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Abstract

Modality differences have led to the development of heterogeneous architectures for
vision and language models. While images typically require 2D non-causal model-
ing, texts utilize 1D causal modeling. This distinction poses significant challenges
in constructing unified multi-modal models. This paper explores the feasibility of
representing images using 1D causal modeling. We identify an "over-focus" issue
in existing 1D causal vision models, where attention overly concentrates on a small
proportion of visual tokens. The issue of "over-focus" hinders the model’s ability
to extract diverse visual features and to receive effective gradients for optimization.
To address this, we propose De-focus Attention Networks, which employ learnable
bandpass filters to create varied attention patterns. During training, large and sched-
uled drop path rates, and an auxiliary loss on globally pooled features for global
understanding tasks are introduced. These two strategies encourage the model to
attend to a broader range of tokens and enhance network optimization. Extensive
experiments validate the efficacy of our approach, demonstrating that 1D causal
visual representation can perform comparably to 2D non-causal representation in
tasks such as global perception, dense prediction, and multi-modal understanding.
Code shall be released.

1 Introduction

Due to inherent modality differences, vision and language models have evolved into distinct heteroge-
neous architectures. A key difference is that images usually require 2D non-causal modeling, while
texts often utilize 1D causal modeling. This distinction presents a significant challenge in constructing
unified multi-modal models. Many existing multi-modal models [37, 3, 11, 5, 29] have to train vision
and language encoders separately before combining them. A crucial question in advancing unified
vision-language modeling is how to represent images using 1D causal modeling.

Following the success of causal language modeling (e.g., GPT-series [52, 53, 8]), some studies [10, 17]
have explored causal modeling in the vision domain. These efforts primarily focus on auto-regressive
visual pre-training by adding a causal attention mask to standard Transformers [15]. Despite numerous
attempts, the gap between 1D causal and 2D non-causal vision models remains unbridged. As shown
in Sec. 5, many 1D causal vision models, such as State Space Models [61, 21] and causal ViTs [15],
perform inferiorly compared to their modified 2D non-causal counterparts.
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Figure 1: Visualizations of (a) Attention Map and (b) Gradient Map of different models, including
Non-causal ViT, Causal ViT, Causal Mamba and our De-focus Attention Network (Mamba-based).
The results are from the 11th layer of ViT (12 in total) and 22nd layer of Mamba (24 in total). (a) The
approximated attention maps of all image tokens: The row and column axes represent the query and
key token index respectively. Brighter color indicates larger attention values. (b) The gradient maps
of each image token input after back-propagation: Redder colors indicate larger gradient norms. See
Appendix A for more visualizations on different layers.

In this paper, we identify an "over-focus" issue in existing 1D causal vision models. Fig. 1 visualizes
the attention and gradient maps of several ImageNet-trained networks, including 2D non-causal ViT,
1D causal ViT, and 1D causal Mamba. The results show that in 1D causal vision models, the attention
patterns are overly concentrated on a small proportion of visual tokens, especially in the deeper
network layers close to the output. This phenomenon hinders the model from extracting diverse
visual features during the forward calculation and obtaining effective gradients during the backward
propagation. We refer to this phenomenon as the "over-focus" issue in 1D causal vision models.

To address the issue, a "de-focus attention" strategy is introduced. The core idea is to guide the
network to attend to a broader range of tokens. First, learnable bandpass filters are introduced to
filter different sets of token information, and then combine their attention patterns. This ensures that
even if over-focusing occurs, the attention pattern remains diverse due to the varying constraints
of each set. Second, optimization strategies are improved. A large drop path rate is employed to
encourage the network to attend to more tokens within one layer, rather than relying on depth to
get large receptive fields. For tasks requiring global understanding (e.g., image classification), an
auxiliary loss is applied to the globally pooled features to enhance the effective gradients for all
tokens in the sequence.

Extensive experiments demonstrate the effectiveness of our De-focus Attention Networks for 1D
causal visual representation learning. It achieves comparable or even superior performance to 2D
non-causal ViTs across various tasks, including image classification, object detection, and image-text
retrieval. Our method has been validated on both ViTs and Mambas. Our contributions can be
summarized as follows:

• We identify the over-focus issue in 1D causal visual modeling, where the model overly focuses on
a small proportion of visual tokens in the deeper layers of the network.

• To address this issue, we propose a "de-focus attention" strategy. This involves integrating
learnable bandpass filters into the existing attention operators to achieve diverse attention patterns.
Additionally, we introduce a large drop path probability and an auxiliary loss on average pooled
features during training to enhance network optimization.

• Our De-focus Attention Networks have demonstrated that 1D causal visual representation can
achieve performance equivalent to 2D non-causal representation in tasks requiring global percep-
tion, dense prediction and multi-modal understanding tasks.
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2 Related Work

State Space Models (SSMs) are intrinsically causal models, originated from the classic Kalman
filter[31]. SSMs describe the behavior of continuous-dynamic systems, enabling parallel training
and linear complexity inference. [24] proposed a Linear State Space Layer, merging the strengths of
continuous-time models, RNNs and CNNs. HIPPO [22] introduced methods to facilitate continuous-
time online memorization. Building on these foundations, Structured SSMs (e.g., S4 [23], Diagonal
State Spaces (DSS) [25], S5 [58]), Recurrent SSMs (e.g., RWKV [49], LRU [45]) and Gated SSMs
(e.g., GSS[42], Mega[41]) further expand the SSMs landscape. Notably, Mamba [21] excels in
long-sequence modeling with its selective scan operator for information filtering and hardware-aware
algorithms for efficient storage of intermediate results. As SSMs have drawn more and more attention
recently, they also have extensive applications in domains that need long sequences processing such as
medical [44, 6], video [34], tabular domain [2] and audio/speech [20, 30]. These successes achieved
by SSMs prompt us to explore their application in visual modeling within this causal framework.

2D Non-Causal Visual Modeling are dominant in vision domains. Convolutional Neural Networks
(CNNs), operating in a 2D sliding-window manner [33] with inductive biases such as translation
equivariance and locality, have demonstrated remarkable adaptability [32, 57, 62, 71, 28, 27, 63].
Vision Transformers (ViTs) [15] utilize a non-causal self-attention mechanism, enabling global
receptive fields. Subsequent improvements focus on enhancing locality[39], refining self-attention
mechanisms[74, 4], and introducing novel architectural designs [69, 70, 46, 26], while maintaining
non-causality. Recent advances in State Space Models (SSMs) have inspired new vision backbone
networks, such as VMamba [38], Vision Mamba [75], and Vision-RWKV [16]. Although SSMs are
inherently causal, these works incorporate non-causal adjustments to enhance vision performance.
VMamba introduced a four-way scanning strategy, Vision Mamba incorporated bidirectional SSMs,
and Vision-RWKV adopted bidirectional global attention and a special token shift method. These
designs of arrangement hinder the unification of vision and language modeling.

1D Causal Visual Modeling. While 1D causal modeling has primarily been used in language[7]
and speech[66], it has also been explored for visual representation. In recent years, the causal
visual modeling has been adopted in Transformer-based visual generation methods such as Image
Transformer [47] and VQGAN [18]. These models first discretize images into grids of 2D tokens,
which are then flattened for auto-regressive learning. However, their performance significantly lags
behind [48, 1]. Of particular interest, iGPT [10] also employed auto-regressive causal modeling for
pre-training, followed by linear probing or fine-tuning to achieve commendable results in various
downstream tasks, though still worse than non-causal models [14, 9]. Similarly, AIM [17] applied
causal masks to the self-attention layers, and pre-trained with an auto-regressive objective, showing
good scaling potential. Despite many attempts, the performance gap between 1D causal and 2D
non-causal vision models remains.

3 Preliminary

Transformers [67] with causal attention consist of multiple attention layers. Each attention layer com-
putes a weighted average feature from the preceding context for every input token, with aggregated
features weighted by the similarities between tokens. The attention layer is written as:

yt =
∑
s≤t

Softmax(Q⊤
t Ks)Vs, (1)

where s and t are indexes of different locations of the input sequence, Qi,Ki, Vi are projections of
input xi, and yt is the output of the attention layer.

State Space Models (SSMs) are classical latent state models widely used in various scientific fields
[44, 6, 34, 68, 50, 73]. Originally, SSMs are defined for continuous signals, mapping a 1D input
signal x(t) ∈ R to a latent state h(t) ∈ RN and computing the output y(t) ∈ R from the latent state.
To apply SSMs to discrete sequences, their discrete form is defined as

ht = Atht−1 +Ktxt, yt = Q⊤
t ht, (2)

where At ∈ RN×N , Kt ∈ RN×1, Qt ∈ RN×1 are parameters of the system. Note that we use
notations different from the original SSMs (Kt, Qt instead of Bt, Ct) for a better comparison with
Transformers above.
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SSMs can also be transformed into another formulation by expanding the recurrent process:

yt =
∑
s≤t

Q⊤
t

(
At . . . As+1

)
Ksxs. (3)

This formulation resembles the conventional attention module and explicitly reveals the relationship
between different inputs in the sequence. We use this form for further discussion.

There are multiple variants of SSMs, mainly differing in the parameterization of (At,Kt, Qt). We
introduce some well-known SSMs and discuss their differences below.

RetNet [61] and Transnormer [51] employ a fixed A and convert it into an exponential decay (defined
by λ ∈ R) with a relative positional embedding (defined by θ ∈ RN ):

yt =
∑
s≤t

Q⊤
t eλ(t−s)︸ ︷︷ ︸

exp decay

eiθ(t−s)︸ ︷︷ ︸
relative pos embed

Ksxs. (4)

Mamba [21] and S4 [23] use zero-order hold (ZOH) rule for discretization, introducing a time-scale
parameter ∆t. The discretization rule is At = exp(∆tÂ) and Kt = (∆tÂ)−1(exp(∆tÂ)−I)·∆tK̂t,
where Â and K̂t are learnable parameters. S4 uses data-independent parameters, while Mamba
computes these parameters based on inputs. The formulation can be written as:

yt =
∑
s≤t

Q⊤
t exp

(
Â(∆s+1 + · · ·+∆t)

)︸ ︷︷ ︸
learnable exponential decay

Ksxs. (5)

4 Method

This section introduces our De-focus Attention Networks for 1D causal visual representation learn-
ing. Sec. 4.1 elucidates the main components of De-focus Attention as Learnable Bandpass Filter,
while Sec. 4.2 further discusses two training strategies adopted in De-focus Network. The overall
architecture of our model is presented in Fig. 2.

4.1 De-focus Attention with Learnable Bandpass Filter

To de-focus on a few salient tokens and enhance the extraction of diverse features from images,
learnable bandpass filters are incorporated to first adaptively filter diverse information from the input
and their attention patterns are then combined together. Due to the varying contents from different
filters, the attention can still be diverse even if the over-focus issue happens.

These bandpass filters can be implemented through exponential spatial decay and relative position
embedding similar to those in RoPE [59] and xPos [60], both of which are further made learnable.
Our results demonstrate that these factors are crucial for the model to learn diverse attention patterns.

To show how spatial decay and relative position embeddings work as a bandpass filter, consider a
simplified version of 1D causal attention equipped with them:

y(t) =

∫
s≤t

eλ(t−s)eiθ(t−s)x(s)ds, (6)

where x(s) is the input signal at time s. eλ(t−s) (λ < 0) represents the simplest version of exponential
spatial decay, which is also used by RetNet [61] and Transnormer [51]. eiθ(t−s) is the relative position
embedding proposed by RoPE [59] and xPos [60]. Here, the continuous time domain is used to
facilitate derivation without losing generality.

The above equation implies a time domain convolution between eλ(t−s)eiθ(t−s) and x(s). By
transforming Eq. (6) into the frequency domain and using x̂(ω), ŷ(ω) to represent Fourier transform
of corresponding x(s), y(t), the frequency domain expression becomes:

ŷ(ω) =
1

−λ+ i(ω − θ)
x̂(ω), ∥ŷ(ω)∥ =

1

|λ|
1√

1 + (ω−θ
λ )2

∥x̂(ω)∥. (7)

This equation indicates that Eq. (6) is actually a bandpass filter, where θ is its center frequency and λ
controls its passband width. Eq. (7) presents some interesting properties of 1D causal modeling:

4



1. If there is no spatial decay or relative position embedding (e.g., Transformers without Softmax),
Eq. (6) will degenerate to a summation of the inputs, losing the ability to filter spatial information;

2. If there is no relative position embedding (e.g., Mamba), 1D causal attention will perform low-pass
frequency filtering, causing the query to miss the full information of features and resulting in
information loss;

3. If only relative position embedding is used, it will degenerate to specific frequency selecting, which
may also result in information loss;

4. If both spatial decay and relative position embedding are used (suggested), 1D causal attention
will act as a bandpass filter. For a given query, when different components of the feature vector
use different center frequencies (i.e., different θ) and passbands width (i.e., different λ), a more
diverse range of information will be gathered. Due to the diverse frequency passbands, even if the
over-focus issue occurs, the attention remains diverse across different components of the feature
vector.

To fully leverage the bandpass filtering mechanism, a learnable one is preferable. Experiments
demonstrate that performance worsens when values are fixed or not well set.

Our De-focus Attention can be incorporated into different architectures. Below, examples of its
implementation in causal ViT and Mamba are presented.

De-focus Causal ViT. ViT has additional attention activation (i.e., Softmax) compared with SSMs.
Learnable exponential spatial decay and learnable relative position embeddings are appended before
applying the attention activation, following the common implementation of RoPE, as shown below:

yt =
∑
s≤t

Softmax
(
Q⊤

t eλ(t−s)︸ ︷︷ ︸
learnable decay

eiθ(t−s)︸ ︷︷ ︸
learnable RoPE

Ks

)
xs, (8)

where the terms of eλ and eiθ function as the learnable bandpass filter.

De-focus Mamba. Since Mamba already has learnable and data-dependent exponential spatial decay,
only attachment of learnable relative position embeddings to it is necessary:

yt =
∑
s≤t

Q⊤
t exp

(
Â(∆s+1 + · · ·+∆t)

)︸ ︷︷ ︸
learnable exponential decay

eiθ(t−s)︸ ︷︷ ︸
learnable RoPE

Ksxs, (9)

where the terms of Â∆ and eiθ function as the learnable bandpass filter.

4.2 De-focus Attention in Network Optimization

During network training, performance of 1D causal models can be further enhanced with improved
optimization strategies. Specifically, using a large drop path rate with a linear schedule helps the
model attend to more tokens in each layer. Additionally, applying an auxiliary loss to the global
average feature mitigates the under-learning of features in deeper layers. The effects of these training
strategies are illustrated in Fig. 3.

Large Drop Path Rate with Linear Schedule. Two ways for the final prediction to access infor-
mation from previous inputs are observed: 1) Network Depth: Progressively looking forward a few
tokens in each layer until reaching the earliest tokens; 2) Intra-Layer Attention: Using the attention
mechanism within the same layer to directly capture information from more distant tokens.

Our goal is for each layer to fully utilize the existing attention mechanism to capture more and further
information in one layer. Therefore, a large drop path rate (up to 0.7) is employed to encourage the
network to rely less on depth and rely more on training the attention mechanism in each layer. Since a
large drop path rate may hinder the model when only a few features are learned, i.e., at the beginning
of training, a linear schedule that gradually increase the drop path rate is followed.

Fig. 3 demonstrates the effectiveness of this strategy, indicating that without large drop path strategies,
the network tends to prefer to see less tokens in one layer and rely on network depth to increase the
receptive field.

Auxiliary Loss for Image Classification. To address over-focus issue in backward gradients, an
auxiliary loss is proposed to enrich the gradients variety and aid in the representation learning of
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Figure 2: Architecture of our De-focus Attention Network. Left: Detailed architecture of De-focus
Attention Block: The input tokens are projected to Q,K, and other parameters required by certain
causal attention layer (e.g. Transformer or Mamba). ∆ is data-dependent in De-focus Mamba, while
is set to 1 in De-focus ViT. Learnable decay and learnable relative position embeddings form a
learnable bandpass filter and are calculated before being fed into the causal attention layer. Parameter
λ in De-focus ViT corresponds to A in this figure. Right: Overall architecture of De-focus Attention
Network: Drop paths are incorporated after each De-focus Attention Block. All output image tokens
are passed through Average Pooling and a fully connected layer to produce the auxiliary loss.

unnoticed tokens. The final representations of all image tokens (excluding the final <CLS> token)
are averaged and fed into an additional linear layer. The auxiliary loss function is defined as the
cross-entropy loss between the output of the additional linear layer and the ground truth label. This
approach helps enrich the backpropagated gradients, thereby addressing the over-focus issue.

As shown in Fig. 3, after applying the auxiliary loss strategy, the backward gradients are significantly
improved in its density, globality, and diversity in deeper layers.

4.3 Overall Architecture.

The overall architecture of our De-focus Attention Networks is illustrated in Fig. 2. The following
explains how learnable bandpass filters and optimization strategies are integrated into existing models.

De-focus Attention Blocks. Each block consists of three main parts, which are a projection layer,
a learnable bandpass filter, and a causal attention layer. The input tokens are first projected into a
query Q, a key K. ∆ is data-dependent in De-focus Mamba, while is set to 1 in De-focus ViT. Other
projections may be required by the causal attention layer. The block has learnable decay parameters
A (corresponds to λ in De-focus ViT) and learnable relative position embedding parameters θ. Given
these learnable parameters, exponential spatial decay and relative position embedding are computed
as illustrated in Eq. (8) and Eq. (9). Q,K and the exponential spatial decay term are integrated
into the causal attention layer. Thus, the outputs of a De-focus Attention block aggregate the input
information filtered by a series of learnable bandpass filters.

De-focus Attention Networks. Given an image, our De-focus Attention Networks first transform it
into a sequence of image tokens and append an extra <CLS> token to the sequence end. The whole
network then stacks N De-focus Attention blocks to process the input sequence. Each block is
equipped a drop path rate, which increases linearly during training. In the final layer, the <CLS> token
is fed through a linear layer and used to compute a cross-entropy loss with class labels. All image
tokens, excluding the final <CLS> token, are averaged and passed through a separate linear layer. An
auxiliary cross-entropy loss is applied to this projected averaged feature. The two losses are then
added with equal weights to form the final loss function.
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Table 1: Comparison of causal and non-causal attentions for image classification on ImageNet-1K.

Method Causal Size #Param ImageNet
Top-1 Acc

DeiT-Small [64] 2242 22.1M 79.9
Mamba-ND-Small [35] 2242 24M 79.4
Vision Mamba-Small [75] 2242 26M 80.5
Vision RWKV-Small [16] 2242 23.8M 80.1
DeiT-Small ✓ 2242 22.1M 78.6
Mamba-Small [21] ✓ 2242 24.7M 78.7
Mamba-ND-Small [35] ✓ 2242 24M 76.4
De-focus ViT-Small ✓ 2242 22.4M 79.6
De-focus Mamba-Small ✓ 2242 25.8M 80.3

DeiT-Base [64] 2242 86.6M 81.8
S4ND-ViT-B [44] 2242 88.8M 80.4
Vision RWKV-Base [16] 2242 93.7M 82.0
De-focus ViT-Base 2242 87.4M 81.8
DeiT-Base ✓ 2242 86.6M 80.1
RetNet-Base [61] ✓ 2242 93.6M 79.0
Mamba-Base [21] ✓ 2242 91.9M 80.5
De-focus ViT-Base ✓ 2242 87.4M 81.5
De-focus RetNet-Base ✓ 2242 94.1M 81.7
De-focus Mamba-Base ✓ 2242 94.1M 82.0

ViT-Large [15] 3842 309.5M 85.2
Vision RWKV-Large [16] 3842 334.9M 86.0
De-focus Mamba-Large ✓ 3842 327.4M 85.4

5 Experiments

5.1 Experiment Setup

Implementation Details. The De-focus Attention mechanisms are integrated into Mamba, RetNet,
and ViT, referred to as De-focus Mamba, De-focus RetNet, and De-focus ViT, respectively. To
improve optimization stability, λ = −exp(λ̂) is used and λ̂ is the parameter to be optimized. In
De-focus ViT and De-focus RetNet, different λs are assigned to different heads. Mamba inherently
implements data-dependent decay Â∆, where Â is a learnable parameter and ∆ is a projection from
the input. The drop path rate increases following a linear schedule from 0.1 to 0.7.

Image Classification. ImageNet-1k [13] is used, which contains 1.28M images for training and
50K images for validation. The training recipe of DeiT [64] is followed. The small- and base-size
models are trained on ImageNet for 300 epochs. The large-size model is firstly pre-trained on
ImageNet-21k [55] for 90 epochs, and then fine-tuned on ImageNet-1k for 20 epochs. The AdamW
optimizer [40] with a peak learning rate of 5e-4, a total batch size of 1024, a momentum of 0.9, and a
weight decay of 0.05 are used. These models are trained on 32 Nvidia 80G A100 GPUs for 30 hours.

Object Detection. The MS-COCO dataset [36] and the DINO detection framework [72] are used,
with different networks serving as the backbones. The De-focus Attention Networks implemented
here are pre-trained on ImageNet-1K dataset for 300 epochs. These models are trained on 16 Nvidia
80G A100 GPUs for 20 hours.

The entire network is fine-tuned using both a 1× schedule (12 epochs) and a 3× schedule (36 epochs).
The base learning rate is set to 2e-4, with a multi-step learning rate strategy employed to decrease it
by a factor of ten after 11 epochs (1× schedule) or after 27 and 33 epochs (3× schedule). The weight
decay and the total batch size is set to 1e-4 and 16, respectively.

Contrastive Language-Image Pre-training (CLIP). The Laion-400M dataset [56] is used for
pre-training. Strategy introduced in OpenCLIP [12] is followed to train the model for 32 epochs. The
zero-shot classification performance is evaluated on ImageNet-1K. The AdamW optimizer [40] is
employed with a peak learning rate of 5e-4, a total batch size of 32768, a momentum of 0.9, and a
weight decay of 0.1. These models are trained on 128 Nvidia 80G A100 GPUs for 128 hours.
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Table 2: Results of object detection on the COCO [36] dataset with DINO [72] detector.

Method Causal #Param Epochs APbox APbox
50 APbox

75

ResNet-50[72] 47M 12 49.0 66.6 53.5
DeiT-Base 110M 12 49.1 69.9 52.7
De-focus ViT-Base ✓ 113M 12 48.9 67.1 53.3
De-focus Mamba-Base ✓ 115M 12 50.8 68.9 55.2

ResNet-50[72] 47M 36 50.9 69.0 55.3
DeiT-Base 110M 36 52.3 72.5 56.7
De-focus Mamba-Base ✓ 115M 36 53.5 71.9 58.3

5.2 Main Results

Image Classification. The classification results are presented in Table 1. Evaluation of different types
of De-focus Networks at various scales is conducted, with comparisons to both causal and non-causal
models. The results show that previous causal models have inferior performance. In contrast, our
model defies this trend, significantly outperforming other 1D causal models and achieving comparable
performance to 2D non-causal models.

Notably, the De-focus Attention mechanism works well across various networks, e.g., Causal ViT,
Mamba, and RetNet. And as the model size increases from small to large, it remains on par with the
2D non-causal ViTs.

Object Detection. As shown in Table 2, De-focus Mamba remarkably outperforms non-causal
models such as DeiT and ResNet-50. This trend of superior performance persists even with an
increasing number of training epochs. Additionally, excellent performance on the APbox

75 metric may
suggest that De-focus Attention Networks are more effective at fine-grained localization.

Table 3: Results on zero-shot image classification of CLIP pre-trained models.

Method Causal #Param ImageNet Zero-shot
Top-1 Acc

OpenAI CLIP-Base/32 [54] 151.3M 63.3
OpenCLIP-Base/32 [12] 151.3M 62.9
De-focus Mamba-Base/32 ✓ 161.9M 62.7

Table 4: Results on image-text retrieval on the COCO [36] dataset of CLIP pre-trained models.

Method Causal #Param Image Retrieval Text Retrieval
Recall@1 Recall@5 Recall@10 Recall@1 Recall@5 Recall@10

OpenAI CLIP-Base/32 [54] 151.3M 30.4 55.0 65.7 49.2 73.4 82.4
OpenCLIP-Base/32 [12] 151.3M 35.3 61.0 71.8 52.5 77.0 84.9
De-focus Mamba-Base/32 ✓ 161.9M 34.6 60.3 71.2 51.7 76.3 84.8

Image-text CLIP Pre-training. The model is pre-trained using OpenCLIP to demonstrate its
outstanding performance on large-scale image-text training. As shown in Table 3, the model performs
comparably to 2D non-causal models. We also report cross-modal retrieval results in Table 4, which
further validate that the learned causal feature can achieve similar results with non-causal features.
These results indicate that the model has a similar scaling law to non-causal ViTs on larger dataset,
demonstrating its robustness and scalability across various of tasks and datasets. Additionally, this
experiment demonstrates the potential of 1D causal modeling for unified vision-language modeling.

5.3 Ablation Study

Learnable Bandpass Filter. As discussed in Sec. 4.1, exponential spatial decay and relative
position embedding (RoPE) together act as a bandpass filter. Tab. 5(a) shows the effects of different
configurations. When decay is not used, the performance significantly deteriorates. Employing
learnable decay leads to an improvement of approximately 0.5% compared to fixed decay, while
learnable RoPE can further enhance performance by 0.8%. In contrast, the data-dependent decay
used in Mamba only results in a marginal improvement of 0.1%. These results indicate the integration
of learnable decay and RoPE are necessary for good performance.
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Table 5: Ablation studies of various design choices of De-focus Mamba-Base model on ImageNet-
1k [13]. The default settings are set as (a) dpr = 0.4, with auxiliary loss, (b) with auxiliary loss, data
dependent decay and learnable RoPE, (c) dpr = 0.4, with data dependent decay and learnable RoPE.
“dpr” is drop path rate. The text in (c) denotes the input feature for the loss function.

(a) Ablation on Bandpass Filter

Decay RoPE Acc

w/o w/o 75.2
w/o fixed 75.3
fixed w/o 79.9
fixed fixed 80.0
fixed learnable 80.6
learnable w/o 80.4
learnable learnable 81.2
data dependent learnable 81.3

(b) Ablation on Drop Path.

Drop Path Acc

0.1 79.6
0.4 81.6
0.7 80.9
linear(0.1, 0.7) 82.0

(c) Ablation on Loss Function

Loss Aux Loss Acc

<CLS> – 81.6
avg – 77.2
<CLS> + avg – 79.7
<CLS> avg 82.0

(b) Reception field w/ Scheduled DropPath (linear(0.1, 0.7))

(a) Reception field w/o Scheduled DropPath (constant 0.1) (c) Gradient map w/o Auxiliary Loss

(d) Gradient map w/ Auxiliary Loss

Figure 3: Qualitative ablation results of using scheduled drop path and auxiliary loss. (a)-(b):
The receptive fields of our model trained with and without scheduled drop path. The scheduled drop
path strategy enables a larger receptive field, facilitating the capture of denser semantic details. (c)-(d):
The backward gradient maps of our model trained with and without auxiliary loss. When trained with
the auxiliary loss, the model can attend to denser and more diverse image tokens, particularly those at
the front of the sequence.

Drop Path. Tab. 5(b) shows the performance of different drop path strategies, with rates ranging
from 0.1 to 0.7. The best performance is achieved with a scheduled drop path rate linear(0.1, 0.7).
Fig. 3(a)-(b) visualize the receptive field of the 22nd layer of the network. The results demonstrate
that using a large and scheduled drop path rate strategy allows for larger receptive field and helps
capture more dense semantic details.

Auxiliary Loss. Tab. 5(c) compares various implementations of the loss function, which are generated
from <CLS> token only, average token only, concatenation of <CLS> token and average token, and
<CLS> token with auxiliary average token. The results reveal that the average pooled feature alone
performs poorly in training the network. It may result from the fact that previous tokens often have
incomplete information. However, it serves as an effective auxiliary component, thereby enhancing
the network training. The visualization of gradient maps at the 22nd layer of the network are shown
in Fig. 3(c)-(d). When training with auxiliary loss, the density, globality, and diversity of backward
gradients are significantly improved.

6 Conclusion

We propose De-focus Attention Networks to enhance the performance of causal vision models by
addressing the issue of over-focus in them. The over-focus phenomenon, i.e. attention pattern is
overly focused on a small proportion of visual tokens, is observed both during the forward calculation
and backpropagation. These De-focus models incorporate a decay mechanism and relative position
embeddings, functioning together as diverse and learnable bandpass filters to introduce various
attention patterns. The models are trained with a large scheduled drop path rate and auxiliary loss to
enhance the density, globality, and diversity of backward gradients. A series of De-focus models based
on Mamba, RetNet, and ViT significantly outperform other causal models and achieve comparable
or even superior performance to state-of-the-art non-causal models. By implementing the de-focus
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strategy, our work bridges the performance gap between causal and non-causal vision models, paving
the way for the development of state-of-the-art unified vision-language models.

Limitations. While the De-focus Attention has achieved very promising results, some differences
between causal and non-causal vision models still need further exploration. For example, compared
with non-causal models, De-focus Mamba-Base excels at APbox

75 metric but is inferior at APbox
50

metric on object detection. It is worth studying how causal models perform dense prediction tasks.
Furthermore, currently we only explore 1D causal modeling in purely visual settings, while exploring
unified 1D causal modeling of vision and language remains to be verified.

Broader Impacts. De-focus Attention Networks demonstrate the potential of building unified
multi-modal models, so they may also cause similar problems as previous works. For instance, it
may also require huge computational resources, contain dataset bias, and raise ethical concerns when
being adopted for training large multi-modal foundation models.

Acknowledgements. The work is partially supported by the National Natural Science Foundation of
China under Grants 62321005.
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A More Experiment Results

A.1 Visualization

This section provides visualization results of attention maps and gradient maps from more different
layers of different models, as shown in Fig. 4, Fig. 5 and Fig. 6. Compared to other causal models,
our de-focus attention network has denser attention maps and diverse gradient maps across all layers.

Non-causal 
ViT

Causal 
ViT

Causal 
Mamba

De-focus
Attention Network

Non-causal 
ViT

Causal 
ViT

Causal 
Mamba

De-focus
Attention Network

(a) Attention Map (b) Gradient Map

Figure 4: Visualizations of Attention Map (a) and Gradient Map (b) of different models, including
non-causal ViT, causal ViT, Causal Mamba and our De-focus Attention Network (Mamba-based).
The results are from the 3rd layer of ViT (12 in total) and 6th layer of Mamba (24 in total). (a) The
approximated attention maps of all image tokens: The row and column axis represent the query and
key token index respectively. Brighter color indicates larger attention values. (b) The gradient maps
of each image token input after back-propagation: Redder colors indicate larger gradient norms.

A.2 Resolution Transfer

Table 6: Resolution transfer results on ImageNet dataset.
Resolution 224 Resolution 336

DeiT-Base 81.8 81.6
De-focus Mamba-Base 82.0 81.6

Our model is trained on images with 224 resolution. We test the transfer performance under resolution
336 and report the results in Table 6. The results demonstrate that our De-focus Networks can also
transfer to different resolutions effectively.

B More Implementation Details

B.1 Visualization

This subsection discusses the detailed implementation of different visualization methods adopted
in our paper, including receptive fields (Fig. 3(a)-(b)), attention maps (Fig. 1(a), Fig. 4(a), Fig. 5(a),
Fig. 6(a)), and gradient maps (Fig. 1(b), Fig. 3(c)-(d), Fig. 4(b), Fig. 5(b), Fig. 6(b)).
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Figure 5: Visualizations of Attention Map (a) and Gradient Map (b) of different models, including
non-causal ViT, causal ViT, Causal Mamba and our De-focus Attention Network (Mamba-based).
The results are from the 6th layer of ViT (12 in total) and 12th layer of Mamba (24 in total). (a) The
approximated attention maps of all image tokens: The row and column axis represent the query and
key token index respectively. Brighter color indicates larger attention values. (b) The gradient maps
of each image token input after back-propagation: Redder colors indicate larger gradient norms.
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Figure 6: Visualizations of Attention Map (a) and Gradient Map (b) of different models, including
non-causal ViT, causal ViT, Causal Mamba and our De-focus Attention Network (Mamba-based).
The results are from the 9th layer of ViT (12 in total) and 18th layer of Mamba (24 in total). (a) The
approximated attention maps of all image tokens: The row and column axis represent the query and
key token index respectively. Brighter color indicates larger attention values. (b) The gradient maps
of each image token input after back-propagation: Redder colors indicate larger gradient norms.
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Receptive fields of a certain layer are defined as the gradient norms of all image tokens on the input
side. The gradients here are obtained by back-propagating from the L2-norm of the <CLS> token
feature on output side of the same layer. Redder colors indicate larger receptive scores.

Attention maps. Similar to receptive fields, the approximated attention maps in our paper are also
the gradient norms of all input image tokens (as ‘key’). However, different from receptive fields,
these gradients come from back-propagation of the feature norm across all image tokens (as ‘query’)
on the same layer’s output side. Brighter colors indicate larger attention weights.

Gradient maps. Different from receptive fields, the gradient maps of a certain layer are calculated
by directly back-propagating from the final training loss to this layer’s input image tokens. Then
the L2-norm of each image token’s gradient is used for plotting the gradient maps. Redder colors
indicate larger gradient norms.

By default, the values of receptive fields, attention maps, and gradient maps are divided by the
maximum value among all input image tokens for normalization. For attention maps, the diagonal
values are set as 0 manually to eliminate the influence induced by residual connection. All image
samples are randomly selected.

B.2 Image Classification

The hyper-parameters for training on ImageNet-1k [13] from scratch are provided in Tab. 7.

The hyper-parameters for pre-training on ImageNet-21k [55] are provided in Tab. 9. The hyper-
parameters for finetuning on ImageNet-1k [13] after pre-training are provided in Tab. 10.

B.3 Object Detection

The hyper-parameters for training on COCO object detection [36] are provided in Tab. 8.

Since an ImageNet-1K pre-trained model is used, to reduce the discrepancy between the resolutions
of images in the COCO dataset and those in the ImageNet-1K dataset, several moditifications are
made. Spatial decay parameters (e.g., ∆) and position embedding indices are initially scaled down by
factors of approximately 4 and 20 (which are COCO resolution to ImageNet-1K resolution ratios),
respectively. The order of image tokens is rearranged as shown in Fig.7, with each 224× 224 section
of the image first being spanned, followed by concatenation of these spanned sequences in a z-scan
order.

B.4 Contrastive Language-Image Pre-training (CLIP)

The hyper-parameters for Contrastive Language-Image Pre-training on Laion-400m [56] are provided
in Tab. 11.

C Licenses of Datasets

ImageNet-1k [13] is subject to the ImageNet terms of use [65].

COCO [36] is subject to the Flickr terms of use [19].

Laion-400m [56] is subject to the Laion-400m LICENSE of use [43].
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Image Patches divided into Sections Sections Spanned Independently

Sections Concatenated

Figure 7: Rearranging Procedure in Object Detection. This illustration presents a image divided
into several 2x2 sections.

Table 7: Hyper-parameters for training from scratch on ImageNet-1k.
Hyper-parameters Value

Input resolution 224× 224
Training epochs 300
Warmup epochs 20
Batch size 1024
Optimizer AdamW
Peak learning rate 1.0× 10−3

Learning rate schedule cosine
Weight decay 0.05
AdamW β (0.9, 0.999)

Augmentation
Color jitter 0.4
Rand augment 9/0.5
Erasing prob. 0.25
Mixup prob. 0.8
Cutmix prob. 1.0
Label smoothing 0.1
repeated augmentation True
Drop path rate linear(0.1, 0.7)

18



Table 8: Hyper-parameters for COCO object detection.
Hyper-parameters Value

Input resolution 1024× 1024
Finetuning epochs 12 / 36
Batch size 16
Optimizer AdamW
Peak learning rate 2× 10−4

Learning rate schedule Step(11) / Step(27,33)
Weight decay 1× 10−4

Adam β (0.9, 0.999)

Augmentation
Random flip 0.5
Drop path rate 0.5

Table 9: Hyper-parameters for pre-training on ImageNet-21k.
Hyper-parameters Value

Input resolution 192× 192
Training epochs 90
Warmup epochs 5
Batch size 4096
Optimizer AdamW
Peak learning rate 1.0× 10−3

Learning rate schedule cosine
Weight decay 0.05
AdamW β (0.9, 0.999)

Augmentation
Mixup prob. 0.8
Cutmix prob. 1.0
Label smoothing 0.1
Drop path rate linear(0.1, 0.5)

Table 10: Hyper-parameters for finetuning on ImageNet-1k.
Hyper-parameters Value

Input resolution 384× 384
Finetuning epochs 20
Warmup epochs 2
Batch size 1024
Optimizer AdamW
Peak learning rate 4× 10−5

Learning rate schedule cosine
Weight decay 0.05
Adam β (0.9, 0.999)

Augmentation
Mixup prob. 0.8
Cutmix prob. 1.0
Label smoothing 0.1
Drop path rate linear(0.1, 0.5)

Table 11: Hyper-parameters for contrastive vision-language pre-training on Laion-400m.
Hyper-parameters Value

Input resolution 224× 224
Training epochs 32
Warmup epochs 20000 iters
Batch size 32768
Optimizer AdamW
Peak learning rate 5× 10−4

Learning rate schedule cosine
Weight decay 0.1
AdamW β (0.9, 0.98)
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims are clearly stated in the abstract and introduction, including
contributions, scope and corresponding results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Sec. 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All information for reproduction are provided, which can be found in Sec. 5
and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We promise to release our code upon acceptance. We also provide sufficient
information for reproduction in Sec. 5 and appendix.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All details are included. Please refer to Sec. 5 and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Experiments on ImageNet and COCO are known to be stable, with an error of
less than 0.2. Calculating error bars on LAION400M is too computationally expensive.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the information about compute resources in Sec. 5 and appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have checked the NeurIPS Code of Ethics carefully and made sure that we
follow all of them.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The broader impacts are discussed in Sec. 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: To the best of our knowledge, all license of used assets are cited and respected
in this paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Documentation will be provided when releasing the code and models.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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