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Abstract

Knowledge Editing (KE) aims to adjust a Large001
Language Model’s (LLM) internal representa-002
tions and parameters to correct inaccuracies003
and improve output consistency without incur-004
ring the computational expense of re-training005
the entire model. However, editing common-006
sense knowledge still faces difficulties, includ-007
ing limited knowledge coverage in existing re-008
sources, the infeasibility of annotating labels009
for an overabundance of commonsense knowl-010
edge, and the strict knowledge formats of cur-011
rent editing methods. In this paper, we ad-012
dress these challenges by presenting CONKE,013
a framework that integrates conceptualization014
and instantiation into the KE pipeline for LLMs015
to enhance their commonsense reasoning ca-016
pabilities. CONKE dynamically diagnoses017
implausible commonsense knowledge within018
an LLM using another verifier LLM and aug-019
ments the source knowledge to be edited with020
conceptualization for stronger generalizability.021
Experimental results demonstrate that LLMs022
enhanced with CONKE successfully generate023
commonsense knowledge with improved plau-024
sibility compared to other baselines and achieve025
stronger performance across multiple question026
answering benchmarks.027

1 Introduction028

Recent advancements in Large Language Mod-029

els (LLMs;OpenAI, 2024b,a; Dubey et al., 2024;030

Chan et al., 2024) have led to Knowledge Edit-031

ing (KE;Zhang et al., 2024; Wang et al., 2025), a032

computationally efficient strategy to correct inac-033

curate responses and update LLMs by modifying034

their internal weights or representations, without re-035

training the entire model. Such methods have been036

applied to various domains, including factual rea-037

soning (Ju et al., 2024; Wang et al., 2024a), medical038

knowledge (Xu et al., 2024b), and commonsense039

reasoning (Huang et al., 2024), and have proven040

effective in enhancing domain-specific expertise.041

Despite their success, current KE methods face sev- 042

eral challenges, including limited knowledge cover- 043

age (Davis and Marcus, 2015) in existing common- 044

sense knowledge bases (West et al., 2023; Fang 045

et al., 2021b; Yang et al., 2023; Fang et al., 2021a, 046

2023; Ding et al., 2024; Xu et al., 2024a) which of- 047

fer limited coverage and focus on isolated facts, 048

rather than forming hierarchical structures that 049

enable generalization through editing (Ma et al., 050

2021b; Wang et al., 2024e). Furthermore, the un- 051

structured nature of commonsense knowledge com- 052

plicates scaling, while the flexible representation 053

of commonsense knowledge means that a single 054

fact may manifest in multiple formats. This neces- 055

sitates editing at the (relation, tail) pair level 056

rather than at individual tokens. 057

To address these issues, we present CONKE, a 058

novel knowledge editing framework tailored for 059

editing commonsense knowledge within LLMs. 060

We use VERA (Liu et al., 2023), an automated 061

commonsense plausibility verifier, to assess the 062

plausibility of commonsense knowledge in LLMs. 063

For knowledge deemed erroneous and requiring 064

edits, we integrate conceptualization and instan- 065

tiation (Wang et al., 2023b,a) to enrich semantic 066

coverage and support more generalizable editing, 067

covering not only the targeted knowledge but also 068

other potentially relevant yet implausible informa- 069

tion within the LLM. This pipeline 070

To ensure flexibility, CONKE adopts an open- 071

ended format for editing, enabling the handling 072

of arbitrary knowledge structures rather than fo- 073

cusing solely on traditional (h,r,t) triplets. We 074

go beyond traditional Knowledge Editing tech- 075

niques by combining automated knowledge de- 076

tection, conceptualization, and instantiation, en- 077

hancing the model’s ability to generalize and adapt 078

to diverse contexts. Experimental results on Ab- 079

stractATOMIC (He et al., 2024) demonstrate that 080

LLMs enhanced by CONKE generate common- 081

sense knowledge with improved plausibility. Fur- 082
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What effects does the event of 
Alice plays together every day have 

on others?

Others will feel the urge to sneeze 
repeatedly.

Human 
labeling

Ground truth triple in CSKB

PersonX plays together every day,
oEffect,

get to know someone

Traditional Knowledge Editing

PersonX plays together 
every day

Conceptualization & Instantiation

Commonsense Knowledge Base

1. (PersonX plays together every 
day, oEffect, get to know someone)
2. (PersonX plays together every 

day, xIntent, to be amused)
3. (PersonX plays together every 
day, xNeed, to know how to play)

1. (PersonX plays together every day, 
oEffect, get to know someone)

2. (PersonX has fun, xIntent, to be amused)
3. (PersonX engages in enjoyable group 
activities, xNeed, to know how to play)

...

Abstract Commonsense Knowledge Base

PersonX 
has fun

PersonX engages in 
enjoyable group activities

ConceptEdit (Ground truth triple in augmented abstract KB)

VERA

Figure 1: An overview of CONKE, which pipelines conceptualization and instantiation, knowledge editing, and
LLM verification together for automated and scalable knowledge editing over commonsense knowledge.

ther evaluations across five commonsense question-083

answering benchmarks also show performance im-084

provements. These experiments demonstrate the085

robustness and generalizability of our approach in086

enhancing commonsense reasoning across diverse087

architectures and tasks.088

2 Related Works089

2.1 Knowledge Editing090

Knowledge editing (Cao et al., 2021) aims to up-091

date an LLM’s internal knowledge without full092

retraining or relying solely on prompt engineer-093

ing, is becoming increasingly crucial. Meng et al.094

(2022) propose ROME, which identifies and up-095

dates factual associations within specific MLP lay-096

ers, achieving precise single-fact edits guided by097

causal mediation analysis. MEMIT (Meng et al.,098

2023) extends ROME’s principles to handle large-099

scale edits simultaneously. By distributing updates100

across multiple layers and parameters, MEMIT effi-101

ciently integrates thousands of facts while maintain-102

ing specificity and fluency. GRACE (Hartvigsen103

et al., 2023), on the other hand, avoids internal104

parameter changes by integrating external dictio-105

naries and adapters as a modular memory source.106

This approach allows flexible, inference-time ac-107

cess to new knowledge, though it may sacrifice108

some internal coherence and interpretability. In109

our work, we build upon these methods to enhance110

editing commonsense knowledge in LLMs.111

2.2 Conceptualization in Commonsense112

Conceptualization abstracts entities or events into113

general concepts, forming abstract commonsense114

knowledge (Murphy, 2004), while instantiation115

grounds these concepts into new instances, intro-116

ducing additional commonsense knowledge. Pre-117

vious work largely focused on entity-level con-118

ceptualization (Durme et al., 2009; Song et al.,119

2011, 2015; Liu et al., 2022; Peng et al., 2022),120

with He et al. (2024); Wang et al. (2023b,a) pio- 121

neering event-level conceptualization from Word- 122

Net (Miller, 1995) and Probase (Wu et al., 2012). 123

For instantiation, Allaway et al. (2023) introduced 124

a controllable generative framework that automat- 125

ically identifies valid instances. In this work, we 126

leverage the conceptualization distillation frame- 127

work proposed by Wang et al. (2024d) to augment 128

the knowledge being edited, ensuring broader se- 129

mantic coverage and thereby improving the gener- 130

alizability of edited knowledge. 131

3 The CONKE Framework 132

An overview of CONKE is presented in Figure 1. 133

Our framework consists of three main compo- 134

nents: (1) automated knowledge verification with 135

VERA (Liu et al., 2023), (2) abstract knowledge 136

acquisition via conceptualization and instantia- 137

tion, and (3) LLM knowledge editing. We use 138

the AbstractATOMIC (He et al., 2024) and CAN- 139

DLE (Wang et al., 2024d) datasets for training and 140

evaluation as two rich sources of abstract knowl- 141

edge with conceptualization and instantiation. The 142

training set of both datasets are used for editing 143

and the testing sets are used for evaluation. 144

3.1 Automated Knowledge Verification 145

Since commonsense knowledge is vast, traditional 146

human-in-the-loop methods for detecting and cor- 147

recting erroneous outputs in LLMs are neither eas- 148

ily scalable nor adaptable. Inspired by recent ad- 149

vances in using LLMs as automated judges (Raina 150

et al., 2024; Wang et al., 2024c), we propose a 151

fully automated verification strategy to assess an 152

LLM’s internal commonsense knowledge. Our ver- 153

ification process involves VERA (Liu et al., 2023), 154

a discriminative model trained to score the plau- 155

sibility of arbitrary commonsense statements, as 156

our evaluation tool. For each triple in the Ab- 157

stractATOMIC (He et al., 2024) training set, we 158
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prompt the LLM with the head event and request159

it to generate the corresponding relation and tail.160

VERA then evaluates the plausibility of the gener-161

ated knowledge by producing a score in the range162

[0, 1], where values above 0.5 are considered plau-163

sible, and those below 0.5 are deemed implausible.164

By iterating over all triples, this process provides165

both the LLM’s generated responses and VERA’s166

discrimination results, pinpointing which portions167

of the generated knowledge are incorrect. Conse-168

quently, we can identify the exact “areas” within169

the LLM’s internal knowledge that require editing.170

This automated pipeline eliminates the dependence171

on costly human annotations for error detection,172

enabling scalable and efficient improvements of173

the LLM’s commonsense understanding.174

3.2 Conceptualization and Instantiation175

While existing approaches primarily integrate176

decontextualized commonsense knowledge into177

LLMs through KE techniques, we hypothesize that178

capturing the diverse patterns that the same piece of179

knowledge can exhibit under different contexts is180

equally important. However, repeated editing may181

result in knowledge drift, where successive modi-182

fications will lead to substle conflicts, causing the183

model’s internal representation to become unsta-184

ble. To this end, we augment the knowledge to be185

edited by implementing both conceptualization and186

instantiation, following Wang et al. (2024d). For187

each triple targeted for editing, we first abstract its188

instances into more general concepts by prompting189

GPT-4o, producing abstract knowledge triples (Fig-190

ure 1). We then instantiate these abstract concepts191

into novel, context-specific instances, again using192

GPT-4o, thereby forming a rich knowledge base.193

This process yields approximately 160,000 com-194

monsense knowledge triples, substantially improv-195

ing the semantic coverage and contextual adaptabil-196

ity of the edited knowledge. Additionally, we are197

mindful of cascading effects that may arise when198

modifying a piece of commonsense knowledge. As199

noted in (Wang et al., 2024b), knowledge is highly200

interconnected, and modifying one fact can trig-201

ger unintended changes in related facts, leading202

to inconsistencies. To mitigate these cascading ef-203

fects, we use conceptualization and instantiation204

to ensure that modifications to abstract concepts205

are consistently applied to their related instances,206

hence maintaining coherence and reducing the risk207

of introducing inconsistencies.208
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Figure 2: Average plausible rate and expert acceptance
rate of LLMs’ generation after CONKE.

3.3 LLM Knowledge Editing 209

Finally, we apply knowledge editing to the LLM 210

using the enriched knowledge base generated 211

through our conceptualization and instantiation pro- 212

cesses, correcting errors identified by VERA. To 213

accomplish this, we experiment with three estab- 214

lished knowledge editing methods: MEMIT (Meng 215

et al., 2023), ROME (Meng et al., 2022), and 216

GRACE (Hartvigsen et al., 2023). For GRACE, 217

which relies on adapters to determine whether 218

and how to use an external dictionary, we adopt 219

the original deferral mechanism implementation. 220

We evaluate our framework with these edit- 221

ing methods on four representative LLM back- 222

bones: Mistral-7B-Instruct-v0.2(Jiang et al., 223

2023), Meta-Llama-3-8B-Instruct(Dubey et al., 224

2024), Chatglm2-6b(Zeng et al., 2024), and 225

GPT-J-6B(Wang and Komatsuzaki, 2021). 226

4 Experiments and Analyses 227

In this section, we evaluate LLMs after apply- 228

ing CONKE through expert and automated assess- 229

ments, illustrating improved performance on down- 230

stream tasks and present several ablation studies. 231

232

4.1 LLMs-After-Editing Evaluation 233

We first evaluate LLMs after editing via two mea- 234

sures. First, we prompt these LLMs with head 235

events in the testing set of AbstractATOMIC and 236

ask it to complete the commonsense knowledge. 237

With the generations on the testing set, we ask 238

VERA to score them again and we calculate the 239

plausible ratio whose scores are above 0.5. Then, 240

we sample a subset of 200 generations and recruit 241

two expert annotators to conduct a manual analyses 242

on the acceptance ratio of the plausible assertions 243

that passed VERA’s filtering. We compare mod- 244

els after being edited with MEMIT, GRACE, and 245

ROME, and set another vanilla group as baseline 246

comparison. As shown in Figure 2, both VERA 247

and human evaluations exhibit consistent trends, 248
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Figure 3: Performance of the best LLM after editing on
five downstream tasks compared to the vanilla baseline.

with human raters tend to assign higher scores but249

identifying similar improvements. When apply-250

ing MEMIT-based editing, both VERA and human251

evaluations show notable enhancements over the252

Vanilla baseline. Similarly, GRACE and ROME253

edits enhance plausibility scores, with MEMIT and254

GRACE achieving the highest overall performance.255

The strong results from expert annotations further256

validate the reliability of VERA’s judgments, sup-257

porting the use of VERA in our framework as an258

effective commonsense evaluator to identify im-259

plausible knowledge requiring further editing. This260

approach reduces reliance on manual annotations261

while preserving robust assessment capabilities.262

4.2 Downstream Improvements263

To assess whether enhanced internal commonsense264

reasoning improves downstream task performance,265

we evaluate the edited models on multiple com-266

monsense reasoning benchmarks. Following Ma267

et al. (2021a), we test our framework on the val-268

idation splits of five widely-used commonsense269

QA benchmarks: Abductive NLI (aNLI; Bhagavat-270

ula et al., 2020), CommonsenseQA (CSQA; Tal-271

mor et al., 2019), PhysicalIQA (PIQA; Bisk et al.,272

2020), SocialIQA (SocialIQA; Sap et al., 2019),273

and WinoGrande (WG; Sakaguchi et al., 2021).274

These benchmarks are designed to evaluate a range275

of knowledge types crucial for robust common-276

sense reasoning (Shi et al., 2023; Wang and Song,277

2024). We compare the performance of the best278

LLM edited with CONKE against its correspond-279

ing vanilla baseline across all benchmarks, with280

the results visualized in Figure 3. The results show281

that models edited with CONKE achieve signifi-282

cant performance improvements across all bench-283

marks, with particularly notable gains in aNLI and284

SocialIQA. These findings demonstrate the effec-285

tiveness of CONKE in enhancing commonsense286

reasoning capabilities and suggest its potential for287

broader applications in improving LLM perfor-288

mance on real-world reasoning tasks.289
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Figure 4: VERA evaluation scores of edited LLMs with
and without integrating conceptualization.

4.3 Ablation Study 290

Finally, to validate the effect of conceptualization, 291

we conducted an ablation study on MEMIT by re- 292

moving the conceptualization step and comparing 293

performance. In this setup, we edit LLMs both with 294

and without the integration of conceptualization 295

and instantiation, and evaluate their performance by 296

examining the average VERA scores of the gener- 297

ated outputs on the testing set. The conceptualized 298

variant leveraged enriched commonsense triples 299

generated via abstraction and instantiation prior to 300

the editing process, while the non-conceptualized 301

variant directly applied MEMIT without these pre- 302

processing steps. 303

Figure 4 demonstrates that the conceptual- 304

ized variants consistently outperform their non- 305

conceptualized counterparts, achieving higher plau- 306

sibility and improved downstream task accuracy. 307

These results suggest that the enriched conceptual 308

patterns introduced before editing not only enhance 309

plausibility but also enable the model to generalize 310

commonsense knowledge to more complex reason- 311

ing tasks, ultimately boosting overall performance. 312

5 Conclusions 313

In this paper, we introduce CONKE, a novel knowl- 314

edge editing framework designed to enhance com- 315

monsense reasoning in LLMs by addressing chal- 316

lenges of limited knowledge coverage and scala- 317

bility, and by integrating automated verification 318

through VERA and semantic enrichment via con- 319

ceptualization and instantiation for more effec- 320

tive and generalizable editing. Experimental re- 321

sults demonstrate significant improvements in both 322

knowledge plausibility and downstream task perfor- 323

mance, validating the effectiveness of our approach. 324

We envision that CONKE will inspire future re- 325

search on scalable and context-aware knowledge 326

editing, paving the way for LLMs to better han- 327

dle the complexity and diversity of commonsense 328

reasoning. 329
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Limitations330

Our approach, CONKE, advances LLM common-331

sense reasoning through conceptualization and iter-332

ative knowledge editing, yet several challenges per-333

sist. First, editing one piece of knowledge can cas-334

cade through related concepts, creating non-linear335

interactions that are difficult to detect and manage,336

especially as the knowledge base scales up. Second,337

iterative updates risk knowledge drift, where suc-338

cessive edits subtly conflict with or overwrite prior339

facts, emphasizing the need for robust frameworks340

to maintain consistency. Finally, the lack of sta-341

ble ground truth for commonsense, which is often342

context-sensitive and culturally variable, compli-343

cates standardization. Addressing these challenges344

will require globally coordinated editing mecha-345

nisms, improved theoretical frameworks, and sys-346

tematic human-in-the-loop validation to ensure ed-347

its align with broader consensus and expert judg-348

ment.349

Ethics Statement350

In this paper, all datasets and models used are free351

and accessible for research purposes, aligning with352

their intended usage. The expert annotators are353

graduate students with extensive experience in NLP354

and commonsense reasoning research, and they355

voluntarily agreed to participate without compen-356

sation.357

However, we recognize commonsense knowledge358

is inherently culturally and contextually variable,359

and there are ethical considerations related to the360

knowledge edited and propagated through the mod-361

els. We must ensure that the knowledge inserted362

into the model doesn’t favor certain views over oth-363

ers, especially in sensitive cases such as healthcare364

or law applications. To mitigate this, we implement365

a robust process of cross-validation with human ex-366

perts to monitor for biases. Moreover, we propose367

regular audits of the system’s performance, to en-368

sure that its performance remains fair.369
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