004).

This petascale simulation of reacting flow in a slot-burner
configuration consists of 1.28 billion grid points (2000 ×
1600×400) with 12 conserved quantities for the flow-fields.
A single snapshot of this data is slightly more than 100 GB
in size. A diluted hydrogen fuel is issued from the central jet
with a jet Reynolds number of 8,000. The central jet is sur-
rounded on either side by co-flowing heated air streams with
an inlet temperature of 850 K. The computational domain
size is 30 × 40 × 6 mm3 in the streamwise, x-, transverse,
y-, and spanwise, z- directions, respectively. A uniform grid
size of 15 µm is placed in x- and z- directions while and
algebraically-stretched grid is adopted in the y- directions.

In the present study, a sub-region (with 60M cells) of the
DNS field (i.e., a left half branch of the lifted jet flame) is
sampled to evaluate the lossy compression algorithm. From
this data, we extract four flow features, and generate five
classes of labels from this dataset, and subdivide the data
into 268 sub-volumes, each with 256 × 256 × 3 cells and
four channels for the features in the input flow-field. Note
that since this configuration is homogeneous in the spanwise
direction, 3 cells in the z-axis is sufficient for preserving spa-
tial information in these subvolumes. The features consist of
mass fractions of major chemical species and mixture frac-
tion1 as defined by Bilger (1976), i.e. {YH2 , YO2 , YH2O, Z},
and are normalized with a min-max scaler prior to training.

1The mixture fraction can be thought of as reduced dimension
of chemical composition of a reacting fuel-air mixture, with values
of 0 and 1 corresponding to the amount of material originating
from the oxidizer and fuel streams, respectively.

The classes consist of premixed flame, non-premixed flame,
pure fuel, pure air, and unburned fuel-air mixture which can
be generated directly from the magnitudes and gradients (Ya-
mashita et al., 1996) of the input features. Train, validation,
and test sets are split in a typical 60:20:20 fashion, with ran-
dom rotation and random flipping used to further augment
the train set.

3. Methods
3.1. Deep Learning Model

The architecture of the 3-D convolutional neural network
(CNN) employed is also shown in Figure 2. This ar-
chitecture is based on the work of Glaws et al. (2020),
and is known to perform effectively in flow physics prob-
lems, with the input size of the present model modified
to 256 × 256 × 3 × 4, the minimum number of filters per
hidden layer increased to 16, and the filter width reduced
to 3. 12 residual blocks are placed before and after an au-
toencoder network, with a softmax output activation for 5
classes used together with a categorical cross-entropy loss
function to solve the present semantic segmentation prob-
lem. This network contains 93 layers and approximately
1M trainable parameters, with weights initialized via Xavier
initialization (Glorot & Bengio, 2010). Train and validation
procedures are shared in Appendix A.

3.2. Lossy Compression Algorithm

We employ the SZ2 compressor (Liang et al., 2018b), which
combines curve-fitting, the Lorenzo predictor, and data
quantization, tailored for compressing a wide range of sci-
entific data including measurements from seismic imaging
and X-ray, as well as simulation data in molecular dynamics,
cosmology, and flow physics. In principle, this compression
algorithm (i) partitions field variables into neighborhoods,
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(ii) iteratively searches for approximate regression func-
tions that can describe each neighborhood with a guaranteed
error-bound, and (iii) stores the quantized regression coeffi-
cients of the function and indices of the field variables for
reconstructing the data during decompression. Since the
quantized coefficients and indices are much smaller than the
original field variables, the data can be compressed more
effectively than lossless compression algorithms.

For this study, we consider the point-wise relative error
method (Liang et al., 2018a) within this compressor, which
guarantees that the lossy error in each cell does not exceed
a user-defined percentage of the compressed value. This
method results in a well-defined measure of quality for de-
scribing any shared scientific datasets in a public repository,
and is especially useful for maintaining the fidelity of lossy
compressed data with large variances, such as with flow
velocity and mass fractions of minor chemical species such
as OH.

4. Results
4.1. Effects of Lossy Compression on Data

We first compress 3-D scalar fields from the entire learning
set with SZ2. Figure 3 demonstrates the total compression
ratio2 from 1% to 50% max point-wise error ranges from
6- to 16-fold compression. Even if we consider only the
smallest compression ratio seen in compressing YH2O, a 5-
fold compression of the raw ∼100 GB petascale simulation
dataset, would enable at least 4 snapshots of this data to
be shared as a single dataset on Kaggle. Data compres-
sion could be repeated on other flow configurations, and
shared via the framework presented in Figure 1 for building
a distributed ML training dataset.

Next, we decompress the compressed data and evaluate er-
rors introduced by the lossy compressor. Figure 4 compares
mixture fraction Z at different levels of maximum point-
wise lossy error, with the original clean feature. Image
quality metrics (Horé & Ziou, 2010) such as peak-signal-
to-noise-ratio3 (PSNR) and structural similarity index mea-
sure4 (SSIM) are shown to decrease with increasing com-
pression, with large field distortions observed with 40% max
point-wise error (Figure 4c).

After decompressing the scalar fields, we generate the train-
ing labels for the different lossy data, as described in Sec-
tion 2. Figure 5 compares the five classes at different levels

2Compression ratio is defined as the original file size divided
by the compressed file size.

3Higher PSNR means higher image quality. Note that the
highest possible value for PSNR is 48 dB for 8-bit integers, and
760 dB for single-precision floating points.

4Higher SSIM means higher image quality. SSIM is bounded
between -1 and +1.
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Figure 3. SZ2 (Liang et al., 2018b) compression ratio of features
of the entire learning set at different specified maximum point-wise
error.
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Figure 4. A feature (mixture fraction) from the train set at different
levels of maximum point-wise error specified during compression.
Quality metrics such as peak-signal-to-noise-ratio (PSNR) and
structural similarity index measure (SSIM) are included.

of maximum point-wise error, with the original clean train-
ing label. At Figure 5b, significant noise is seen especially
in the premixed and non-premixed flame regions at 10%
max point-wise lossy error, with a 9.3% total label error
introduced to the data. This noise is present because scalar
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gradients, used in generating the flame labels (Yamashita
et al., 1996), are not necessarily preserved adequately after
lossy compression. Figure 5b shows that the fuel labels
become especially distorted at 40% max point-wise lossy
error, with a total label error 19.9%.

(a) Clean Label.

(b) 10% Max Point-wise Lossy Error.
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Figure 5. Training labels generated from lossy data at different
levels of maximum point-wise error specified during compression.

4.2. Train with Lossy data, and Test on Clean Data

In general, validation and test sets do not come from the
same distribution as the training data, and are usually sam-
pled to represent data encountered after deployment. Thus,
in the big data framework proposed in Figure 1, we envi-
sion a scenario where large quantities of lossy compressed
training data can be easily obtained from public reposito-
ries, with small quantities of clean test and validation data
sampled personally by a user.

In this study, we explore effects of training with lossy data,
and testing and validating on clean data. This task can
be further subdivided into two scenarios: (i) where lossy
features are shared into the repository with clean labels, and
(ii) lossy labels are generated from lossy data obtained from
the repository (such as with Figure 5). The former scenario
is encountered where a specific target supervised learning
problem (such as with ImageNet for image recognition)
has been identified. In this case, lossy compression does
not necessarily need to be employed to the labels, since
the dimensionality of labels are much smaller than features.

This could be more beneficial than extracting potentially
noisy labels from lossy scientific data in the latter scenario,
especially since ML methods are well-known to be more
robust to feature noise than label noise (Zhu & Wu, 2004).

4.2.1. LOSSY FEATURES AND CLEAN LABELS

Figure 6a compares class-specific accuracy scores, along
with the mean of these scores, for different levels of max-
imum point-wise lossy errors, when training with lossy
features and clean labels. Mean accuracy score of 87% is
seen in the baseline case of 0% lossy error, which is typical
in a semantic segmentation problem (Ronneberger et al.,
2015). The mean accuracy scores are seen to be robust up
to 20% max point-wise lossy error, which corresponds to a
13-fold compression in the original data.
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Figure 6. Class accuracy score at different levels of maximum
point-wise error specified during compression.
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(a) Ground Truth Labels. (b) 0% Lossy Error.
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Figure 7. Visualization of ground truth and predictions from model trained on lossy features and lossy labels, and tested on clean features
and labels.

4.2.2. LOSSY FEATURES AND LOSSY LABELS

Figure 6b compares class-specific accuracy scores, along
with the mean of these scores, for different levels of maxi-
mum point-wise lossy errors,when training with both lossy
features and lossy labels. The mean accuracy scores are
seen to be robust up to only 10% max point-wise lossy er-
ror, which still corresponds to a 11-fold compression in the
original data. After 20% max lossy error, class accuracy
for fuel drops promptly to 0, which can be explained by the
highly distorted training labels for fuel shown in Figure 5c.
Remarkably, the deep learning model demonstrates reason-
ably robust behavior in the other classes, especially in the
flame regions, to max point-wise lossy errors up until 40% .

Figure 7 visualizes the predictions from the deep learning
model trained on lossy features and lossy labels, and tested
on clean features and labels. Figure 7b shows that the model
predictions at 0% lossy error are in reasonable agreement
with the ground truth labels in Figure 7a. Evident misclas-
sification of non-premixed flame is seen near the boundary
with air in Figure 7b and Figure 7c. This is likely caused
by the presence of noisy labels between the premixed and
non-premixed flame labels seen in Figure 5. Nevertheless,
coherent classification is still observed in the flame regions,
despite the noisy training labels up to 40% max point-wise
lossy error in Figure 5c, as previously discussed with the
class accuracy scores in Figure 6b.

5. Conclusions
In this paper, we provide the requirements for establish-
ing a realistic big data framework for scientific ML. These
requirements are (i) community involvement, (ii) public
data repositories, and (iii) lossy compression algorithms.
We provide a proof-of-concept for this framework, which
we name BLASTNet (Chung et al., 2022), at https:
//blastnet.github.io/.

To demonstrate that lossy data is useful for training ML al-
gorithms, we compress data from a petascale simulation of
a turbulent reacting flow configuration, and employ the com-
pressed data to train a 3-D CNN in a semantic segmentation
problem. Two scenarios are investigated: (i) where lossy
features are shared into the repository with clean labels,
and (ii) where lossy labels are generated from raw lossy
data obtained from the repository. In the case of only lossy
features, the CNN is robust up until 20% max point-wise
lossy error, corresponding to a compression of 13-fold. The
CNN is robust up until 10% max point-wise lossy error,
corresponding to a 11-fold compression ratio. These results
indicate that accurate predictions can still be made by deep
learning algorithms even when training with lossy data, and
that lossy compression can be utilized to mitigate storage
constraints in open-source data repositories.

We intend to extend the analysis presented here to consider
more complex regression problems through future studies.

https://blastnet.github.io/
https://blastnet.github.io/
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Nevertheless, the results from this work show that with
community involvement, public data repositories, and lossy
compression algorithms, the challenging task of creating
and storing big data for scientific ML can be more bearable.
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A. Training and Validation
Training is performed with the Adam (Kingma & Ba, 2014) optimizer, with a batch size of 24 and raw learning rates of
1E-4, 1E-5, and 1E-6 for 100, 300, and 300 epochs, respectively, with early-stopping employed when necessary. Prior to
training, the raw learning rates are multiplied by the square root of the batch size. Note that in Figure 8b, the converged
validation loss can be lower than the training loss, leading to higher validation accuracy than training accuracy. This is
caused by the absence of lossy errors in the validation set, as described in Section 4. Training this model on four Tesla V100
GPUs requires a total of approximately 4 hours of wall-clock-time for each case.
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(a) 20% max point-wise lossy error in only features.

0 200 400 600

Epochs [-]

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

L
os

s
[-

]

Train

Validation

Decrease
Learning
Rate

(b) 10% max point-wise lossy error in both features and labels.

Figure 8. Loss during training.


