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Abstract

Knowledge Editing (KE) aims to adjust a Large
Language Model’s (LLM) internal representa-
tions and parameters to correct inaccuracies
and improve output consistency without incur-
ring the computational expense of re-training
the entire model. However, editing common-
sense knowledge still faces difficulties, includ-
ing limited knowledge coverage in existing re-
sources, the infeasibility of annotating labels
for an overabundance of commonsense knowl-
edge, and the strict knowledge formats of cur-
rent editing methods. In this paper, we ad-
dress these challenges by presenting CONKE,
a framework that integrates conceptualization
and instantiation into the KE pipeline for LLMs
to enhance their commonsense reasoning ca-
pabilities. CONKE dynamically diagnoses
implausible commonsense knowledge within
an LLM using another verifier LLM and aug-
ments the source knowledge to be edited with
conceptualization for stronger generalizability.
Experimental results demonstrate that LLMs
enhanced with CONKE successfully generate
commonsense knowledge with improved plau-
sibility compared to other baselines and achieve
stronger performance across multiple question
answering benchmarks.

1 Introduction

Recent advancements in Large Language Mod-
els (LLMs;OpenAl, 2024b,a; Dubey et al., 2024;
Chan et al., 2024) have led to Knowledge Edit-
ing (KE;Zhang et al., 2024; Wang et al., 2025), a
computationally efficient strategy to correct inac-
curate responses and update LLMs by modifying
their internal weights or representations, without re-
training the entire model. Such methods have been
applied to various domains, including factual rea-
soning (Ju et al., 2024; Wang et al., 2024a), medical
knowledge (Xu et al., 2024b), and commonsense
reasoning (Huang et al., 2024), and have proven
effective in enhancing domain-specific expertise.

Despite their success, current KE methods face sev-
eral challenges, including limited knowledge cover-
age (Davis and Marcus, 2015) in existing common-
sense knowledge bases (West et al., 2023; Fang
et al., 2021b; Yang et al., 2023; Fang et al., 2021a,
2023; Ding et al., 2024; Xu et al., 2024a) which of-
fer limited coverage and focus on isolated facts,
rather than forming hierarchical structures that
enable generalization through editing (Ma et al.,
2021b; Wang et al., 2024e). Furthermore, the un-
structured nature of commonsense knowledge com-
plicates scaling, while the flexible representation
of commonsense knowledge means that a single
fact may manifest in multiple formats. This neces-
sitates editing at the (relation, tail) pair level
rather than at individual tokens.

To address these issues, we present CONKE, a
novel knowledge editing framework tailored for
editing commonsense knowledge within LLMs.
We use VERA (Liu et al., 2023), an automated
commonsense plausibility verifier, to assess the
plausibility of commonsense knowledge in LLM:s.
For knowledge deemed erroneous and requiring
edits, we integrate conceptualization and instan-
tiation (Wang et al., 2023b,a) to enrich semantic
coverage and support more generalizable editing,
covering not only the targeted knowledge but also
other potentially relevant yet implausible informa-
tion within the LLM. This pipeline

To ensure flexibility, CONKE adopts an open-
ended format for editing, enabling the handling
of arbitrary knowledge structures rather than fo-
cusing solely on traditional (h,r,t) triplets. We
go beyond traditional Knowledge Editing tech-
niques by combining automated knowledge de-
tection, conceptualization, and instantiation, en-
hancing the model’s ability to generalize and adapt
to diverse contexts. Experimental results on Ab-
stract ATOMIC (He et al., 2024) demonstrate that
LLMs enhanced by CONKE generate common-
sense knowledge with improved plausibility. Fur-
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Figure 1: An overview of CONKE, which pipelines conceptualization and instantiation, knowledge editing, and
LLM verification together for automated and scalable knowledge editing over commonsense knowledge.

ther evaluations across five commonsense question-
answering benchmarks also show performance im-
provements. These experiments demonstrate the
robustness and generalizability of our approach in
enhancing commonsense reasoning across diverse
architectures and tasks.

2 Related Works

2.1 Knowledge Editing

Knowledge editing (Cao et al., 2021) aims to up-
date an LLM’s internal knowledge without full
retraining or relying solely on prompt engineer-
ing, is becoming increasingly crucial. Meng et al.
(2022) propose ROME, which identifies and up-
dates factual associations within specific MLP lay-
ers, achieving precise single-fact edits guided by
causal mediation analysis. MEMIT (Meng et al.,
2023) extends ROME’s principles to handle large-
scale edits simultaneously. By distributing updates
across multiple layers and parameters, MEMIT effi-
ciently integrates thousands of facts while maintain-
ing specificity and fluency. GRACE (Hartvigsen
et al., 2023), on the other hand, avoids internal
parameter changes by integrating external dictio-
naries and adapters as a modular memory source.
This approach allows flexible, inference-time ac-
cess to new knowledge, though it may sacrifice
some internal coherence and interpretability. In
our work, we build upon these methods to enhance
editing commonsense knowledge in LLMs.

2.2 Conceptualization in Commonsense

Conceptualization abstracts entities or events into
general concepts, forming abstract commonsense
knowledge (Murphy, 2004), while instantiation
grounds these concepts into new instances, intro-
ducing additional commonsense knowledge. Pre-
vious work largely focused on entity-level con-
ceptualization (Durme et al., 2009; Song et al.,
2011, 2015; Liu et al., 2022; Peng et al., 2022),

with He et al. (2024); Wang et al. (2023b,a) pio-
neering event-level conceptualization from Word-
Net (Miller, 1995) and Probase (Wu et al., 2012).
For instantiation, Allaway et al. (2023) introduced
a controllable generative framework that automat-
ically identifies valid instances. In this work, we
leverage the conceptualization distillation frame-
work proposed by Wang et al. (2024d) to augment
the knowledge being edited, ensuring broader se-
mantic coverage and thereby improving the gener-
alizability of edited knowledge.

3 The CONKE Framework

An overview of CONKE is presented in Figure 1.
Our framework consists of three main compo-
nents: (1) automated knowledge verification with
VERA (Liu et al., 2023), (2) abstract knowledge
acquisition via conceptualization and instantia-
tion, and (3) LLM knowledge editing. We use
the Abstract ATOMIC (He et al., 2024) and CAN-
DLE (Wang et al., 2024d) datasets for training and
evaluation as two rich sources of abstract knowl-
edge with conceptualization and instantiation. The
training set of both datasets are used for editing
and the testing sets are used for evaluation.

3.1 Automated Knowledge Verification

Since commonsense knowledge is vast, traditional
human-in-the-loop methods for detecting and cor-
recting erroneous outputs in LLMs are neither eas-
ily scalable nor adaptable. Inspired by recent ad-
vances in using LLMs as automated judges (Raina
et al., 2024; Wang et al., 2024c), we propose a
fully automated verification strategy to assess an
LLM’s internal commonsense knowledge. Our ver-
ification process involves VERA (Liu et al., 2023),
a discriminative model trained to score the plau-
sibility of arbitrary commonsense statements, as
our evaluation tool. For each triple in the Ab-
stractATOMIC (He et al., 2024) training set, we



prompt the LL.M with the head event and request
it to generate the corresponding relation and tail.
VERA then evaluates the plausibility of the gener-
ated knowledge by producing a score in the range
[0, 1], where values above 0.5 are considered plau-
sible, and those below 0.5 are deemed implausible.
By iterating over all triples, this process provides
both the LLM’s generated responses and VERA’s
discrimination results, pinpointing which portions
of the generated knowledge are incorrect. Conse-
quently, we can identify the exact “areas” within
the LLM’s internal knowledge that require editing.
This automated pipeline eliminates the dependence
on costly human annotations for error detection,
enabling scalable and efficient improvements of
the LLM’s commonsense understanding.

3.2 Conceptualization and Instantiation

While existing approaches primarily integrate
decontextualized commonsense knowledge into
LLMs through KE techniques, we hypothesize that
capturing the diverse patterns that the same piece of
knowledge can exhibit under different contexts is
equally important. However, repeated editing may
result in knowledge drift, where successive modi-
fications will lead to substle conflicts, causing the
model’s internal representation to become unsta-
ble. To this end, we augment the knowledge to be
edited by implementing both conceptualization and
instantiation, following Wang et al. (2024d). For
each triple targeted for editing, we first abstract its
instances into more general concepts by prompting
GPT-40, producing abstract knowledge triples (Fig-
ure 1). We then instantiate these abstract concepts
into novel, context-specific instances, again using
GPT-40, thereby forming a rich knowledge base.
This process yields approximately 160,000 com-
monsense knowledge triples, substantially improv-
ing the semantic coverage and contextual adaptabil-
ity of the edited knowledge. Additionally, we are
mindful of cascading effects that may arise when
modifying a piece of commonsense knowledge. As
noted in (Wang et al., 2024b), knowledge is highly
interconnected, and modifying one fact can trig-
ger unintended changes in related facts, leading
to inconsistencies. To mitigate these cascading ef-
fects, we use conceptualization and instantiation
to ensure that modifications to abstract concepts
are consistently applied to their related instances,
hence maintaining coherence and reducing the risk
of introducing inconsistencies.
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Figure 2: Average plausible rate and expert acceptance
rate of LLMs’ generation after CONKE.

3.3 LLM Knowledge Editing

Finally, we apply knowledge editing to the LLM
using the enriched knowledge base generated
through our conceptualization and instantiation pro-
cesses, correcting errors identified by VERA. To
accomplish this, we experiment with three estab-
lished knowledge editing methods: MEMIT (Meng
et al., 2023), ROME (Meng et al., 2022), and
GRACE (Hartvigsen et al., 2023). For GRACE,
which relies on adapters to determine whether
and how to use an external dictionary, we adopt
the original deferral mechanism implementation.
We evaluate our framework with these edit-
ing methods on four representative LLM back-
bones: Mistral-7B-Instruct-v@.2(Jiang et al.,
2023), Meta-Llama-3-8B-Instruct(Dubey et al.,
2024), Chatglm2-6b(Zeng et al., 2024), and
GPT-J-6B(Wang and Komatsuzaki, 2021).

4 Experiments and Analyses

In this section, we evaluate LLMs after apply-
ing CONKE through expert and automated assess-
ments, illustrating improved performance on down-
stream tasks and present several ablation studies.

4.1 LLMs-After-Editing Evaluation

We first evaluate LLMs after editing via two mea-
sures. First, we prompt these LLMs with head
events in the testing set of AbstractATOMIC and
ask it to complete the commonsense knowledge.
With the generations on the testing set, we ask
VERA to score them again and we calculate the
plausible ratio whose scores are above 0.5. Then,
we sample a subset of 200 generations and recruit
two expert annotators to conduct a manual analyses
on the acceptance ratio of the plausible assertions
that passed VERA’s filtering. We compare mod-
els after being edited with MEMIT, GRACE, and
ROME, and set another vanilla group as baseline
comparison. As shown in Figure 2, both VERA
and human evaluations exhibit consistent trends,
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Figure 3: Performance of the best LLM after edltlng on
five downstream tasks compared to the vanilla baseline.
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with human raters tend to assign higher scores but
identifying similar improvements. When apply-
ing MEMIT-based editing, both VERA and human
evaluations show notable enhancements over the
Vanilla baseline. Similarly, GRACE and ROME
edits enhance plausibility scores, with MEMIT and
GRACE achieving the highest overall performance.
The strong results from expert annotations further
validate the reliability of VERA’s judgments, sup-
porting the use of VERA in our framework as an
effective commonsense evaluator to identify im-
plausible knowledge requiring further editing. This
approach reduces reliance on manual annotations
while preserving robust assessment capabilities.

4.2 Downstream Improvements

To assess whether enhanced internal commonsense
reasoning improves downstream task performance,
we evaluate the edited models on multiple com-
monsense reasoning benchmarks. Following Ma
et al. (2021a), we test our framework on the val-
idation splits of five widely-used commonsense
QA benchmarks: Abductive NLI (aNLI; Bhagavat-
ula et al., 2020), CommonsenseQA (CSQA; Tal-
mor et al., 2019), PhysicallQA (PIQA; Bisk et al.,
2020), SociallQA (SociallQA; Sap et al., 2019),
and WinoGrande (WG; Sakaguchi et al., 2021).
These benchmarks are designed to evaluate a range
of knowledge types crucial for robust common-
sense reasoning (Shi et al., 2023; Wang and Song,
2024). We compare the performance of the best
LLM edited with CONKE against its correspond-
ing vanilla baseline across all benchmarks, with
the results visualized in Figure 3. The results show
that models edited with CONKE achieve signifi-
cant performance improvements across all bench-
marks, with particularly notable gains in aNLI and
SociallQA. These findings demonstrate the effec-
tiveness of CONKE in enhancing commonsense
reasoning capabilities and suggest its potential for
broader applications in improving LLM perfor-
mance on real-world reasoning tasks.
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Figure 4: VERA evaluation scores of edited LLMs with
and without integrating conceptualization.

4.3 Ablation Study

Finally, to validate the effect of conceptualization,
we conducted an ablation study on MEMIT by re-
moving the conceptualization step and comparing
performance. In this setup, we edit LLMs both with
and without the integration of conceptualization
and instantiation, and evaluate their performance by
examining the average VERA scores of the gener-
ated outputs on the testing set. The conceptualized
variant leveraged enriched commonsense triples
generated via abstraction and instantiation prior to
the editing process, while the non-conceptualized
variant directly applied MEMIT without these pre-
processing steps.

Figure 4 demonstrates that the conceptual-
ized variants consistently outperform their non-
conceptualized counterparts, achieving higher plau-
sibility and improved downstream task accuracy.
These results suggest that the enriched conceptual
patterns introduced before editing not only enhance
plausibility but also enable the model to generalize
commonsense knowledge to more complex reason-
ing tasks, ultimately boosting overall performance.

5 Conclusions

In this paper, we introduce CONKE, a novel knowl-
edge editing framework designed to enhance com-
monsense reasoning in LLMs by addressing chal-
lenges of limited knowledge coverage and scala-
bility, and by integrating automated verification
through VERA and semantic enrichment via con-
ceptualization and instantiation for more effec-
tive and generalizable editing. Experimental re-
sults demonstrate significant improvements in both
knowledge plausibility and downstream task perfor-
mance, validating the effectiveness of our approach.
We envision that CONKE will inspire future re-
search on scalable and context-aware knowledge
editing, paving the way for LLMs to better han-
dle the complexity and diversity of commonsense
reasoning.



Limitations

Our approach, CONKE, advances LLM common-
sense reasoning through conceptualization and iter-
ative knowledge editing, yet several challenges per-
sist. First, editing one piece of knowledge can cas-
cade through related concepts, creating non-linear
interactions that are difficult to detect and manage,
especially as the knowledge base scales up. Second,
iterative updates risk knowledge drift, where suc-
cessive edits subtly conflict with or overwrite prior
facts, emphasizing the need for robust frameworks
to maintain consistency. Finally, the lack of sta-
ble ground truth for commonsense, which is often
context-sensitive and culturally variable, compli-
cates standardization. Addressing these challenges
will require globally coordinated editing mecha-
nisms, improved theoretical frameworks, and sys-
tematic human-in-the-loop validation to ensure ed-
its align with broader consensus and expert judg-
ment.

Ethics Statement

In this paper, all datasets and models used are free
and accessible for research purposes, aligning with
their intended usage. The expert annotators are
graduate students with extensive experience in NLP
and commonsense reasoning research, and they
voluntarily agreed to participate without compen-
sation.

However, we recognize commonsense knowledge
is inherently culturally and contextually variable,
and there are ethical considerations related to the
knowledge edited and propagated through the mod-
els. We must ensure that the knowledge inserted
into the model doesn’t favor certain views over oth-
ers, especially in sensitive cases such as healthcare
or law applications. To mitigate this, we implement
a robust process of cross-validation with human ex-
perts to monitor for biases. Moreover, we propose
regular audits of the system’s performance, to en-
sure that its performance remains fair.
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