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A B S T R A C T   

Multi-dimensional classification (MDC) task can be considered the most inclusive description of all classifications 
tasks, as it joins multiple class spaces and their multiple class members into a single compound classification 
problem. The challenges in MDC arise from the possible class dependencies across different class spaces, as well 
as the imbalance of labels in training datasets due to lack of all possible combinations. In this paper, we propose a 
straightforward, yet efficient, MDC deep learning classifier, named Deep Self-Organizing Cube (DSOC) that can 
model dependencies among classes in multiple class spaces, while consolidating its ability to classify rare 
combinations of labels. DSOC is formed of two n-dimensional components, namely the Hypercube Classifier and 
the multiple DSOC Neural Networks connected to the hypercube. The multiple neural networks component is 
responsible for feature selection and segregation of classes, while the Hypercube classifier is responsible for 
creating the semantics among multiple class spaces and accommodate the model for rare sample classification. 
DSOC is a multiple-output learning algorithm that successfully classify samples across all class spaces simulta-
neously. To challenge the proposed DSOC model, we conducted an assessment on seventeen benchmark datasets 
in the four types of classification tasks, binary, multi-class, multi-label and multi-dimensional. The obtained 
results were compared to four standard classifiers and eight competitive state-of-the-art approaches reported in 
literature. The DSOC has achieved superior performance over standard classifiers as well as the state-of-the-art 
approaches in all the four classification tasks. Moreover, in terms of Exact Match accuracy metrics, DSOC has 
outperformed all state-of-the-art approaches in 77.8% of the cases, which reflects the superior ability of DSOC to 
model dependencies and successfully classify rare samples across all dimensions simultaneously.   

1. Introduction 

Multi-dimensional classification (MDC) is a generalization of the 
multi-label classification (MLC) problem where the classification output 
is a vector in multiple heterogeneous class spaces. The output (Y) is a 
vector of multiple class variables, where each member (Yi) specifies its 
class membership in one particular class space. Ma & Chen (Ma & Chen, 
2018) have displayed the different types of classification problems in 
terms of the number of output class variables (m) and their possible 
values (k) as shown in Fig. 1. Both binary classification (BC) and multi- 
class classification (MCC) have a single output class variable, whose 
value is binary [0, 1] in case of BC and multiple [0, 1,..K] in MCC. On the 
other hand, both MLC and MDC have multiple output class variables (m 
≥ 2), whose values are binary in case of MLC and multiple in MDC. 

From another perspective, BC and MCC are considered single-output 

learning problems, while MLC and MDC are categorized under multiple- 
output learning. Multiple-output classification aims at simultaneously 
predicting multiple outputs given a single set of input variables. Xu et al. 
(2020) have pointed out the lack of sufficient studies that generalize 
different forms of multiple-output learning despite of its growing 
importance in complex decision-making problems and the attention it 
has got in the recent years. As such, they conducted a thorough survey, 
depicting all aspects of multi-output learning including challenges, in-
puts and outputs structure, evaluation metrics as well as applications (e. 
g. Multi-label Document Categorization (Song, Vold, Madan, & Schilder, 
2022), Multi-label Semantic Scene Classification (Senthilkumar & 
Akshayaa, 2020), Multi-label Video Annotation (Xu, Jiang, Xue, & Zhou, 
2012), etc.). 

Due to the multi-variate nature of the output space of multi-output 
classification, classes across various dimensions might exhibit 
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dependencies, correlations and/or complex interactions that should be 
considered when designing the classification model. Such dependencies 
and interactions means that the prediction of one label influences pre-
dictions of other labels. MDC models that do not take into consideration 
such dependencies will suffer from propagation of error and lack of 
classification accuracy across the entire class spaces. Independent 
Classifiers (IC) or Binary Relevance (BR) that involve building single 
dimension multi-class classifier for each class variable (Zhang M. L., Li, 
Liu, & Geng, 2018) suffer from lack of accuracy, while Classifiers Chain 
(CC) that involves chain of Bayesian classifiers (Read, Pfahringer, 
Holmes, & Frank, Classifier chains for multi-label classification., 2011) 
or even the Monte Carlo scheme for chain sequencing and inference 
(Read, Martino, & Luengo, 2014) suffer from error propagation due to 
the difficulties in finding optimal chain order. (Jia & Zhang, 2020b). 

Dembczynski et al. (Dembszynski, Waegeman, Cheng, & Hüll-
ermeier, 2010) have categorized label dependencies among classes in 
MLC into two categories, conditional and unconditional label de-
pendencies. Using the standard statistical notations of multivariate 
regression models (Yi = hi(X) + ∊i(X)), unconditional dependence rep-
resents the deterministic part (i.e. the function hi(X)), while the condi-
tional dependence represents the stochastic part (i.e. the error ∊i(X)). As 
such, unconditional dependence refers to the expected dependencies 
between classes in Y, and can be measured using Pearson correlation or 
any other correlation coefficients. 

To overcome the aforementioned drawbacks and limitations as well 
as to model the underlying class dependencies in MLC, MCC and MDC, 
several models and techniques were introduced in literature. Some of 
which involve models that consider all possible class combinations as 
label powerset (LP) or modified versions of it (Junior, Faria, Silva, & 
Cerri, 2017), others create Super-Classes based on the conditional de-
pendencies among all or part of the class spaces (Read, Bielza, & Larra-
ñaga, Multi-dimensional classification with super-classes., 2013), as 
well as models based on pairwise interactions among those classes 
(Arias, Gamez, Nielsen, & Puerta, 2016). Others used ensembles to 
tackle the problem of label-combinations, as for example EPS that 
discard the less frequent label combinations, RAKEL that creates 
ensemble of random label subsets, etc. (Charte, Rivera, del Jesus, & 
Herrera, 2015). However, those methods still suffer from the imbalance 
problem, where the output class variables combinations might not be 
uniformly distributed over the data space in the training set. This 
imbalance causes the classifier to lean (skew) towards the majority 
classes and fail to model the characteristic of minority classes, with the 
risk of overfitting which will affect the accuracy and robustness of the 
overall model. (Tarekegn, Giacobini, & Michalak, 2021). 

In this paper, inspired by Self-Organizing Map (Kohonen, 1990) and 
Once Learning approach (Weigang L., 1998) (Weigang & Silva, 1999), 
we propose a new Deep Learning classifier, the Deep Self-organizing Cube, 
(DSOC) that can be used for BC, MLC, MCC as well as MDC. DSOC takes 
into consideration class dependencies across class spaces while imple-
menting multi-output learning, where classification across all di-
mensions is performed simultaneously. Due to the self-organizing nature 
of DSOC’s Pooling layer as well as its probabilistic Hypercube, the model 

overcomes the problem of class imbalance among training dataset 
instances. 

As such, the main contributions of this study are as follows: a) we 
propose an efficient, yet straightforward multidimensional deep 
learning classifier, the “DSOC”. b) The model applies multi-output 
learning in the four classification tasks, with no need for a domain or 
task specific model adjustment. c) The model’s straightforward 
approach in both training and implementation phases, regardless the 
nature of the classification task or dataset, makes it a domain and task 
agnostic classification model. d) The model has an embedded variable 
selection layers to achieve dimensionality reduction while increasing 
the discriminatory power of the model and achieve appropriate class 
segregation. e) This work experimentally demonstrates the effectiveness 
of DSOC in all types of classification tasks, regardless the severity of data 
imbalance or the strength of class dependencies, due to its design that 
models semantics among classes along different classification spaces 
even in case of imbalanced datasets. 

The rest of the paper is structured as follows, a brief literature review 
for different classification approaches used in MDC tasks is presented in 
section 2, and then we introduce the proposed DSOC classifier in section 
3, followed by the applied experiment in section 4 and the results and 
discussions in section 5. Finally, we conclude the paper in section 6. 

2. Related work 

Bogatinovski et al. (Bogatinovski, Todorovski, Džeroski, & Kocev, 
2022) pointed out the increasing interest in MLC task from the machine 
learning community, where they displayed a graph that showed an 
exponential growth in the number of scientific papers published 
throughout the last decade. This section presents the recent work in 
literature that tackles the classification problem from a multi-way 
perspective and its recent applications. 

As mentioned in the introduction section, MDC is a generalized form 
of multi-label classification problem. Therefore, we are going to use the 
term MDC throughout the paper when referring to all types of non- 
binary classification problems, unless otherwise specified. 

Despite the inability of Binary Relevance (BR) approach to model 
class correlations and dependencies, nevertheless BR is one of the most 
widely used approaches for MDC due to its simplicity and intuitiveness. 
BR techniques are built in one of two structures, Chaining Structure and 
Stacking Structure, or a mix of them. In Chaining Structure, independent 
binary classifiers are arranged in a chain order based on the results of the 
previous classifiers (Read, Pfahringer, Holmes, & Frank, Classifier 
chains for multi-label classification., 2009). While in Stacking Structure, a 
set of meta-level BR models are stacked over another set of base-level BR 
models, where each meta-level binary classifier is built upon the pre-
dictions of all base level ones (Godbole & Sarawagi, 2004). 

Many variations of BR were introduced lately in an attempt to 
overcome the BR core limitations, some of which are: a) BR Stacking 
based on Pareto Optimum, a modified version of the staking method that 
takes into consideration the inherit nature of class labels and their own 
related subsets (Weng, Chen, Wu, Li, & Wen, 2019). b) Dependent bi-
nary relevance (DBR), which is a mixed approach of chaining and 
stacking (Montañes, et al., 2014). c) Stacking Model with Label Selection 
(SMLS), a two layer stacking based approach that overcomes limitations 
of DBR, through intensifying the class correlations in subsets to augment 
the features space (Chen, et al., 2021). 

While, most MDC approaches tends to model multiple class de-
pendencies in the output class spaces, Jia and Zhang (Jia & Zhang, 
Multi-dimensional classification via kNN feature augmentation., 2020a) 
tried a different approach by manipulating the input features space by 
enriching the existing original feature space with a set of new features. 
Their augmented feature approach, called KRAM, uses simple counting 
statistics and weighted kNN techniques (with extra bias terms) 
depending on the class membership of k nearest neighbors in the 
training set. KRAM showed good results when compared to other models 

Fig. 1. Different classification tasks, where m is the number of class variables 
and k is the number of possible values per class variable. (Ma & Chen, 2018). 
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that use original input features space. Both Jia and Zhang further 
extended their feature-augmentation strategy in (Jia & Zhang, Multi- 
dimensional classification via selective feature augmentation., 2022) 
by introducing SFAM, an abbreviation for Selective Features Augmen-
tation for Multi-dimensional classification. SFAM synergizes multiple 
kind of augmented features (standard kNN, weighted kNN and 
maximum margin techniques) to achieve classification along different 
dimensions. Furthermore, Wang et al. (Wang, et al., 2020) proposed a 
deep neural network based model that integrates the Feature Augmen-
tation and Label Embedding techniques to model the inter-class corre-
lations and the intra-class exclusiveness in MDC problems. 

In a related context, and for shading the light on the importance of 
features extraction, De Handschutter et al. (De Handschutter, Gillis, & 
Siebert, 2021) published a thorough survey on deep matrix factorization 
(deep MF) in comparison with constrained low-rank matrix approxi-
mations (CLRMA) to deal with the extraction of several layers of features 
as a principal step before conducting further machine learning tasks. 

As mentioned earlier, class imbalance problem might affect the 
classification accuracy of a MDC model as well as its performance 
evaluation metrics (Luque, Carrasco, Martín, & de Las Heras, 2019). 
Feature space manipulation can tackle the imbalance problem of MDC. 
Mishra and Singh (Mishra & Singh, 2021) proposed a method called 
Feature Construction and Smote-based Imbalance handling (FCSMI), to 
tackle the problem of class combinations imbalances in MLD. FCSMI 
uses the distance between minority classes and others to alter the feature 
space and achieve the balance between minority and majority classes. 

In addition, (Han & Zhang, 2022) proposed a Multi-Kernel Multi- 
Label (MKML) method to address, simultaneously, both class de-
pendencies and class imbalance problems in MLC. While, (Duarte, 
Rawat, & Shah, 2021) presented Partial Label Masking (PLM) method to 
tackle imbalanced datasets by partially masking major and minor classes 
and then continually adapts the target ratio based on the output prob-
abilities, aiming at improving precision on frequent classes and recall on 
less frequent ones. In image classification, (Kim, Lee, & Jeon, 2021) 
proposed a new loss function that reduces the risk of misclassification of 
less frequent classes, by neutralizing the probability distribution of 
incorrect classes leading to a more robust classification of class- 
imbalanced scenarios. It is worth mentioning that the degree of class 
imbalance and its impact on MDC can be assessed by using either the 
imbalance-ratio or the imbalance-degree coefficient presented by (Orti-
gosa-Hernández, Inza, & Lozano, 2017), which is more sensitive in 
reflecting the skewness in MDC distributions. 

In recent years, many applications in different domains have 
benefited from MDC techniques. In the field of medicine, Yang (Yang, Li, 
Li, & Gong, 2022) constructed a MDC model based on Support Vector 
Machine (SVM) for the diagnosis of schizophrenia and bipolar disorder. 
While in text MDC, Xie et al. in (Xie, Lin, Lin, Wang, & Yu, 2021) pro-
posed a multi-dimensional relation model to incorporate relations be-
tween dimensions for dimension score prediction in multi-dimensional 
sentiment analysis (valence-arousal-irony, VAI) of a Chinese corpus. 
Other applications in the field of text classification include Fake news 
classification using Long short-term memory (LSTM) and Bidirectional 
Encoder Representations from Transformers (BERT) (Rai, Kumar, 
Kaushik, Raj, & Ali, 2022), emotions classifications using LSTM and 
Transformer Networks (RoBERTa and DistilBERT) (Ameer, et al., 2023). 
In cybersecurity, a multi-dimensional feature fusion and stacking 
ensemble mechanism (MFFSEM) was used to detect network intrusion 
and abnormal behaviors (Zhang H., Li, Liu, & Dong, 2021). 

3. Deep Self-Organizing cube (DSOC) 

In this section, we propose a new Deep Learning classifier that can be 
used in all four types of supervised classification tasks (BC, MCC, MLC 
and MDC). The proposed model is called “DSOC” a short for “Deep Self 
Organizing Cube”. The model is based on the well-established concept of 
Self-Organizing Maps (SOM) introduced by (Kohonen, 1990) and the 

Once Learning approach introduced by (Weigang L., 1998) (Weigang & 
Silva, 1999) that adapts the SOM training routine into all-at-once 
learning, imitating the human brain activity of learning just once, 
“Once Seen Never Forgotten” approach. As Xu [5] pointed out, the 
purpose of multi-instance multi-label learning is to predict multiple 
outputs at the same time given one input. Once learning mechanism 
reflects the requirement of this simultaneity. 

In “Deep Self-Organizing Cube”, the word “Deep” refers to the nature 
of the model that involves a multi-layer system of connected neurons, 
arranged in multiple abstraction levels (dimensions). While, the term 
“Self-Organizing” refers to the ability of the neurons within the model to 
organize themselves into various arrangements, enabling the “DSOC” to 
model inter and intra class dependencies. Finally, the word “Cube” refers 
to the multi-dimensional hypercube that lies at the center of the multi- 
layer neuron system. 

In short, “DSOC” is a deep learning classifier, which consists of multi- 
layer neuron system connected to a central hypercube. The hypercube is 
an n-way cube formed of output neurons arranged in orthogonal planes, 
where each plane represents a classification dimension of a class apace. 

3.1. DSOC components 

Despite the multi-dimensional and multi-layer nature of the DSOC 
model, its structure can be divided into two major components, the 
Hypercube Classifier component, and the Deep Neural Network 
component. 

3.1.1. The DSOC hypercube classifier 
The DSOC’s hypercube component is a multi-way cube responsible 

for the multi-output classification task across all class spaces. The hy-
percube is formed of n dimensions, each of which represents a classifi-
cation space (C) with its own set of classes. Where, an n-way hypercube 
consists of n class spaces, i.e. (Hypercube = C1 × C2 × ⋅⋅⋅× Cn), with each 
class space formed of m classes (Cn =

{
Cn

1,Cn
2,⋯,Cn

m
}
). As such, a 3- 

dimensional hypercube is formed of N output neurons equal to the 
product of class members of all class spaces, i.e. (N = C1 × C2 × C3). 
Each neuron c1,2,..,n represents a combination of classes in the n-dimen-
sional cube. The classification concept of the entire DSOC model is to 
find the winning neuron in the Hypercube classifier. Therefore, the final 
classification output of the model is a class vector (Y) of size n whose 
members represent the assigned classes of the winning neuron across the 
n dimensions, i.e. (Y =

[
y1, y2,⋯, yn]). 

From a different viewpoint, in case of a 3-dimensional DSOC, the 
hypercube classifier can be viewed as a stack of slices/planes of size 
(C1 × C2) each of which represent a two-dimensional classification plane 
for a single class space (C3) along the third dimension. For example, in a 
problem where text scientific papers are to be classified according to 
their Topics, Languages and scientific Fields. DSOC considers this example 
a 3-way multidimensional classification problem along three linked but 
discrete modes, of size C1,C2and C3 respectively. As seen in Fig. 2, the 
three-dimensional hypercube classifier could be seen as: a) a stack of C2 

two-dimensional planes of size (C1 × C3) along the Languages dimension; 
b) a stack of C3 two-dimensional planes of size (C1 × C2) along the Fields 
dimension; or c) a stack of C1 two-dimensional planes of size (C2 × C3) 
along the Topics dimension. 

Using the previous example, if the DSOC algorithm has selected a 
winning neuron (c2,4,3) whose coordinates in the hypercube classifier are 
(2, 4, 3), then this neuron represents a document whose Topic belongs to 
class 2, written in Language 4 and under Scientific Field 3. 

3.1.2. The deep neural network component 
In order for the DSOC’s Hypercube classifier to emit the classification 

vector (Y) across all dimensions, one of its output neuron has to be 
activated. The winning neuron activation process occur through a stack 
of deep neural networks, that we call “DSOC Neural Network”, with one 
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network for each dimension of the model. Therefore, in an n-dimen-
sional DSOC model there are n “DSOC Neural Networks” that are con-
nected to all N output neurons of the DSOC’s Hypercube. 

As seen in Fig. 3, a single “DSOC Neural Network” consists of three 
main layers of neurons:  

a) Input layer, consists of P neurons corresponding to sample input 
features (p).  

b) VSC double layer, which consists of two connected layers, VSC 
Selector layer and VSC Scaling layer, this double layer depends on the 
Variables Selection Coefficient (VSC) algorithm introduced by (Saleh & 
Weigang, A New Variables Selection And Dimensionality Reduction 
Technique Coupled With Simca Method For The Classification Of 
Text Documents, 2015).  

c) Pooling layer, a Gaussian Probability function layer, whose neurons 
are directly connected to the DSOC hypercube classifier, and 
responsible for activating the hypercube winning neuron. 

3.1.2.1. The VSC double layer. Variable Strength Coefficient (VSC) is the 

overall measure of strength of a variable (feature) in fitting the data, as 
well as discriminating the classes within a class space. VSC combines, 
linearly, both Modeling Power of a variable for all classes in the model 
with the Discriminatory Power of the same variable for the same class 
space. The Modeling Power is the assessment of the ability of a variable to 
model data of a specific class, while Discriminatory Power is the assess-
ment of its ability to discriminate between two classes. For example, for 
a variable i in class j the Modeling Power Mj

i, and its Discriminatory Power 
Dj,j+1

i for classes j and j + 1, are calculated as follows (Brereton, 2003): 

Mj
i = 1 −

Sj
iraw

Sj
iresid

(1)  

Dj,j+1
i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

jmodel(j + 1)Siresid

2
+ (j + 1)modeljSiresid

2

jmodeljSiresid
2 + (j + 1)model(j + 1)Siresid

2

√
√
√
√ (2) 

Where Sj
iraw is the standard deviation of variable i in the raw data and 

Sj
iresid is the standard deviation of the residuals for the same variable i in 

the model. 

Fig. 2. A three-dimensional hypercube classifier of size (C1 × C2 × C3). a) C2 Slices along the Language dimension. b) C3 slices along the Fields dimension. c) C1 

slices along the Topics dimension. d) The winning neuron at hypercube coordinates (2, 4, 3). 

Fig. 3. The DSOC Neural Network for Dimension 1 of n.  
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The VSC for a variable i (VSCi) is then calculated by linearly 
combining the overall modeling power of that variable (Mi) along all 
classes in the class space, with its overall discriminatory power (Di) as 
shown in the equations below (Saleh, Hegazy, Abbas, & Elkosasy, 2022). 

Mi =
∑l

j=1
Mj

i.
nj

N
(3)  

Di =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑l

j

∑l

c
jmodelcSiresid

2

∑l

j
jmodeljSiresid

2

√
√
√
√
√
√
√
√

(4)  

Di =
Di − min{D}

max{D} − min{D}
(5)  

VSCi =
w.Mi + (2 − w)Di

2
(6) 

In the DSOC Neural Network component, the purpose of the VSC 
double layer is strengthening the discriminatory power of the model, as 
well as inducing proper segregation of adjacent classes, especially in 
models with dense class spaces, and overlapping class boundaries. This 
purpose is achieved through the following:  

a) VSC Selector Layer, a VSC strength threshold is determined, where an 
input feature with a stronger VSC (i.e. the feature’s VSC is higher 
than the predetermined threshold) will pass to the following layer, 
while weaker features are discarded and excluded from the model.  

b) VSC Scaling Layer, this layer contains a modified version of the VSC 
equation, where the VSC weight variable w is not restricted to a value 
between [0, 2] as in the original coefficient, but could take any value 
greater than zero. As such, a strong variable i that has passed suc-
cessfully through the previous VSC Selector layer is then scaled up or 
down by that dynamic modified coefficient (modVSCi). 

The VSC double layer results in: a) dimensionality reduction of input 
features, by discarding variables with weak modeling and discrimina-
tory powers, and b) independently scale each of the remaining features. 
As such, adequate segregation between classes is achieved, which is then 
reflected in the overall classification performance of the DSOC model. 

The VSC Selector threshold as well as the weight variable of the VSC 
Scaling layer are both determined through cross-validation procedure 
during the training process of the DSOC model. 

The effect of VSC double layer on the performance of the model is 
discussed in section 5 Results and Discussions. 

3.1.2.2. The Pooling layer. A single pooling layer consists a set of neu-
rons (L) of size Cn × αn, where Cn is the number of class members in this 
dimension and αn is a scaler indicating the number of neurons that 
models each class member in a class space. The default value of αn is 1, 
however it could be set to any value greater than or equal to 1. The 
optimum value of αn is decided through cross validation routine. For 
example, in case of a binary class space, the number of neurons con-
structing this pooling layer is 2× α1, i.e. the pooling layer is formed of at 
least two neurons (L1 = {l1, l2}). Moreover, if α1 = 3, this means that 
each class is modeled by 3 neurons, and the total number of neurons 
forming the layer is 6 (i.e. L1 = {l1,⋯, l6}). 

Each neuron (l) in the pooling layer has a weight vector (w) that 
connects it to the VSC Scaling layer. The size of w is equal to the number 
of neurons (M) in the VSC Scaling layer. 

3.2. Designing the DSOC model 

In order to design a DSOC model, certain parameters should be 
specified. Those parameters include; the number of classification 

dimensions (n), the size of each dimension (C) which is the number of 
classes modeled by that dimension, in addition to the value of the alpha 
parameter (α) per dimension. 

3.2.1. Number of dimensions (n) 
The number of dimensions in a DSOC model refers to the number of 

class spaces in the model. Where, in case of BC and MCC the number of 
dimensions (n) is equal to1 since those tasks have single output class 
space, while in case of MLC and MDC tasks, n is equal to the number of 
class variables (spaces) in the dataset. 

Both DSOC components, the Hypercube Classifier and the DSOC 
Neural Network, have the same number of dimensions; therefore, by 
setting the value of n, we construct an n-dimensional hypercube as well as 
n DSOC Neural Networks connected to it. 

3.2.2. Dimension size (C) 
The size of dimension (C) is simply the number of class members in a 

specific class space (dimension), or the number of possible values a class 
variable can have. In binary class spaces, where the class members could 
be {0, 1} or {-1, 1}, then the dimension size is 2 (C = 2). The number of 
classes per dimension determines the size of the Hypercube Classifier as 
well as the minimum number of neurons in the Pooling layer in each of 
the n DSOC Neural Networks. 

For example, in case of the 3-dimenstional DSOC model mentioned in 
section 3.1.1, the model has three classification dimensions representing 
(topics, languages and fields), therefore the size of every dimension 
depends on the number of possible classes C in that class space. As such, 
if the topics class space has 5 possible values, while fields and languages 
have 3 and 5 possible values respectively, (i.e. CTopic = 5, CField = 3 and 
CLang = 5), then the DSOC model is formed of a 3-dimensional Hypercube 
Classifier of size (5 × 3 × 5 = 75 neuron), and 3 DSOC Neural Networks 
whose Pooling layers have 5 α1, 3 α2 and 5 α3 neurons respectively. 

3.2.3. The alpha parameter (α) 
The alpha parameter αn, is the parameter that decides the number of 

neurons that models each class in a particular dimension and span the 
variance among its members. For example, if α2 = 10, thus each class 
will be modeled by 10 neurons in the Pooling layer of the second DSOC 
Neural Network component. Moreover, if C2 = 5 then the corresponding 
Pooling layer will have 50 neurons. As mentioned earlier, the default 
value of αn is 1, but other values could be used after performing the cross 
validation routine during the training step. 

Every neuron in the n Pooling layers of the model has a weights vector 
(wn) of size Mn which is equal to the number of neurons in the previous 
VSC Scaling Layer. The weights of this vector are determined through the 
training process. 

It is worth mentioning that the number of neurons in the VSC Selector 
layer is equal to the number of input neurons or features Pn in that 
dimension, while the number of neurons in the VSC Scaling Layer Mn is 
less than or equal to the number of neurons in the VSC Selector layer, i. 
e.Mn ≤ Pn.

3.3. Deciding the training parameters of the DSOC model 

DSOC model training parameters are those determining the rate by 
which the Pooling neurons weights vectors (wn) are being updated, as 
well as the range of neurons to be updated in each step of training. 
Before training the DSOC model, three main training parameters should 
be decided, which are: the number of iterations or epochs (h), the learning 
rate (R) and the neighborhood distance (nD). 

3.3.1. Number of iterations or epochs (h) 
The number of iterations, which is also called (epochs), is the number 

of times by which the entire training set is presented to the DSOC model 
for training and weights update. In this research, the default value is 
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100. 

3.3.2. Learning rate (R) 
Learning rate is the rate by which the neurons weights vectors are 

updated at each iteration h as a function of time t. The learning rate 
should have a value greater than 0 and less than or equal to 1. In this 
study, the learning rate is initiated at ≈ 0.7–0.8 then decreases expo-
nentially with time. It is worth mentioning that the word “time” with its 
notation t in this context refers to each time a training sample is pre-
sented to the cube. As such, the total “time” T of the training process 
equals to the product of the number of training samples and the number 
of iterations or epochs, as seen in equation (7). 

T = h × count(samples) (7) 

In this study, we propose that the value of the learning rate as a 
function of time t is calculated as shown in equation (8) below, which is 
then later used in the weights update process as per equation (10). 

R(t) = e

(

− dt
T

)

+ 0.01 (8) 

Where, R(t) is the learning rate as a function of time t and T is the 
total training time as calculated in equation (7) above while e(⋯) is the 
natural exponential function (exp) and d is the decay parameter. Fig. 4 
(a) demonstrates the effect of the decay parameter d on the learning 
rate. In this research we used d = 6 and the initial learning rate = 0.83. 

3.3.3. The neighborhood distance (nD) 
The neighborhood distance nD determines the number of neurons in 

the Pooling Layers whose weights are to be updated at each time t. This 
process aims at rearranging the Pooling neurons in a manner that reflects 
their class similarities in terms of features and properties. 

A hand-coded decay function is applied to the nD as well so that the 
neighborhood of neurons decreases with time t. Based on experience, the 
model designer decides the neighborhood rate of decay as a function of 
time nD(t). For example, the model designer can decide that the number 
of neighborhood neurons to be updated decreases linearly by 1 every 
one third of the epochs until it reaches 0. 

Fig. 4 (b) shows the rate of decay of nD(t) as a function of time t. As 
noticed from the graph, when the initial value of nD is set to 1, then it 
reaches zero at half the total time of training (T). On the other hand, 
higher nD keeps its initial value during the first one third of the training 
time, and then decreases linearly until it reaches 0 at the beginning of 
the last third of training. 

In this study, the default neighborhood distance was set to 1 (i.e. nD 
= 1) across all dimensions, using the rate of decay depicted in Fig. 4 (b). 

3.4. Model training 

DOSC model training is the process of updating the weights of the 
weight vectors (wn) of all neurons in the n-Pooling layers of the model, 
and then build the probability model of the n-dimensional Hypercube 
Classifier. The training process aims to make every neuron of the hy-
percube capable of representing a set of dependent classes across all class 
spaces simultaneously. As such, the training process of the DSOC model 
is performed in two stages: 

3.4.1. Updating the weights vectors (wn) 
Hereafter we present the weights update process in a specific 

dimension (j). The same weights update process is then repeated in all n 
dimensions of the model. The process of weights update reorganizes the 
Pooling neurons and bring them closer to the class they represent. As 
such, for any particular dimension in the DSOC model, the weights up-
date process is performed as follows:  

i. Initialize the weights vectors: For all neurons (Lj) in the Pooling layer, 
randomly initialize a single weights vector (wj) of size Mj, which is 
equal to the number of neurons in the previous VSC Scaling layer in 
dimension j.  

ii. Start the first Epoch: for each sample (i) in the training set, compute its 
Euclidian distance (EDj

i) from the pooling weights vector. For each 
samples in the model, EDj

i is computed as the distance between the 
VSC Scaling neurons (vj) and (wj) in the DSOC Neural Network of 
dimension j. 

EDj
i = SQRT(

∑|M
j|

q=1

(
vi

q − wj
q

)2
) (9)   

iii. Get the winning neurons: the neuron with the least ED is the win-
ning neuron (u).  

iv. Get the sub-set of neighboring neurons: For each winning neuron get 
a subset of neighboring neurons according to the neighborhood 
distance nD.  

v. Update the weights of the winning neuron and its neighbors: The 
weight update is done using equation (10) below for both the 
wining neuron and its neighbors. The magnitude of weights up-
date depends on the learning rate of the model. 

wj(t+ 1) = wj(t) − R(t)(vj − wj(t)) (10)    

vi. Repeat until end of Epochs: A single epoch means going through the 
entire training set and applying the steps of finding the winning 
neuron and weights update for all the samples in the training set. 
After finishing the first epoch, repeat the steps from ii to v on the 

Fig. 4. DSOC training parameters. a) The learning rate R(t) as a function of time t, using different values for the decay parameter d. b) The rate of decay of the 
neighborhood distance nD(t) as a function of time. 
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entire training set until the maximum number of epochs h is 
reached. 

3.4.2. Build the probabilistic model and construct the hypercube classifier 
The last few steps of training the model are performed based on the 

Gaussian Naïve Bayes concept. The remaining steps aim at constructing 
the Hypercube classifier and populate it with the classification prior 
probabilities. These steps are carried out as follows: 

3.4.2.1. Construct the hypercube.  

i. Create n dimensional hypercube of size 
∏n

j=1Cj neurons where 
each neuron of the cube represent a combination of classes across 
all dimensions of the model.   

ii. For each neuron (r) in the hypercube, set its initial value to 1 (to 
account for class imbalance and rare combinations with no 
training samples).  

iii. Iterate through the training samples, where the value of the hy-
percube neuron (r) is incremented by 1 if, and only if, the class 
vector (Yi) of that sample (i) exactly matches the combination of 
classes of that neuron.   

iv. Calculate the probability of each neuron (r) in the cube. This is 
considered the prior probability of that neuron given the com-
binations of class members of all n-class spaces.   

v. Each of the hypercube neurons is connected to the Pooling layer of 
each dimension through a weight vector (bj) of size equals to the 
number of neurons Lj in that Pooling layer. For example, in a 3- 
dimensional DSOC model, each neuron in the hypercube classi-
fier has three weights vector (b1, b2 and b3) of size L1, L2 and L3 

respectively (see Fig. 5). The members of (bj) vector are the prior 
probabilities of neurons Lj given a class member 

{
c ∈ Cj}. 

3.4.2.2. Build the probabilistic model. For every neuron (l) of the Lj 

neurons of the Pooling Layer of dimension j, do the following:  

i. Compute the standard deviation and mean ED for all samples 
belonging to each class of the dimension class space (Cj).  

ii. Compute the probability when this neuron was activated, given each 
class in (Cj) as per equation (11). This is considered the prior prob-
ability of that neuron given a specific class. 

p
(

lk|Cj
q

)
=

∑
active(lk|Cj

q)
∑

samples|Cj
q

(11)    

iii. These three values are used during the classification process of 
new samples. 

3.5. Classify future samples 

When a new sample (i) is introduced to the DSOC, the classification 
process is performed in the following steps in each dimension j of the n 
dimensional model:  

i. Sample features are presented to the VSC double layer of the DSOC 
Neural Network j, where sample features that have registered 
weak VSC during the training process are discarded by the VSC 
Selector layer and only strong features pass through to the VSC 
Scaling layer for feature independent scaling.  

ii. The surviving neurons are then presented to the Pooling layer of 
dimension j, where the EDj

i is computed between the (vj) and (wj) 
as per equation (9).  

iii. For each neuron (lj) of the Lj neurons, use the computed EDj
i as 

well the mean and standard deviations computed in 3.4.2.2 to 

compute the likelihood of that neuron, Likelihhod
(

ljk
⃒
⃒
⃒cj

q), given 

each class cq where 
{
cq ∈ Cj}.  

iv. The previous steps (i to iii) are repeated for all n dimensions in the 
model.  

v. As per equation (12), for every neuron (r) in the Hypercube 
Classifier, Compute the sum of the natural log of its vector (bj), 
which is the likelihoods computed for the Pooling layer in the 
previous step as well as the prior probabilities computed in 
equation (11), given the class represented by that neuron in each 
dimension (cj

q). Add the result to the natural log of the neuron’s 
prior probability computed in 3.4.2.1 to calculate the probability 
p(r) that this neuron is activated. 

p(r) =
∑j

i=1

∑L

k=1
ln(Likelihhod

(
lj
k

⃒
⃒cj

q))+
∑j

i=1

∑L

k=1
ln(p

(
lk|Cj

q

))
+ ln(prior(r) )

(12)    

vi. Compare the computed p(r) for all neurons in the Hypercube 
Classifier, where the neuron with the highest p(r) is the winning 
neuron.  

vii. Emit the classification vector Yr related to the winning neuron r, 
whose members are the classes represented by the winning neu-
ron,Yr =

[
y1, y2,⋯, yn]

As such, a full classification across the n dimensions of the MDC task 
was performed simultaneously. In this setup, the Hypercube classifier is 
capable of classifying class combinations that were not presented to the 
model during the training process, due to the bond it creates among 
various class spaces in the model through discrete yet connected 
probabilities. 

4. Experiments 

The aim of the study is to propose a deep learning classifier that can 
be used for multi-output learning problems as well as for the single- 
output learning ones. The experiment was designed to evaluate the 
performance of the proposed DSOC model in the four types of 

Fig. 5. A DSOC Hypercube classifier of size 5 × 4 × 3 sliced along the C3 

dimension into 3 planes of size 5 × 4. Every neuron has three weights vectors 
(b1, b2 and b3) connected to the Pooling layers of the three DSOC Neural Net-
works. Each neuron of the Hypercube represent a combination of classes from 
the three class spaces of the model. 
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classification problems discussed earlier: BC, MCC, MLC and MDC. 
As such, we conducted an empirical assessment on a variety of 

benchmark datasets, in order to compare the proposed model to stan-
dard classifiers. The proposed DSOC was then challenged with 
competitive state-of-the-art techniques reported in literature. 

4.1. Benchmark datasets 

To evaluate the performance of the proposed model, DSOC was 
tested on seventeen benchmark datasets frequently used in literature to 
evaluate the performance of different classification models. The datasets 
were chosen to cover different aspects of classification tasks that are 
tackled by the proposed DSOC model. Those aspects include multiple 
dimensions, multi-class variables and labels per dimension, imbalance of 
labels, etc. The datasets are divided into four categories according to the 
type of the classification problem, where four datasets were chosen for 
BC problems, three for MCC, four for MLC and six for MDC. 

Table 1 summarizes the main characteristics of the chosen datasets, 
as the number of observations and features, number of class spaces (i.e. 
number of dimensions), number of class labels per dimension, as well as 
their classification task category. 

4.2. Parameter selection 

For the datasets that were not initially divided into Training and Test 
sets, a random selection technique was applied to divide the observa-
tions of the original dataset set into Training and Test sets in 75:25 ratio. 
Then a tenfold cross validation (CV) technique was employed on the 
training set to decide the DSOC model parameters. For the sake of 
simplicity, each of the general DSOC parameters (neighborhood, epochs 
and the decay parameter) was set to a constant value throughout the 
experiment (nD = 1, h = 100 and d = 6). 

On the other hand, for the dimension specific parameters (VSC 
Scaling parameter, VSC Selector and α) the aforementioned tenfold CV 
was applied to decide those three parameters for each of the model 
multi-dimensional space. 

4.3. Evaluation metrics 

In this paper, three widely used classification evaluation metrics are 
used to evaluate the performance of the proposed model. In BC problem, 
the F1 measure is used as shown in equation (13). Where TP, FP and FN 
are True Positive, False Positive and False Negative respectively and are 
used to calculate the recall and precision as in (Tsoumakas & Katakis, 
2007). 

F1 = 2 ×
Precision × Recall
Precision + Recall 

Or, 

F1 =
TP

TP + 1
2 (FP + FN)

(13) 

While in MLC and MDC tasks, Hamming Accuracy (HAccuracy) and 
Exact Match (EM) are used for evaluation. The Hamming Accuracy is the 
average of classification accuracy of all class variables in all dimensions, 
and it is used as well in MCC task. On the other hand, the Exact Match is 
the accuracy of predicting the entire classification vector across all class 
spaces simultaneously (Wang, et al., 2017), (Wang, et al., 2020). 

HAccuracy =
1
N

∑N

i=1

⃒
⃒Yi ∩ Y*

i

⃒
⃒

L
(14)  

EM =
1
N

∑N

i=1
f(Yi,Y*

i ) (15) 

Where, N is the number of observations, and n is the number of di-
mensions in the model. Yi is the actual classification vector of size L, 
whileY*

i is the predicted classification vector of the same size and 
⃒
⃒Yi ∩

Y*
i

⃒
⃒ indicates the number of intersections between both vectors. On the 

other hand, f(Yi,Y*
i ) is a function that returns 1 when both classification 

vectors exactly match, and 0 otherwise. 

4.4. Performance assessment 

In this paper, the classification performance of the proposed DSOC 

Table 1 
The characteristics of the benchmark datasets.  

Classification 
Category 

Dataset Number of 
Observations 

Number of 
Features 

Number of 
Dimensions 

Number of Classes per 
Dimension 

Domain and Reference 

BC Diabetes1 768 8 1 2 Medical (Smith, Everhart, Dickson, Knowler, & 
Johannes, 1988) 

Sonar2 208 60 1 2 Signal (Gorman, Sejnowski, & J., 1988) 
Banknote3 1372 4 1 2 Forensic (Dua & Graff, UCI Machine Learning 

Repository, 2019a) 
Ionosphere2 351 34 1 2 Signal (Sigillito, Wing, Hutton, & Baker, 1989) 

MCC Iris3 150 4 1 3 Plant (Fisher, 1936) 
Seeds2 210 7 1 3 Plant (Charytanowicz, et al., 2010) 
Abalone3 4177 8 1 28 Marine (Dua & Graff, UCI Machine Learning 

Repository, 2019b) 
MLC Scene2 2407 294 6 2 Image (Boutell, Luo, Shen, & Brown, 2004) 

Emotions2 593 72 6 2 Music (Trohidis, Tsoumakas, Kalliris, & Vlahavas, 
2008) 

Yeast2 2417 103 14 2 Genes (Elisseeff & Weston, 2001) 
Image2 2000 135 5 2 Image (Zhang & Zhou, ML-KNN: A lazy learning 

approach to multi-label learning., 2007) 
MDC Solar Flare3 315 10 3 3,4,2 Astronomy (Dheeru & Taniskidou, 2017) 

Edm2 154 16 2 3 Machinery (Karalič & Bratko, 1997) 
WaterQuality2 1060 16 14 4 Life form (Džeroski, Demšar, & Grbović, 2000) 
WQplants2* 1060 16 7 4 Plants (Džeroski, Demšar, & Grbović, 2000) 
WQanimals2* 1060 16 7 4 Animals (Džeroski, Demšar, & Grbović, 2000)  
Enb2 768 6 2 2,4 Energy (Tsanas & Xifara, 2012) 

* WQplants and WQanimals are subsets of the parent Water Quality dataset used to predict the relative representation of plant and animal species in Slovenian rivers. 
1https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database. 
2 https://www.openml.org/. 
3 https://archive.ics.uci.edu/ml/index.php. 

A.A. Saleh and L. Weigang                                                                                                                                                                                                                   

https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://www.openml.org/
https://archive.ics.uci.edu/ml/index.php


Expert Systems With Applications 230 (2023) 120627

9

model was assessed by comparing the obtained results to that obtained 
by standard classification algorithms, as well as state-of-the-art MDC 
approaches. All techniques were applied on the same benchmarks 
datasets. 

For the single-output learning tasks, BC and MCC, the DSOC classi-
fication performance was assessed against four standard classification 
algorithms, namely k-Nearest Neighbor (kNN), Support Vector Machine 
(SVM), Naïve Bayes (NB) and Decision Tree (DT). 

However, for the multi-output learning tasks, MLD and MDC, the 
DSOC performance was compared to eleven different approaches, 
divided into five categories that span the full classification challenges:  

a) Standard Classification Algorithms: the same standard methods 
mentioned above.  

b) Approaches based on manipulating the class spaces: Binary Relevance 
(BR), which divides the task into independent binary classifiers. 
Ensembles of Class Powersets (ECP) creates a combination of labels 
and treat the entire set of combinations as a single-dimension single- 
label class space. Ensembles of Classifier Chains (ECC), which divides 
the task into a chain of multi-class independent classifiers. Ensembles 
of Super Class Classifiers (ESC), which divides the classification space 
into sections of super-classes, formed of combination of subsets of 
class spaces. (Read, Bielza, & Larrañaga, Multi-dimensional classifi-
cation with super-classes., 2013)  

c) Approaches based on feature augmentation: those approaches tend 
to manipulate the input feature spaces rather than the output ones. 
This category includes, KRAM and SFAM (mentioned earlier in the 
literature review section).  

d) Dependency modeling approach, the Stacked Dependency Exploitation 
(SEEM), which uses deterministic strategy to model class de-
pendencies instead of the widely used probabilistic models. (Jia & 
Zhang, Multi-dimensional classification via stacked dependency 
exploitation., 2020b) 

e) Regression based approach, gMML that creates independent regres-
sion models for each class variable and then, uses the Mahalanobis 
distance in the final classification step. (Ma & Chen, 2018) 

The results obtained by applying those approaches on the selected 
benchmark datasets were extracted from literature, and used to assess 
the performance of the proposed DSOC model. 

5. Results and discussions 

As mentioned earlier, the aim of the study is to construct a deep 

learning classifier that fits both single and multi-output learning tasks, 
with no structural alteration in the core design of the model other than 
simple parameters tweaking. In addition, the proposed design should be 
capable of successfully classifying observations in MLC and MDC tasks 
while modeling the class dependencies across all dimensions. Moreover, 
the model was challenged with datasets suffering from class imbalance 
in its multi-class spaces to assess its ability to classify, successfully, 
future rare observations. 

A separate DSOC model was built for each of the 17 datasets. The 
DSOC dimensional parameters were determined using 10 fold CV 
applied on the training set. Table 2 presents the selected parameters per 
dataset as well as the number of features that passed through the VSC 
Selector layer. The detailed parameters per dimension for one of the 
datasets, “Image” dataset, are presented in Table 3. 

As seen in the last column of Table 2, the VSC Selector layer con-
ducted a feature reduction routine that resulted in a substantial reduc-
tion in number of features in most of the models. The Ionosphere dataset 
was subjected to a sever dimensionality reduction, where only 35% of 
the original features have passed through the VSC Selector layer, while in 
case of Image and Seeds datasets only 52% and 57% have passed through 
that layer respectively. The other datasets were subjected to the same 
routine resulting in various levels of dimensionality reduction. On the 
other hand, six datasets have retained their full number of input features 
along all dimensions. 

The VSC Selector layer serves two purposes, a) maximizing the 
DSOC’s modeling and discriminatory power among classes in each of the 
class spaces, as well as b) reducing the size of input spaces by discarding 
the features that will inversely affect the classification power of the 
model. Reducing the input space is reflected in less computational power 
and time needed to train and implement the model as well as in maxi-
mizing the DSOC’s discriminatory and modeling powers. 

The effect of the VSC Selector layer is further augmented by the next 
layer, the VSC Scaling layer, which aims at deepening the discriminatory 
differences among classes along the remaining features. 

Table 2 
DSOC Model parameters for each of the benchmark dataset obtained by applying 10 fold CV.  

Classification Category Dataset VSC Selector Features Neurons VSC Scaling Parameter α Selected Features after VSC 

BC Diabetes 0 8 12.5 2 100% 
Sonar 0.6123 46 5.0 3 77% 
Banknote 0.735 3 5.5 3 75% 
Ionosphere 0.891 12 5.0 1 35% 

MCC Iris 0 4 10.5 1 100% 
Seeds 0.5383 4 2.5 1 57%  
Abalone 0 8 1.0 1 100% 

MLC* Scene [0 – 0.7717] [271 – 294] [1 – 12] [1 – 10] 98% 
Emotions 0 72 [1 – 5.5] [1 – 3] 100% 
Yeast [0–0.928] [7–103] [1 – 10.5] [1 – 10] 76% 
Image [0–0.9571] [10–135 ] [2–7.5 ] [1 – 4] 52% 

MDC Solar Flare 1 0 10 1,1.5,1 1 100% 
Edm 0.3398,0 9,16 1,1.5 3,4 78% 
WaterQuality 0 16 [1–3.5] [1–3] 100% 
WQplants* [0–0.7375] [4–16] [1–2] [1–2] 70% 
WQanimals* [0–0.8059] [10–16] [1–4.5] [1–2] 82%  
Enb* 0 6 1,3.5 1,3 100% 

* Values between brackets are the range of values of the DSOC parameter along the model’s dimensions. For example, in the Scene dataset, the VSC Scaling parameter 
has a range of values of [1–12], which represents the range of values along the model’s 6 dimensions whose values were modVSC1 = 1, modVSC2 = 1, modVSC3 = 12, 
modVSC4 = 10.5, modVSC5 = 8, modVSC6 = 1. 

Table 3 
Values of the DSOC parameters for the “Image” dataset along the model 5 di-
mensions (L = 5).  

Parameter L1 L2 L3 L4 L5 

VSC Selector 0.6526 0.6383 0.9571 0.8554 0 
modVSC 2.5 2 5 2 7.5 
α 1 4 4 4 2 
W 86 88 10 32 135  
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In datasets with dense class spaces, classes are not clearly separated, 
but might suffer from sever overlap of their class spheres. Such density 
and overlap could be noticed in the tight Euclidian distances and the 
high similarity/correlation between classes that might, in some cases, 
reaches full correlation. DSOC model tackles this problem through its 
VSC double layer, Selector and Scaling layers, where both layers tend to 
intensify the discriminatory power of variables that, in turn, results in 
widening the distances between classes and relatively break the corre-
lation among them. 

Fig. 6 demonstrates the effect of applying the VSC double layer on 
the “Image” dataset. The substantial reduction in dimensionality and the 
noticeable strengthening of the discriminatory power of the remaining 
input variables have resulted in widening the distance between classes 
from 0.0060 to 0.0191, and breaking the tight correlation from 0.9643 
down to 0.7242, i.e. 313% and 25% improvement in class separation 
respectively. 

In a closer look at Fig. 6 (a), the input features within the range 
[18–30] have the worst adverse effect on the model’s discriminatory 
power. Such an effect was detected by the VSC Selector layer, which 
applied a threshold of 0.6383, where all features with VSC weaker than 
that threshold were discarded. As such, and as seen in subfigure (b), only 
88 features have passed the VSC Selector layer, causing a significant 
dimensionality reduction, where only 65% of the original input features 
have survived the Selector. In order to deepen the difference between 
classes, the next layer, the VSC Scaling layer, has applied a dynamic 
scaling factor (based on its modVSC2 = 2) ranging from 0.2654 to 0.9578 
on the remaining 88 features, which results in expanding the ED be-
tween both classes by 313%. 

Moreover, applying the VSC double layer on the “Image” dataset has 
increased the classification Hamming accuracy from 0.7100 to 0.8325, 
while the Exact Match metric has improved from 0.3198 to 0.3750. 
These results reflect the importance of the VSC double layer in 
improving the overall model accuracy as well as its ability to predict the 
exact classification vectors. Table 4 presents the effect of applying the 
VSC double layer on the seventeen DSOC models constructed in this 
study, in terms of HAccuracy and EM. In addition, Fig. 7 visualizes the 
results presented in the table, demonstrating that the VSC double layer 
has enhanced the classification performance of the DSOC model in all of 
the four classification tasks. 

For evaluating of the proposed DSOC, comparisons have been con-
ducted to the DSOC classification performance against that of standard 
classifiers as well as state-of-the-art MDC approaches on the benchmark 
datasets. Those comparisons are presented in the following three 
subsections. 

5.1. Comparison to standard classifiers 

The experimental results are reported in details in four tables, one for 
each of the classification tasks. Table 5 for BC, Table 6 for MCC, Table 7 
for MLC and Table 8 for MDC. Based on the results obtained in these 
tables, we can point out the following observations:  

• For the standard classification techniques (kNN, NB, SVM and DT), 
112 experiments were carried out. Those experiments are composed 
of 5 standard algorithms, in addition to the proposed DSOC, 2 
evaluation metrics and 17 datasets.  

• Those experiments are divided across the four classifications tasks as 
follows: 20 experiments in the BC task, 16 in MCC, 32 in MLC and 48 
in MDC.  

• As seen in the aforementioned tables (with the winning results 
embossed in bold), the proposed DSOC model has outperformed the 
standard methods in 50% of the cases in the BC task, 100% in MCC, 
75% in MLC and 83% in case of MDC. Moreover, Fig. 8 (a) shows the 
accuracy results of the proposed DSOC in comparison with the other 
standard classifiers.  

• With the exception of the “EnB” and “Yeast” datasets, the DSOC has 
outperformed all other standard algorithms in MLC and MDC, in 
terms of the Exact Match metrics. Since the EM metric reflects the 

Fig. 6. The effect of applying the VSC double layers on both classes of the second dimension of the Image dataset, a) before applying the VSC double layer (135 
features and 0.9643 correlation coefficient), b) after applying both the VSC Selector and VSC Scaling layers (88 remaining features and 0.7242 correla-
tion coefficient). 

Table 4 
Effect of the VSC double layers on the performance of the DSOC Model applied 
on all benchmark datasets in the four classification tasks.  

Classification 
Category 

Datasets Hamming Accuracy Exact Match 

VSC 
double 
layer 
Applied 

Without 
VSC 
double 
layer 

VSC 
double 
layer 
Applied 

Without 
VSC 
double 
layer 

BC Diabetes  0.7708  0.6471  –  – 
Sonar  0.7692  0.5952  –  – 
Banknote  0.9854  0.9489  –  – 
Ionosphere  0.8740  0.7571  –  – 

MCC Iris  0.9867  0.9000  –  – 
Seeds  0.9143  0.8810  –  –  
Abalone  0.3599  0.2491  –  – 

MLC Scene  0.9398  0.8312  0.5334  0.4749 
Emotions  0.7463  0.5998  0.2178  0.0941 
Yeast  0.7719  0.7501  0.1538  0.1298 
Image  0.8325  0.7100  0.3750  0.3198 

MDC Solar Flare 1  0.9418  0.9101  0.8846  0.7460 
Edm  0.8000  0.7667  0.6333  0.6333 
WaterQuality  0.6405  0.5893  0.0047  0.0000 
WQplants  0.6604  0.6220  0.1038  0.0660 
WQanimals  0.6462  0.4993  0.0849  0.0142  
Enb  0.9019  0.8497  0.8823  0.7516  

A.A. Saleh and L. Weigang                                                                                                                                                                                                                   



Expert Systems With Applications 230 (2023) 120627

11

ability of the model to classify successfully the instance along all 
dimensions, therefore the proposed DSOC is more capable of classi-
fying the observations across all class spaces simultaneously. A 
comparison of the EM accuracy of the proposed DSOC and the other 
standard classifiers are shown in Fig. 8 (b).  

• The last mentioned observation points out the intrinsic ability of the 
DSOC to span and to model dependencies among class variables 
across different dimensions. 

5.2. Comparisons to the state-of-the-art methods 

In order to assess the ability of the proposed DSOC algorithm to 
model complex dependencies as well as imbalanced class spaces, the 
obtained results were challenged with state-of-the-art approaches from 
literature. The selected approaches span different approaches for solving 
classification tasks, these include approaches that depends on manipu-
lating the class spaces during training (BR, ECC, ECP and ESC), ap-
proaches that uses feature augmentation to manipulate the input space 
(KRAM and SFAM), in addition to SEEM approach that model de-
pendencies and gMML that uses regression approach to solve the clas-
sification task. 

The results of the selected approaches were collected from recent 

Fig. 7. The effect of the VSC double layer on the performance of the DSOC Model applied on all benchmark datasets, a) Hamming Accuracy on all 17 datasets, b) the 
Exact Match metric applied on the datasets of MLC and MDC tasks only. 

Table 5 
Comparing the classification results of DSOC against standard classification al-
gorithms applied on BC benchmark datasets.  

Dataset F1 Measure 

kNN SVM NB DT DSOC 

Diabetes  0.7396  0.7760  0.7552  0.6979  0.7708 
Sonar  0.8077  0.8077  0.6923  0.6538  0.7692 
Banknote  0.9708  0.9854  0.8321  0.9635  0.9854 
Ionosphere  0.8000  0.8429  0.8286  0.8143  0.8740  

Table 6 
Comparing the classification results of DSOC against standard classification al-
gorithms applied on MCC benchmark datasets in terms of Hamming Accuracy.  

Dataset Hamming Accuracy 

kNN NB DT DSOC 

Iris 0.9067  0.9333 0.9467  0.9867 
Seeds 0. 8952  0.8857 0. 8952  0.9143 
Abalone 0.1657  0.1897 0.1933  0.3599  

Table 7 
Comparing the classification results of DSOC against standard classification algorithms applied on MLC benchmark datasets in terms of Hamming Accuracy and Exact 
Match metrics.  

Dataset Hamming Accuracy Exact Match 

kNN NB DT DSOC kNN NB DT DSOC 

Scene  0.8913  0.7565  0.8478  0.9398  0.5008  0.1756  0.3687  0.5334 
Emotions  0.7046  0.7302  0.7112  0.7463  0.1931  0.1683  0.1436  0.2178 
Yeast  0.7803  0.6991  0.7184  0.7719  0.2061  0.1036  0.0523  0.1450 
Image  0.7925  0.7235  0.7435  0.8325  0.3329  0.1725  0.2350  0.3750  

Table 8 
Comparing the classification results of DSOC against standard classification algorithms applied on MDC benchmark datasets, in terms of Hamming Accuracy and Exact 
Match metrics.  

Dataset Hamming Accuracy Exact Match 

kNN NB DT DSOC kNN NB DT DSOC 

Solar Flare 1  0.9103  0.8974  0.8846  0.9418 0.8333 0.8462 0.859  0.8846 
Edm  0.6833  0.6667  0.650  0.80 0.433 0.4667 0.4333  0.6333 
Water Quality  0.6179  0.4481  0.5236  0.6405 0 0 0  0.0047 
WQplants  0.6301  0.4023  0.5553  0.6604 0.0755 0 0.0472  0.1038 
WQanimals  0.6186  0.4434  0.5802  0.6462 0.0660 0 0.0556  0.0849 
Enb  0.9935  0.9412  0.9869  0.9019 0.9869 0.9150 0.9739  0.8823  
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literature ((Jia & Zhang, Multi-dimensional classification via stacked 
dependency exploitation., 2020b), (Jia & Zhang, Multi-dimensional 
classification via kNN feature augmentation., 2020a) and (Jia & 
Zhang, Multi-dimensional classification via selective feature augmen-
tation., 2022)) to reflect the most recent work applied on the MLC and 
MDC benchmark datasets. It is worth mentioning that KRAM and the 
ensembles approaches are all based on Naïve Bayes classifiers. 

Table 9 and Fig. 9 depict the comparison between the proposed 
DSOC model and eight state-of-the-art approaches in terms of the 
HAccuracy. On the other hand, Table 10 and Fig. 10 present the same 
comparison in terms of EM accuracy to assess the model ability to model 
dependencies. From those tables and figures, one can observe the 
following:  

• In terms of Hamming Accuracy, DSOC has outperformed all state-of- 
the-art approaches in five datasets (55.6%), and achieved equiva-
lent results in three datasets (33.3%).  

• In terms of Exact Match, DSOC has outperformed all state-of-the-art 
approaches over seven datasets (77.8%), which reflects the supe-
rior ability of DSOC to model dependencies and successfully classify 
samples across all dimensions simultaneously. 

5.3. Collective performance remarks 

By analyzing the overall results obtained under sections 5.1 and 5.2, 
we can conclude the following:  

a. Despite the imbalance of class labels in MLC and MDC datasets 
(especially those with high dimensionality and variety of class la-
bels), DSOC was capable of achieving better results than most 

standard classifiers as well as state-of-the-art approaches included in 
the study.  

b. The better classification performance achieved by the DSOC implies 
its ability to segregate different classes within all dimensions 
simultaneously.  

c. The superior performance of DSOC over other approaches in terms of 
EM indicates that the model is not affected by dependencies that 
exist among different classification dimensions as well as class 
imbalance.  

d. Moreover, the better performance of DOSC as compared to Stacked 
Dependency Exploitation (SEEM), which uses deterministic strategy to 
model class dependencies, reflects the intrinsic ability of DSOC’s 

Fig. 8. The classification performance of DSOC model compared to standard classifiers. a) Classification accuracy for BC, MCC, MLC and MDC datasets. b) Exact 
Match accuracy for MLC and MDC datasets. 

Table 9 
Comparing the classification results of DSOC against state-of-the-art techniques applied on the same MLC and MDC benchmark datasets in terms of the Hamming 
Accuracy.  

Dataset Hamming Accuracy 

Classes Based Approaches Feature Augmentation Dependency Modelling Regression Based  

BR ECC ECP ESC KRAM SFAM SEEM gMML DSOC 

Solar Flare 1  0.886  0.883  0.908  0.896  0.872  0.925  0.925  0.923  0.9418 
Edm  0.677  0.690  0.731  0.674  0.680  –  –  0.714  0.8000 
Water Quality  0.389  0.360  0.599  0.609  0.488  0.641  0.646  0.643  0.6405 
WQplants  0.397  0.353  0.607  0.442  0.506  0.666  0.661  0.655  0.6604 
WQanimals  0.381  0.377  0.590  0.577  0.419  0.641  0.635  0.630  0.6462 
Enb  0.774  0.773  0.764  0.754  –  0.865  0.777  0.742  0.9019 
Scene  0.763  0.767  0.867  0.866  0.777  –  –  0.893  0.8913 
Yeast  0.699  0.696  0.773  0.716  0.695  –  –  0.800  0.7719 
Image  0.573  0.576  0.746  0.593  0.586  –  –  0.811  0.8325  

Fig. 9. Comparison of the Hamming Accuracy of DSOC vs state-of-the-art ap-
proaches applied on MLC and MDC benchmark datasets. 
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Hypercube and layers to model semantics and dependencies among 
classes.  

e. In contrast to other approaches, which require specific steps to model 
decencies or handle class imbalance, DSOC uses a single straight-
forward approach that tackles those problems simultaneously in a 
single learning routine without prior treatment or algorithms. 

From those four conclusion remarks, the superior performance of 
DSOC could be attributed to the following design characteristics of the 
proposed model:  

a. The VSC double layer (VSC Selector and VSC Scaling layers) is 
responsible for segregation of classes and deepening the differences 
between them, which is then reflected in a better discriminatory 
power and superior classification performance. 

b. The DSOC’s final classifier hypercube and its self-organizing struc-
ture, is responsible for modeling class dependencies and classify 
unseen class combinations in future samples of imbalanced datasets.  

c. Moreover, the straightforward learning approach of DSOC provides 
it with the ability to solve tasks in different domains regardless the 
intensity of class dependencies or the severity of data imbalance. 

6. Conclusion 

Multi-dimensional classification (MDC) task can be considered the 
most inclusive description of all classifications tasks, as it joins multiple 
class spaces and their multiple class membership into a single compound 
classification problem. The challenges in MDC arise from the possible 
dependencies that classes in different class spaces could have, as well as 
the imbalance of labels in training datasets due to the enormous number 

of combinations needed for all labels across multiple class spaces. In this 
paper, we proposed an MDC deep learning classifier, named “Deep Self- 
Organizing Cube” or “DSOC”, which could model dependencies among 
classes in multiple class spaces, while consolidating its ability to classify 
combinations of labels that were not presented to the model during the 
training process. DSOC achieved its intended purpose through its two 
connected components, the n-dimensional Hypercube classifier, and n 
DSOC Neural Networks connected to that hypercube. Each of the n 
DSOC’s neural networks consists of three main hidden layers. The VSC 
Selector, VSC Scaling layers are responsible for feature selection and 
segregation of classes while the Pooling layer is responsible for devel-
oping the probability model per dimension. While, the central Hypercube 
classifier is responsible for creating the semantics among multiple class 
spaces and accommodate the model for rare samples classification. 

DSOC model is a multiple-output learning algorithm, where it classifies 
a sample along multiple class spaces simultaneously, through emitting a 
classification vector formed of a class label from each class space in the 
model. As such, DSOC can be used in multiple output classification tasks, 
as MDC and MLC, as well as in single-output learning, as in BC and MCC 
problems. 

For challenging the proposed DSOC model, an experiment was 
designed to evaluate the performance of the proposed DSOC model in 
the four types of classification problems BC, MCC, MLC and MDC. We 
conducted an empirical assessment of the model on seventeen bench-
mark datasets, and the obtained classification results were compared to 
those obtained by four standard classifiers as well as by eight competi-
tive state-of-the-art approaches reported in literature. The selected state- 
of-the-art approaches were chosen to challenge the model in solving the 
aforementioned MDC problems. These include approaches that manip-
ulate the input feature space through feature augmentation, and 

Table 10 
Comparing the classification results of DSOC against state-of-the-art approaches applied on the same MLC and MDC benchmark datasets in terms of the Exact Match.  

Dataset Exact Match 

Classes Based Approaches Feature Augmentation Dependency Modelling Regression Based  

BR ECC ECP ESC KRAM SFAM SEEM gMML DSOC 

Solar Flare 1  0.774  0.774  0.790  0.780  0.756  0.824  0.818  0.821  0.8846 
Edm  0.432  0.451  0.554  0.432  0.445  –  –  0.487  0.6333 
Water Quality  0.000  0.000  0.008  0.002  0.000  0.009  0.009  0.006  0.0047 
WQplants  0.001  0.001  0.034  0.001  0.036  0.100  0.096  0.092  0.1038 
WQanimals  0.004  0.007  0.020  0.024  0.008  0.058  0.049  0.062  0.0849 
Enb  0.548  0.546  0.529  0.508  –  0.729  0.554  0.554  0.8823 
Scene  0.177  0.181  0.550  0.541  0.198  –  –  0.457  0.5334 
Yeast  0.095  0.102  0.203  0.110  0.115  –  –  0.134  0.1450 
Image  0.069  0.069  0.285  0.069  0.074  –  –  0.289  0.3750  

Fig. 10. Comparison of the Exact Match Accuracy of DSOC vs state-of-the-art techniques applied on MLC and MDC benchmark datasets.  
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approaches that manipulate the output class spaces to tackle the prob-
lem of dependencies, in addition to others based on regression or pure 
dependency modelling. 

The DSOC has achieved superior performance over both standard 
classifiers as well as the state-of-the-art approaches in all the four clas-
sification tasks. In case of standard classifiers, DSOC has outperformed 
the standard methods in 50% of the cases in the BC task, 100% in MCC, 
75% in MLC and 83% in case of MDC. Moreover, with the exception of 
only two datasets, DSOC has outperformed the standard algorithms in 
terms of the Exact Match accuracy metric, which measures the ability of 
the model to, successfully; classify a sample across all dimensions 
simultaneously. 

In the same context, in terms of Exact Match, DSOC has outperformed 
all state-of-the-art approaches in 77.8% of the cases, which reflects the 
superior ability of DSOC to model dependencies and successfully classify 
samples across all dimensions simultaneously. 

In contrast to other state-of-the-art approaches, the DSOC’s struc-
ture, components and design do not change from one classification task 
to the other. DSOC maintains its straightforward training and classifi-
cation technique regardless of the type of classification task. In other 
words, the model’s straightforward approach in both training and 
implementation phases, regardless the nature of the classification task or 
dataset, makes it a domain and task agnostic classification model. 

As such, the main contribution of this study is proposing a straight-
forward yet efficient deep learning classifier of superior performance, 
which does not require structural modifications regardless the task in 
hand. A model that manipulates the input features space, via its VSC 
layers, to increase the discriminatory power of the model and segregate 
classes through augmenting the differences between different input 
variables. A model that is not affected by the existing dependencies 
among classes along different classification spaces, due to the intrinsic 
capabilities of the Hypercube in modeling semantics, even in case of data 
imbalance. 

7. Future work 

Future research using the DSOC model could tackle the following 
points: a) Increase the number of Pooling layers of the DSOC neural 
networks in order to achieve features extraction at various abstract level, 
and study its effect on the overall classification performance of the 
model. b) Study the applicability and impact of adding additional VSC 
double layer after the Pooling layers, in order to achieve more class 
segregation as well as better modeling of dependencies across different 
class spaces. 
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Bogatinovski, J., Todorovski, L., Džeroski, S., & Kocev, D. (2022). Comprehensive 
comparative study of multi-label classification methods. Expert Systems with 
Applications, 203, 1–18. 

Boutell, M. R., Luo, J., Shen, X., & Brown, C. M. (2004). Learning multi-label scene 
classification. Pattern Recognition, 37(9), 1757–1771. 

Brereton, R. (2003). Chemometrics: Data Analysis for the Laboratory and Chemical Plant. 
Chichester: Wiley.  

Charte, F., Rivera, A. J., del Jesus, M. J., & Herrera, F. (2015). Addressing imbalance in 
multilabel classification: Measures and random resampling algorithms. 
Neurocomputing, 163, 3–16. 

Charytanowicz, M., Niewczas, J., Kulczycki, P., Kowalski, P. A., Łukasik, S., & Żak, S. 
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