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ABSTRACT

Large Language Models (LLMs) have been observed to process non-human-
readable text sequences, such as jailbreak prompts, often viewed as a bug for
aligned LLMs. In this work, we present a systematic investigation challenging this
perception, demonstrating that unnatural languages - strings that appear incom-
prehensible to humans but maintain semantic meanings for LLMs - contain latent
features usable by models. Notably, unnatural languages possess latent features that
can be generalized across different models and tasks during inference. Furthermore,
models fine-tuned on unnatural versions of instruction datasets perform on-par with
those trained on natural language, achieving 49.71 win rates in Length-controlled
AlpacaEval 2.0 in average across various base models. In addition, through com-
prehensive analysis, we demonstrate that LLMs process unnatural languages by
filtering noise and inferring contextual meaning from filtered words.

1 INTRODUCTION

Large Language Models (LLMs) (OpenAI, 2023; Touvron et al., 2023; Dubey et al., 2024; anthropic,
2024) have shown remarkable capabilities in understanding and generating human-readable text,
achieving impressive performance across tasks, spanning from question answering (Bisk et al., 2020;
Ni et al., 2024) and mathematical reasoning Cobbe et al. (2021); Hendrycks et al. (2021); Gao et al.
(2024) to open-ended dialogue (Li et al., 2023). Such abilities are largely attributed to targeted
alignment training (Wei et al., 2021; Ouyang et al., 2022), which post-train models to better follow
instructions and adhere to preferred behaviors.

Despite being specifically tuned, non human-readable data sometimes can unexpectedly influence
model behavior. In computer vision, Ilyas et al. (2019); Nguyen et al. (2015) find that seemingly
unrecognizable images could be leveraged to train reasonable good image classification models. This
phenomenon extends to natural language processing, where Zou et al. (2023) demonstrate that LLMs
could also be prompted with an unreadable suffix to generate objectionable outputs, even though
LLMs are well-trained for not doing so. Besides, Pfau et al. (2024) discovers that by appending
non human-readable filler tokens to the input, LLMs could solve algorithmic tasks more accurately.
However, regarding LLMs’ surprising behaviors in response to non human-readable inputs, there
lacks systematic studies exploring the properties and applications of such non human-readable strings
and interpreting the underlying mechanisms in LLMs. This raises a fundamental question: whether
these non human-readable strings are truly devoid of meaning or contain latent features usable by
models?

To answer the above research questions, we study a phenomenon named unnatural languages -
strings that deviate from natural language syntax and appear extremely noisy to human readers, yet
remain understandable to LLMs. Specifically, as illustrated in Figure 1(a), we propose an approach
to search for a semantically equivalent but syntactically unnatural version of the natural string, where
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Figure 1: (a): Unnatural languages searching method. (b): We construct question-answering tasks
using unnatural contexts and discover that unnatural languages can be directly transferred across a
broader range of tasks and understood by diverse LLMs. (c): LLMs fine-tuned on unnatural versions
of instruction datasets perform on-par with those trained on natural language.

semantic equivalence is established through their ability to be translated back to natural form via
models performing translation inference. For the searching process, we employ a gradient-based
stochastic sampling procedure to obtain a set of candidate unnatural strings; evaluate their probability
of being translated back to the corresponding natural versions across multiple models; and select the
unnatural candidate that yields the highest probability. We repeat the process until either convergence
occurs or a maximum number of iterations is reached, with the final converged string representing
the semantically equivalent unnatural string.

Table 1: Concrete examples of natural contexts’ unnatu-
ral version in SycContextQA and SimGSM8K.

Natural Context Unnatural Version
The stock price of Gold-
Mine Inc. increased by
20% last week.

(alt+eqn={\\>; {};The\\,\\stock
baaelkrie@nuier priceungeureau
got sich last ’#GM;;heidisation
Inc. weekestig %}20% durch’),png
encrypt render \"OK Gold-
Mine.",preventDefault

Carly collected 7 starfish
with 5 arms each and one
seastar with 14 arms.

|Each and : algebra dinner! abso-
lutely 7 do): shortly . seastar col-
lectedthe ‘’ kW)$, one !5 ! 14‘
starfish with sic}}_{\label Carly}
arms. Onehorailey constructed
WriteStatus($$\Toggle Zwezeich-
nung OK

We first explore whether these unnatural
languages possess latent features that can
be generalized across different models and
tasks during inference. To investigate this,
as shown in Figure 1(b), we construct
several context-based question-answering
datasets, where the context is unnatural ob-
tained by the searching approach while nat-
ural questions related to the context are pro-
vided. Specifically, to prevent models from
relying on common-sense memory when
answering questions without context, we
develop SynContextQA, a synthetic dataset
generated by another LLM, containing con-
texts about non-existent entities paired with
corresponding questions. We then trans-
formed natural contexts into unnatural ver-
sions using the unnatural language searching method while preserving the original questions. Addi-
tionally, to ensure models do not simply extract keywords from unnatural contexts in SynContextQA,
we create SimGSM8K, a dataset of simple questions derived from GSM8K (Cobbe et al., 2021). We
chose simple questions to minimize the impact of reasoning ability on our results and focus primarily
on unnatural language comprehension. As with SynContextQA, we transformed these contexts into
unnatural versions. Table 1 shows concrete examples of two datasets. With these datasets, we test
a large variety of LLMs, including open-source models as well as commercial models. The results
show that compared to natural context, all models can recover 82.0% of the original accuracy on
our constructed SynContextQA dataset and 61.6% on SimGSM8K, demonstrating that unnatural
languages contain latent features that enable comprehension across different scenarios.

Moreover, we explore whether these unnatural languages possess transferable latent features that can
be effectively utilized in instruction tuning to improve models’ instruction-following capabilities.
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Specifically, as shown in Figure 1(c), we employ a high-quality but small size instruction tuning
dataset LIMA (Zhou et al., 2023), and we replace the original instructions with our equivalent
unnatural versions searched using our proposed approach. We show that the models fine-tuned on it
and the original have on-par performance on prestigious benchmarks, including Length-controlled
(LC) AlpacaEval 2.0 (Li et al., 2023) and MixEval (Ni et al., 2024). Particularly, on LC AlpacaEval
2.0, the three models — Llama-3-8B (Dubey et al., 2024), Gemma-2-9B Team et al. (2024), and
Llama-3-70B (Dubey et al., 2024) — tuned on the unnatural LIMA achieves an winrate of 49.78%,
47.13%, and 52.22% against the corresponding models tuned on the natural LIMA, respectively.

These findings strongly demonstrate our key findings: unnatural languages are not bugs but features
for LLMs. In addition, we attempt to understand the mechanisms by which LLMs process such
unnatural languages. We demonstrate that LLMs process unnatural languages by effectively filtering
out irrelevant tokens. Furthermore, LLMs combine relevant tokens from unnatural languages and
infer contextual meaning in response to natural version questions.

2 UNNATURAL LANGUAGES SEARCHING METHOD

In this section, we introduce our approach for searching the unnatural version of given natural string.

Problem description. We denote a natural string as S and its equivalent unnatural version as S′.
The equivalence between them is formally defined as S ≡ LLMM (S′|t), where t represents a recon-
struction task—such as translating the unnatural sentence into natural language—and LLMM (S′|t)
denotes the output of model M given input S′ under task prompt t. Furthermore, we define the
log-probability of model M generating natural string S when given unnatural string x under task
prompt t as logPM (S|x, t). Therefore, the unnatural string searching problem can be formulated as

S′ := argmax
x∈X

logPM (S|x, t), (1)

where X represents the unnatural languages space, encompassing all possible strings of arbitrary
length. However, searching the entire unnatural space is computationally infeasible. For simplicity
and without loss of generality, we constrain x to maintain a fixed length at the token level, i.e.,
x ∈ XM , where XM ≜ {x

∣∣|tokenizeM (x)| = n, x ∈ X} and n is a predefined constant length.

Furthermore, to enhance the generalizability of the obtained unnatural languages, we employ multiple
models, denoted as M = {M1,M2, . . . ,Mk}, to collaboratively search for unnatural strings. Addi-
tionally, we introduce a set of tasks T = {t1, t2, . . . , tm} as a collaborative optimization objective.
Therefore, our goal of searching the equivalent unnatural string S′ is formulated as solving the
following optimization problem:

S′ := argmax
x∈

⋃
M∈M XM

∑
M∈M

∑
t∈T

logPM (S|x, t). (2)

Algorithm description. The optimization problem defined in Equation 2 is a discrete optimization
problem as XM is a discrete space of size |VM |n, where VM denotes the vocabulary set of the model
M . Due to the discrete nature of the problem, gradient-based optimization methods cannot be directly
applied. Furthermore, the search space is too vast for exhaustive exploration. Therefore, we propose
a sample-and-selection algorithm inspired by the optimization approaches of Shin et al. (2020); Zou
et al. (2023). Specifically, in each optimization iteration, the unnatural string x is first tokenized by
model M into x1:n. For each position, we identify the top-k most influential tokens X1:n based on
the gradient of the optimization objective of Equation 2, i.e.,

Top-k
(
∇x1:n

∑
t∈T

logPM (S|x1:n, t)
)
. (3)

We then generate B candidates {x̃(1)
1:n, x̃

(2)
1:n, · · · , x̃

(B)
1:n }, where each candidate differs from x1:n

by exactly one token, randomly sampled from X1:n. These candidates are then decoded back to
strings {x̃(1), x̃(2), · · · , x̃(B)} by model M for subsequent cross-model unification optimization.
This candidate generation process is applied across all models in M, yielding B|M | total candidates.
The candidate with the optimal loss is selected for the next iteration. This process continues until
convergence or until reaching a pre-defined number of iterations.
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Table 2: Performance comparison for different contexts across different models on SynContextQA
and SimGSM8K datasets. All answers were generated under zero-shot setting without sampling.
“Direct” refers to models used for unnatural languages searching, while “Transfer” indicates the
implementation of searched unnatural languages.

Model SynContextQA SimGSM8K
Natural Shuf-InJ Unnatural Natural Shuf-InJ Unnatural

Direct
Mistral-7B-Instruct-v0.1 0.89 0.55 0.93 0.85 0.20 0.42
Vicuna-7B-v1.5 0.96 0.40 0.86 0.63 0.12 0.20

Average 0.93 0.48 0.90 0.74 0.16 0.31

Transfer

Meta-Llama-3-8B-Instruct 0.99 0.29 0.63 0.58 0.18 0.50
Gemma-2-9B-Instruct 0.98 0.35 0.65 0.97 0.21 0.41
Meta-Llama-3-70B-Instruct 0.97 0.73 0.93 1.00 0.38 0.75
GPT-3.5-turbo 0.98 0.73 0.93 0.91 0.32 0.53
GPT-4o 0.98 0.61 0.88 0.95 0.25 0.53

Average 0.98 0.54 0.80 0.88 0.27 0.54

Figure 2: The winrate (%) against natural set on LC Alpaca 2.0 for various models. A winrate of
50% indicates on-par performance.

Implementation details. In practice, tokenized sequences of x have varying lengths across
optimization iterations due to different models employing distinct tokenizers, with no direct one-
to-one mapping between tokens and words. To maintain generalizability and in line with Zou et al.
(2023); Zhao et al. (2024), we initialize x through a combination of shuffling words in S and randomly
inserting several special characters “!”. Algorithm 1 in Appendix A1 provides a detailed illustration
of the searching algorithm. In addition, we conduct verification experiments to demonstrate that our
searched unnatural strings can be accurately translated back to their natural versions. Details are
further illustrated in Appendix A2.

3 UNNATURAL LANGUAGES CAN BE UNDERSTOOD ACROSS TASKS AND
LLMS

In this section, we investigate whether unnatural languages—generated by Algorithm 1 via recon-
struction tasks across multiple models—can be directly transferred across a broader range of tasks
and understood by diverse LLMs.

3.1 EXPERIMENT SETUP

To evaluate LLMs’ genuine understanding of unnatural languages, we design questions closely related
to unnatural contexts. We employ context-based question-answering problems where the context is
expressed in unnatural languages while maintaining questions in natural language. This approach
helps isolate the models’ understanding of unnatural languages without introducing additional
comprehension challenges.

Benchmarks. ❶ SynContextQA. We begin with a classic commonsense question-answering task,
where questions are asked in relation to given contextual knowledge. However, using existing
commonsense QA datasets presents a challenge, as LLMs may answer questions based on their pre-
trained knowledge rather than the provided context. To address this, we leverage GPT-3.5 (Achiam
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Table 3: The results of model variants instruction tuned on different types of LIMA (including natural,
unnatural, random, and empty instruction (Hewitt et al., 2024)) on MixEval (Ni et al., 2024). Each
dataset represents the subsets selected by MixEval based on the real-world data distribution. M.C.
and F.F. denote multiple-choice and free-form, respectively. Particularly, we remove the results of
subset GPQA, MBPP, WinoGrande, and HumanEval since the subsets were too small (less than ten
test cases) for consistent evaluation.

Type Dataset Llama-3-8B Gemma-2-9B Llama-3-70B
Natural Random Empty Unnatural Natural Random Empty Unnatural Natural Random Empty Unnatural

M.C

ComsenseQA 0.530 0.569 0.604 0.579 0.599 0.550 0.495 0.668 0.748 0.668 0.559 0.693
BoolQ 0.614 0.649 0.673 0.678 0.567 0.614 0.632 0.673 0.830 0.708 0.632 0.848
OpenBookQA 0.581 0.628 0.721 0.721 0.605 0.744 0.744 0.721 0.814 0.744 0.721 0.837
SIQA 0.462 0.570 0.624 0.462 0.613 0.516 0.645 0.538 0.742 0.581 0.495 0.677
HellaSwag 0.338 0.364 0.360 0.328 0.331 0.344 0.289 0.357 0.461 0.373 0.351 0.364
MMLU-Pro 0.357 0.346 0.308 0.335 0.427 0.438 0.459 0.432 0.503 0.427 0.465 0.578
AGIEval 0.331 0.359 0.340 0.352 0.370 0.314 0.407 0.349 0.566 0.423 0.426 0.543
PIQA 0.514 0.676 0.705 0.600 0.781 0.695 0.638 0.733 0.790 0.752 0.724 0.886
MMLU 0.658 0.634 0.661 0.633 0.724 0.680 0.700 0.718 0.811 0.736 0.731 0.805
ARC 0.802 0.802 0.780 0.791 0.923 0.901 0.879 0.923 0.956 0.835 0.868 0.934

Average 0.545 0.563 0.579 0.552 0.607 0.585 0.582 0.623 0.721 0.635 0.611 0.707

F.F.

TriviaQA 0.591 0.453 0.452 0.558 0.609 0.481 0.563 0.585 0.829 0.638 0.685 0.825
BBH 0.537 0.633 0.526 0.606 0.621 0.438 0.700 0.687 0.817 0.670 0.484 0.693
DROP 0.584 0.385 0.484 0.545 0.638 0.481 0.638 0.651 0.755 0.585 0.631 0.767
MATH 0.381 0.290 0.510 0.394 0.490 0.668 0.568 0.410 0.668 0.642 0.606 0.610
GSM8K 0.593 0.470 0.535 0.500 0.675 0.460 0.715 0.545 0.873 0.827 0.817 0.787

Average 0.583 0.445 0.467 0.554 0.616 0.481 0.592 0.603 0.809 0.631 0.662 0.799
Overall Average 0.557 0.499 0.516 0.547 0.605 0.526 0.582 0.605 0.760 0.627 0.631 0.748

et al., 2023) to generate knowledge about non-existing entities and their corresponding questions,
named as SynContextQA, thereby ensuring the model must derive answers from the given context
rather than rely on pre-existing information. Prompts for generation and post-processing are illustrated
in Appendix A3. We then transformed natural contexts into unnatural versions using the unnatural
languages searching method while preserving the original questions. ❷ SimGSM8K. Furthermore, to
ensure models do not simply extract keywords from unnatural contexts in SynContextQA, we test
the unnatural languages on GSM8K (Cobbe et al., 2021), a more complex task requiring reasoning
capability. As our primary objective is to assess the ability to comprehend unnatural languages, rather
than to evaluate reasoning ability, we select 100 relatively simple questions from the whole test set,
named SimGSM8K. We show a concrete example for each dataset in Table 1.

Backbone Models. We select a diverse range of LLMs, spanning from smaller open-source models
to larger closed-source ones. Specifically, we use Mistral-7B-Instruct-v0.1 (Jiang et al., 2023), Vicuna-
7B-v1.5 (Chiang et al., 2023), Meta-Llama-3-8B-Instruct (Dubey et al., 2024), Gemma2-9B-Instruct
(Team et al., 2024), Meta-Llama-3-70B-Instruct, GPT-3.5-turbo (Achiam et al., 2023), GPT-4o (Hurst
et al., 2024). Furthermore, to balance efficiency in the unnatural languages searching algorithm with
generalizability, we employ Mistral-7B-Instruct-v0.1 and Vicuna-7B-v1.5, two renowned open-source
models from distinct series, as the model set M in Algorithm 1.

Baselines. We mainly employ two baselines. (i) natural language, which uses the original
unmodified text, and (ii) shuffled language with injected special tokens (Shuf-Inj), which serves as
the initialization step for our unnatural languages search algorithm in Algorithm 1.

Experiment Details. For SynContextQA, we evaluate performance using exact keyword matching,
while for SimGSM8K, we use accuracy as the evaluation metric.

3.2 MAIN RESULTS

As shown in Table 2, for SynContextQA, the test accuracy of all models in unnatural languages is
on-par with the one of natural language, by a large margin with Shuf-InJ. In average, the test accuracy
of transferred models in unnatural languages is 80.4%. For SimGSM8K, the test accuracy of most
models on natural questions is over 80%, indicating the simplicity of questions, thus mitigating
the concerning of question complexity. Meanwhile, the performance of close-source models could
also answer half of the questions correctly, outperforming the Shuf-InJ by an averaged margin of
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26.7%. Both results indicate that such unnatural languages is highly transferrable across models with
different architectures and training corpus, including GPT-4o (Hurst et al., 2024), which is considered
as the most well-aligned models. As a result, it mitigates the conjecture that such unnatural languages
is a glitch of specific LLMs, but a general phenomenon and inherent property for LLMs.

It is worthwhile to note that there is a significant performance gap between the natural and unnatural
set for SimGSM8K. This gap can be attributed to the increased complexity of SimGSM8K contexts,
which typically comprise multiple interconnected sentences. Furthermore, SimGSM8K questions
require sophisticated multi-step reasoning processes, making them substantially more challenging
than standard SynContextQA tasks. However, this is not the upper bound of the performance of
LLMs on unnatural languages, once the unnatural languages searching approach could be further
improved.

In addition, we extend our investigation into the understanding of unnatural languages in a dialogue
format, which serves as the foundation for LLM agents. Further details can be found in Appendix A6.

3.3 FURTHER ANALYSIS

Table 4: The performance comparison of different pre-trained
base models on SimGSM8K. Ratio is calculated as the per-
formance on unnatural languages divided by the performance
on natural ones.

Model Prompt Natural Unnatural Ratio

Mistral-7B ICL (n=1) 0.70 0.23 0.33
ICL (n=8) 0.71 0.38 0.53

Llama-3-8B ICL (n=1) 0.74 0.33 0.45
ICL (n=8) 0.87 0.42 0.48

To broaden the scope of the unnatu-
ral languages, we implemented it in
the base model rather than only the
chat version, demonstrating that mod-
els can truly understand these unnatu-
ral languages without relying on chat
models’ ability to understand noisy in-
structions.

Experiment Settings. For the base
model, we employ in-context learning
(ICL) with examples in natural lan-
guage to ensure consistent output formatting while avoiding unnatural languages patterns in the
learning process.

Main Results. As shown in Table 4, under in-context learning setting with 8 examples, the
unnatural test accuracy of pre-trained base models before alignment achieves 38% and 42% in
average, respectively. Particularly, considering the success ratio (i.e. unnatural acc./natural acc.), the
ratio achieves 53% and 48%, respectively. This indicates that pre-trained model could inherently
understand the unnatural languages without alignment.

4 LLMS CAN LEARN INSTRUCTION FOLLOWING CAPABILITIES FROM
UNNATURAL LANGUAGES

In this section, we explore the properties of unnatural languages from the perspective of post-training.

4.1 EXPERIMENT SETUP

We explore whether the instruction fine-tuning pre-trained LLMs on unnatural languages instructions
could help models gain general instruction following (chatting) ability.

Training Dataset. We employ LIMA (Zhou et al., 2023), a high-quality instruction tuning dataset of
1000 carefully created (instruction, answer) pairs. Furthermore, we leverage our proposed unnatural
languages searching approach to find an unnatural version for each instruction in LIMA, and keep the
original answers in natural version.

Benchmarks. We evaluate all variants on Length-controlled (LC) AlpacaEval 2.0 (Li et al., 2023)
and MixEval (Ni et al., 2024). LC AlpacaEval 2.0 is a well-recognized benchmark for chat model
evaluation. MixEval is a ground-truth-based benchmark that collects data from numerous QA datasets
under real-world data distribution.
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Table 5: The accuracy of the unnatural
GSM8K test set for models instruction-tuned
on various types of GSM8K training sets.
Columns denote the training set.

Unnatural Test Acc. Natural Random Empty Unnatural
Mistral-7B 0.187 0.116 0.122 0.310
Llama-3-8B 0.197 0.087 0.109 0.312
Mistral-7B-Inst 0.225 0.138 0.171 0.300
Llama-3-8B-Inst 0.214 0.136 0.179 0.349
Average 0.206 0.119 0.145 0.318

(a) Token importance (b) Relative importance

Figure 3: Token importance of SimGSM8K.

Baselines. We employ three baselines: (i) Natural, which uses the original unmodified instructions;
(ii) Random, which replace the original instructions with an equal number of random tokens; and (iii)
Empty, in which instruction is empty (Hewitt et al., 2024).

Experiment Details. In practice, since the instruction in LIMA is extremely long, which exceeds
the capacity of our searching approach, we leverage GPT-4 to generate a compressed version of the
instructions. Therefore, for fairness, we compare the instruction following ability of models finetuned
on the unnatural LIMA and the instruction-shortened LIMA. In addition, all models are fine-tuned
for 10 epochs using identical hyperparameters.

4.2 MAIN RESULTS

In Figure 2, we show the winrate of different variants against the corresponding models tuned on
natural LIMA using the official pipeline and the annotation model is GPT-4o. The results clearly
show that responses of models instruction tuned on unnatural LIMA is comparable to the one tuned
on natural LIMA with a winrate of 48.82% in average, which outperforms the baselines (models
tuned on random/empty LIMA) by a large margin. Furthermore, Table 3 confirms our conclusion. As
shown in Table 3, most models instruction tuned on unnatural version LIMA performs on-par with
the one tuned on natural LIMA. Meanwhile, it outperforms the baselines, which are tuned on random
and empty instruction version LIMA, significantly, especially under base model Llama-3-70B with a
margin of over 11%. Both results strongly demonstrate our claim that unnatural languages contains
generalizable patterns that could be help LLMs gain instruction-following ability.

4.3 FURTHER ANALYSIS

So far we have shown that unnatural languages contains natural patterns that could be generalized to
various tasks by instruction tuning. Besides, we are curious about whether the unnatural languages
consists unnatural patterns and whether fine-tuning on unnatural languages could boost the unnatural
language understanding capability of LLMs. To this end, we focus the math reasoning task, which is
highly demanded for question understanding. We created an unnatural languages version of GSM8K
for its training subset and test subset. Due to the high cost of GCG and computation limitation, we
searched 1333 training instances and 654 test instances. For training, we leverage corresponding
answer augmentation version (i.e., for each question, there are multiple version of correct chain-of-
thought answers.) from Yu et al. (2023), which finally results in 14886 training instances. Built upon
the training set, we create four versions, the same as Section 4.1. We train the pre-trained version and
instruction tuned version of Mistral-7B-v0.1 and Llama-3-8B on the four types of training set and
test their performance on the unnatural test set. The results are shown in Table 5.

It shows that models fine-tuned on the unnatural training set significantly outperform models trained
on other types of training sets when evaluated on the unnatural test set. Specifically, the average
accuracy for models tuned on unnatural training set is 31.8%, outperforming the one tuned on natural
training set by 11.2%, the one tuned on random training set by 19.9%, and the one tuned on empty
training set by 17.3%. This indicates that unnatural languages contain generalizable unnatural patterns
that could enhance LLMs’ unnatural languages understanding capability.
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Figure 4: Three 3D surface examples showing the inverse similarity of natural and unnatural context
embeddings. The inverse similarity decreases significantly when question-related tokens are added,
indicating that LLMs correctly infers the organization of keywords.

5 HOW DO LLMS UNDERSTAND UNNATURAL LANGUAGES?

Unnatural languages have been empirically shown to contain latent features that are comprehensible
across different LLMs, while also enhancing their ability to follow instructions. In this section, we
investigate how LLMs process and understand these unnatural languages.

5.1 LLMS EXTRACT KEYWORDS FROM UNNATURAL LANGUAGES

To investigate what LLMs truly capture when processing unnatural languages, we evaluate each
token’s importance by measuring its impact on the output when removed from the sequence. Formally,
for an unnatural string S′, tokenized by model M as x1:n = [x1, x2, · · · , xn], the importance of
token xi is defined as the effect of its removal on the change in the embedding of M ’s final layer, i.e.,

I(xi) =
∥∥∥LLMM (x1:n)− LLMM (x1:n\xi)

∥∥∥
2
. (4)

Specifically, to ensure consistent evaluation across unnatural strings of varying lengths and given that
the embedding of the final position is used to predict the next token, we measure the embedding of
the final position rather than the entire sequence. Furthermore, we normalize the “token importance”
relative to the most important token in each sequence, referring to this as “relative token importance”.
The relative token importance represents a softened position of the token after sorting in ascending
order, scaled within the range [0, 1]. Tokens with greater importance within a data point have a
relative position closer to 1, whereas less important tokens have a relative position closer to 0.

In Figure 3, we present the distribution of token importance and relative token importance within
the unnatural version of the SimGSM8K dataset as processed by the model Llama-3-8B-Instruct.
Specifically, as shown in the Figure 3 (a), the density of natural-related tokens (tokens appears in
the natural version) is more higher than others when token importance is higher than 0.2. Besides,
compared with natural related tokens, the majority of other tokens lies in the lower importance range.
Furthermore, Figure 3 (b) clearly shows that most of the naturally related tokens are higher relative
important while the other tokens are lower relative important. The above results demonstrate that
LLMs are capable of pay more attention on the natural related tokens while filtering out the other
noise. Consequently, LLMs effectively extract keywords from unnatural languages inputs.

5.2 LLMS INFER CORRECT ORGANIZATION OF KEYWORDS IN UNNATURAL LANGUAGES

Although LLMs are capable of extracting keywords from unnatural languages, the extracted words are
often shuffled and arranged in the wrong order. Therefore, we hypothesize that LLMs can reorganize
these keywords and infer their correct arrangement. Specifically, when the unnatural context is
provided to LLMs alongside appended natural questions, we propose that LLMs progressively infer
the correct organization of keywords—i.e., their corresponding natural language versions—as they
process an increasing number of natural question tokens.

To verify our hypothesis, we calculate the inverse similarity of embeddings between the context
inputs of unnatural languages and their corresponding natural versions across layers, as well as for

8
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Table 6: Concrete examples of token reordering: The “natural context” represents the original version,
while the “unnatural version” simplifies the unnatural languages by removing noise and retaining
only keywords. We decode the internal embeddings of LLMs into tokens for unnatural language
inputs using the same decoder as the final output layer, referred to as “decode internal embeddings”.

Natural Context Unnatural Version (De-
noised)

Decode Internal Embeddings

Brandon sold 86 geckos last year.
He sold twice that many the year
before.

twice geckos year before last
sold Brandon He

twice geckos year before last before
sold Brandon He sold he 86 sold
twice sold twice sold last twice
year sold

Ruiz receives a monthly salary of
$500.

a monthly $500 salary Ruiz
receives

a monthly $500 a salary a Ruiz a

receives a receives a salary

increasingly natural question tokens inputted into LLMs. As shown in Figure 4, for the marginal ver-
sion of a layer, the inverse similarity of unnatural and natural context embeddings gradually decreases
as following tokens are inputted. Particularly, the inverse similarity drastically decreases when the
question related tokens are inputted. This indicates that LLMs does not always comprehend unnatural
languages independently as the corresponding natural language. In contrast, the comprehension
process is highly related to the context (i.e. the questions.). As a result, the unnatural languages
works in certain contexts. Supposing random context is provided, the model behavior on unnatural
languages could be different from natural language.

5.3 QUALITATIVE ANALYSIS

We further investigate whether LLMs are truly capable of reordering keywords by analyzing the
embeddings of intermediate layers. Specifically, we decode the internal embeddings of LLMs when
processing unnatural language inputs into tokens using the same decoder as the final layer. As shown
in Table 6, we observe that although the keywords in the unnatural version are disordered, LLMs are
able to reorder certain patterns in the keywords to match the original natural context. Moreover, we
utilize dependency parsing to demonstrate that LLMs can understand the dependency structure of
unnatural languages. Details are illustrated in Appendix A7.

6 RELATED WORKS

Unnatural Languages. Prior studies have observed isolated instances of unexpected model
behavior, while they did not explicitly identify or systematically analyze unnatural language. For
example, Zou et al. (2023) prompted models generating harmful outputs, Pfau et al. (2024) enhanced
chain-of-thought reasoning, and Sinha et al. (2020) showed NLI models worked with permuted
inputs. Kervadec et al. (2023) demonstrated that LLMs interpret unnatural languages differently,
while Kallini et al. (2024) categorized them by perplexity, showing LLMs struggled to learn them.

Discrete Optimization. Prompt optimization tools have been used to explore unnatural languages
in token space. Early works (Zou et al., 2023; Liu et al., 2023; Zhao et al., 2024; Chao et al., 2023;
Andriushchenko, 2022) focused on adversarial prompts to jailbreak LLMs, while others (Shin et al.,
2020; Jones et al., 2023) optimized prompts for specific outputs. These studies did not address
whether such prompts reflect natural language features. This work investigates this question.

Transferability of Adversarial Examples. Unnatural languages often transfer across LLMs,
similar to adversarial examples in computer vision Szegedy et al. (2014); Papernot et al. (2016);
Nguyen et al. (2015). For example, Wallace et al. (2019) showed that prompts from GPT-2 transferred
to larger models, and Jones et al. (2023) found that toxic prompts from GPT-2 affected davinci-002.
Building on these findings, this work examines how LLMs rely on fragile, unnatural features in token
space (Ilyas et al., 2019).

9
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7 CONCLUSION

Our study reveals that LLMs possess the ability to comprehend unnatural languages, an incompre-
hensible data pattern that could convey information across models. Through systematic analysis and
experiments, we demonstrate that unnatural languages contains generalizable patterns across a wide
variety of LLMs, despite these models being predominantly aligned with human data. We show that
models fine-tuned on unnatural instructions achieves on-par performance of instruction-following
ability with models fine-tuned on natural versions. Furthermore, through comprehensive analysis,
we demonstrate that LLMs process unnatural languages by filtering noise and inferring contextual
meaning from filtered words.
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LIMITATIONS AND FUTURE WORKS

In this work, we design a type of unnatural language that is comprehensible to LLMs and demonstrate
that it contains useful features that could facilitate instruction tuning and even achieves on-par
performance compared with the corresponding natural language. Essentially, the unnatural language
searching is a process that increases the entropy of language (via replacing tokens in GCG) while
trying to keep the semantic meaning of the original language. Therefore, the result inevitably contains
the tokens that appeared in the original natural string, which is not 100% unnatural ideally. We have
also performed ablation study by eliminating the original tokens from the candidates and initialize
the searching control without natural tokens but found that the performance is significantly sub-
optimal. We admit the limitation of current searching methods leveraging GCG and conjecture that
the unnaturalness and performance for unnatural language could be further improved once there is
more effective and efficient discrete space optimization approach.

Besides, the efficiency for GCG-like searching methods is limited and it is expensive to search large
scale unnatural language version examples. This limits us from performing more comprehensive
and large scale experiments. Once the searching expense is mitigated, unnatural language could be
further explored for practical usage.

In addition, we found that the unnatural language are not always generalizable across different tasks.
For example, fine-tuning on the unnatural version of GSM8K training set as in Sec. 4.3 does not
achieve on-par performance with the one fine-tuned on natural set in expectation. We suspect that this
is because that GSM8K questions are too complex (long) for GCG to search a compatible unnatural
version. This also explains why the unnatural SimGSM8K in Sec. 3 only achieves 54% accuracy in
average across models.

A1 ALGORITHM DETAILS

Algorithm 1 presents the detailed implementation of the unnatural languages searching algorithm.

Algorithm 1 Unnatural Languages Searching

Input: Natural string S, searching models M and tasks T , batch size B, k, number of iterations T
1: // Initialize x via shuffle words in S and inject special

characters.
2: Initialization: x = random_inject(shuffle(S))
3: repeat
4: for M ∈ M do
5: // Tokenize x through model M.
6: x1:n = TokenizeM (x)
7: // Obtain top-k alternative tokens of each position in x1:n.
8: X1:n = Top-k

(
∇x1:n

∑
t∈T logPM (S|x1:n, t)

)
9: for b = 1, ..., B do

10: // Uniformly sample candidates.
11: x̃

(b)
1:n = x1:n

12: x̃
(b)
1:n[i] = Uni(X1:n[i]), i = Uni([1 : n])

13: // Decode tokens back string.
14: x̃(b) = DecodeM (x̃

(b)
1:n)

15: end for
16: end for
17: // Select the best candidate.
18: x̃b∗ = argmaxb

∑
M∈M

∑
t∈T logPM (S|x̃(b), t)

19: // Replace the original string with the modified string.
20: x = x̃b∗

21: until Repeat for T times
Output: Equivalent unnatural string S′
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A2 ALGORITHM VERIFICAITON EXPERIMENTS

Here we perform a verification experiment to show that we searched unnatural strings could be
translated back to natural version. Specifically, we perform such translation task by appending a
translation task description ’Translate the above sentences into natural languages’. The translation
performance is shown in Table A7. EM denotes exact match; F1 denotes F1 score; and NLI measures
the semantic relationship between sentences (e.g., entailment, neutral, contradiction) using pre-trained
models, offering a nuanced evaluation of meaning similarity. We treat ’entailment’ as positive cases
and compute the accuracy to obtain the final score.

Table A7: Results of unnatural language to natural language translation task.

Dataset EM F1 NLI
SynContextQA 0.5600 0.854 0.860
SimGSM8K 0.660 0.805 0.650

A3 SYNCONTEXTQA AND SIMGSM8K DATASET DETAILS

A4 SYNCONTEXTQA

Generation Details. We leverage GPT-3.5 (OpenAI, 2023) to generate context about non-existing
entities and their corresponding questions. The prompt is provided as follows in Table A8. To ensure
the diversity of the generated context, we generate 1, 000 candidates in total and perform k-means
clustering according to the embeddings generated by a SOTA text embedding model to form 100
clusters. Finally, we select 100 instances that are closest to each of the cluster centers.

Table A8: Prompt of SynContextQA generation.

Please generate 10 synthetic business or personal case for reading comprehension. The context information
should be specific to a synthetic object, e.g., ’The company TechDouDou raised 1,000,000 fundings in Q4,
2023’ instead of ’A company raised 1,000,000 fundings in Q4, 2023’. all data should be different from each
other as much as possible. The case contains three parts: (1) context that provides specific information,
where the length should be no longer than 40 characters; (2) a question that asked about that information; (3)
the corresponding answer.
[Context]:The revenue of the company Countingstar for Q1 is 100,000$.
[Question]: What is the revenue of Countingstar for Q1?
[Answer]: The revenue of Countingstar for Q1 is 100,000$

Dataset Details. The dataset is generated by GPT-3.5. Each data contains a simple and synthetic
context related to unexisted business or personal as well as a couple of questions related to the context.
Genearally, one question asks about the action of the entity while the other question asks about the
name of the enitity. For example, the context is "EcoGardens launched a new sustainable packing
initiative" and the two questions are "What recent initiative did EcoGradens launch?" and "Which
company launched a new sustainable packing initiative?". To ensure the diversity of the generated
questions, we generated 1,000 contexts and leverage k-means to get 100 data points, each of which
is closed to the centers of a cluster. the cluster embeddings were generated by a SOTA embedding
model in sentence-transformers (Reimers & Gurevych, 2019). For each data point, we
manually create the correct answer candidates for each question.

A5 SIMGSM8K

Dataset Details. The dataset serves as a more challenging dataset compared to SynContextQA,
where the data points are derived from the test set of GSM8K. As a result, the context is more complex
which often contains multiple entities and much more information. Meanwhile, the answer of the
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Table A9: Performance comparison for different contexts across different models on SynContextQA
and SimGSM8K datasets under tow-turn dialogue setting. All answers were generated under zero-
shot setting without sampling. “Direct” refers to models used for unnatural language searching, while
“Transfer” indicates the implementation of searched unnatural languages.

Model SynContextQA SimGSM8K
Natural Shuf-InJ Unnatural Natural Shuf-InJ Unnatural

Direct

Mistral-7B-Instruct 0.92 0.47 0.92 0.85 0.20 0.42
Vicuna-7B 0.94 0.49 0.90 0.63 0.18 0.21

Average 0.93 0.48 0.91 0.74 0.19 0.32

Transfer

Meta-Llama-3-8B-Instruct 0.98 0.51 0.84 0.77 0.31 0.40
Gemma-2-9B-Instruct 0.96 0.46 0.70 0.97 0.22 0.45
Meta-Llama-3-70B-Instruct 0.98 0.70 0.92 1.00 0.41 0.73
GPT-3.5 0.98 0.68 0.92 0.92 0.38 0.49
GPT-4 0.99 0.64 0.91 0.96 0.32 0.48

Average 0.98 0.60 0.86 0.92 0.33 0.51

question requires several steps of reasoning and the correct answer could not be found in the context
directly using simple keyword matching. Since our goal is to evaluate the ability of unnatural language
comprehension of LLMs, we do not want to introduce too complex QA paris which could not even be
answered correctly under natural language. To this end, we selected 100 questions from the original
GSM8K test set considering the context length and correctness of models.

A6 UNNATURAL QA EXPERIMENTS UNDER TWO-TURN DIALOGUE SETTING.

To verify the model’s understanding of unnatural context and given that these are chat-based models,
we implement a dialogue format for context-based question-answering. Specifically, each QA session
consists of two turn. In the first turn, we provide the context in unnatural language to the model,
which responds with “OK, got it.” In the second turn, we pose the question related to the previously
provided context and evaluate the model’s response accuracy through keyword exact matching.
Detailed results are shown in Table A9. The results serves as a complimentary results of Table 2 and
it further demonstrates that such unnatural languages is highly transferrable across models.

A7 LLMS UNDERSTAND THE DEPENDENCY STRUCTURE OF UNNATURAL
LANGUAGE.

Dependency parsing is one of the most commonly used techniques to analyze the syntactic structure
of natural sentences. Dependency parsing transfer a sentence into a tree, where each word/token
is a node and the directed edges represent the dependency, the end node (child) depends on, e.g.
modifying or being arguments of, the source node (parent). In general, a fake ROOT node is usually
added to the whole tree such that every actual word have parents. Dependency parsing serves as a
fundamental technique for understanding the syntax of sentences. In this section, we are curious
about how LLMs understand the unnatural language. A more specific question is that how LLMs
interpret the syntax of unnatural language since they could understand it.

Recently, Hewitt & Manning (2019) showed that pretrained LMs’, e.g. BERT (Devlin, 2018), output
embeddings contains the structural syntax information of the inputs. One can simply leverage the
probing (a linear transformation) techiques to extract such information and build a dependency syntax
tree. Leveraging a modified version of the so-called structural probing, we train a linear head upon a
freezed pre-trained model (e.g. Llama-3-8B) to predict the dependency syntax tree of the input
sentence using natural language corpus as training source. Then we leverage the trained head to
predict the syntax tree of unnatural sentences. We introduce the structural probing method as follows.

A syntax tree of a sentence l is equal to a directed acyclic graph (DAG) G = (V,E), where V is
the set of words and E denotes the set of edges. to build the guidance for training, we compute a
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Figure A5: A dependency syntax tree of unnatural sentence: "| EcoGardenslaz proceeded thus,- sust
"able deix um nouvelles packstoff launchedierteutabetLng initiative. Onejekt y deze sentence former
GETTRAN()->()} grammar level:: EGB »OK!. Parse Sie fast{-itt weiter", whose corresponding
natural version is "EcoGardens launched a new sustainable packaging initiative". The tree was
generated by Llama-3-8B via structural probing (Hewitt & Manning, 2019). We annotate a sub-
tree which reasonably represents the semantic meaning of "EcoGardens proceeded initiative that
launched one sustainable pack."

distance matrix d ∈ N(|V |,|V |) for the graph. The element dij of the distance matrix is defined as the
length of the shortest path between node i and node j. Particularly, if two nodes are adjacent, the
distance is 1. In the original paper, the authors omitted the root node for syntax tree when building the
distance matrix, which results in a symmetric matrix that loses the information of root node and edge
directions. In our work, we treat the root node as a concrete token (the BOS special token for any
LLM tokenizer) and build the corresponding distance matrix. Such distance matrix is an one-to-one
mapping of the syntax tree since one can easily recover the syntax tree since the root node is known
and the tree is acyclic. In the following parts, we use dl ∈ N(|Vl|+1,|Vl|+1) denoting the distance
matrix for sentence l.

Given a model’s output embedding hl ∈ R(L,H) for sentence l. We formalize the training process
as the following optimization problem:

min
W

∑
l

1

|sl|2
∑
i,j

|d− fW(hl
i,h

l
j)|, (5)

where fW = (W(hl
i − hl

j))
T (W(hl

i − hl
j)) computes the squared eucliean distance between two

nodes. |sl| denotes the number of tokens in sentence l. In practice we train the probing head with the
data from EN_EWT training set of universal dependency (Silveira et al., 2014).

Then we use the trained probing head to predict the dependency syntax tree of unnatural sentences.
We show an example in Figure A5. As shown in Figure A5, the dependency tree clearly contains
the syntax structure whose semantic meaning is similar to the natural language. This indicates that
LLMs could capture the syntax structure of unnatural language that contains information akin to the
natural language.
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