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ABSTRACT

Few-Shot Class Incremental Learning (FSCIL) is crucial for adapting to the com-
plex open-world environments. Contemporary prospective learning-based space
construction methods struggle to balance old and new knowledge, as prototype
bias and rigid structures limit the expressive capacity of the embedding space.
Different from these strategies, we rethink the optimization dilemma from the per-
spective of feature-structure dual consistency, and propose a Consistency-driven
Calibration and Matching (ConCM) framework that systematically mitigates
the knowledge conflict inherent in FSCIL. Specifically, inspired by hippocam-
pal associative memory, we design a memory-aware prototype calibration that
extracts generalized semantic attributes from base classes and reintegrates them
into novel classes to enhance the conceptual center consistency of features. Fur-
ther, to consolidate memory associations, we propose dynamic structure matching,
which adaptively aligns the calibrated features to a session-specific optimal man-
ifold space, ensuring cross-session structure consistency. This process requires
no class-number priors and is theoretically guaranteed to achieve geometric op-
timality and maximum matching. On large-scale FSCIL benchmarks including
mini-ImageNet, CIFAR100 and CUB200, ConCM achieves state-of-the-art per-
formance, with harmonic accuracy gains of up to 3.90% in incremental sessions.
Code is available at: https://anonymous.4open.science/r/ConCM-7385

1 INTRODUCTION

Deep Neural Networks (DNNs) have achieved impressive success in various applications (He et al.,
2016; Huang et al., 2017). Predominant approaches operate under closed-world assumptions, op-
timizing for static, predefined tasks. However, visual concepts in open-world environments are
inherently unbounded and continuously evolving (McDonnell et al., 2023; Goodfellow et al., 2013).
Moreover, acquiring sufficient training samples remains a critical bottleneck in DNNSs training, es-
pecially for emerging categories (Wang et al., 2020). Humans, by comparison, exhibit lifelong
learning capabilities: adapting new concepts from limited information while minimizing forgetting
of past experiences. Inspired by this, FSCIL has emerged as a compelling paradigm that mimics
human-like learning (Wang et al., 2023; Tao et al., 2020). FSCIL divides training into a base session
with ample data and multiple incremental sessions with few-shot novel classes, requiring models to
learn new concepts under limited supervision while retaining prior knowledge.

The scarcity of novel class samples induces overfitting in the backbone (Deng & Xiang, 2024). Thus,
recent methods advocate fully training the backbone in the base session and freezing it thereafter,
pairing it with a prototype-based classifier (Ayub & Fendley, 2022) for session-wise adaptation.
While this decoupling strategy enhances stability, novel class features often lack adaptability to the
embedding structure. This leads to knowledge conflict between classes, as shown in Figure 1 (a).
Recent approaches adopt prospective learning to pre-allocate embedding space for novel classes in
the base session and employ projection modules during incremental updates to ensure compatibility
(Zhou et al., 2022a; Yang et al., 2023; Ahmed et al., 2024). However, by enhancing novel class
performance at the expense of compressing old class embedding, these methods lack global structure
optimization across sessions. As a result, the knowledge conflict remains unresolved.

In terms of embedding structure optimization, many methods enhance feature space generalization
by designing specialized structures (Zhang et al., 2025; Ma’sum et al., 2025), as shown in Figure
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Figure 1: (a) FSCIL setup and baseline. It trains the backbone through the base session and freezes
it. (b) Prospective learning-based space construction method. It pre-allocate fixed embedding
spaces for novel classes, subject to the a priori assumptions of the class. (c) The ConCM framework
(Ours). It leverages semantic attributes to calibrate novel class features by transferring knowledge
from base classes, while incorporating a dynamical mechanism of feature-structure mathcing.

1 (b). For instance, OrCo constructs orthogonal pseudo-targets to maximize inter-class distances
(Ahmed et al., 2024), while NC-FSCIL pre-assigns classifier prototypes as an equiangular tight
frame (ETF) to guide the model toward a fixed optimal configuration (Yang et al., 2023). Although
these methods enhance structural adaptability, two key issues persist in FSCIL. First, the inherent
feature bias in few-shot settings (Pan et al., 2024; Goswami et al., 2024) causes inconsistency be-
tween novel class prototypes and their true centers. Second, fixed structural constraints impose rigid
priors on novel classes, restricting their matching flexibility and resulting in inconsistency between
the actual and expected embedding structures. To this end, we explore a new unified perspective
in FSCIL: optimizing dual consistency between feature and structure through structured learning
across incremental sessions to enable robust continual learning.

The human ability to robust continual learning is largely attributed to hippocampal associative mem-
ory (Gutiérrez et al., 2024). Inspired by this, we propose a Consistency-Driven Calibration and
Matching Framework (ConCM), which systematically mitigates the knowledge conflict inherent
in FSCIL, as shown in Figure 1 (c). Specifically, to eliminate feature bias, we design memory-
aware prototype calibration. It extracts generalized semantic attributes from base classes to build
a class-related memory index, which is then queried and aggregated via meta-learning to calibrate
novel class prototypes, thereby ensuring feature consistency. To consolidate memory associations,
we further propose dynamic structural matching that constructs an evolving geometric structure and
adaptively aligns features with it, thereby ensuring structural consistency across sessions. Theo-
retical analysis confirms that the proposed structure satisfies geometric optimality by equidistant
prototype separation and achieves maximum matching by minimal global structural change.

In summary, our contributions are: (1) We alleviate the knowledge conflict in FSCIL from a uni-
fied perspective of consistency-structured learning. The proposed ConCM framework systemati-
cally resolves the dual consistency challenges of prototype bias and structure fixity. (2) To ensure
consistency between novel class prototypes and their true centers, we draw inspiration from the hip-
pocampal associative memory and propose memory-aware prototype calibration. (3) A geometric
structure is constructed to jointly satisfy geometric optimality and maximum matching, along with
a rigorous theoretical analysis. (4) Extensive evaluations on large-scale FSCIL benchmarks confirm
the state-of-the-art performance, with ablation studies validating the contribution of each module.

2 RELATED WORKS

FSCIL aims to enable continual learning under limited supervision. We focus on optimization-based
approaches, which mainly include: replay (Zhang et al., 2021; Hu et al., 2025) or distillation (Zhao
et al., 2023; Kukleva et al., 2021), meta learning (Hersche et al., 2022; Zhou et al., 2022b; Chen
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Figure 2: The proposed ConCM framework has two main modules: (a) MPC module. Generalized
semantic attributes are extracted from base classes, i.e., attribute separation, followed by meta learn-
ing—based retrieval and aggregation for prototype calibration, i.e., attribute completion. (b) DSM
module. Each incremental step dynamically updates embedding structure to ensure geometric opti-
mality and maximum matching, while adaptively aligning features through loss-driven optimization.

et al., 2025), feature fusion-based (Goswami et al., 2024; Wang et al., 2023; Akyiirek et al., 2022),
and feature space-based methods (Zhou et al., 2022a; Yang et al., 2023; Ahmed et al., 2024). The
latter two methods aim to obtain more efficient feature representations and are highly relevant to our
method. Therefore, we focus on these methods below, with further details provided in Appendix B.

Feature fusion-based FSCIL methods. They aim to construct more accurate feature embeddings
by integrating representations derived from diverse information sources or feature extraction meth-
ods. The semantic subspace regularization method (Akyiirek et al., 2022) and TEEN (Wang et al.,
2023) leverage semantic relations to fuse base and novel prototypes. Goswami et al. (2024) fur-
ther considered the calibration of higher-order statistics. In contrast, we construct memory-aware
generalized semantic attributes to enhance semantic guidance.

Feature space-based FSCIL methods. Aiming to reserve embedding space for novel classes in
prospective learning to mitigate knowledge conflict. FACT (Zhou et al., 2022a) creates virtual proto-
types to reserve embedding space for novel classes. NC-FSCIL (Yang et al., 2023) pre-assigns fixed
classifier as an equiangular tight frame and uses dot-regression loss to maintain feature-classifier
alignment. OrCo (Ahmed et al., 2024) constructs a globally orthogonal embedding space, combin-
ing feature perturbation and contrastive learning to reduce inter-class interference. In contrast, we
construct an evolving geometric structure to ensure consistency across sessions.

3 THE PROPOSED FRAMEWORK: ConCM

Overview of the framework. In Section 3.1, we detail the FSCIL task and analyze its core chal-
lenges by preliminary experiments: the feature-structure dual consistency problem. We then propose
a ConCM framework to mitigate the conflict between learning and forgetting, depicted in Figure 2.
For feature inconsistency, we propose memory-aware prototype calibration (MPC in Section 3.2).
For structure inconsistency, we propose dynamic structure matching (DSM in Section 3.3).

3.1 TASK REDEFINITION AND PROBLEM ANALYSIS

FSCIL task redefinition. As shown in Figure 1, FSCIL consists of a base session D° and multiple
incremental sessions D!, --- ,DT. Each session D is represented as a triplet of training images,

Dt .
one-hot encoded labels, and textual class names, i.e., D' = {(z;,y;,¢;)} |»:1| . In the base session, we
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Figure 3: Preliminary results.We identify two issues and causes: (a) Issue 1: The accuracy on
novel classes consistently declines as prototype deviation increases, caused by (b) Reason 1: Novel
class prototypes deviate from the true centers, i.e., feature inconsistency. (c) Issue 2: false positive
classification, caused by (d) Reason 2: feature embedding confusion, i.e., structure inconsistency.

train the backbone on a dataset with sufficient base class samples and freeze it as a feature extractor.
A projector g(-;04) € R% is further trained to map features into a geometric space, enabling initial
alignment with the target structure A; = [01, 02, -+ ,0n,]. In the following T incremental sessions
(where T is unknown), the model has access only to D*. Using D*, we fine-tune the projector g(+; 6,)
to expand the geometric space and adaptively align features to novel classes C* while preserving base
classes C° performance. Each incremental session is formulated as a typical N-way K-shot few-
shot learning task, i.e., |Df| = N K. Label spaces do not contain any overlap C! N Ct = (), Vt # t'.
Notably, before projection we add a prototype calibration network h(-;6;,) € R that leverages
textual class name ¢; to extract latent semantic attributes and calibrate novel class prototypes.

After training, session ¢ is evaluated using a nearest class mean (NCM) classifier, which assigns
class labels based on the distance between projected feature vectors and corresponding geometric

vectors. The test set Dt spans all seen classes, implying Ct = Ut_,C¢, with N, = ‘ét’ total classes.

Consistency problems in FSCIL. Preliminary experiments on mini-ImageNet reveal two critical
issues: (1) Feature Inconsistency. The accuracy of novel classes declines as prototype bias (it is
quantified as 1 — cos(p, preqr)) increases (Figure 3 (a)) caused by the misalignment between few-
shot prototypes and actual class centers (Figure 3 (b)). This motivates us to calibrate prototypes to
ensure consistency with the true centers(Section 3.2). (2) Structure Inconsistency. Despite ensuring
prototype consistency by calibration, novel samples are often misclassified as old classes (Figure 3
(c)). The root cause lies in the implicit constraints imposed by the fixed space on novel classes,
which hinders effective optimization and causes structure inconsistency, ultimately leading to inter-
class confusion of projector output features (Figure 3 (d)). Accordingly, we propose to dynamically
refine the geometric structure to maintain cross-session consistency (Section 3.3).

3.2 CONSISTENCY-DRIVEN MEMORY-AWARE PROTOTYPE CALIBRATION

Hippocampal associative memory, essential for human continual learning, operates in two stages
(Gutiérrez et al., 2024; Luo et al., 2022): first, perceptual information is encoded and separated into
high-level representations, constructing a memory index by neural routing; second, when partial
perceptual signals are received, the associated memory in the index is retrieved and integrated to
reconstruct a complete representation. Thus, we mimic human associative memory with attribute
separation and attribute completion to calibrate novel class prototypes, defining attributes as latent
semantic attributes that are class-discriminative and environment-invariant (Zhang et al., 2023).

Attribute separation. Base classes, with abundant and diverse samples, provide text labels that
embed rich semantic information. Therefore, we first leverage WordNet (Ge et al., 2022) to parse

0
base class text labels {cl}lczl‘ and obtain semantic extensions such as synonyms and hypernyms,
from which latent semantic attributes are extracted. The words extended from class labels are further

integrated into a candidate attribute pool A = {ai}f\gl and encoded as word embeddings S, =

{54, }f\i‘l In addition, we construct a visual embedding prototype f,, for each attribute, defined as
the mean feature of all samples possessing that attribute.

Ja, = |'D10 Z f(x’ef)§ Fo= {fai}zNzal (1)

&l (z,y)€Dy,
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The set of attribute visual prototypes is denoted as F,. Extending to any session ¢, we similarly
t t
encode the current class text labels {cz}lczll into word embeddings S! = {sk}chll for attribute

completion. A binary association matrix R' = [ry,ra,- -+ ,7ict|] € RNexI€"] is further introduced
to match current classes with attributes in pool, where 7,,; = 1 if class k has attribute a;, and
Tq,k = 0 otherwise. Therefore, through attribute separation, the semantic knowledge set of session
t is represented as I1; = {S,, Fa, St, R}

Attribute completion. As the core of attribute completion, the MPC network adopts an en-
code—aggregate—decode architecture. The encoder estimates the low-dimensional representation of
both attribute visual prototype F., and class prototype pj. The aggregator performs attribute retrieval
based on relevance weight w® . The decoder outputs the calibrated prototype py,. w” is derived by
cross-attention (Vaswani et al 2017). Specifically, Semantic association are evaluated by the sim-
ilarity between word embeddings of the base attribute pool S, and those of the current class labels
S!, while visual association are measured by the distance between visual prototypes F, and py.
Therefore, by jointly considering these two associations, we have

Na
& = he(pr; O5) + Y Softmaz (wf,) X he(fai; 67); Pr = ha(ér: 67) 2)
=1
o[ (haz(an 8), hyg(on 00)) . (Igs (Fais O3), s (o, 05°) ) o
w, = X Tq.
@i 2+/d 2\/df o

where w¥ . represent the relevance weight of attribute a; to class k, and &, represents the aggregate

output. 92 and 0¢ are the encoder and decoder parameters. 65 = {951 008 975 e } denotes the
parameters of the attention layer. d, and dy are the dimensions of semantic and visual embeddings.
Ta;k Serves to mask according to the binary class—attribute associations. (-, -) represents the vector
inner product. In summary, all parameters of the network are represented by 6}, = {02, 04, 67 }

The network parameters are trained via meta—learning (Snell et al., 2017), where a series of K -shot
episodic tasks are constructed in the base session to obtain biased prototypes p**“, and the actual

base class prototypes pb‘“e are used as supervision. The network is trained with an MSE loss to
learn completing associated attributes.

Larse(pp'™) = MSE(h(py®, o; 04), pi**¢), 0 < k < No )
After training, we similarly extend to session ¢, where the completed prototypes pr = h(pk, I1:; 0r)
are obtained and combined by weighting to form the final class prototypes:

B = & x i+ (1= a) x i, Dy ~ Aug(p}), Ne-1 <k < Ny 5)
where « controls the calibration strength. In addition, since old class samples are inaccessible and

novel class samples are insufficient, we further construct an augmented dataset D} via Gaussian
sampling for subsequent projector training. More details are provided in the Appendix D.

3.3 CONSISTENCY-DRIVEN DYNAMIC STRUCTURE MATCHING

Dynamic structure. Structure inconsistency in feature space is a key source of knowledge conflict.
Our goal is to optimize the projector to construct a dynamic structure that satisfies both geometric
optimality and maximum matching. These two properties are defined as follows.

Definitionl (Geometric Optimality): The neural collapse theory reveals an optimal feature structure
formed (Papyan et al., 2020). A structural matrix A; = [d1,082, -+ ,dn,] € Rda*Ne (dg > Ny)
satisfies geometric optimality if the following condition holds.

N, 1
Aij — 6
N,—1"" N, —1 ©
where \; ; = 1 when i = 7, and 0 otherwise. It implies that prototypes are equidistantly separated.

Vi, j, 0 0; =

Definition2 (Maximum Matching): Fixed structures constrain matching for novel classes. There-
fore, we aim to embed new classes with minimal structural change, which can be expressed as:

A; = arg max (63,64 7)
t 6geAt Z ) (
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We maximize the similarity between the optimal target structure A; and the initial structure
A} = [0],85,--- ,0y,] € R% >Nt (The historical structure that incorporates the embedding of
novel classes) to distill structural knowledge and ensure minimal structural change.

Base class prototypes and covariance diagonal are stored. Each session generates training data
Aug(£;) through Gaussian sampling-based prototype augmentation from the prototype repository
i :'{pgm}ﬁl U {ﬁk}kN; No+1- The projected mean serves as the initial structure A}. Theorem 1
describes the structure optimization.

Theoreml: For session ¢, the dynamic structure that satisfies geometric optimality and maximum
matching can be updated based on the following formulation.

1
WAVT = Aé (INt - ﬁth 1;t> ) Ut = WVT (8)
t
N, 1 -
Ay = Ug | In, — —1n,1 9
VN, T t(Nt N, 1 Nt> ©))
where U; = [u1,us, - --uy,] € R%*Nt is the column-wise orthogonal matrix, Iy, € RN:*Nt jg

the identity matrix, and 1y, € R™**! is an all-ones column vector. W € Rds>*Ne A ¢ RNexNe
and VT € RN+*N¢ represents the compact SVD result.

Proof: for any pair of vectors ; and ;, we have:

Ny T 1
L (g Tu — — 10
N1 ) (10)
According to the properties of singular value decomposition, W is a column-wise orthogonal matrix,
e, WTW = Iy, and V is an unitary matrix, i.e., ViV =vVvT = In,. It can be deduced that
U, is also a column-wise orthogonal matrix, i.e., UtT U; = In,. Therefore, we satisfy geometric
optimality, i.e., Eq. (6). Furthermore, Eq. (7) can be expressed as:

Vi7.j? 5iT6j =

, 1
U, = tr(AL T — ' Uy — —1xn1k 11
LT o TS e A b
Let k = N]tvil’ M =1Iy, — N%l ~, 14, where M is a symmetric matrix. Hence, we obtain:
U = argmax k- tr((AJM)"Uy) (12)

UtTUtZINt

This is a classic orthogonally constrained trace maximization problem. Let WAV T = A} M denote
the SVD matrix. The optimal solution under the optimal matching relationship is given by U; =
WV T, Please refer to Appendix E for more details.

Feature-structure matching. Aug(€);) is taken as input, and the projector g( ; 8,) is optimized to
match the target structure A; by the joint feature-structure matching loss and contrast loss. The
matching loss between projected vector z; and its corresponding structure vector dy, is defined as:
exp ((zi, 0k))
£Match (Zz) = - log N; =
> =1 exp (i, 05))
This classification loss minimizes the distance between projected class means and their correspond-
ing 0. We also employ Supervised Contrastive Loss (SCL)(Chen et al., 2020) to enhance intra-class
compactness. By treating the structure vector as an anchor and including it in the positive set, the
model learns structural information explicitly.

13)

1 exp((zi; %) /T)
o 14
=R 2 el ) -

P; represents the positive sample set, which includes the anchor and instances from the same class.
The negative sample set /NV; includes instances from other categories. 7 is the temperature parameter.
Therefore, combining Eq. (13) and Eq. (14) yields the final loss for optimizing the projector.

['Proj = EMutch + ECont (15)
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Table 1: SOTA comparison on mini-ImageNet. AHM denotes the average harmonic mean. FA
denotes the Top-1 accuracy in final session. The top two rows list CIL and FSL results implemented
in the FSCIL setting. Detailed results for the remaining datasets are presented in the Appendix.

Session-wise Harmonic Mean (%) 1

Methods Base Acc AHM FA
1 2 3 4 5 6 7 8

iCaRL(Rebuffi et al., 2017b) 61.31 845 13.86 1492 13.00 14.06 1274 1216 1171 1261 1721
IW(Qi et al., 2018) 61.78 2532 2045 22.62 2548 2254 20.66 2127 2227 2258 41.26
FACT(Zhou et al., 2022a) 75.78 2720 27.84 2794 25.17 2246 20.54 20.88 21.25 24.16 48.99
CEC(Zhang et al., 2021) 72.17 3191 31.84 3098 30.74 28.14 2678 2696 2742 29.35 5795
C-FSCIL(Hersche et al., 2022) 76.60 9.74 2053 28.68 3193 34.85 3505 37.72 3792 2955 51.09
LIMIT(Zhou et al., 2022b) 73.27 40.34 3358 31.81 31.74 2932 29.11 2957 30.28 3197 48.08
LCwoF(Kukleva et al., 2021) 64.45 4124 3896 39.08 38.67 36.75 3547 3471 3502 3749 37.69
BiDist(Zhao et al., 2023) 74.67 4242 4386 43.87 4034 3897 38.01 36.85 3847 4035 55.69
TEEN(Wang et al., 2023) 74.70 5239 4725 4453 4354 4127 3997 3996 4042 43.66 51.80
NC-FSCIL(Yang et al., 2023) 84.07 6234 61.04 5593 53.13 49.68 47.08 4622 4557 5262 57.97
OrCo(Ahmed et al., 2024) 83.30 67.14 64.12 60.71 57.16 5534 51.52 5096 5144 57.30 56.04
ConCM (Ours) 83.97 70.34 66.59 63.38 59.59 57.05 5395 5349 5392 59.78 59.92
Better than second +3.20 4247 +2.67 4243 +1.71 4243 +2.53 +248 +248 +1.95
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Figure 4: SOTA comparisons on three FSCIL benchmark datasets. Performance curve is har-
monic mean accuracy. The underlined denotes the average performance improvement. The red
denotes the highest performance improvement.

4 EXPERIMENTS

In Section 4.1, the main experiment details are introduced. In Section 4.2, a comparison is made
with SOAT methods on mainstream benchmarks. Section 4.3 provides a comprehensive analysis to
demonstrate the superiority of the proposed method and the effectiveness of each module.

4.1 MAIN EXPERIMENTAL DETAILS OF FSCIL

We evaluated the ConCM on three FSCIL benchmark: mini-ImageNet(Deng et al., 2009), CI-
FAR100 (Krizhevsky et al., 2009) and CUB200 (Wah et al., 2011). The dataset split followed
Zhang et al. (2021). For a fair comparison with existing methods (Ahmed et al., 2024; Zhao et al.,
2023; Yang et al., 2023), we replay 5 samples per incremental class, consistent with prior work. All
expeiments are conducted on a RTX 4090 GPU. Please refer to the Appendix F for more details.

4.2 COMPARISON TO STATE-OF-THE-ART

In this section, we compare the proposed ConCM with the latest SOTA methods. The experimental
results are provided in Table 1 and Figure 4. We adopt the Harmonic Mean (HM) (Ahmed et al.,
2024; Wang et al., 2023) as a balanced metric. The proposed method outperforms previous SOTA
methods across all datasets, with the highest performance improvement in incremental sessions of
3.20% on mini-ImageNet, 3.41% on CIFAR100, and 3.90% on CUB200. Compared to NC-FSCIL,
ConCM shows only a 0.1% decrease in Base Accuracy on mini-ImageNet, but achieves a 7.16%
improvement in AHM. Notably, ConCM shows consistent advantages in all incremental sessions.
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Table 2: Analysis of knowledge conflict on mini-ImageNet. The metric results for eight incremental sessions
are reported. NAcc denotes the novel-class accuracy, reflecting plasticity of novel classes. BER denotes the
balanced error rate, reflecting the degree of knowledge conflict. Higher NAcc is better, and lower BER is better.

Session 1 2 3 4 5 6 7 8
NAcc/BER NAcc BER [NAcc BER |[NAcc BER |NAcc BER |[NAcc BER |[NAcc BER |[NAcc BER | NAcc BER

Baseline(Snell et al., 2017) | 19.80 38.20|16.90 36.53|13.53 37.09|11.10 37.22]10.80 36.06|10.00 34.99|10.03 34.44 | 10.57 3478

FACT (Zhou et al., 2022a) | 16.60 37.24 |17.10 37.01|17.20 37.18|15.16 36.98|13.24 36.63|11.93 36.65|12.17 35.92 | 12.43 36.07
CEC (Zhang et al., 2021) | 20.60 35.92|20.60 35.55|19.93 34.48|19.75 33.02|17.78 36.63|16.63 33.13|16.80 31.38 | 17.19 30.49
TEEN (Wang et al., 2023) | 41.00 27.21|35.30 24.98 |32.53 25.37|31.65 25.25|29.44 24.48 2823 24.48|28.34 23.33 | 28.93 23.16
OrCo (Ahmed et al., 2024) | 60.20 14.63 | 56.90 15.12|53.40 16.48|48.45 17.87|46.40 17.55|41.70 17.85|41.43 18.13 | 42.55 18.56

ConCM ‘ 67.20 13.60 60.30 13.85 ‘ 56.33 15.40|50.75 16.39|47.72 16.48 |43.60 16.93 |44.00 17.24 |43.52 17.34
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Figure 6: (a) Prototype calibration visualization. Different markers indicate the sample feature,
the real class center, the calibrated prototype, and the biased prototype. (b) Embedding space
visualization on mini-ImageNet. Each point represents a sample, colored by class.

4.3  ANALYSIS

ConCM alleviates knowledge conflict. Feature confusion between ”x\

old and novel classes leads to misclassification, which is a tangible N
manifestation of knowledge conflict. Following Wang et al. (2023), 1 &,
we treat base classes as “positive” and novel classes as “negative”,
and use the Balanced Error Rate (BER = (FPR + FNR)/2) to quan-
tify conflict. Table 2 reports the metrics for each session, showing
that ConCM achieves the lowest misclassification rate and the high- ;
est novel class accuracy. Compared to Figure 3 (c), Figure 5 demon- ] - - . L
strate that our method effectively mitigates false positive classifica- ) ) ‘

tion. Notably, for all increments, the average NAcc of ConCM in- Figure 5: The confusion matrix
creased by 2.8%, better aligning with practical requirements. Com- ~ result on mini-ImageNet.

pared to dwelling on old memories, learning new things is essential for adapting to the environment.

True Labels
3 >
p

=
P

Ablation studies of each module. Table 3 summarizes the ablation results. Performance Dropping
(PD) measures the average accuracy drop from the base to the final session, reflecting forgetting.
The baseline uses a frozen backbone, and ¢(-) denotes a fine-tuned projector. The results show
that both the MPC and DSM modules improve performance. For example, on mini-ImageNet,
AHM increased by 4.52% and 8.96%, respectively. The integration of both modules entails feature-
structure dual consistency, achieving the best performance with an 11.95% improvement.

Table 3: Ablation studies. AHM denotes the average harmonic mean. FA denotes the accuracy in final
session. NAcc denotes average novel-class accuracy. PD denotes performance dropping rate. 1 denotes higher
is better. | denotes lower is better. Appendix G presents more results.
Methods mini-ImageNet CIFAR100 CUB200
g() MPC DSM | AHMt FAt NAcet PD) | AHMt FAt NAcet PD] | AHM{ FAt NAcct PDJ
2200 5262 1284 3135 | 2173 5114 1264 3168 | 4678 5297 3387 2755

4783 5622 3517 27775 48.05 5533 3580 26.67 | 5848 5882 47.99 22.00
v 5235 5723  40.65 2674 | 5331 56.74 4231 2526 | 59.88 59.01 5043 2151

v 56.79 5829  46.81 26.68 | 5696 5699 4795 2583 | 60.19 59.59 5143 2093
v v 59.78 59.92 51.74 24.05 59.05 5833 51.88 2449 | 62.20 62.66 5396 17.86

AENENEN

ConCM achieves better feature consistency. We performed visualization on the features, as shown
in Figure 6. Compared to Figure 3 (b), ConCM enhances feature representations by semantic asso-
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Table 4: Analysis of structure consistency on mini-lamgeNet. HM denotes harmonic mean accuracy. SMR
denotes structural matching rate. ConCM achieves the best performance by maximal matching relation.

Session 1 2 3 4 5 6 7 8

HM/SMR HM SMR| HM SMR|HM SMR|HM SMR| HM SMR|HM SMR| HM SMR| HM SMR
RM 66.03 0.01 [60.90 0.01 |58.62 0.02[53.04 0.02 5277 0.01 [49.45 0.01 |48.89 0.01 [49.88 0.02
GM 66.62 0.19 [61.02 020 |57.78 020 |54.20 0.18 [52.77 0.19 [49.31 020 |49.56 0.20 [50.65 0.20
FS(Yang et al,, 2023) | 70.10 0.85 |63.44 0.65 |61.95 0.69 |56.01 0.73 |55.83 0.74 [52.74 0.78 | 52.66 0.81 |52.76 0.80
ConCM 70.34 0.93 [66.59 0.83 63.58 0.84 |59.59 0.84 |57.05 0.85|53.95 0.85 [53.49 0.85 [53.92 0.85

ciations between different classes, effectively reducing the deviation from the true centers. Based
on the calibrated features, we further visualized their embedding structure, as shown in Fig. 6 (b).
Compared to the baseline, its embedding is no longer scattered chaotically across the structure, but
instead forms a more compact spatial distribution, naturally reducing classification difficulty.

ConCM achieves better structure consistency. To validate the effect of maximum matching in
structure consistency, we define the Structure Matching Rate (SMR = 3" (¢’;, ;)) to quantify the
deviation between the initial and target structure. The results are shown in Table 4. Random Dy-
namic Matching (RM) randomly constructs and matches an optimal structure, which disrupts con-
sistency. GM refers to greedy matching (Kuhn, 1955) leading to improvement, but still constrained
by the structure itself. Fixed Structure (FS) pre-allocates a structure for all classes, but it leads to
a trivial solution. ConCM outperforms in all incremental sessions, achieving the highest SMR and
HM, while obtaining optimal performance with minimal structure adjustments.

Feature-structure dual consistency fosters Tuble 5: Ablation on Loss.w/o denotes without MPC.

more robust continual learning. Features areé  Train Strategy Simus | Simy, 1 NAcc ! AHM 1
matched to the optimal structure via loss-driven ~ ~ 00366 03140 3517 4783
optimization. To analyze the impact of differ-  Laaten 00111 03187 4393 5528
ent losses, we use cross-entropy loss L. (i.e., Entaten + Lsor 01233 04182 5135 3942
Ltaten + Lcont 0.0285 03355 5174  59.78

without structure), matching loss Lysqtcn (i.e.,
structure), general SCL loss Lg¢r and con-
trastive loss with anchor Lco,:. We also introduce the intra-class (S7m.;s) and inter-class (Sim;,,)
cosine similarities in the final session to quantify the degree of matching. Table 5 shows that L£y4¢ch
fosters intra-class cohesion, whereas Lo, encourages inter-class separation. Structure anchors
help the model better capture the structure, resulting in optimal feature-structure matching. The ab-
lation results of the MPC module show that feature inconsistency weakens matching performance.

Lytateh + Loont Wo  0.0406  0.3174 46.81 56.79

ConCM 2‘1chieves SOTA with less memory, Table 6: Comparison of Computational Efficiency.
shorter tlmes and comparable complexnty. Method Parameter FLOPS Time Memory AHM

For fair comparison, we adopt a uniformly pre-  “NcpsciL 136oM 472G 18.10min 2478M 5278
trained backbone. As shown inTable 6, ConCM  orco 1249M 472G 1834min  2478M 5730
improves performance with comparable com-  ConCM 1322M 477G 1637min  957M  59.37

plexity and achieves the lowest time cost, re-
ducing total time by 11% by avoiding repeated backbone propagation. In terms of memory, while
OrCo and NC-FSCIL store five samples per class, ConCM reduces overhead by storing only the
base-class feature mean and covariance diagonal.

5 CONCLUSION

FSCIL involves the conflicting objectives of learning novel knowledge from limited data while pre-
venting forgetting. In this study, we further explore two potential causes of knowledge conflict:
feature inconsistency and structure inconsistency. To this end, we propose a consistency-driven
calibration and matching framework (ConCM). Memory-aware prototype calibration ensures con-
ceptual consistency of features by semantic associations, while dynamic structure matching unifies
cross-session structure consistency via structure distillation. Experimental results show that the
method achieves more robust continual learning by consistent feature-structure optimization.

Limitations: The FSCIL methods in this paper typically use most classes (e.g., 60%) as base classes,
requiring diversity samples for reliable semantic attributes. Despite this, our experiments show
that ConCM still alleviates knowledge conflict. Moreover, Future work will explore more realistic
incremental tasks, e.g., active learning on streaming data, to overcome dataset constraints.
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STATEMENTS

Ethics Statement. Our study does NOT involve any of the potential issues such as human subject,
public health, privacy, fairness, security, etc. All authors of this paper confirm that they adhere to
the ICLR Code of Ethics.

Reproducibility Statement. For our theoretical result Theorem 1, we offer the proof in Appendix
E. All datasets used in this paper are public and have been cited. Please refer to Appendix F for the
dataset descriptions and the implementation details of our experiments. Our source code is released
at https://anonymous.4open.science/r/ConCM-7385.
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Appendix

A THE USE OF LLM

All work in this study was completed solely by the authors without the use of any large language
models (LLMs) for content generation.

B ADDITIONAL RELATED WORKS

B.1 CLASS-INCREMENTAL LEARNING

Class-Incremental Learning (CIL) aims to continually learn novel classes from dynamic data dis-
tributions while retaining memory of learned classes. Its main challenge is balancing the plasticity
for novel class learning and the stability of old class memories. Current mainstream methods can
be categorized into five types (Wang et al., 2024): (1) Regularization-based methods (Wu et al.,
2019; Li & Hoiem, 2018; Yang et al., 2024; Kirkpatrick et al., 2017) constrain key parameters to
avoid novel class learning from disrupting old class knowledge; (2) Replay-based methods (Tiwari
et al., 2022; Rebuffi et al., 2017a; Zhu et al., 2021) alleviate catastrophic forgetting by retaining a
subset of old class samples; (3) Optimization-based methods (Wang et al., 2021; Liu & Liu, 2022;
Foret et al., 2021) explicitly design gradient projections to leverage flat minima, achieving the ideal
solution for multi-task learning; (4) Representation-based methods (Javed & White, 2019; Beaulieu
et al., 2020) enable continual learning by creating and leveraging representational advantages, such
as self-supervised learning and pre-training; (5) Architecture-based methods (Liang & Li, 2024;
Wang et al., 2022; Yan et al., 2021) build task-specific parameters through careful design of the ar-
chitecture, avoiding interference between tasks. Existing methods fail to account for the knowledge
compatibility between tasks, and in few-shot scenarios, they risk overfitting novel class features,
hindering effective generalization of new knowledge.

B.2 FEW-SHOT LEARNING

Few-Shot Learning (FSL) relies on limited labeled data for novel class learning (Wang et al., 2020).
Existing methods typically achieve this goal from the perspectives of data generation, metric learn-
ing, and meta learning. (1) Data generation-based methods enhance few-shot learning by generating
samples that resemble the real distribution (Yang et al., 2021; Pan et al., 2024; Zhang et al., 2023);
(2) Metric learning-based methods (Qi et al., 2018; Snell et al., 2017) focus on learning a unified
distance metric and performing feature embedding; (3) Meta learning-based methods (Nichol et al.,
2018; Finn et al., 2017) train models to quickly adapt to new tasks by simulating the learning pro-
cess. However, it neglects the issue that class data typically arrives asynchronously, hindering joint
training and adaptation to the streaming nature of real-world data.

B.3 FEW-SHOT CLASS-INCREMENTAL LEARNING

Few-Shot Class-Incremental Learning (FSCIL) combines the two learning paradigms mentioned
above, closely resembling human learning. This paradigm requires the model to continually inte-
grate novel classes while preserving learned knowledge and handling the sparse labeling constraints
of new classes (Zhang et al., 2025; Ma’sum et al., 2025). Similar to our method, optimization-based
methods address the complexities of optimization to overcome the few-shot overfitting of novel
classes and catastrophic forgetting of old classes. This includes: (1) Replay or distillation meth-
ods, which use old class data or model information to preserve knowledge (Tao et al., 2020; Zhang
et al., 2021); (2) Meta learning methods (Hersche et al., 2022; Zhou et al., 2022b), which draw on
experiences from multiple sessions to enhance future performance; (3) Feature fusion-based meth-
ods (Goswami et al., 2024; Wang et al., 2023; Akyiirek et al., 2022) integrate or combine features
obtained from different information sources or feature extraction methods to create more compre-
hensive and effective representations; (4) Feature space-based methods (Zhou et al., 2022a; Deng
& Xiang, 2024; Yang et al., 2023; Ahmed et al., 2024), highly relevant to our method, focus on
optimizing the feature space for FSCIL, with the core objective of learning more robust feature
representations.
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For instance, FACT (Zhou et al., 2022a) creates virtual prototypes to reserve extra space in the em-
bedding space, allowing novel classes to be integrated with reduced interference. NC-FSCIL (Yang
et al., 2023) pre-defines a classifier using neural collapse theory and constrains learning through a
projection layer, avoiding conflicts between learning novel classes and retaining old class memories.
OrCo (Ahmed et al., 2024) constructs a globally orthogonal feature space during the base session
and combines feature perturbation with contrastive learning to reduce inter-class interference. How-
ever, on one hand, these methods do not account for the inherent bias in few-shot features, and lacks
an accurate anchor point (Goswami et al., 2024; Wang et al., 2023). On the other hand, fixed pre-
defined structures implicitly constrain novel classes, forcing them to align with a designated space
through optimization. This can lead to trivial solutions, making it difficult to achieve the desired
outcome. In contrast, we provide calibrated prototype anchors for the structure using semantic at-
tributes with class separability and environmental invariance, and reduce optimization complexity
through maximum matching to obtain the optimal feature embedding.

C PSEUDO-CODE FOR CONCM

The training procedure for the ConCM is described in Algorithm 1

Algorithm 1 Consistency-driven Calibration and Matching framework (ConCM)

Input: Training set Dy,qi, = {D°, D!, .- , DT}

Output: Backbone f(+;0;) € R%, projection g(-;0,) € R%

Base Session Pretraining

1: for V(({L‘i,yi, Cl)) € DY do
2: Train and freeze the backbone f(-;6¢) by cross-entropy loss Lcog
3: Get semantic knowledge of attribute Iy = {S,, F,, S?, R"}
4: Train the MPC h(-;6) € R% in Eq. (4)
5.
6
7

Get an optimal structure A in Eq. (9)
: Optimize the projection g(+; 8,) in Eq. (13) and Eq. (14)
: end for
Incremental Session Fast Adaptation
8: for V((I”yz,C?)) GDt do
9:  Get semantic knowledge of attribute I1; = {S,, Fa, S!, R}
10: Calibrate prototypes in Eq. (5)
11: Sample augmented data Aug(€);) in Eq. (18)
12: Update the structure A; in Eq. (8) and Eq. (9)
13: Optimize the projection g(+; 0,) in Eq. (13) and Eq. (14)
14: end for
15: return Backbone f(;60;) € R%, projection g(-;0,) € R

D DETAILS OF PROTOTYPE AUGMENTATION

According to the FSCIL setting, previous session samples are inaccessible. To address this issue,
we propose augmenting the prototype of base classes to replay class distribution. Simultaneously,
we augmented the calibration prototype of novel classes. Therefore prototype augmentation further
supports structural alignment within embedding space.

Assuming that the features follow a Gaussian distribution N(p,Y) (Goswami et al., 2024; Yang
et al., 2021). During the base session, the distribution can be directly estimated owing to sufficient
samples, allowing close approximation to the true distribution, denoted as N (p®@¢, 3:045¢) Where
pb@€ represents the base feature mean, and ¥.°**¢ represents the base covariance diagonal. For novel
classes, the feature mean pj, provided by the calibrated prototype generated by the MPC network.
However, due to the scarcity of samples for novel classes, it is not possible to accurately estimate
their covariance. Therefore, we leverage the distribution information of the base class to estimate
the covariance of novel. Specifically, the covariance estimation process is as follows:
No
S = B(Sk + Y wpBp) (16)
b=1
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where, 5 denotes the covariance scaling degree. X, denotes novel class covariance diagonal. We
incorporate the base-class information via softmax similarity weighting to obtain X},. The weighting
scheme is defined by the following formula:

base Al
exp(y - cos ,
Whk = Nop(,y (pb ba]Z]:))A, (17)
Zi:l exp(y - cos(p;™ Hpk))

-y controls the sharpness of the weight calculation (with y = 16 in all experiments). In the session ¢,
the prototype Q; = {ppes¢} o, U {p }o* No1 18 augmented through Gaussian sampling:

[y gz 0 <o a9

Aug(p},) ~ N (B}, 25), No < k < Ny

E THEORETICAL PROOF

Definitionl (Geometric Optimality). The neural collapse theory reveals an optimal structure
formed by the last-layer features and the classifier (Papyan et al., 2020). A structural matrix
Ay = [61,09,+ ,0n,] € RE*Nt(d, > N,) is said to satisfy geometric optimality if the following
condition holds.

Ny 1
Ne—1 77 Ny—1

where \; ; = 1 when ¢ = j, and 0 otherwise. It implies that prototypes are equidistantly separated.

Vi, j, 6; ' 65 = (19)

Definition2 (Maximum Matching). We define the maximum matching relationship as maximiz-
ing the similarity between the optimal target structure A; and the initial incremental structure
A} = [6],05,---,8y,] € R*Ne (the historical structure that incorporates the embedding of
novel classes), which can be expressed as:

N,
Av=argmaxd (85,6 (20)
The relationship aims to embed new classes with minimal structural changes.

Each incremental session generates augmented samples Aug(£2;) by Gaussian sampling from mem-
ory prototypes €2;, which include both the base class prototypes and the novel class calibrated
prototype. The projected mean of these samples serves as the initial structure A}. The structure
optimization process is formally stated in the following theorem.

Theorem1. For session ¢, the dynamic structure that satisfies geometric optimality A; and maximum
matching can be updated based on the following formulation.

Ny

N, 1
A=~ U Iy, — =11 2
TN -1 t(“ N,V Nt) @2)

where U; = [u1,ug -+ up,| € R¥*Ne, [, € RNeXNe s the identity matrix, and 1y, € RV¢*1 s
an all-ones column vector. W € R9s>*Nt A € RNeXNe and VT € RNe*Nt represents the compact
SVD result.

1
WAV = A <1Nt — 1Nt1ﬁt> , U =wv’T 21)

Proof. According to the properties of singular value decomposition, W is a column-wise orthogonal
matrix, i.e., WTW = Iy, and V is an unitary matrix, i.e., Viv=vvT= In,. It can be deduced
that U, satisfying:

U U =WvHTwvT =vwTwvT = Iy, (23)
Therefore, U, is also a column-wise orthogonal matrix, satisfying:
Vi ;éj,u;ruj =0;
{ Vi=j,uiu; =1; 24
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A; = [01,02,- -+ ,0n,] is the target geometry vector matrix, and §; corresponds to category i. Ac-
cording to Eq. (22), §; can be further simplified as:

] Ny , Z;V;Wn
51 = N, —1 (uz N, ) (25)

For any geometric vectors d; and ¢;, we have:

. Ny ZNL u ZNL u
Vi, g, 8; 18 = (uy; — ERELNT L (g, — n=ln
Za]v J Nt _ 1 (U Nt ) (uj Nt )
_ Ny (u] u; — Zgiﬂluj _ > iy up + > it Eanz'lun)
Nt -1 v Nt Nt Nt2 (26)
Ny T 1
TN -1 ~(ug uj — ﬁt)
N 1

N,—-1"" N, -1
where )\; ; = 1 when i = j, and O otherwise. Therefore, we satisfy geometric optimality. The

proof conclusion is: when U, is a column-wise orthogonal matrix (i.e., UtT Uy = In,), the matrix
calculated by Eq. (22) satisfies the geometric optimality defined in Eq. (19).

Furthermore, the maximum matching relationship requires that Eq. (20) be achieved under geomet-
ric optimality, which can be expressed as follows:

Ny
Ay = arg mauxZ(ég7 i)
3i€Ar i1 (27)
= A; = argmaxtr(A; T A)
Ay

Substituting the optimal geometry, as constructed in Eq. (22) (with the condition U, U; = Iy;,),
into the above equation yields:

N, 1
U, = (A U, (I — —1n1F 28
‘T e r( 0 (- ek o

Weletk =/ Nj:fil and M = Iy, — N%l Ntl—l\r,t, where M is a symmetric matrix, and it satisfies
MT = M. According to the trace properties, we have:
T
Ui = argmax k- tr(A"y UM)
U Ui=In,

= argmax k - tI'(MA/tTUt) (29)
UtTUt:INt

= argmax k- tr((A",M)"U,)
UtTUt:INt

Substitute the SVD WAV T = A/ M into the above formula, where W € Rés*ds, A e Rs*Ne,
V e RNexNe {7 and V are unitary matrices, and Eq. (29) can be further simplified to:

Uy = argmax k-tu(VATWTU,)
U U=In,

= argmax k- tr(ATWTU,V)
U Ui=1In,

(30)

Further define R = WTU,V € R%*Ne. Since RTR = VU, T WWTU,V = I, it follows that
R is also a column-wise orthogonal matrix. Substituting into Eq. (30) yields:

U, = argmax k-tr(ATR) (31)
U, Us=In,
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Note that the maximum value is only related to ¢#(AT R). It can be simplified to:
tr(ATR) = Z%‘Uz' (32)

o; is a singular value, r;; is a diagonal element of R. Since R is a column-wise orthogonal matrix,
its diagonal elements satisfy |r;;| < 1, and it is obvious that the maximum value is obtained when
r; = 1. Therefore, we can get:

_ In,
R= [ O(d,—Ny)x N ] (33)

where O(dg_ N.)x N, 18 a zero matrix of size (dg — Ni) x N;. Now, substitute R back into the equa-
tion for U; :

In. ] vi=wv’T = (34

I . N .
N } :WTUtV:>Ut=W{ Oy

R= [ O(dy—Ny)x NV

W and V' T denote the compact SVD results.

F MORE DETAILS

F.1 DATASET DETAILS

We evaluate our ConCM framework on three FSCIL benchmark datasets: mini-ImageNet(Deng
et al., 2009) CIFAR100 (Krizhevsky et al., 2009) and CUB200 (Wah et al., 2011). The splitting
details (i.e., the class order and the selection of support data in incremental sessions) follow the
previous methods (Zhang et al., 2021; Ahmed et al., 2024; Wang et al., 2023).

mini-ImageNet: The dataset is a subset of ImageNet, consisting of 100 classes, with each class
containing 600 images. We divided it into 60 base classes and 40 incremental classes, structured
into 8 incremental sessions with a 5-way, 5-shot FSCIL scenario.

CIFAR100: This dataset consists of 60,000 color images (32x32 pixels) across 100 object classes.
For the FSCIL task, it is split into 60 base classes and 40 novel classes, organized into 8 incremental
sessions under a 5-way, 5-shot setting.

CUB200: This dataset is a fine-grained bird classification dataset, consisting of 200 classes and a
total of 11,788 images. In the FSCIL task, it includes 100 base classes and 100 incremental classes,
arranged into a 10-way, 5-shot task with a total of 10 incremental sessions.

F.2 ATTRIBUTE SELECTION

For standard datasets, such as mini-ImageNet(Deng et al., 2009) and CIFAR100(Krizhevsky et al.,
2009), the class names (e.g., “house finch”) can be obtained. We use the “part_meronyms()” pro-
vided by WordNet (Ge et al., 2022) to obtain part—-whole relationships as candidate attributes, such
as "house finch” — “beak”, ”wing”, ’feather”, etc. For base classes, we directly select the candi-
date attributes as the actual attributes. Then, the attributes of all base classes are aggregated into an
attribute pool for matching with the novel classes. For novel classes, their actual attributes are de-
fined as the intersection between their candidate attributes and the base class attribute pool, enabling
prototype calibration through the associated base class attributes.

Certain datasets, such as CUB200, offer explicitly accessible attribute labels for all samples, which
we directly utilize. For each class, we select the 28 most frequent attributes (corresponding to 28
distinct attribute categories) as candidates. The attribute pool construction and novel class attribute
selection follow the same procedure as described above.

F.3 MODEL ARCHITECTURE

In the framework of this paper, the learnable network consists of the following components:
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Backbone network. The symbolic representation is f(-;0¢) € R% . Prior studies widely adopt
ResNet architecture for FSCIL experiments. Table 7 compares the backbone networks used in dif-
ferent studies. Following OrCo (Ahmed et al., 2024), for mini-ImageNet, we use ResNet18. For
CIFAR100, we use ResNet12. For CUB200, we use ResNet18 (pre-trained on ImageNet).

MPC network. The symbolic representation is (+; 0 ) € R . It consists of an encoder, an aggre-
gator and a decoder. The encoder h,(+;05) € R%/? and decoder hy(-;0f) € R4 are MLP layers.
Leveraging cross-attention to derive relational weights, the aggregator combines the encoder’s out-
puts as input for the decoder.

Projector network. The symbolic representation is g(-;6,) € R% . The projector further maps
the embedding space to the geometric space to achieve alignment between the features and the
geometric structure. The projector consists of a two-layer MLP. Lo normalization is applied both
before and after the projection layer to construct a hypersphere-to-hypersphere mapping.

Table 7: A comparison of backbone networks used in different studies.

Methods mini-ImageNet CIFAR100 CUB200
FACT (Zhou et al., 2022a) ResNet18 ResNet12 ResNetl8
CEC (Zhang et al., 2021) ResNet18 ResNet20  ResNetl8
C-FSCIL (Hersche et al., 2022) ResNet12 ResNet12 -

LIMIT (Zhou et al., 2022b) ResNet18 ResNet20  ResNetl8
LCwoF (Kukleva et al., 2021) ResNet18 - -

BiDist (Zhao et al., 2023) ResNet18 ResNet18  ResNetl8
TEEN (Wang et al., 2023) ResNet18 ResNetl12 ResNetl8
NC-FSCIL (Yang et al., 2023) ResNet12 ResNetl2  ResNetl8
OrCo (Ahmed et al., 2024) ResNet18 ResNet12 ResNetl8
ConCM(Ours) ResNet18 ResNet12 ResNetl8

F.4 EVALUATION DETAILS

Harmonic Mean accuracy. Sandard accuracy measures, such as Top-1 accuracy, tend to be skewed
in favor of the base classes. Following Ahmed et al. (2024); Wang et al. (2023); Kukleva et al.
(2021), we introduce the Harmonic Mean accuracy (HM) to mitigate this bias:
HM, — 2 x BAcc; x NAcc,

BAcc; + NAcc,

(35)

This metric yields a good value only when both the base class and novel class accuracies remain at
high levels. In addition to this, Average Harmonic Mean (AHM) averages the harmonic mean scores
across all incremental sessions for a consolidated view.

Final Accuracy. Final Accuracy (FA) denotes the Top-1 accuracy of the final session, evaluating
the overall accuracy after completing the all sessions:

FA = Acc_; (36)

Performance Dropping rate. Performance Dropping rate (PD) denotes the Top-1 accuracy drop-
ping between the base session and the finial session, which measures the degree of forgetting:

PD = Accy — Acc_1 37

Balanced Error Rate. We treat base classes as the “positive”, novel classes as the “negative” and
transform the FSCIL problem into a two-class classification task. Balanced Error Rate (BER) is
used to quantify the degree of knowledge conflict.

FN
FNR = ———— x 100%, FPR x 100% (38)

F
TP + FN - FP+ TN

FNR + FPR
BER — % (39)
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Table 8: SOTA comparison on CUB200. AHM denotes the average harmonic mean. FA denotes
the Top-1 accuracy in final session.

Session-wise Harmonic Mean (%) 1

Methods Base Acc AHM FA
1 2 3 4 5 6 7 8 9 10

iCaRL(Rebuffi et al., 2017b) 77.30 4418 4293 36.13 3022 30.86 29.01 2845 2688 2644 2524 3203 2523
IW(Qi et al., 2018) 67.53 4052 39.19 3635 3733 37.85 37.85 35.68 3554 37.36 3821 3759 46.06
FACT(Zhou et al., 2022a) 77.23 62.16 57.86 5047 5221 50.58 S51.55 5201 5029 51.74 51.58 53.05 5639
CEC(Zhang et al., 2021) 75.64 56.17 53.16 45.67 4845 4541 4629 4631 4516 4628 46.01 47.89 5421
LIMIT(Zhou et al., 2022b) 79.63 61.11 57.19 50.70 52.40 50.52 5140 52778 51.36 5250 53.56 5335 57.81
BiDist(Zhao et al., 2023) 75.98 63.32 5673 50.35 53.08 49.50 49.76 50.74 48.64 5098 50.87 5240 56.98
TEEN(Wang et al., 2023) 77.26 6599 61.83 5559 5691 5549 56.07 5547 53.86 5515 5486 57.12 57.98
NC-FSCIL(Yang et al., 2023) 80.45 7130 5730 5525 57.56 54.15 56.05 56.60 53.55 54.63 55.03 57.14 59.44
OrCo(Ahmed et al., 2024) 75.59 7202 64.57 59.38 59.78 57.19 57.14 57.10 5545 56.80 56.63 59.61 57.94
ConCM (Ours) 80.52 7524 66.04 59.78 60.10 5948 60.24 60.78 59.35 60.57 60.39 6220 62.66
Better than second +322 +147 4040 +0.32 +2.29 +3.10 +3.68 +3.90 +3.77 +3.76 +2.59 +3.02

Table 9: SOTA comparison on CIFAR100. AHM denotes the average harmonic mean. FA denotes
the Top-1 accuracy in final session.

Session-wise Harmonic Mean (%) 1

Methods Base Acc AHM FA
1 2 3 4 5 6 7 8

FACT(Zhou et al., 2022a) 78.32 42.85 3821 33.03 3235 31.71 34.15 3337 33.62 3491 51.83
CEC(Zhang et al., 2021) 79.63 4198 39.18 3425 3327 3384 3349 3290 32.16 34.45 49.08
C-FSCIL(Hersche et al., 2022) 77.35 31.47 2833 26.68 23.11 2485 2429 23.04 2349 2566 4932
LIMIT(Zhou et al., 2022b) 72.93 39.98 3698 3324 32.64 3228 3266 3196 3140 3389 50.84
BiDist(Zhao et al., 2023) 78.72 47.87 42.68 40.18 37.02 3542 3380 3325 3094 37.65 46.84
TEEN(Wang et al., 2023) 78.47 46.66 40.28 36.88 3532 3555 3628 3543 3497 37.67 51.62
NC-FSCIL(Yang et al., 2023) 82.52 56.66 5441 49.70 4527 4436 46.65 4422 4187 4789 56.11
OrCo(Ahmed et al., 2024) 80.08 72.11 6392 5690 5523 5338 54.03 51.78 49.57 57.12 52.19
ConCM (Ours) 82.82 7227 67.33 60.09 57.08 5493 5521 5295 5251 59.05 58.33
Better than second +0.16 +3.41 +3.19 +1.85 +1.55 +1.18 +1.17 4294 +1.97 +2.22

Structure Matching Rate. We define the Structure Matching Rate (SMR) to quantify the deviation
between the initial and target structure:

Nt
SMR =13 " (5,6, (40)
where, the initial structure A} = [6], 6%, , 0% ] € R%*Nt includes the historical structure and
incorporates the embedding of novel classes. The target structure A; = [d1, 02, -+ ,dn,] € Rds* Nt

is the optimal structure that satisfies Eq. (6).

F.5 TRAINING DETAILS

Following previous methods (Kukleva et al., 2021; Cheraghian et al., 2021; Ahmed et al., 2024;
Yang et al., 2023; Zhao et al., 2023), we maintain some exemplars from previously seen classes: 5
exemplars are saved for novel classes, while only prototypes are maintained for base classes. Stan-
dard image augmentation strategies were applied, including random cropping, random horizontal
flipping, random grayscale processing, and random color jittering. The optimizer used is SGD, with
cosine scheduling and a warmup period for a few epochs during training. All experiments were
conducted on a single RTX 4090 GPU.

We implemented meta-training for the MPC network by constructing a series of 5-shot prototype
completion tasks. Structural anchors are only applied to novel classes, as base classes typically
have sufficient representation. The prototype augmentation strategy resamples augmented samples
in each epoch. 100 and 50 samples were generated for base and novel classes, respectively. Each
image was augmented 10 times using image augmentation to balance the dataset. Hyperparameters
remain consistent: 7 = 0.07, v = 16, 8 = 0.6, and the MPC network’s maximum learning rate is
1. For mini-ImageNet, projector’s maximum learning rate is le~2, with a = 0.6. For CIFAR100,
projector’s maximum learning rate is 2e =2, with o = 0.6. For the Cub200, projector’s maximum
learning rate is 5¢~3, with o = 0.75.
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Table 10: Ablation study of modules on mini-ImageNet. AHM denotes average harmonic mean. FA denotes
the accuracy in final session. The baseline uses frozen backbone. g(-) denotes learnable projector. MPC denotes
the Memory-aware Prototype Calibration module. DSM denotes the Dynamic Structure Matching module.

Session-wise Harmonic Mean (%) 1
g(-) MPC DSM AHM FA
1 2 3 4 5 6 7 8

3191 28.00 2321 19.53 19.06 17.80 17.84 18.70 22.00 52.62

62.12 5375 51.13 4676 4422 4159 4133 41.80 47.83 56.22
v 66.11 57.05 5477 5335 50.06 4649 4486 46.14 5235 57.23
v 68.77 63.06 59.09 5626 53.76 5045 5132 51.63 56.79 58.29

v v 70.34 66.59 63.38 59.59 57.05 5395 5349 5392 59.78 59.92

SNIENENEN

Table 11: Ablation study of modules on CIFAR100. AHM denotes average harmonic mean. FA denotes the
accuracy in final session. The baseline uses frozen backbone. g(-) denotes learnable projector. MPC denotes
the Memory-aware Prototype Calibration module. DSM denotes the Dynamic Structure Matching module.

Session-wise Harmonic Mean (%) 1
g(-) MPC DSM AHM FA
1 2 3 4 5 6 7 8

30.55 2475 23.47 2027 20.01 1881 17.54 1844 21.73 51.14

65.87 5643 48.62 42.83 4389 43.64 4292 40.18 48.05 5533
v 69.64 62.56 54.88 51.25 4831 4897 4575 4512 5331 56.74
v 70.67 6451 58.61 5544 5403 5282 50.63 4895 56.96 56.99

v v 7227 6733 60.09 57.08 5493 5521 5295 5251 59.05 58.33

ASIENENEN

Table 12: Ablation study of modules on CUB200. AHM denotes the average harmonic mean. FA denotes
the accuracy in final session. The baseline uses a frozen backbone. g(-) denotes a learnable projector. MPC
denotes the Memory-aware Prototype Calibration. DSM denotes the Dynamic Structure Matching.

Session-wise Harmonic Mean (%) 1
g(-) MPC DSM AHM FA
1 2 3 4 5 6 7 8 9 10

60.14 53.00 4556 45.64 44.08 4575 44.64 42.13 4336 4346 46.78 5297

71.89 63.62 5733 5920 5623 56.18 55.76 54.14 5560 54.89 5848 58.82
v 7378 6598 59.75 59.67 5728 5741 58.00 5591 5561 5543 59.88 59.01
74.06 6556 59.03 60.34 57.49 5825 5735 5637 57.10 5633 60.19 59.59

v v 75.24 66.04 59.78 60.10 59.48 60.24 60.78 59.35 60.57 60.39 62.20 62.66

SR NRNEN
<

G MORE RESULTS

Experimental comparison with State-of-the-Art methods. Our experiment results on mini-
ImageNet, CUB200,and CIFAR100 are shown in Table 1, Table 8, and Table 9 (Appendix G), re-
spectively. Experimental results show that ConCM consistently maintains the highest performance
across all incremental sessions, effectively mitigating the conflict between learning and forgetting.

Session-wise ablation study of each module. In this appendix, we further report the session-wise
harmonic mean accuracy for in Table 10, Table 11 and Table 12, respectively. The proposed method
achieves consistent performance improvements in each session across all datasets. These results
further validate the effectiveness of each module.

Ablation within the MPC module. The MPC module includes prototype calibration and Gaussian-
based prototype augmentation. To further demonstrate the effectiveness of prototype augmenta-
tion, we compare two cases on mini-ImageNet. Casel: Without prototype calibration, we compare
standard Gaussian sampling with Gaussian sampling-based prototype augmentation (ours). Case2:
With prototype calibration, (comparison as in Casel). Table 13 presents the experimental results.
The within-case comparisons show that prototype enhancement brings performance improvements
of 1.16% and 2.07% under the two cases, respectively. The between-case comparisons indicate that
prototype calibration leads to performance gains of 0.92% and 1.83%, respectively.
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Table 13: Ablation on Prototype Augmentation and Calibration within the MPC module.
Casel: Without prototype calibration. Case2: With prototype calibration. Standard represents stan-
dard Gaussian sampling. Ours represents Gaussian sampling-based prototype augmentation.

Session-wise Harmonic Mean (%) 1
Case Method AHM
1 2 3 4 5 6 7 8
Standard 68.77 63.06 59.09 5626 53.76 5045 51.32 51.63 56.79
Ours 70.12 63.68 60.22 56.87 55.10 5223 5257 5278 5795

Standard 69.83 64.40 61.42 5736 5424 51.17 5145 5180 57.71

—_

2
Ours 70.34 66.59 63.38 59.59 57.05 5395 5349 5392 59.78
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Figure 7: The hyperparameter analysis on mini-ImageNet. (a) Prototype calibration degree a.
(b) Covariance scaling degree 3. (c) Meta-learning under the K-shot scenario tasks.

Hyperparameter analysis. We conduct an analysis of critical hyperparameters in the ConCM on
mini-ImageNet, which include prototype calibration degree «, covariance scaling degree /3, and
meta-learning under the K-shot scenario tasks.

* The impact of calibration degree « is evaluated using the average cosine similarity Sim,cq;
between all calibrated prototypes and the real prototype (Figure 7 (a)). Prototype calibration
combines the MPC output prototype with the few-shot prototype, both of which exhibit biases:
the former due to base-novel class discrepancy, the latter due to limited samples. Selecting appro-
priate weighting improves the representativeness of the final prototypes.

* The covariance scaling degree /3 controls the dispersion of the novel-class distribution, as shown
in Figure 7 (b). Appropriate scaling helps restore the real feature distribution.

* The K-shot task construction employs an episodic meta-training strategy. We analyze the im-
pact on the mini-ImageNet. Generally, a smaller K indicates that prototypes during training
exhibit stronger bias. Selecting the appropriate level of difficulty for training can help to improve
performance.

Across all benchmark datasets, our hyperparameters remain consistent with o = 0.6, 3 = 0.6, and
K =5, except for CUB200 where v = 0.75. This is because CUB200 is a fine-grained dataset with
smaller inter-class differences.

Analysis of replay strategies. Five exemplars from seen incremental class have been replayed.
However, even without replaying samples and instead storing incremental class prototypes and co-
variance diagonal, our method still maintains high performance. To validate this, we tested with 0,
1, and 5 replay settings, and the results are shown in Table 14. This demonstrates that even without
explicit sample replay, using prototypes for augmentation can still effectively mitigate catastrophic
forgetting and maintain high performance.

Comparative experiments under various FSCIL settings. We evaluated multiple N-way K-shot
configurations on mini-ImageNet against the suboptimal method OrCo (Ahmed et al., 2024). The
results for different K-shot are presented in Table 15. ConCM more effectively mitigates the knowl-
edge conflict and demonstrates stronger robustness in more challenging few-shot settings, achiev-
ing a 7.69% AHM improvement under 5-way 1-shot. We further compared methods under long-
sequence (20 sessions) FSCIL with varying N-way settings. The performance of the first 4 sessions,
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Table 14: Performance comparison under different replay exemplar numbers. Without replay-
ing raw samples (#Replay=0) can still maintain high performance effectively.

Session-wise Harmonic Mean (%) 1

#Replay AHM
1 2 3 4 5 6 7 8

0 70.34 6583 6135 5828 5594 5240 52.19 5277 58.64

1 7034 6533 6159 5854 5643 52.87 5291 53.15 58.90

5 70.34 66.59 6338 59.59 57.05 5395 5349 53.82 59.78

Table 15: Performance comparison under different K-shot and Cross-Domain. K-shot indicates
that the number of samples in each nove class. ”Cross-Domain” represents the constructed cross-
domain FSCIL task. The base classes are from the base classes of mini-ImageNet, and the novel
classes are from the novel classes of CIFAR100, forming an 8-session 5-way 5-shot task.

Session-wise Harmonic Mean (%) 1
Setting Method 1 s 3 4 5 6 7 3 AHM

OrCo 37.78 29.66 30.83 30.50 30.06 2896 29.08 29.08 30.74
ConCM 5491 4598 40.12 3791 3296 3244 31.75 3143 3843

OrCo 61.95 54.87 53.04 49.68 4725 4594 4573 47.09 50.69
ConCM  66.52 6131 5574 5225 49.26 4596 46.56 47.56 52.97
OrCo 70.52 57.01 4899 4498 4486 4523 4231 4136 4941

Cross-Domain
ConCM 69.56 57.10 49.55 47.02 47.85 48.16 4562 4536 51.28

5-way, 1-shot

5-way,3-shot

Table 16: Performance comparison under long sequence FSCIL on mini-ImageNet. 2-way, 5-
shot setting constructed a 20-sessions task. The table reports the harmonic accuracy of the first 4
sessions and the last 4 sessions.

Session-wise Harmonic Mean (%) T
Setting Method AHM
1 2 3 4 17 18 19 20

OrCo 7891 6329 6530 63.51 51.05 5138 51.15 5097 57.01
ConCM 7898 67.44 69.71 66.71 5092 5198 52.59 52.11 58.74

2-way,5-shot

the last 4 sessions are reported in Table 16. The proposed method surpasses the OrCo by 4.41% (the
highest) in harmonic accuracy of incremental sessions. This verifies the scalability of our approach.

ConCM’s Generalization Across Domains. ConCM evaluates correlations between novel and base
classes through semantic attributes and learns an optimal geometric embedding, enabling certain
cross-domain generalization. In our cross-domain experiment with base classes from mini-ImageNet
and novel classes from CIFAR100, ConCM outperforms the suboptimal approach, OrCo (in Table
15). We hypothesize that despite the domain shift, latent semantic relationships persist between
classes, and ConCM effectively leverages these to reduce negative bias. Moreover, the geometrically
aligned embedding derived from maximum matching exhibits strong domain invariance, further
enhancing generalization.
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