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Abstract

The cross-fertilization of deep learning and causal discovery has given birth to broader
causal data forms, involving multi-structured data like the Netsim dataset, and com-
plex variables such as those in the RECCON dataset. Interestingly, we observe an
absence of research that concurrently addresses data with multi-structures and complex
variables, named ‘indefinite data.” In our previous survey, we introduced the concept of
this data paradigm, yet the exploration of indefinite data still faces two substantial gaps:
the dataset gap and the model gap. In this paper, we release two high-quality datasets -
Causalogue and Causaction for dataset gap, containing text dialogue samples and video
action samples with causal annotations respectively. Moreover, the model gap arises from
the coexistence of multi-structure data and complex variables, breaking the assumptions of
all current methods, and rendering them infeasible on indefinite data. To this end, we pro-
pose a probabilistic framework as a baseline. It enables overcoming challenges brought by
indefinite data, and paves the way for the extension of latent confounders. Comprehensive
experiments have evaluated baseline results of causal structures, causal representations,
and confounding disentanglement. Our codes and datasets are available at Github URL.

Keywords: Causal Dataset, Causal Representation, Causal Structures, Baseline Model

1 Introduction

In light of the recent advances in deep learning, there is a growing tendency to incorpo-
rate causal discovery in more complex forms of data, including images (Jerzak et al., 2022;
Ribeiro et al., 2023), text (Zhang et al., 2023), and videos (Bagi et al., 2023). Generally,
there are two purposes for these incorporations: one is to uncover the underlying causal
structure (Sun et al., 2023; Li et al., 2023; Golan and Foley, 2023; Squires et al., 2022;
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Zhang et al., 2017) within the data, the other is to learn effective causal representa-
tions (Wang et al., 2023; Olesen, 1993; Xu et al., 2023; Li and Fu, 2014; Liu et al., 2023;
Balashankar and Subramanian, 2021).

Our recent work (Chen et al., 2023a) has summarized different data forms of these in-
corporations based on causal structure and causal representation respectively. Regarding
causal structure, there are single-structure data (Pearl et al., 2000; Yu et al., 2019;
Lachapelle et al., 2019) and multi-structure data (Lorch et al., 2022a; Ke et al., 2020;
Lowe et al., 2022), depending on whether multiple causal structures (causal graphs) are
involved in the dataset or task. For example, fMRI dataset (Smith et al., 2011) suggests
the different brain region activity levels of Patient A and B as two samples, corresponding
to two causal structures. Concerning causal representation, there are simple variables
representations (Zhou et al., 2022; Cai et al., 2019; Tank et al., 2022) and complex vari-
ables representations (Li et al., 2021; Zhang et al., 2022; Oh et al., 2021), depending on
whether the causal variables inherently have a numerical form. Variables like age, height,
weight, blood pressure is typically treated as simple variables (Guvenir et al., 1997), while
a sentence (Chen et al., 2023b) or a video (Du et al., 2023) are non-numerical and unstruc-
tured, as well as they often needs to be converted by deep models into high-dimensional
continuous representation (such as sentence embeddings or optical flows) to make them
calculable, thus named as complex variables.

These data forms highlight the intrinsic differences in the applied algorithms. Algorithms
applied to multi-structure data consider factors such as amortized causal discovery (Lowe
et al., 2022) and sample utilization rate, whereas algorithms applied to complex variables ex-
plore how to overcome obstacles presented by the unknown distribution of high-dimensional
continuous representations.

Moreover, our work (Chen et al., 2023a) conjectured the emergence of a new causal
data paradigm - indefinite data with the characteristics of both multi-structure data
and complex variables. For instance, taking a piece of dialogue (including N utterances
as N causal variables) as an input, could we recover the complete causal relationships
between these utterances and learn each utterance’s causal representation for causality-
related downstream tasks (like ECPE task (Xia and Ding, 2019))? Or, if we replace the
dialogue with the circuit graph (including N gates as N causal variables), could we learn
the internal relationships among these gates to reflect who contributes most to potential
changes and their corresponding causal representations for learning functions?

Despite the comprehensive definition provided by our previous survey (Chen et al.,
2023a), the study of indefinite data still faces two research gaps: the dataset gap and
the model gap. Specifically, causal relationships in indefinite data are often obscure and
subjective, making it challenging to collect samples with obvious causal relationships and
objective annotations. Moreover, the co-occurrence of multi-structure data and complex
variables breaks the hypotheses of all existing methods’ frameworks, necessitating a redesign
of how causal representations and causal structures can be simultaneously learned.

To overcome these research gaps, we aim to release two high-quality indefinite datasets
and a baseline model, specifically:

In Section 3, we investigated the existing datasets and introduced two brand-new in-
definite datasets - Causalogue and Causaction. Causalogue is a text dataset containing
dialogue samples used for analyzing causal relationships between utterances. To ensure the
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causal relationships are apparent and objective, we utilized GPT-4 to generate dialogues
according to pre-defined causal patterns. Causaction is a video dataset containing different
action segments, used for analyzing the causal relationships between different actions within
a video. Annotators were asked to judge causal relationships directly based on low-level la-
bels, rather than judging each video sample, thereby significantly enhancing the consistency
of causal relationships.

In Section 4, we introduced the existing model framework on structure learning and
representation learning to explain why these models does not enable indefinite data well.
Hence, we proposed a probabilistic framework as a baseline model for indefinite data based
on Structural Causal Models (SCMs). It combines and then simplifies the frameworks of
structural learning and representation learning. Although there may be a risk of causal
inconsistency (we discuss this issue in the Discussion, i.e., Section 6), it can simultaneously
learn the causal mechanisms of multi-structure and complex variables. Moreover, the es-
timation of confounding effects disentangle the causal representation and the confounding
representation, enabling the model to adapt to data with latent confounders.

In Section 5, we designed comprehensive evaluation metrics for indefinite data on
causal representation and causal structures, and compared them with some of the most
adaptable methods. Additionally, to directly evaluate the performance of deconfounding,
we also created a synthetic dataset with a known confounding distribution.

To the best of our knowledge, this paper contributes two ’firsts’:

e The introduction of the first ‘Indefinite’ datasets— Causalogue and Causaction—with
comprehensive causal labels, providing a data foundation for the research of indefinite
data.

e The proposal of the first variational model framework adaptive to indefinite data,
complemented by baseline metrics on the above 2 datasets.

2 Preliminaries
2.1 Input-Output Framework

Suppose X; is any sample in the dataset, which contains N causal variables, i.e., X; =
{Zi1,...,x; n}. Through a specific causal model, it generates two outputs: the causal struc-
ture G; and the causal representation X;1 . Here, G represents the causal relatlonshlps be-
tween N variables, existing in the form of a DAG, also known as a causal graph. X; € RV*d
represents N d-dimensional causal representations of X;, entailing the information of un-
derlying and abstract causal relations from perceptible input, which can be subsequently
used for classification, prediction, decision, etc. We formalize such a causal discovery model
as:

Xi,Gi = CausalModel(X;) (1)

1. We thank the reviewers for their valuable feedback. It is important to note that the ”causal represen-
tation” referred to in this paper differs from that in some other studies (Scholkopf et al., 2021). Here,
”causal representation” can be understood as a representation of the input X; that encodes causal in-
formation, sharing the same domain as the work in (Yu et al., 2019; Lowe et al., 2022; Lorch et al.,
2022a).
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Figure 1: Comparison between single-structure data and multi-structure data.

2.2 Categories in Structures and Representations

Following the settings in (Chen et al., 2023a), we have classified the data. Structurally,
there are single-structure data and multi-structure data (Lowe et al., 2022). In terms
of representation, there are simple variables and complex variables. We provide specific
descriptions of these four types as follows:

Single-structure data: All samples in a dataset share a single causal structure. That
is, for any sample X;, the correct model should estimate a completely identical G.

Multi-structure data: There are M causal structures (M > 1) in the entire dataset.
rl:hat is, for any sample X;, the correct model should estimate one of the M structures
gm € {gl, gM}

Simple variables: Variables that exist in samples in a fixed numerical form, such
as blood pressure, temperature, age, etc. Most of the time, the values of such variables
themselves are used as causal representations without the need for additional calculations,
i.e., in the input-output framework, X =X.

Complex variables: Variables that do not have a fixed numerical form in samples,
such as text, video, and data in other modalities. The input X is some initial representation
of it (such as embeddings), and the correct model should apply a causal mechanism to it,
therefore usually X # X2.

It’s worth noting that multi-structure data does not imply that each sample corresponds
to multiple causal structures. In Figure 1, we list three samples of single-structure data
and multi-structure data respectively. In single-structure data, we observe the influence
of the variable “Altitude” on the variable “Temperature”. As a physical law, it does not
change with the sample. However, in multi-structure data, we observed the influence of the
variable “Brain region A” on the variable “Brain region B”. Since different patient samples
have different symptoms, these symptoms cause different electrical signal response rules
between brain areas, i.e., different causal structures.

Additionally, we have also compared simple variables and complex variables in Table 1.
For simple variables, we select a sample containing age and a sample containing voltage.
For complex variables, we select a sample containing text and a sample containing video.
Obviously, for simple variables, X = X, so effective verification for can be carried out
for causal representation. However, for complex variables, X # X, because the tensor of
X is an initial representation representing the numerical value of the variable while the

2. In the scenario of simple variables, with small probability, it is necessary to calculate a representation for
such variables that is not equal to the original value. In this case, they are treated as complex variables.
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Table 1: Comparison between simple variables and complex variables

Category Variables X X Dimension(d)
. . Age 25 25 d=1
simple variable Voltage 9 9 de1
complex variable Token tensor | tensor d>1
P Frame tensor | tensor d>1

tensor of X is causal representation including complex causal relationships between context
variables. Due to the high-dimensional continuous representation, it is difficult to verify
causal representation through these statistics-based methods.

Therefore, in this paper, we default to using neural networks transferring representations
to relationships to validate the causal representation of complex variables. Specifically, for
any two variables in any sample X arranged in order < x;, s ; >, if there exists a causal
relationship zs; — x5, we have label Y;_ , », .~ = 1, otherwise, we set Yer,iwe;> = 0.
Let f. be a causal classifier, e.g., an MLP followed by a sigmoid function, with the input
being the causal representation of any two variables < &, ;, 25 ; >, and it is supervised and
trained according to the label Yy, ., .~. During validation, if f.(< &, 2s; >) € (0,0.5],
it indicates there is no relationship pointing from z,; to x,;, and if f.(< Zs4,255 >) €
(0.5,1), there is a relationship xs; — x5 ;. The experimental validation of f,. is provided in
Appendix A.

From above basic types of causal data, the new data paradigm named “indefinite
data” (Chen et al., 2023a) is defined as:

Ts,j

Definition 1 (indefinite data). The causal relationships exist in a dataset D = {X}5_,
which has S samples and M (M > 1) causal structures (G = {Gm}M_,). Each structure
is formalized as a graph, i.e., Gy = (Xm,En) (where X,, stands for the nodes and &,
represents edges). Hence, each sample X, € RVNm*4 (d > 1) belongs to a causal structure
Gm and consists of Ny, variables: X, = {xs,m,n}g;”zl. )A(s,m € RNmxd represents the
causal representation of X .

Generally, the identifiability of causal relationships is guaranteed by acyclic constraints
(e.g., NOTEARS (Zheng et al., 2018)) and independent noise (introduced by SCM). In this
work, we assume that all causal models are extensions of the fundamental Structural Causal
Model (SCM). Consequently, identifiability is solely dependent on acyclicity constraints.
For simplification, we assume that all indefinite data comply with the time order (indeed,
in this paper, all the indefinite datasets adhere to this assumption, and we compare the
performance with acyclic constraints in Appendix B).

Assumption 2 (Causal Identifiability). The index of causal variables in indefinite data
sample X, satisfies time order, defined as a linear order <x, .. Let Jx,,, be the index
set of Xsm- Vi, € Ixym, i1 <7, Ti <X, Tj-

Therefore, the causal order can be regarded as a partial order, defined as <x,,, w.r.t.
the time order <x,,,. That is, Vx; <x, ,, z;, there must be z; <x,,, ©;.

For instance, according to the input-output framework, if the input is a dialogue con-
taining utterances, as shown in Figure 2, and the task requires estimating the causal rela-
tionships of these 4 utterances and their corresponding causal representation (Poria et al.,
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U1: “Your bill is 19.”

U2: “Before | pay the bill, ?A)

I have to express my

dissatisfaction with the @

service | received tonight.” '@
U3: “I’'m so sorry to hear /

that but I don’t know what

happened.” \
U4: “Specifically, It’s

| U1 |

u2
understandable to feel : — :
frustrated when something | - |

unexpected happens like spilling
red wine on your clothes.”

representation (4 * d)

Figure 2: Sample from Causalogue dataset, applied in our input-output framework.

Table 2: Comparisons between causal datasets

Datasets Multi-structure | Complex Variables | DAG | Branch | Multi-hop

Net-fmri v X v v v
C-MINIST X v v v X
GSM8K v v X X X
SVAMP v v X X X
Corr2Cause v v v X X
CLadder v v v X X
CausalDialogue v v v v X
Causalogue v v v v v
Causaction v v v v v

2021), then G is equivalent to a directed acyclic graph (DAG) containing 4 nodes, repre-
senting the causal relations between 4 utterances, and X e R*4 where d is the dimension
of the representation, can represent the causal representation of each utterance. The causal
representation is validated through f..

3 Indefinite Datasets
3.1 Comparison with Related Work

In this section, we have selected representative datasets from various types of causal datasets,
including: Multi-structure: Net-fmri (Smith et al., 2011), Complex Variables: C-MINIST (Fan
et al., 2022), Mathematics and Reasoning: GSM8K (Cobbe et al., 2021) and SVAMP (Pa-
tel et al., 2021), Large Model Reasoning: Corr2Cause (Jin et al., 2024), CLadder (Jin
et al., 2023), Dialogue: CausalDialogue (Tuan et al., 2023), and our datasets: Causalogue
and Causaction. For these datasets, we investigated five aspects: whether they are multi-
structure datasets (Multi-structure), whether the causal variables are complex variables
(Complex Variables), whether they have complete causal graph labels (DAG), whether the
causal graph has branches (Branch), and whether the causal graph contains edges between
multi-hop nodes (Multi-hop). Among these aspects, Multi-structure and Complex Vari-
ables measure the complexity of the data, while DAG, Branch, and Multi-hop measure the
completeness of the implied causal structures.
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Table 2 presents the evaluation of these datasets in five aspects. An interesting finding
is that complete causal structure annotations (DAG, Branch, Multi-hop) tend to appear
in simple data types, and it is more difficult to find complete causal structure annotations
in complex data types (such as indefinite data). Obviously, on these datasets with indefi-
nite data, most causal relationships are obscure, which leads to poor consistency in manual
annotation. Taking dialogue as an example, utterances that have not been observed be-
fore might likely act as confounding factors influencing the correlation between observed
utterances. Moreover, the standards for judging whether there is a causal relationship be-
tween two utterances is terribly subjective. Up to now, only a fraction of the work (Poria
et al., 2021; Chen et al., 2023c¢) has annotated some evident causal relationships, and no
complete causal-labeled dataset has yet to appear, which significantly dampens researchers’
enthusiasm for indefinite data.

3.2 Causalogue
3.2.1 ATTRIBUTES

Causalogue? is the first dialogue dataset that includes comprehensive causal relationship
labels for indefinite data. Additionally, we employ GPT-4 generation as a substitute for
data collection from the real world or manual simulation, which considerably mitigates
the presence of obscure causal structures. In Appendix C, we provide an analysis of the
challenges associated with achieving consistent annotations for both LLM-generated and
wild text, as well as the increased difficulty introduced by varying the number of causal
variables. This analysis motivates our choice to focus on LLM-generated samples with four
causal variables as the target scale for our dataset.

The dataset incorporates 10 types of causal structures (M = 10), each with several
samples (Detailed numbers are presented in Table 3, “Small” signifies samples that have
been manually checked, while “large” refers to all samples generated by GPT-4 without
manual verification). The detailed attributes are following:

Causal Variables: We treat each dialogue as a sample, comprised of 4 utterances,
which we define as 4 causal variables. Further, the first and third utterances originate from
the same speaker, defined as speakerl. Similarly, the second and fourth utterances are from
another individual, defined as speaker2.

Causal Relationship: In each sample, binary causal relationships have been labeled
between any two utterances-“1”represents that there exists a causal relationship and “0”
represents there is not.

Structure: We have designed 10 types of causal structures in the dataset as shown
in Figure 3. Taking the Chain_II as an example, this model adds an additional causal
relationship from Utt; — Utts based on the Chain_I, indicating that Utts considers not just
the effect from Uttty but also from Utty.

Sample: We consider a dialogue as a sample, with each sample comprising 4 utterances
representing 4 causal variables. Each sample corresponds to one of the 10 causal structures
outlined above, annotating whether a causal relationship exists between any two utterances.

3. We have included a separate PDF in the supplementary material to supplement the datasheets describing
the new dataset.
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Speaker 2 Speaker 1  Speaker 2 Speaker 1  Speaker 2 Speaker 1  Speaker 2 Speaker 1  Speaker 2 Speaker 1

e

) Chain_I ) Chain_II ) Chain III ) Chain IV e) Hybrid_I

Speaker 2 Speaker 1  Speaker 2 Speaker 1  Speaker 2 Speaker 1  Speaker 2 Speaker 1  Speaker 2 Speaker 1

BB epe

) Fork 1 ) Fork 11 ) Fork III ) Fork IV j) Hybrid II

Figure 3: 10 structures in Causalogue Dataset.

Table 3: Number of the samples in Causalogue Dataset

Structure Types

Versions o T Cham 1T Cham 1T Chain IV ForkT Fork 1T Fork Il Fork 1V Hybrid T Hybrid Il Total
Small 276 84 141 1 %7 237 251 67 185 7 1638
Large 0 524 508 513 1215 645 501 372 199 635 5412

Due to Assumption 2, our labels only consider forward-causal relationships. An example of
a Chain_III sample is shown as follows:

“causal_type”: “Chain_III”,

“clause”: {“17: “Your bill is 19.7, “2”: “Before I pay the bill, I have to express my
dissatisfaction with the service I received tonight.”, “3”: “I’'m so sorry to hear that but I
don’t know what happened.”, “4”: “Specifically, It’s understandable to feel frustrated when
something unexpected happens like spilling red wine on your clothes.”},

“dia_id”: 1

“label”: {“17: “0,0,0,0”, “27: “1,0,0,0”, “3”: “0,1,0,0”, “4”: “0,1,1,0”}

In the given example, the Utt, serves as a response to the Utts, while simultaneously
attaching to the speaker’s Utto—thereby rendering both the Utts and Utts as causes to the
Utty. Indeed, during the generation process of the Utty, we made sure to inform GPT-4 of
the existence of Utty and Utts.

3.2.2 CREATION PROCESS

We utilized the API interface of GPT-4 4 to defined the following variables: “role”, which has
three types - “system”, “user”, and “assistant”. Here, “system” represents the background

4. https://platform.openai.com/docs/models/gpt-4
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or a prior settings, while “user” and “assistant” are defined as speakers with two different
identities. Additionally, the first utterance is pre-set. Hence, creating a dialogue requires a
given combination: a fixed first_utterance, a specified system information, and a setting in
which previous utterances are considered. We have a total of 149 first_utterance options,
and there are as many as 278,867 combinations of first_utterance and system settings (our
final samples only number in the 1638, to preserve the diversity and distinctiveness of our
dialogues). What follows is an example of generating the third utterance in the structure
of ChainlII:

{ “role”: “system”, “content”: “You are Peter, you have promised to go to a Chinese
Opera with your daughter, so you want to have dinner with your friends in next Sunday.”

}

{“role”: “assistant”, “content”: “Yes. Sunday sounds fine. What time?” (pre-set
Utt_1)}

{ “role”: “user”, “content”: Utt_2}

Upon creation, the samples are initially auto-annotated based on their designed labels,
and then manually verified to ensure their validity. Our manual verification employed two
annotators, who demonstrated proficient English understanding and communication skills,
possessing sufficient knowledge about causality. The annotation consistency between these
two annotators was tested through 833 samples, achieving a kappa coefficient of 0.92.

During the annotation process, if a sample was labeled differently by the two anno-
tators, that sample was considered to possess an ambiguous causal relationship and thus
was excluded from the final dataset. Only samples that were consistently labeled by both
annotators were ultimately accepted.

Furthermore, to guarantee the freedom of manual annotation, we allowed the annotators
to label structures that fell outside the predefined 10 causal structures. Specifically, we only
requested annotators to judge whether any two utterances (satisfying Assumption 2) have a
causal relationship, allowing them some discretion, which inevitably produced samples not
belonging to the 10 causal structures. We classified these as the “Other” category.

The accuracy of labels was significantly improved after the manual annotation process.
However, considering that the unverified samples might be utilized for other research ar-
eas, such as the ability of LLMs to focus on context, we have released two versions of
the datasets, as demonstrated in Table 3. “Small” signifies samples that have been man-
ually checked as correctly labeled, while “large” refers to all samples generated by GPT-4
without manual verification. We do not recommend considering the “large” version when
undertaking causality-related work. Likewise, we have not taken it into our experiments.

3.3 Causaction

3.3.1 ATTRIBUTES

Causaction is another indefinite dataset that we obtained after re-annotating the Breakfast
Dataset (Kuehne et al., 2014)°. It contains a total of 1,118 videos, documenting 10 different

5. Compared to other alternative datasets, such as the MPII Cooking dataset (Rohrbach et al., 2012)
and 50salads (Stein and McKenna, 2013), we found in our annotation tests that the samples from the
breakfast dataset have higher consistency. This may be because the causal relationships between actions
in the breakfast dataset are less likely to cause controversy.
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breakfast preparation processes (such as coffee, salad, sandwich, etc.). Each video consists
of 4-9 actions, with a clear frame boundary. We have annotated the causal relationship
between any two actions in a sample. Specific attributes are as follows:

Causal Variable: We treat each video as a sample, comprised of 4-9 actions as the
causal variables. For simplicity, we follow the setting of MS-TCN (Farha and Gall, 2019),
replacing the video resource of each action with pre-trained representation of I3D (Carreira
and Zisserman, 2017).

Causal Relationship: According to the Assumption 2, we deem the time order of
these actions in certain videos as a natural linear order. Hence, binary causal relationships
have been labeled between any two actions satisfying the linear order (‘0’ represents there is
no causal relationship while ‘1’ represents there is). For example, process “cereals” includes
4 actions: “take bowl”, “pour cereals”, “pour milk”, and “stir cereals”. The all causal
relationships labeled with “1” are: “take bowl — pour cereals”, “take bowl — pour milk”,
“take bowl — stir cereals”, “pour cereals — stir cereals”, and “pour milk — stir cereals”.

Structure: Unlike Causalogue, although the entire dataset includes the 10 types of
preparation processes of breakfasts, the number of causal structures far exceeds 10. Most
videos do not encompass all the actions in a process. For example, the entire process of
“Salad” consists of 7 actions, but some videos are missing the “take plate” action, and some
videos include the actions “cut fruitl” and “cut fruit 2”.

Sample: We consider a video as a sample. The statistics of samples with different
processes are shown in Table 4.

3.3.2 CREATION PROCESS

The original Breakfast Dataset has

annotated the frame boundaries of
each action. Therefore, in our an- Table 4: The number of samples in Causaction Dataset

notation work, we don’t need to

. . Number of Actions (Variables)

ascertain which frames a causal Process
. . 4 ) 6 7 8 9 all

variable contains. The annotators

Ked to direct] tate at cereals 36 - - - - - 36
were asked to directly annotate a coffee 12 28 - i i ) 40
the action level to avoid inconsis- friedegg 50 45 53 7 4 ) 161
tencies caused by the subjectivity milk 56 14 4 _ i ; 74
of watching videos. For example, salad 6 52 929 95 37 33 182
in the coffee process, there are 6 sandwich 52 11 6 2 4 - 75
actions, so a total of 15 binary re- tea 14 5 - - - - 19
lationship pairs need to be anno- pancake - 100 26 24 33 41 224
tated. Specifically, we informed  scrambledegg | 8 36 30 42 33 24 173
the annotators of the time order juice 65 36 24 6 - 3 134
and the explanation of all actions all 301 327 172 106 111 101 1118

in each process. After ensuring the

understanding of each action, the annotators conducted a causal relationship evaluation on
binary action pairs (A, B) that satisfy the linear order relation, where 1 signifies a belief
that action A has a causal relationship with action B, and 0 represents no such relationship.
An action pair is considered to have a causal relationship if the following conditions are met:

10



TOWARDS CAUSAL RELATIONSHIP IN INDEFINITE DATA: NEW DATASETS AND BASELINE MODEL

(x.%) P(Z|(Xilxj)) z q(é,5]2) &
[ Input H encoder }%{ decoder H Output ]

x—( R=Mx+E )—2%

Figure 4: Generative framework to solve multi-structure and simple-variable data.

e According to life experience, after action A happens, action B is high-probably to
occur.

e According to life experience, after action B happens, action A is low probability to
occur.

Finally, we binarize all annotation results, that is, binary pairs with a mean > 0.5 are
marked as 1, and those with a mean < 0.5 are marked as 0.

The annotators consist of 10 researchers in the field of causal inference (Group A)
and 217 deep-learning researchers (Group B). Initially, we asked Group A to annotate the
two simplest processes, “milk” and “coffee,” and considered their annotation results as
the gold standard. Members of Group B first annotated “milk” and “coffee,” with only
those members having > 80% consistency with Group A deemed qualified. In the end, 190
qualified members were confirmed in Group B, joining the 10 members in Group A to form
Group C (total of 200 members). Group C annotated the remaining 8 processes, and the
statistical results after binarization were used as the final labels. During the annotation
process, the consistency was 94.13% for Group A, 88.46% for the qualified members of
Group B, and 88.74% for Group C.

4 Baseline Model
4.1 Related Work

indefinite data (Multiple structures & complex variables) can be simply considered as an
integration of two types of “Multiple structures & simple variables” and “Single structure
& complex variables”. We introduce the related works about these two types of causal data
as follows.

4.1.1 CAUSAL STRUCTURE LEARNING

In causal structure learning, causal variables are typically simple variables, i.e., in our input-
output framework, the output X should equal X. Therefore, for single-structure data, a
large body of work has demonstrated that accurate statistics between variables can be used
to recover the causal structure (Kalisch and Bithlman, 2007; Chickering, 2002; Hauser and
Bithlmann, 2012; Hoyer et al., 2008). For multi-structure data, it was initially treated as
multiple single-structure problems (Tank et al., 2021; Peters et al., 2017). However, this
leads to a situation where a new model needs to be refitted whenever a new causal structure
appears.

Recently, to address the problem of multi-structure scenarios, existing methods typically
employ amortized causal discovery approaches (Lorch et al., 2022b; Lowe et al., 2022; Huang
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Figure 5: Generative framework to solve single-structure and complex-variable data.

et al., 2020a; Dhir and Lee, 2020; Huang et al., 2020b, 2019). Specifically, multiple causal
structures are viewed as a distribution, with each structure being a sample within it. An
estimated adjacency matrix of the structure, A (A” = éi,j)7 can be obtained through
the generative model shown in Figure 4, and then the causal representation X is derived
via the SCM. As simple variables, X is equivalent to X, allowing the reconstruction loss
to be formulated as distance measure between X and X, i.e., E 12 [logp(2|(xs,z5))] =

i
distance(X, X).

4.1.2 CAUSAL REPRESENTATION LEARNING

In causal representation learning, we only consider those cases involving complex variables,
i.e., situations where X # X. In these cases, it is usually accompanied by a single, fixed,
and known® causal structure (Fan et al., 2022; Wu et al., 2022; Lv et al., 2022; Jiang
and Veitch, 2022), i.e., in input-output framework, causal structure does not need to be
outputted. Under such an assumption, as shown in Figure 5, the noise term E of the
SCM can be treated as a latent variable, thus the encoder and decoder can be viewed as
a back-and-forth mapping between X (X ) and E through known adjacency matrix A (G).
Finally, the corresponding A is obtained from X through causal classifier f.. Therefore, the
reconstruction loss can be measured by the distance between A and the known structure

A, that is, Eq(X‘z)(logp(z|X)) = distance(A, A).

4.1.3 MoODEL GAP

In summary, when conducting structural learning on multi-structure data, simple variables
need to provide X = X to constrain the optimization process. Similarly, when conducting
representation learning on complex variables, a single fixed structure needs to provide a
known A to constrain the optimization process. Simply put, multi-structure data relies on
the assumption of simple variables, while complex variables depend on the assumption of
a single structure. The causal discovery of indefinite data needs to simultaneously handle
multi-structure and complex variables, therefore, the model frameworks of causal structure
learning and causal representation learning cannot be directly applied to the causal discovery
task of indefinite data.

Existing work on indefinite data corroborates this point. For instance, Ke et al. (2021),
despite the causal data being multi-structured and complex variables, it can only be applied
to very simple toy models of causal mechanisms, such as physical force models. Similarly,
Li et al. (2020), although it also considers the causal relationships of indefinite data, it

6. “Known” means that the causal structure G can be incorporated into the computation as a known
quantity, both during the training and validation processes.

12
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requires long-term observation data for each variable to determine the causal relationship.
These methods avoid the model gap either by simplifying the causal pattern or significantly
increasing the sample information.

4.2 Fundamental Framework

We propose a causal model suitable for indefinite data by combining the models of struc-
tural learning and representation learning, which can simultaneously discover the causal
structure and causal representation of indefinite data. We first estimate the causal struc-
ture, referred to as AS, according to the framework of structural learning, and then generate
representations according to the framework of representation learning, treating A® as the
known A.

Considering the latent confounders, the SCM is written as:

Tm,j = Z fmij®Tm,i + Z Imkjlmk + €z, (2)

Tm,i€Pa(xm, ;) I s EEC(Tm, )

where Pa(z,, ;) represents the parent set of x, j, Ec(zp, ;) is the confounder set having
effects on z,, ;, f and g denote the causal saliency ” and confounding strengths, respectively,
€ represents the exogenous i.i.d., noise term, and K is the number of latent confounders.
v e RVXP [ e REXD ¢, e RV*P 0 <i#j<N,0<k< K. The matrix form reads

X=AX+BL+E (3)

We design a couple of encoder and decoder to model the generating process of causal
representation:

Encoder W = f1(X) (4)
Decoder :X* = fo(W(BL + E)) (5)

where f(-) perform nonlinear transforms (neural network as GNN or MLP layers are popular
choices) and W represent (I — A)~1. Please note, fi(X) is an abbreviation of fi(X(BL +
E)71) as X consist of BL + E w.r.t. W. Decoder can be written by a maximization of
leg-evidence:

11 M S M S
7§ 2 L I0sp(Xem) = 1 303 1os [ pXenWROVIW )

Continuing the theory of variational Bayes, we regard W as the latent variable in vari-
ational autoencoder (VAE) (Kingma and Welling, 2022) and use variational posterior
q(W1]X) to approximate the intractable posterior p(W|X), thus the evidence lower bound
(ELBO) reads:

7. causal saliency is defined as the probability of this edge being a causal relationship. In this paper, we set
the causal saliency of each edge to be within [0, 1]. For example, a causal saliency of f; ; = 0.6 indicates
a 60% probability of a causal relationship existing from node i to node j.

13
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ereo = ~KLGWIXsm)llP(W)) + Egw|x, ) 108 p(Xsm W) (7)

For simplicity, we model the prior as the standard normal p(W) = MNy«n(0, I, I), which
indicates that each causal saliency p(f;;) = N(0,1). Note that even though the nodes are
probably connected in a true graph, however, they are independent in prior.

In the causal view, our framework consists of two functions: a causal strength encoder:
X — G and a causal representation decoder: G — X.

4.3 Estimation of Confounding Effect

We use ¢, = Zlm . Gm.kjlm,k to describe the confounding effect on z,, ; and C' = BL to
describe the corresponding matrix form. Inspired by (Agrawal et al., 2021), we proposed
an estimation about C' (See more details from Appendix D):

_ p(xm,j)p(L|mm,j)
va p(xm,i)p(L’xm,i)

Equation 8 only works when the expectation E,x)(X|L) is much greater than the
expectation Epx)(X|e). It collaborates with the inductive bias that when confounding
effects drastically exceed independent noise, X is approximately contributed by C' rather
than E. Therefore, the disentangled causal representation X can be written as:

Tm,j (8)

m,j

% L X O (B (XIL) > By (X]e))
X, else

4.4 Explanation

4.4.1 How TO EXTEND TO COMPLEX VARIABLES?

Given the existence of deconfoundment, we can, without loss of generality, write the SCM as:
L = le €Palz;) fijLi + €x;, where the independence of € ensures the Causation Condition.
That is, we can directly recover the causal relationship from the causal representation z. For
instance, we can use causal classifier f. mentioned in Section 2.2. Additionally, if we linearly
make causal representations a to fit b with a learnable parameter k£ in a downstream task,
and obtain the corresponding residuals: 3; = b— ka,¥; = a — %ZA) Then, different causal
relations can be determined through the independence combination between residuals and
representations:

o Sy b ha=b—a
o N U by La=a—b
o Sa L b ha=1—al—b
o Sy Wb ¥ La=a—1,b—1
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4.4.2 How TO EXTEND TO MULTI-STRUCTURE DATA?

In contrast with popular methods that intuitively treat the noise matrix as a latent vari-
able (Yu et al., 2019; Chen et al., 2023c) (¥ — & and £ — /'?), we attempt to regard the
causal saliency as a latent variable, thereby enabling one model to learn multiple structures.
From the overall view, sampling from a set of DAGs G,;, = {&, Vm}%zl is equal to generate
a set of causal saliencys which reads:

p(A) = {p(Am)}h, (10)

5 Baseline Metrics for Evaluation

In this section, we focus on evaluating the performance of our proposed probabilistic model
in comparison with existing causal deep learning methods on indefinite data (i.e., Causalogue
and Causaction datasets), guided by three key research questions:

e Causal Structure Recovery (Q1): How do existing causal discovery methods
compare to ours in terms of recovering the underlying causal structure in the context
of indefinite data?

e Causal Representation Learning (Q2): To what extent do the representations
learned by existing methods and our approach encode causal relationships when
trained on indefinite data?

e Disentangling Confounding Effects (Q3): How effectively do current methods for
addressing confounding disentangle confounding effects in indefinite data compared
to our approach?

5.1 Existing Approaches and Details of Implementation

To the best of our knowledge, no existing approach can be applicable in indefinite data.
So we choose the SOTA work in Causal Discovery from multi-structure data and complex
variables, respectively.

In multi-structure data, we evaluate our model with ACD (Lowe et al., 2022) and
AVICI (Lorch et al., 2022a). In complex variables, we evaluate our model with CAE (Chen
et al., 2023c), CVAE (Chen et al., 2023b), and DAG-GNN (Yu et al., 2019). Meanwhile,
for the disentanglement, we evaluate our model with some SOTA work focusing on latent
confounders: pcss (Agrawal et al., 2021), LFCM (Squires et al., 2022), and GIN (Xie
et al., 2020). In the experiment, we made some necessary modifications to these methods
to adapt them to indefinite data. For example, for ACD and AVICI, we increased the
dimensions of the hidden layers to enlarge the representation space, while mapping the
reconstruction loss into the correlation relationship space. For those methods focusing
on complex variables, we replaced the latent variables with causal saliency. Additionally,
we provide mainstream pre-trained models as baseline performances. For the Causalogue
dataset, we set RoBERTa-base® as the baseline model, and for the Causaction dataset,

8. https://huggingface.co/docs/transformers/model_doc/roberta
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Table 5: Performance of recovering causal graphs. AUROC and MSE are continuous metrics,
computed by converting the causal graph into an adjacency matrix and comparing
it against the ground truth graph. For all results obtained by our model, we
perform a Student’s t-test to ensure that the performance improvement over other
methods falls within a 95% confidence interval.

Causalogue Causaction
Method RGeSk D AUROC  MSE &)
RoBERTa | 0.3140.048 0.5740.009 2.5510.022 - - -
VideoMAE - - - 0,51:*:0‘029 0.58:{:0‘021 2.4:{:0‘034

ACD 0.551+0.024 0.31:0005 0.8210018 0.6510.011 0.41:0013 1.4+0.023
AVICI 0.57+0.019 0.3710.003 0.86+0.024 0.69+0000 0.4410.011 1.21+0.016
CAE 0.5440021 0.4110005 0.79+0021 0.6110012 0.4810.012 1.3x0.019
CVAE 0.5610.014 0.4010001 0.8810.013 0.59+0011 0.5110015 1.610.021
DAG-GNN | 04140034 0.3610.003 0.78+0.015 0.59+0.007 0.45+0.000 1.8+0.020
Ours 0.6910019 0.2610002 0.49:0019 0.78+0008 0.30+0000 1.1+0.023
Ourspotears | 0.-67+0.011  0.2940.001  0.5410.013 0.8140005 0.3310.008 1.1to0.018

we set videoMAE® as the baseline model. For these two baseline models, we froze their
pre-training parameters and only trained the classification layer.

In our Experiments, we utilized RoBERTa-base as our pre-trained model for generating
word embeddings as input in the Causalogue. Throughout the training process, a learning
rate of le-b was set, with the batch size and epochs set to 16 and 50, respectively. The
dimension of the hidden layers within the network was also set to 768. For the Causaction,
we use less batch size with 4 to overcome the variable length and adopt more dimensions of
the hidden layers (1024) to match the more complex information in video representation.
The entire training procedure was conducted on an NVIDIA GEFORCE RTX 3090 graphics
processing unit. In both datasets, 100 samples were randomly selected for a valid set and
200 samples were randomly selected for a test set. Each result is evaluated by 10-fold
cross-validation.

5.2 Causal Structure (Q1)

To answer Q1, we evaluated the performance of recovering causal structures (causal graphs)
on Causalogue and Causaction, using 3 different metrics: area under a receiver operating
characteristic (AUROC), mean Squared error (MSE), and Hamming distance (HD).

Table 5 shows that our baseline model significantly outperforms existing methods with
the applied necessary modifications. We believe this is due to the excessive specific assump-
tions made by existing methods for certain forms of data, which hinder their extension to a
broader range of data forms. For instance, with DAG-GNN, even though we modified latent
variables to adapt to indefinite data, with the acyclic constraint from NOTEARS (Zheng
et al., 2018), a unique phenomenon emerges during the optimization process: the adjacency
matrix A tends to make A;; and Aj; identical. This is advantageous for traditional causal

9. https://huggingface.co/docs/transformers/model_doc/videomae
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Table 6: Performance of recovering causal graphs out of distribution

Causalogue Causaction
Method | —tRG56— MsE HD AUROC  MSE HD
RoBERTa 0.22i()‘057 0.63i()‘025 2.67i0,073 - - -
VideoMAE - - - 0.4540024 0.7710046 4410153

ACD 0.51+0.031 0.4610.025 1.63+0.0490 0.53+0.034 0.5810.028 2.1+0.046
AVICI 0.511+0.045 0.4640032 1.1310.051 0.60+0.049 0.5410037  2.8+0.041
CAE 0.4610.033 0.46+0035 1.3710054 0.6110.035 0.63+0.030 2.5+0.055
CVAE 0.4910.044 04810028 1.3710046 0.5210.030 0.49+0.045 2.9+0.048
DAG-GNN | 0.3310041 0.4310.029 14540049 0.4810.044 0.5310039 2.7+0.043
Ours 0.6110024 0.3510008 0.9410027 0.6610016 0.4210014 1.810.031

Ourspotears | 0-55+0.019  0.39+0.005 0.99+0.023 0.6110015 0.4310018 2.1t0.028

data with unknown causal order, but conflicts with the linear order in indefinite data.
Moreover, we found that methods for multi-structured data (ACD and AVICI) perform
only second-best to our method. This confirms that structure and representation are two
individual aspects: multi-structure data have common laws, regardless of whether they are
in simple or complex variables.

In addition, the ability to generalize out of distributions is essential for multi-structure
data. To test whether these models can maintain robustness when encountering new causal
structures, we designed a simple 10-fold experiment. In each fold, we randomly selected 2
structures (of Causalogue) or processes (of Causaction) for the test set, with all its samples
prohibited from appearing in the train and valid sets.

Table 6 records the results of the cross-distribution test. Our method consistently out-
performs existing methods, and the entire statistical result shows a situation similar to that
of Table 5. Additionally, we noticed that the standard deviation of our method is much
lower than other methods. We consider that for the reason there are similarities among
some structures in the dataset. For instance, in the Causalogue dataset, Hybrid_II is very
similar to Hybrid_I, but significantly different from the other 8 structures. In the Causaction
dataset, many common causal relationships exist among “friedegg” and “pancake”. When
these structures are chosen for the test set in certain folds, the model can find “answers”
from similar structures in the train set. However, when similar structures are all present
in the test set fold (e.g., the test set includes Hybrid I and Hybrid_II), it is difficult for the
trained structures to manifest apparent invariance. However, the lowest standard devia-
tion once again demonstrated the superiority of our baseline in releasing many assumptions
about data forms. In other words, existing methods tend to rely on specific hypotheses to
recover causal relationships, while our approach is more inclined to let the model itself learn
the causal relationships.

5.3 Causal Representation (Q2)

Evaluating causal representation is another crucial aspect of indefinite data. Causal repre-
sentation can be evaluated on both correlation and causation'’. Specifically, we assume x;

10. We believe that causal representations with causal relationships should satisfy correlation (although the
converse is not true), therefore correlation can serve as an auxiliary evaluation metric.
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Table 7: Performance of learning causal representations

Causalogue Causaction

Method Cas Cor Cas Cor

AUROC MSE AUROC MSE AUROC MSE AUROC MSE

RoBERTa | 04240031 0.7610.136 0.-8410.022  0.49+0.031 - - - -

VideOl\’IAE - - - - 0.48i0‘012 0-43i0.020 0.81i0'011 0~34i04009
ACD 0.52 +0.026 0.64 10074 0.91 10013 0.43 £o.022 0.59+0.006 0.39 +0.009 0.88 +0.001 0.28 +0.005
AVICI 0.57 10.021  0.59 £0032 0.91 o017 0.31 £0.016 0.62 10002 0.34 10000 0.9410001 0.21 10,001
CAE 0.61 +0.023 0.52 £0.047 0.93 10011 0.32 £0.013 0.64 10001 0.36 0011 0.92 10003  0.25+0.003
CVAE 0.62 £0021 0.55 £0.066 0.91 £0.006 0.29 10.024 0.61 £0.005 0.31 10005 0.92+0.001  0-23+0.003

DAG-GNN | 0.59 10019  0.55 10050 0.90 £0.017  0.39 20000 0.63 10003 0.3310.013 0.91 +0.002 0.26 L0.002
Ours 0.6810.016 0.4310.058 0.9510008 0.2610011 0.79:0005 0.2610004 0.9610.002 0.15+0.001

Ourspotears | 0.65+0.000 0-4210025 0.9410013 0.2110005 0.73+0.008 0.31i0008 09510002  0-19+0.001

and z; to be any two causal representations that need to be tested. We propose a corre-
lation matrix, Cor, to verify the performance in correlation, where Cor;; = cossin(x;, ;).
Moreover, we train a f. (introduced in Section 2.2) to extract causal relationships, Cas;; =
fe(zil|zj). Both Cor and Cas are evaluated by AUROC and MSE, to demonstrate the

performance of the causal representation in correlation and causation, respectively.

Table 7 presents the performance in correlation and causation. The results suggest that
the representation more easily grasps the information of correlation, while causation, an
asymmetric and underlying relation poses a more challenging topic in representation learn-
ing. Moreover, our method significantly outperforms others, even when we have modified
them to adapt complex variables. This reason aligns with Section 5.2, for instance, the
causality in ACD is based on the Granger causality hypothesis in time series, which stresses
the faithfulness of single clues to causation. However, when it is expanded to other types
of data (like the current indefinite data), it is tough to ascertain the correct set of parent
nodes for causal representation. In addition, similar to the performance of causal structure,
methods of complex variables (CAE, CVAE, DAG-GNN) also show superior performance
in Table 7 over the multi-structure data methods. Thus, we can emphasize that represen-
tation and structure are two separate dimensions, and the concurrent existence of complex
variables and multi-structure data lead to new challenges.

5.4 Disentanglement (Q3)

We created a set of synthetic datasets to evaluate the estimation of confounding effects.
Specifically, We randomly draw Causal DAG from a random graph model with an ex-
pected neighborhood size of 5 and consider graphs with the number of observed nodes
N € {20,50,100}. For probing how our approach is affected by the pervasiveness of con-
founding, we assume that each confounder [; is a direct cause of node x; with a chance
P € {0.1,0.4,0.7}. Given the graph, we stochastically set a trend type for each causal
saliency weight with equal probability. Meanwhile, we add N (0,02 ,..) noise to each node.

Finally, we consider the number of confounders K € {1,5,10} and the number of samples
of each skeleton n € {5,10, 50}, respectively.
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Figure 6: MSE error across all ingredients setting for estimating C' via GIN, LFCM, pcss,
and ours.
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Figure 7: Generative framework for indefinite data.

4

In Figure 6, we quantify the mean-squared estimation (MSE) error of C'. Our method
likewise performs best in all ingredient settings, demonstrating that our confounding disen-
tanglement pools the statistical strength better than other estimation algorithms in multi-
structure data. Besides, combined with the conclusion in (Agrawal et al., 2021), this error
should decrease as the number of samples n increases. Figure 6 (a) is exactly indicative of
this conclusion.

6 Discussion
6.1 Summary

This paper focuses on causal inference for a novel paradigm of data - indefinite data, char-
acterized by multi-structure data and complex variables. These two features differ greatly
from traditional experimental data, thereby causing existing methods to be non-adaptive
to indefinite data. To provide a good starting point for causal research on indefinite data,
we introduce two brand new datasets- Causalogue and Causaction, analyze the challenges
brought about by the coexistence of multi-structure data and complex variables, and pro-
pose a corresponding probabilistic framework. In the experiments, we exhibit benchmark
results for both structure and representation and share intrinsic insights in the extension of
disentanglement.

19



HANG CHEN AND XINYU YANG AND KEQING Du

Table 8: Performance among different pre-trained models

model Causalogue model Causaction
Structure Representation Structure Representation
AUROC MSE AUROC MSE AUROC MSE AUROC MSE
RoBERTa 0.69 0.26 0.68 0.43 13D 0.78 0.30 0.79 0.26
BERT 0.67 0.36 0.66 0.41 | Timesformer 0.81 0.33 0.81 0.28
XLM 0.68 0.28 0.69 0.44 | videoMAE 0.85 0.38 0.84 0.29
XLNet 0.69 0.27 0.67 0.45 - - - - -

6.2 Inconsistency

However, such a probabilistic framework is inconsistent with the learning of causal structure
and causal representation. As shown in Figure 7, the estimated structure A* is first ob-
tained through the multi-structure generative model, and then input into the representation
generative model to obtain the causal representation. Another estimated structure A" is ob-
tained from X through a causal classifier f. There are two reconstruction losses, calculated
by measuring the distance between the two estimated structures and the ground truth A,

ie., Eq(él-,ﬂzs)[l‘)gp(%“xivfcj))] = distance(fls,A), Eq(X‘ZT.)(logp(zT]X)) = distance(As,A).

Therefore, significant inconsistency between A" and A* arises due to the independent back-
propagation from A® and A" initiated by the two reconstruction losses.

We have elaborated on this problem and proposed an intervention-based improvement
in our latest work (Chen et al., 2024). Broadly speaking, we attempt to apply various
interventions do(z1), do(xs), etc. to X, resulting in the intervened adjacency matrices
flgo(m), flzo(m), etc. Concurrently, corresponding interventions are performed on A5 to

obtain Aflo(x , A , etc. According to the principle of causal abstraction (Beckers and
1) do(A:vg)

Halpern, 2019), if Ago(wl)7 Ago(m), ... correspondingly equal AZO(M), AZO( ..., the causal

CCQ)’
model of X and A? is also equivalent.

6.3 Pre-trained Model

Since complex variables do not exist in numerical form, we use the representations obtained
from pre-trained models as input. For instance, in the input-output framework of Causa-
logue, we default to using the pre-trained representations from RoBERTa-base as X, and in
Causaction, we use the pre-trained representations from I3D. However, whether the initial
representations provided by different pre-trained models will have a significant impact on
representation learning and structural learning is an unconfirmed issue. Therefore, we have
selected some competitive pre-trained models: Bert (Devlin et al., 2019), Roberta (Liu et al.,
2019), XLM (Lample and Conneau, 2019), XLNet (Yang et al., 2020) for the Causalogue
dataset, and I3D (Carreira and Zisserman, 2017), Timesformer (Bertasius et al., 2021),
videoMAE (Tong et al., 2022) for the Causaction dataset.

Table 8 shows the differences between different pre-trained models, where the text-based
pre-trained models (see the Causalogue column) do not cause significant changes, while the
video-based pre-trained models (see the Causaction column) do. We speculate that this
is because the dataset sizes involved in these video pre-training models have significantly
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Table 9: Performance of generalization of CausalDialogue dataset.

Method Trained with Causalogue Trained with CausalDialogue
AUROC MSE HD AUROC MSE HD
RoBERTa | 0.19+0056 0.72+0033 3.11t0073 0.2810.043 0.5310.024 2.1510.055
ACD 0.4510.022 0.5140.043 1.7310.055 0.5810.025 0.37r0.022  1.410.047
AVICI 0.481+0.031 0.4310.038 1.2510.042 0.6210.044 0.2910.027  0.9+0.033
CAE 0.5210.042 0.50+0.020 1.6710.042 0.5810.035 0.31to025  1.110.042
CVAE 0.4610.038 04410042 14210031  0.59+0.032 0.29+0036  1.0+0.031
DAG-GNN | 0.3940.034 0.4910.055 1.571+0.034 0.6310.062 0.2110.025 1.1+0.020
Ours 0.5610031 0.4110006 1.15+0025 0.71i0019 0.1940011  0.9+0.011

increased, while in the text-based pre-training models, the dataset sizes involved do not show
significant differences. This may also suggest that a large pre-training dataset can provide
richer context or domain information to the initial representation, which is beneficial for
causal structure learning and representation learning.

6.4 Generalization
6.4.1 GENERALIZATION IN OTHER DATASETS

We will use CausalDialogue dataset as a test set for generalization to evaluate the perfor-
mance of our proposed baseline, which is trained on the Causalogue dataset. This experi-
ment has two main objectives. First, by discovering causal relationships in CausalDialogue,
we aim to demonstrate that the texts generated by Causalogue based on a pre-defined tem-
plate do not suffer from the “teaching to the test” risk. Instead, they contain genuine causal
relationships that can generalize to other causal dialogue datasets, similar to the function
of a style transfer experiment. Second, we seek to prove the generalization capability of
indefinite data further.

Table 9 presents the results of testing on the CausalDialogue test set when the training
sets are Causalogue and CausalDialogue, respectively. It is evident that the model trained
on Causalogue is able to identify causal relationships in CausalDialogue. This indicates
that the causal dialogues generated by Causalogue using pre-defined templates do not con-
tain shortcuts or biases in their causal properties. Furthermore, the fact that the model
trained on CausalDialogue performs better on the CausalDialogue test set demonstrates the
promising generalization capability of our baseline on other indefinite datasets.

6.4.2 GENERALIZATION IN WILD

Although this paper proposes benchmark datasets and baseline models for causal discovery
in indefinite data, there are significant limitations in exploring indefinite data in wild envi-
ronments. For example, the causal structures in the Causalogue and Causaction datasets
only have some fixed types, while in the real world, there are far more types of causal struc-
tures. Additionally, in real-world data, the sparsity of causal relationships and the amount
of causal variables can also vary widely. These hinder our ability to “discover anything”,
and suggest that the successful self-supervision and Next token prediction mechanisms in
large language models may be key to applicability in wild environments.
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Therefore, causal research on indefinite data will be a long-term topic. The ultimate goal
of multi-structure data is to exhibit cross-distribution learning capability, while complex
variables will eventually rely on a model-driven learning process. In previous work, we
posited such a challenge, and this paper makes it feasible from a set of research basis. We
hope this will attract an increasing number of researchers to contribute to the growing body
of work applying causal inference to the real world.

6.5 Counterfactual Verification

In Section 3.3.2, we defined the causal annotation criteria for the Causaction dataset.
Briefly, a causal relation A — B is considered to exist if the following two conditions
are met: (1) “if A happens, then B happens” and (2) “if B happened, would A not have
happened?” For convenience, we refer to this formulation as counterarrow. However, as
pointed out by reviewer W8C2, an alternative criterion is the counterfactual formulation,
which identifies causality based on the conditions: “if A happens, then B happens” and “if
A did not happen, would B have happened?”

Both methods aim to infer causality from observed correlations. Specifically, the com-
mon component — “if A happens, then B happens” — merely indicates a correlation be-
tween A and B. Counterarrow seeks to identify whether the correlation is directional by
testing whether “if B happened, would A not have happened?” since correlation is direction-
less whereas causality is inherently unidirectional. In contrast, counterfactuals introduces
an intervention on A through “if A did not happen, would B have happened?” probing
whether changes in A induce changes in B — a hallmark of causal influence that does not
hold under mere correlation.

Each method, however, has limitations in specific contexts. For example, in the case of
long causal chains (there are many intermediators in path A to B), counterarrow may fail,
as it becomes difficult to ensure that B occurs without any subsequent occurrence of A.
On the other hand, counterfactuals struggle in fork structures, particularly those involving
multiple causes: unless a precise quantitative analysis of probability of B is conducted, it is
often hard to detect a significant influence of A on B.

The Table 10 presents several example relations, along with the proportion of counter-
arrow and counterfactual judgments observed in the raw resource:

The Table 10 clearly illustrates that, for these examples, counterarrow tends to exhibit
more pronounced distinctions in frequency relative to the raw data. This can be attributed
to the fact that long-chain structures are rare in Causaction, whereas fork patterns involving
multiple causes are common. Consequently, while interventions on A may lead to a reduction
in the probability of B, the effect may not be sufficiently pronounced for annotators to
consistently detect. Given this, we ultimately recommend the counterarrow method for
annotation purposes.

7 Broader Impact Statement

The intended uses of our proposed datasets (Causalogue and Causaction) and baseline
models are for scientific causal knowledge discoveries such as reasoning tasks in conversation,
complex causes extraction in graphs and causal representation learning without limited
assumptions. The datasets consist of generated dialogs, and videos and do not include any
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Table 10: Counterarrow vs. counterfactual in Causaction. We show the frequences of each
type of relations in the raw resource. Concretely, we identified two actions to
serve as variables A and B. We define original as the proportion of samples in
which “A occurs before B”; counterarrow as the proportion in which “B occurs
before A”; and counterfactual as the proportion in which “B occurs without A
occurring.” The selected action pairs are those for which a causal relationship
was annotated with over 95% agreement among annotators.

A B Original Counterarrow Counterfactual
pour milk stir 42.3% 0% 15.4%
crack eggs fry 31.5 % 1.3 % 12.3%

cut fruit  put in bowl | 22.4% 4.1 % 9.7 %
butter cover toast | 19.6 % 0 % 1.4 %
turn on gas fry 52.4% 0 % 0%

social/personal information. We believe that a potential positive societal consequence of
this work is that our two indefinite datasets and baseline model will help non-causality
experts choose which causal data paradigms and frameworks they want to apply to their
problem for causal discovery. The proposed datasets are more realistic for discussing causal
relationships than existing causal datasets as 1) our proposed datasets satisfy both complex
variables and multi-structure data, to our best knowledge, they are the first two datasets
without structure and representation limitations 2) we introduced a new baseline model
to the proposed datasets to discuss the causal relationships (causal structures and causal
representations) and confounders of indefinite data and 3) our benchmark experiments show
that the proposed baseline model is more aligned with indefinite causal relationships than
existing algorithms for causal discovery.
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Appendix A. Effectiveness of f.

To evaluate whether f.(-) can learn the ability to discern causal relationships, we selected
two datasets with simple variables for verification (complex variable causal representations
do not have a fixed ground truth): Arrhythmia (Guvenir et al., 1997) and Netsim (Smith
et al., 2011). During testing, we (1) randomly selected 100 pairs of variables with causal
relationships and 100 pairs without causal relationships ("normal” in Table), (2)randomly
selected 100 pairs of variables with causal relationships and reverse order of them as other
100 pairs ("reverse” in Table), (3)randomly selected 100 pairs of variables with causal
relationships and 100 pairs randomly selected ("random” in Table). In the training setup,
we designed f.(-) as a two-layer MLP with a hidden state of 256, set the batch size to 32,
the learning rate to 0.0006, and the number of epochs to 20. The F1 score of f.(-) is shown
in the Table 11.

Table 11: F1 of f.(-) in simple variables Table 12: F1 of f.(-) without context.
Datasets | normal | reverse | random Datasets | normal | reverse | random
Arrhythmia 0.97 0.98 0.99 Causalogue | | 0.07 J 0.06 4 0.03

Net-fmri 0.91 0.88 0.95 Causaction | | 0.04 J 0.05 J 0.04

Clearly, f.(-) can distinctly reflect the causal relationships between data samples. In
other words, as long as the correct causal relationship (rather than correlation) exists in
the representation, f.(-) has the ability to identify the specific direction and existence of
the causal relationship.

To assess the performance of f. with complex variables, we conducted a similar ablation
study. Since there is no direct ground truth for complex variables, we evaluated whether f.
could maintain a certain level of recognition when irrelevant causal representations—which
we refer to as “context” (e.g., the representations of unrelated utterances in the Causalogue
dataset)—were removed. Through this experiment on invariance to context distribution
shifts, we aimed to demonstrate that f. does not classify causal relationships by recognizing
causally irrelevant context. Table 12 shows the difference in F1 scores for f. between
scenarios with and without context. The results clearly indicate that the performance of
fe did not significantly degrade after the removal of causally irrelevant context, which also
eliminates the risk of circularity.

Appendix B. Acyclicity Constraint

In this work, we eliminate the possibility of cyclic causal graphs by Assumption 2. However,
to assess broader applicability, we seek to examine the performance of baseline models
on datasets that do not adhere to this assumption. For such cases, inspired by Zheng
et al. (2018), we propose an alternative constraint that is more practical for real-world
implementation.

Let A € R™*™ be the (possibly negatively) weighted adjacency matrix of a directed
graph. For any a > 0, the graph is acyclic if and only if

tr[(I4+aAoA)™ —m=0 (11)
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Table 13: Comparisons between causal datasets
Source | 4 variables | 5 variables | 6 variables
LLM 0.92 0.61 0.44
Wild 0.57 0.31 0.16

In practice, o could be set as a hyperparameter and its value depends on an estimation
of the largest eigenvalue of A o A in magnitude.This value is the spectral radius of Ao A,
and because of nonnegativity, it is bounded by the maximum row sum according to the
Perron—Frobenius theorem. Hence, we use Equation 11 as the equality constraint when
maximizing the ELBO. The learning problem is

11141%1 f(A, 9) = _ﬁELBO
' (12)
st. h(A)=tr(l +adoA)"—m=0
In the table 7?7, we compare model performance under two different constraints: adher-
ence to Assumption 2 and the Acyclicity Constraint. The results clearly demonstrate that
our proposed probabilistic model retains effective causal identifiability even when Assump-
tion 2 is not enforced.

Appendix C. Aggrements between Different Dataset Scaling

In this section, we present a preliminary evaluation of the data scale for Causalogue. The
evaluation focuses on two key factors: the number of causal variables and the source of the
text (i.e., LLM-generated versus in-the-wild dialogues). The specific combinations of these
factors are as follows:

e 4 variables 4+ wild: 200 samples, each consisting of 4 dialogue turns extracted from
the RECCON dataset, with each sample containing at least one causal span.

e 5 variables + wild: 200 samples, each consisting of 5 dialogue turns from RECCON,
each containing at least one causal span.

6 variables 4+ wild: 200 samples, each consisting of 6 dialogue turns from RECCON,
each containing at least one causal span.

4 variables + LLM: 200 causally annotated samples generated by GPT-4 following
the procedure described in Section 3.2.2, each containing 4 variables.

e 5 variables + LLM: 200 GPT-4-generated causal samples with 5 variables.
e 6 variables 4+ LLM: 200 GPT-4-generated causal samples with 6 variables.

We employed a team of expert annotators to manually label the causal relationships in each
sample. The agreement between the labels was then assessed using Cohen’s kappa with
respect to the ground truth labels. The specific agreement values are shown in the table
13.

It is evident that wild data fails to meet the consistency standards typically expected
of benchmark datasets. We attribute this to the inherently subtle and ambiguous nature
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of causal relationships in real-world dialogues. In contrast, LLM-generated samples ex-
hibit higher annotation agreement due to the presence of clearly defined, human-specified
causal structures. Additionally, as the number of variables increases, the complexity of
the underlying causal graphs also increases, which in turn leads to decreased annotation
consistency.

Given that four variables are sufficient to capture the fundamental building blocks of
causal structure—namely, chains, forks, and colliders—and considering that research on
indefinite data remains in its early stages, our primary goal is to provide a clean, mathe-
matically tractable dataset. Work on scaling to more complex, real-world data distributions
remains an important direction for future research, which will require more advanced data
collection and annotation strategies.

Appendix D. Confounding Disentanglement

Equations 2 and 3 indicate that latent confounders are a critical problem in our research:
when they exist, non-autoregression SEM invalidates the VAE. Hence, to eliminate the
effect of confounders and reconstruct the true causal relations, we consider the following
disentanglement model in this paper:

H=0UC (13)

where H = {(I — A)"Y(BL + E), &4}, O = {(I — A)~'E, &0}, C = {(I — A)"'BL,&}.
From a causal graph view, graph O = {X, o}, £o represents the edge ‘z; — x;’, and graph
C={XUL,&}. & represents the edge ‘I — x;’. Graph H is the full causal graph with
all observed and latent relations. Note that H is only in theory because we can not obtain
confounders. H = G if we omit the latent confounders, which embrace the traditional causal
discovery aspect (Equation 4 in Appendix B). H = O if there are no confounders in this
causal skeleton. See also Figure 8 for an illustration.

In general, the ultimate goal of causal discovery under confounding is to correct G and
recover H from observed variables set X. However, indefinite data, such complicated data
paradigm, makes it stubborn to achieve H because some prevalent assumptions about solv-
ing confounding can not hold here (e.g., there is no relation between any two observed vari-
ables Squires et al. (2022), or all observed variables are affected by one confounder Agrawal
et al. (2021)), which results in the problems that we can not know and assume the locations,
numbers, and effects of confounders.

To this end, we design this causal disentanglement, which makes relations of observed
variables amenable without assuming confounders. For O, we follow the variational inter-
ference in Figure 5, which can reconstruct the deconfounding variables X. For C , we would
like to compute the confounding effects C; on each observed variables X; instead of the value
of confounders. The confounding effects C € RV¥*P structurally resemble reconstruction
variables X € RVXP. From the CAM view, it reads:

tmj= > Omkilmi(c €RVPIERFP 0<iZzjk<N)  (14)
lm,keEc(Z‘mJ)

Due to the assumption of causal saliency is irrelevant to ‘confounding strength’ g, equa-
tion 14 is intractable without approximate statistics as we have shown in Equation 8, with
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(a) DAG G (b) DAG # (¢c) DAG O (d) DAC ¢

Figure 8: Four causal DAGs discussed in this paper. G represents the wrong causal structure
lacking the consideration of latent confounders, H represents the true causal the
structure given the whole observed variables and latent confounders, O and C
are two subgraphs disentangled from H. O has and only has relations between
observed variables (i.e., 1 — x32), and C has and only has relations from latent
confounders to observed variables (i.e., l; — z1).

the following proofs: By equation 7 in the main text,

(@j—Cp)= > Ayzi—C)+¢ (15)
z;€Pa(xy)
Hence,
Cj = Z Ai,jCi + BJL (16)
x;€Pa(x;)
= Y Ayy[(I-A)'BL]; + B,L (17)
x;€Pa(x;)

Intuitively, the term (I — A)"!BL reflects a particular graph Q consisting of p(X|L).
Hence, we would like to transform Equation 17 into a statistic about ‘p(X|L)’. Fortunately,
a sufficient statistic C; = E(X,|L) is supported by Agrawal et al. (2021). It makes Q
identifiable under the Gaussian € and E(e) = 0. Along with their inference, we find the
branch point under our data condition:

Cj= Y AylI—-A)"'BL];+B;L
z;€Pa(z;)
=E[ Y fylI-AT'E+(I-A)7'BL; (18)
z;€Pa(x;)
+ B;L|I)
If the E(e) is negligible, we can obtain the same statistic due to C; = E[inepa(lﬂj) fis[(I —
A)7'E+(I—A)"'BL);+ BjL+¢;|L]. In other words, when E(L) apparently exceeds E(e),
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latent confounders essentially contribute the C', and naturally, C' is meaningless when it is
mainly affected by e.

Finally, we could approximately estimate the discrete probability of C' under a strong
confounding assumption:

Cyj =E(x;|L) (19)
__ Plzj)P(Llzy) 9
SN P(a)P(L|z;) 20)

Additionally, C is not easy to calculate under weak confounding, so the dynamic recon-
struction loss function does not consider C when confounding influence is insufficient (See
Subsection “Dynamic Reconstruction Error” for details).

Equation 8 describes an expectation statistic irrelevant to B while involved with F,
which collaborates the inductive bias that when confounding effects drastically exceed in-
dependent noise, X is approximately contributed by L rather than E. We thus design a
dynamic reconstruction loss [,: when [ > €, (i.e., the confounding effects are significant), [,
measures the distance between X and X +C ; on the contrary, in the case that confounding
effects are negligible, [, measures the distance between X and X as well as C is hard to
estimate.

Appendix E. Sensitive Experiment of each baselines

In Section 5, we made some necessary modifications to the baseline methods so they could be
applied to indefinite data. For instance, with ACD and AVICI, we increased the dimensions
of the hidden layers to enlarge the representation space while mapping the reconstruction
loss into the correlation relationship space. For methods that focus on complex variables,
we replaced the latent variables with causal saliency. Therefore, we conducted sensitivity
experiments to demonstrate that these modifications do not compromise the model’s ability
to learn causal representations or causal structures.

Figure 9 displays the differences between the modified methods (denoted by x*, like
ACD*) and their original counterparts on their respective evaluation experiments. Since
the original evaluation datasets and metrics varied, we report the distance using the relative

€ITOor:
performance of modified model — performance of original model

performance of original model

The results clearly indicate that although we made necessary changes to these methods,
these modifications did not severely compromise their ability to learn causal representations
and causal structures.

Appendix F. Implementation Example

We formalized the dynamic variational inference model as follows: a causal saliency encoder
fo + X = G, an causal representation decoder fg : G — X , and an estimation function
f5 X = C.

We resort to VAE to design the functions f, and fy as shown in Figure 10. Specifically,
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Figure 9: The performance of the modified model and the original model in the original
evaluation datasets. We set the performance of the original model as 100%.

2 b2 |

z=(—-A)—p&l -7 BDl—

%8 looo o | | E Rpi[en o]

@8 lco ol
BL+E = fo,(z % £, (X)) L C
» BL+E

v

Figure 10: An implementation example of our framework. ¢,(z|X) predicts the causal
saliency from the input X. The predicted latent variable z = (I — A), and then
a causal representation decoder py((z|(I — A)~'E)) learns to predict X given
the disentangled E and inverse of predicted z.
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F.1 Encoder

The encoder g, (z|X) applies a graph attention module fu,, (Velickovi¢ et al., 2017) to the
input. It produces an adjacent matrix across a lower triangular mask under Hypothesis 2.

Qso(z‘X) = SOftman(fatt,sO(X)) (21)

The output z implies the possible distribution of causal saliency over X'. Specifically, z; ; = 1
indicates a high probability relation z; — x;.

F.2 Decoder

we extract F by utilizing a multi-layer perceptron (MLP):

BL + E =GN Nepe(fart o (X), X) (22)
E =MLPg(BL + E) (23)

where GN Ney, is instantiated by graph neural network: GNN (A, X) = eLU (A x (X x W)),
which yields a nonlinear multiple of adjacent matrix A € RV*Y | feature matrix X € RV*P
and weight matrix W € RP*H  where H represents the dimensions of hidden layers. Then,
the decoder accumulated the incoming messages to each node via causal saliency z and
employed a new graph neural network GIN Nge:

po((Ze]z271E)) = GNNyeo (271, E) (24)

The output of the decoder &, € RV*P equals the dimension of X and it is the pure causal
representation of & without confounding.

F.3 Confounding Estimation

We used the same MLP module to extract L and two sigmoid functions: Up(zj)(') and

ap(L‘mj)(), to project p(z;) and p(L|z;) into the range of (0,1), which expresses the proba-
bility estimating c;.

L=MLP,(BL+E) (25)

Tp(a) (25)Tp(Lja;) (L]75)

j
ZﬁvUp(ffi)(xi)ap(L‘xi)(Lh,‘i)

¢j = (26)

The output C' € RV*P of Estimation module equals the individual-specific effects of con-
founding on each z; if there exactly exists strong confounding.

F.4 Reconstruction Error

Considering the dynamics of confounding effects across samples (as shown in Equation 9), we
naturally design a confounding score for each graph as w(L) = rank(L)/N (L is computed
by equation 26. The graphs with high w(L) can be regarded as confounding samples because
the high rank of the matrix L € RV*P stands for the extensive independent terms in L,
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which indicates that sufficient exogenous confounding variables point to the X, and vice
versa. Finally, the reconstruction error and ELBO can be encapsulated by:

lre = W(L)le(X, X + C) + (1 — w(L))lne(X, X)L = lpc — KL[gy(2]X)[[p(2)]  (27)
Specifically, We adopt mean squared error (MSE) and in implementation:

Le(X, X) =B, (;x) [MSE(A, A)]lo(X, X + C)

. (28)
= B, ;0 [MSE(X, (X +O)]

(29)

F.5 Details of Implementation

In ACD and AVICI, In our experiments, we used a Transformer encoder with a model size
of 256 and a hidden size of 1024 for the feedforward modules. Throughout the training
process, the learning rate was a constant base rate of 3 * 107°. We optimized for a total of
300,000 primal steps, reducing the learning rate by a factor of ten after 200,000 steps. We
adjusted the batch size based on the number of variables, ranging from 27 to 6.

In CAE and CVAE, throughout the training process, a learning rate of 3% 10™° was set.
The batch size and epochs were set to 32 and 60, respectively. The implicit cause size was
set to 192, the hidden size of the GNN was set to 300, and the dropout rate was 0.1. We
set the number of layers (L) to 1. We evaluated our method ten times with different data
splits on the test set.

In DAG-GNN, we used a variational autoencoder parameterized by a graph neural
network. Throughout the training process, we used the Adam optimizer to solve the sub-
problems of the augmented Lagrangian approach. When extracting the DAG, we used a
threshold value of 0.45. The batch size and epochs were set to 32 and 80, respectively.

Appendix G. Ablation Study about Disentanglement

To investigate whether the confounding effect is learned entirely by the BL term and is
independent of the causal effect, we conducted an ablation study to analyze the distance
between the causal effect and the actual effect when the variable L was intervened upon
under different conditions. We continued to use the MSE between the predicted and actual
causal representations as the metric for the causal representation. Our prediction target was
the causal representation of target nodes with no children, and we analyzed the following
ablation strategies:

1. “do front door”: This strategy removes all paths where the confounding factor L
directly points to the target node. 2. “do back door”: This strategy removes all outgoing
paths from the confounding factor L on the back-door path but connects the receiving
node and the sending node of L on this path. (This is equivalent to keeping the back-door
path while removing the intermediary role of L.) 3. “do front and back”: This strategy
simultaneously removes both front-door and back-door paths. 4. “do pervasiveness”: This
strategy randomly reduces the number of edges between L and the causal variable by half.
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Table 14 presents the distance (MSE) between
the causal representations predicted by these meth- Table 14: Ablation study about dis-

ods and the actual causal representations. The re- entanglement.

sults clearly show that only the third ablation strat-

egy (“do front and back”), which completely inter- Ablation Clo nfounder i\éuml:;(a)r
venes on the confounding effect, leads to the pre- original 0.06 056 0.07_0.06
dicted causal effect being the closest to the actual do front door | 0.05 0.05 0.06 0.06

do back door 0.06 0.06 0.06 0.06
do front and back | 0.01 0.01 0.01 0.02
do pervasiveness | 0.09 0.05 0.08 0.08

causal effect. Strategy 1 and 2 could not fully elim-
inate the confounding effect, and thus their perfor-
mance was not significantly different from the origi-
nal data. In contrast, the fourth ablation strategy actually increased the confounding effect.
This is because reducing the pervasiveness violates the sufficient statistic C; = E(Xj|L).
This demonstrates that the BL term can only be effectively estimated by our baseline when
the confounding effect remains pervasive.

Appendix H. Detailed Annotation results of Causaction

In this section, we present the annotation results for the causal relationships of each action
in the Causaction dataset. The dataset records a total of ten behaviors: Coffee, Milk,
Juice, Tea, Cereals, Fried Egg, Pancakes, Fruit Salad, Sandwich, and Scrambled Egg. Their
specific action classifications are as follows:

Coffee: take cup — pour coffee — pour milk — pour sugar — spoon sugar — stir coffee

Milk: take cup — spoon powder — pour milk — stir milk

Juice: take squeezer — take glass — take plate — take knife — cut orange — squeeze
orange — pour juice

Tea: take cup — add teabag — pour water — spoon sugar — pour sugar — stir tea

Cereals: take bowl — pour cereals — pour milk — stir cereals

Fried Egg: pour oil — butter pan — take egg — crack egg — fry egg — take plate —
add salt and pepper — put egg onto plate

Pancakes: take bowl — crack egg — spoon flour — pour flour — pour milk — stir
dough — pour o0il — butter pan — pour dough into pan — fry pancake — take plate —
put pancake onto plate

Fruit Salad: take plate — take knife — peel fruit — cut fruit — take bowl — put fruit
into bowl — stir fruit

Sandwich: take plate — take knife — cut bun — take butter — smear butter — take
topping — add topping — put bun together

Scrambled Egg: pour oil — butter pan — take bowl — crack egg — stir egg — pour
egg into pan — stir fry egg — add salt and pepper — take plate — put egg onto plate

We show the detailed results of annotation in each behavior from Table 15 to Ta-
ble 24. Additionally, the statistical annotation results show that the annotation probability
of causal terms is rarely within the range of [0.4,0.6]. Therefore, we can be confident that
the annotation results are not significantly influenced by subjective factors arising from
ambiguous causal relationships.
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Table 15: The detailed results of Coffee behavior

next action | take cup pour coffee pour milk pour sugar spoon sugar stir coffee
take cup 0 0 0 0 0 0
pour coffee 0.88 0 0 0 0 0
pour milk 0.79 0.09 0 0 0 0
pour sugar 0.21 0.22 0.15 0 0 0
spoon sugar 0 0.05 0.01 0.89 0 0
stir coffee 0.15 0.95 0.21 0.24 0.02 0

Table 16: The detailed results of Milk behavior

next action | take cup spoon powder pour milk stir milk
take cup 0 0 0 0
spoon powder 0.05 0 0 0
pour milk 0.95 0.13 0 0
stir milk 0.14 0.11 0.96 0

Table 17: The detailed results of Juice behavior

next action take squeezer take glass take plate take knife cut orange squeeze orange pour juice
take squeezer 0 0 0 0 0 0 0

take glass 0.09 0 0 0 0 0 0

take plate 0.09 0.11 0 0 0 0 0

take knife 0.05 0.05 0.055 0 0 0 0

cut orange 0 0.06 0.11 0.97 0 0 0
squeeze orange 0.87 0.05 0.01 0.08 0.26 0 0

pour juice 0.18 0.15 0.11 0.21 0.02 0.86 0

Table 18: The detailed results of Tea behavior

next action | take cup add teabag pour water spoon sugar pour sugar stir tea
take cup 0 0 0 0 0 0
add teabag 0.67 0 0 0 0 0
pour water 0.95 0.87 0 0 0 0
spoon sugar 0.06 0.01 0.08 0 0 0
pour sugar 0.09 0.06 0.01 0.89 0 0
stir tea 0.24 0.99 0.85 0.04 0.08 0
Table 19: The detailed results of Cereals behavior
next action | take bowl pour cereals pour milk stir cereals
take bowl 0 0 0 0
pour cereals 0.05 0 0 0
pour milk 0.94 0.03 0 0
stir cereals 0.04 0.91 0.06 0
Table 20: The detailed results of Fried Egg behavior
next action pour oil butter pan take egg crack egg fry egg take plate add salt and pepper put egg onto plate
pour oil 0 0 0 0 0 0 0 0
butter pan 0 0 0 0 0 0 0 0
take egg 0.05 0.05 0 0 0 0 0 0
crack egg 0.05 0.01 0.95 0 0 0 0 0
fry cgg 0.06 0.01 0.75 0.79 0 0 0 0
take plate 0 0 0 0.05 0.13 0 0 0
add salt and pepper 0.07 0.15 0.08 0.05 0.86 0.12 0 0
put egg onto plate 0.05 0 0.67 0.77 0.12 0.02 0.02 0
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Table 21: The detailed results of Pancakes behavior

next action take bowl

take bowl 0
crack egg 0.69
spoon flour 0.21
pour flour 0.68
pour milk 0.78
stir dough 0.01
pour oil 0.68
butter pan 0.1
pour dough into pan 0.05
fry pancake 0.11
take plate 0.12

put pancake onto plate 0

crack egg  spoon flour
0 0
0 0
0.05 0
0.19 0.89
0.05 0.09
0.05 0.05
0.05 0.01
0.04 0.03
0.11 0.12
0.05 0.05
0.05 0
0 0

pour flour pour milk stir dough
0 0 0
0 0 0
0 0 0
0 0 0
0.11 0 0
0.67 0.11 0
0 0.01 0.05
0.07 0.04 0.95
0.06 0.98 0.87
0.31 0 0
0 0 0.15
0 0 0.03

pour oil
0

=3

&

Jooocococococo

=3
3

e
2

0.05

butter pan

0

oo

cocococo

0
0.75
0.02
0.05

pour dough into pan

fry pancake

0 0
0 0
0
0 0
0 0
0 0
0 0
0 0
0 0
0.99 0
0.05 0.08
0.05 0.95

take plate

cocococoocoooo

o
3

put pancake onto plate
0

coocococococoo

oo

Table 22: The detailed results of Fruit Salad behavior

next action take plat.
take plate 0
take knife 0.02
peel fruit 0.02
cut fruit 0.05
take bowl 0
put fruit into bowl 0.07
stir fruit 0.05

e

take knife

peel fruit

0 0

0 0
0.91 0
0.85 0.95
0.06 0.01
0.06 0.71
0.02 0.11

cut fruit

0

0

0

0
0.07
0.88
0.01

take bowl
0

put fruit into bowl

scoocooocoo

0

o OO O oo

stir fruit

Table 23: The detailed results of Sandwich behavior

next action
take plate
take knife
cut bun
take butter
smear butter
take topping
add topping
put bun together

take plate take knife
0 0
0.01 0
0.05 0.85
0.05 0.11
0.16 0.11
0.05 0.06
0.07 0.15
0.05 0.06

cut bun take butter
0 0
0 0
0 0
0.75 0
0.85 0.79
0.04 0.05
0.08 0.05
0.07 0.07

smear butter

oo oo

0.13
0.06
0.18

copooocoocoo

St

oo

0

)
woooococoo

take topping add topping put bun together

coocococooo

Table 24: The detailed results of Scrambled Egg behavior

next action pour oil
pour oil 0

butter pan 0.05
take bowl 0.01
crack egg 0.05
stir egg 0.07
pour egg into pan 0.05
stir fry egg 0.75
add salt and pepper 0.11
take plate 0.02
put egg onto plate 0.05

butter pan take bowl crack egg

0 0 0 0

0 0 0 0
0.03 0 0 0
0.02 0.84 0 0
0.05 0.33 0.94 0
0.26 0.12 0.88 0.95
0.77 0.03 0.67 0.24
0.34 0.03 0.05 0.73
0.05 0.03 0.12 0.06
0.04 0.03 0.02 0.31

stir egg  pour egg into pan

0.65

stir fry egg

add salt and pepper
0

coocococo

0.02
0.27

take plate

scoococococococoo

3

put egg onto plate
0

coocoocococoo
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