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Abstract

Backpropagation (BP) remains the dominant and most successful method for training
parameters of deep neural network models. However, BP relies on two computationally
distinct phases, does not provide a satisfactory explanation of biological learning, and
can be challenging to apply for training of networks with discontinuities or noisy node
dynamics. By comparison, node perturbation (NP), also known as activity-perturbed
forward gradients, proposes learning by the injection of noise into network activations, and
subsequent measurement of the induced loss change. NP relies on two forward (inference)
passes, does not make use of network derivatives, and has been proposed as a model for
learning in biological systems. However, standard NP is highly data inefficient and can
be unstable due to its unguided noise-based search process. In this work, we develop a
modern perspective on NP by relating it to the directional derivative and incorporating input
decorrelation. We find that a closer alignment with directional derivatives together with
input decorrelation at every layer theoretically and practically enhances performance of NP
learning with large improvements in parameter convergence and much higher performance
on the test data, approaching that of BP. Furthermore, our novel formulation allows for
application to noisy systems in which the noise process itself is inaccessible, which is of
particular interest for on-chip learning in neuromorphic systems.

1 Introduction

Backpropagation (BP) is the workhorse of modern artificial intelligence. It provides an efficient way
of performing multi-layer credit assignment, given a differentiable neural network architecture and loss
function (Linnainmaay, [1970). Despite BP’s successes, it requires an auto-differentiation framework for the
backward assignment of credit, introducing a distinction between a forward, or inference phase, and a backward,
or learning phase, increasing algorithmic complexity and impeding implementation in (neuromorphic)
hardware (Kaspar et all |2021; Zenke and Neftci, 2021)). Furthermore, BP has long been criticized for
its lack of biological detail and plausibility (Grossberg, (1987 |Crick, [1989; [Lillicrap et al.l 2016]), with
significant concerns again being the two separate forward and backward phases, but also its reliance on
gradient propagation and the non-locality of the information required for credit assignment.

Alternative algorithms have been put forth over the years, though their inability to scale and difficulty in
achieving levels of performance comparable to BP have held back their use. Many focus either on greedy
local learning rules or on random feedback matrices and projections, which are deemed more plausible than
symmetric feedback weights (Dellaferrera and Kreiman, [2022; [Frenkel et al., 2021; Kohan et al.| [2018; [Hinton),
2022)). The category of algorithms we focus on in this work are perturbation algorithms, specifically variants
of node perturbation (NP) (Dembo and Kailath| [1990; |[Cauwenberghs|, [1992), which require no feedback
connectivity at all. In NP, node activations are perturbed by a small amount of random noise. Weights are
then updated to produce the perturbed activations in proportion to the degree by which the perturbation
improved performance. This method requires a measure of the loss function being optimized on a network
both before and after the inclusion of noise. Such an approach is appealing because it leverages the same
forward pass twice, rather than relying on two computationally distinct phases. It also does not require
non-local information other than the global performance signal.
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Despite these benefits, |Hiratani et al|(2022)) demonstrate that NP is extremely inefficient compared to BP,
requiring two to three orders of magnitude more training cycles, depending on network depth and width.
In addition, they found training with NP to be unstable, in many cases due to exploding weights. Another
phenomenon uncovered in their work is that the covariance of NP’s updates is significantly higher than that
of BP, which can mathematically be described as an effect mediated by correlations in the input data.

In this work, we put forward three contributions. First, we reframe the process of node perturbation
together with the subsequent measurement of the output loss change in terms of directional derivatives.
Directional derivatives have been related to perturbation-based learning before in the context of forward
gradient learning (Baydin et all 2022; Ren et al., [2022)) but never used to fully explicate a learning rule in
this manner. This provides a more solid theoretical foundation for node perturbation on the whole. Second,
we introduce an approximation, referred to as activity-based node perturbation, which is more efficient
and has the additional advantage that it can be implemented in noisy systems such as imprecise hardware
implementations (Gokmen, 2021)) or biological systems (Faisal et al., |2008]), where the noise itself is not
directly measurable. Third, we propose to use a decorrelation method, first described by |Ahmad et al.| (2023]),
to de-bias activations. Because NP-style methods directly correlate perturbations of unit activities with
changes in a reward signal, decorrelation of these unit activities helps to eliminate confounding effects. That
is, it makes credit assignment more straightforward, effectively aligning gradient updates more closely with
the natural gradient (Ahmad, 2024).

By combining decorrelation with the different NP methods, we find that it is possible to achieve orders of
magnitude increase in model convergence speed, with performance levels rivaling networks trained by BP in
certain contexts. Moreover, NP is a suitable candidate for learning on (noisy, resource-constrained) devices
as it removes the need to implement the backward pass required for backpropagation. This is of particular
interest for neuromorphic computing applications that make use of mixed-signal unconventional computing
paradigms.

2 Methods

2.1 Node perturbation and its formulations

Let us define the forward pass of a fully-connected neural network, with L layers, such that the output of a
given layer, 1 € 1,2,..., L is given by x; = f (a;), where a; = W;x;_; is the pre-activation with weight matrix
W, f is the activation function and x; is the output from layer {. The input to our network is therefore
denoted xg, and the output x;,. We consider learning rules which update the weights of such a network of
the form

W, W, — UAWI

where 7 is a small constant learning rate and AW, is a parameter update direction for a particular algorithm.
Recall that the regular BP update is given by

AW, = gix/_, (1)

with g; = g—f’ the gradient of the loss £ with respect to the layer activations a;. Our aim is (1) to derive
gradient appfoximations which have better properties than standard node perturbation and (2) to show that
decorrelation massively improves convergence performance for any of the employed learning algorithms. In
the following, we consider weight updates relative to a single input sample x(. In practice, these updates are
averaged over mini-batches.

2.1.1 lterative node perturbation

In the following, we develop a principled approach to node perturbation based learning. Our goal is to
determine the gradient of the loss with respect to the pre-activations in a layer [ by use of perturbations.
To this end, we consider the partial derivative of the loss with respect to the pre-activation a} of unit i in
layer [ for all i. We define a perturbed state as Xx(h) = f (8 + hmy) with h an arbitrary scalar and binary
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vectors my = e; if k = [ with e; a standard unit vector and m; = 0 otherwise. We may now define the
partial derivatives as
L(xr(h)) — L(x1)
= 1i .
(s0); = Jim ==

This suggests that node perturbation can be rigorously implemented by measuring derivatives using pertur-
bations hmy, for all units ¢ individually in each layer . However, this would require as many forward-passes
as there exist nodes in the network, which would be extremely inefficient.

An alternative approach is to define perturbations in terms of directional derivatives. Directional derivatives
measure the derivative of a function based upon an arbitrary vector direction in its dependent variables. At
this stage a choice can be made: either one may measure this directional derivative for a single layer or for an
entire network. Measuring the directional derivative with respect to a specific layer via a perturbation given
by

ik(h) = f (ﬁk + hvk)

where vi, ~ N(0,0°1;) if k = [ and v, = 0 otherwise. Here, o2 is a scalar, equivalent to the noise variance.

Given this definition, we can precisely measure a directional derivative with respect to the activities of layer [

in our deep neural network, in vector direction v = (vy,...,vy) as
ot i EGL) ~ £(x0)
h—0 hl|v]]

where the directional derivative is measured by a difference in the loss induced in the vector direction v,
normalized by the vector length ||v|| and in the limit of infinitesimally small perturbation. The normalization
ensures that the directional derivative is taken with respect to unit vectors. Note that this derivative is only
being measured for layer [ as for all other layers the perturbation vector is composed of zeros.

As derived in Appendix [A] by averaging the directional derivative across samples of the vector v, in the limit
h — 0, we exactly recover the gradient of the loss with respect to a specific layer, such that

Ny <vvc|‘3”>v . 2)

Equation [2] allows us to measure the gradient of a particular layer of a deep neural network by perturbation.
Instead of averaging over multiple noise vectors, we use a sample-wise weight update and average over
mini-batches instead. Fixing h at a small value and incorporating it into the scale of the noise vector v, we
obtain weight update

vy
AW%NP = Nl 5£W Xl—[l (3)

where we used VL = 6L /||v||. We refer to this method as iterative node perturbation (INP).

2.1.2 Node perturbation

Further zooming out, one may wish to perturb all nodes in an entire network, instead of just one layer at a
time. In regular node perturbation, noise is injected into all layer’s pre-activations and weights are updated
in the direction of the noise if the loss improves and in the opposite direction if it worsens. As with iterative
node perturbation, two forward passes are required: one clean and one noise-perturbed. During the noisy
pass, noise is injected into the pre-activation of each layer to yield a perturbed output

[=fa+e)=f(Wix_1+e) (4)

where the added noise €; ~ A(0,02I;) is a spherical Gaussian perturbation with no cross-correlation and
I; is an N; x N; identity matrix with NV; the number of nodes in layer [. Note that this perturbation has a
cumulative effect on the network output as each layer’s perturbed output X; is propagated forward through
the network, resulting in layers deeper in the network being perturbed by more than just their own added
noise.
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As before, one can measure a loss differential for an NP-based update. Supposing that the loss L is
measured using the network outputs, the loss difference between the clean and noisy network is given by
0L = L(X1) — L(xL), where dL is a scalar measure of the difference in loss induced by the addition of noise
to the network. Given this loss difference and the network’s perturbed and unperturbed outputs, we compute
a layer-wise learning signal by replacing the gradient g; in Eq. [[] with a term consisting of the loss difference
and a normalized noise vector: €

AWNP = M;xﬁl (5)

This update is similar to that of INP, with one key difference, that the normalization term, Nl/||v\|27 is
approximated as the inverse of the node-wise variance, 1 / o?. Thus, regular NP is a network-wide measure of
the directional derivative with an approximation of the required normalization.

NP thus explores in a larger parameter space than INP. Importantly, however, it requires knowledge of each
layer’s noise vector, ¢;. This knowledge is hard to attain in real-world cases of noise injection within a neural
network as this noise has to be distinguishable from the noise induced by the previous layers.

2.1.3 Activity-based node perturbation

To improve upon NP and to mitigating the need for exact and separate measurement of the noise at every
layer, we propose to approximate the directional derivative across the whole network simultaneously based
upon the activity-differences. This can be achieved by, instead of measuring and tracking the injected noise
alone, measuring the state difference between the clean and noisy forward passes of the network. Concretely,
taking the definition of the forward pass given by NP in Eq.[4] we define

(5al T

ANP __
AWM = N 6L Xy (6)

where N = ZlL:O N is the number of units in the network, da, = &, — a; is the activity difference between a
noisy and a clean pass in layer | and da = (da;,...,dar) is the concatenation of activity differences. The
resulting update rule is referred to as activity-based node perturbation (ANP). Appendix [Bf provides a
derivation of this rule.

Here, we have now updated multiple aspects of the NP rule. First, rather than using the measure of isolated
noise injected at each layer, we instead measure the change in activation between the clean and noisy networks.
This has a theoretical benefit as well as a theoretical downside. As a theoretical benefit, by using the total
noise at any given layer, this subsumes noise in all past layers and allows one to update a layer as if there
was zero noise added to the preceeding layers. The only correlative noise issues remaining are then with the
later network layers. ANP is thus demonstrably better than NP for layers closer to the output of a network.

On the other hand, the noise at each node in a layer is no longer independent and could now have a correlated
structure. This is a downside in that it can skew the gradient descent direction, though can be shown to still
converge to a minimum in loss. Both of these implications are expanded upon in Appendix [Bl Second, this
direct use of the activity difference also requires a recomputation of the scale of the perturbation vector and
the requisite normalization. Unlike in the case of NP, one cannot assume the size of this normalization.

Note that the ANP rule is now a hybridization of iterative node perturbation and traditional node perturbation.
In the limit where the nodes are not interdependent (i.e. when we have a single layer), ANP is equivalent to
INP. When used in a layered network structure, ANP allows computation of updates without explicit access
to the noise vectors and updates an entire network in the same style as traditional NP.

2.2 Increasing perturbation learning efficiency through decorrelation

Uncorrelated data variables have been proposed and demonstrated as impactful in making credit assignment
more efficient in deep neural networks (LeCun et al., [2002). If a layer’s inputs, x;, have highly correlated
features, a change in one feature can be associated with a change in another correlated feature, making it
difficult for the network to disentangle the contributions of each feature to the loss. This can lead to less
efficient learning, as has been described in previous research in the context of BP (Luo, [2017; |Wadia et al.,
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2021). NP accordingly benefits from decorrelation of input variables at every layer. Specifically, [Hiratani
et al.| (2022)) demonstrate that the covariance of NP updates between layers k and I can be described as

k
e ~ 2058 + b <z 7T xx> -

m=1

where C,de is the covariance of SGD updates, d; is the Kronecker delta and ® is a tensor product. Equation
implies that in NP the update covariance is twice that of the SGD updates plus an additional term that
depends on the correlations in the input data x5_1x7 ;. Removing correlations from the input data should
therefore reduce the bias in the NP algorithm updates, possibly leading to better performance.

In this work, we introduce decorrelated node perturbation, in which we decorrelate each layer’s input
activities using a trainable decorrelation procedure first described by |Ahmad et al.| (2023)). A layer input x;
is decorrelated by multiplication by a decorrelation matrix R; to yield a decorrelated input x; = Rix;. The
decorrelation matrix Ry is then updated according to

Ry« R — o (xi (x)' - diag (x))°) ) R

where « is a small constant learning rate and R; is initialized as the identity matrix. For a full derivation of
this procedure see (Ahmad et al., [2023).

Decorrelation effectively aligns the gradient updates more closely with those of the natural gradient (Ahmad,
2024)) and can be combined with any of the formulations described in the previous sections by replacing x; in
Eq. |I| with x;. We will use DBP, DNP, DINP and DANP when referring to the decorrelated versions of the
described learning rules. Algorithm [I] describes the decorrelated activity-based node perturbation procedure,
which we will argue is of particular interest for implementations on unconventional computing hardware.

Algorithm 1 Decorrelated activity-based node perturbation (DANP)

Input: data D, network {(W, R))}- ., learning rates n and a
for each epoch do
for each (x0,t) € D do

for layer [ from 1 to L do > Regular forward pass
X1 =Ri—ixiy
a = Wlefl
x; = f(ai)

end for

5(0 = Xp

for layer [ from 1 to L do > Noisy forward pass

ox -
X1 =Ri—1X1
a, = Wliffl + €

% = f(&)
end for
SL=(t—%5)*— (t —xr)? > Compute loss difference
for layer [ from 1 to L do
W, W; —nNL ﬁg%ﬁ‘é (xl*,l)—r > Update weight matrix
Ri+<R -« (Xl* (x7)" — diag ((Xl*)2)) R, > Update decorrelation matrix
end for
end for

end for

2.3 Experimental validation

Our experiment in Section [3.1]uses a synthetic input—output mapping, where input vectors x are sampled from
a Gaussian distribution N'(0,1). When computing updates, perturbations are applied by adding small random
noise to layer activations, where each perturbation vector is drawn from N(0,02) with 62 = 107°. These
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updates are then compared to updates computed by BP to determine their correspondence by measuring

the angle, measured as cosf = %, where 6 is the angle, u and v are the vectors, and | - | denotes the

Euclidean norm. For all other experiments in this work using NP, ANP or INP ¢Z.,; = 107% was also used

when sampling the perturbations. See Appendix [C]for more details on how this value was determined.

To measure the performance of the algorithms proposed, we ran a set of experiments with the CIFAR-
10 (Krizhevskyl, [2009) and Tiny ImageNet datasets (Le and Yang] 2015)), using fully-connected and convolu-
tional neural networks, specifically aiming to quantify the performance differences between the traditional
(NP), layer-wise iterative (INP) and activity-based (ANP) formulations of NP as well as their decorrelated
counterparts. These datasets were chosen as they have previously been shown to yield low performance when
training networks using regular node perturbation, demonstrating its limitations (Hiratani et al.| [2022). All
experiments were repeated using three random seeds, after which performance statistics were aggregated.
Further experimental details can be found in Appendix [D] Additionally, we performed experiments on the
SARCOS dataset (Vijayakumar and Schaal, 2000), demonstrating the application of our work in a robotics
setting.

3 Results

3.1 INP and ANP align better with the true gradient

In single-layer networks, the three described NP formulations (NP, INP and ANP) converge to an equivalent
learning rule. Therefore, multi-layer networks with three hidden layers were used to investigate performance
differences across our proposed formulations.
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Figure 1: Left: Angles between BP’s weight update and an update calculated by NP, ANP and INP as a
function of the number of noise iterations. Note that the network is not updated across the ‘Noise iterations’
dimension, but instead multiple noise samples are propagated through a fixed network and their updates
averaged. This is computed for a fully-connected, 3 hidden layer, network with leaky ReLU nonlinearities.
Right: Number of forward passes for NP, ANP and INP.

Figure [T} left, shows how weight updates of the different node perturbation methods compare to those from
BP in a three-hidden-layer, fully-connected, feedforward network trained on synthetic data. Specifically, it is
shown how each of these methods compare in the angle of their update relative to BP when you average their
update over a greater and greater number of noise samples. Note that the update for Layer 1 is identical for
NP and ANP.
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When measuring the angles between the update vectors of various methods, we can observe that the INP
method is by far the most well-aligned in its updates with respect to backpropagation, followed by ANP and
closely thereafter by NP. These results align with the theory laid out in the methods section of this work.
Appendix [E] shows the same data as a function of the number of noisy forward passes.

Note that for all of these algorithms, alignment with BP updates improves when updates are averaged over
more samples of noise. Therefore, it is the ranking of the angles between the NP algorithms that is of
interest here, not the absolute value of the angle itself, as all angles would improve with more noise samples.
Appendix [C] shows that our results do not depend strongly on the noise variance o2, producing similar results
when varying o2 by a few orders of magnitude.

Figure [T} right, shows that the node perturbation methods also differ in how many forward passes are
required. Specifically, although all algorithms use the same dimensionality of noise the INP method requires
an individual forward pass for each layer to isolate the impact of this noise and to better approach the BP
update. In the following we compare INP to the other node perturbation variants without accounting for this
excess number of forward-passes, but a reader should bear in mind this drawback and consider the added
computational complexity of INP.

3.2 Decorrelation improves convergence

To assess the impact of decorrelation on NP’s performance, we studied a single-layer network trained with
NP, DNP, BP and DBP. Note that the different formulations of NP are identical in a single-layer networks
where there is no impact on activities in the layer from previous layers.
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Figure 2: Performance of (D)NP and (D)BP on CIFAR-10 when training a single-layer architecture.

Figure [2| indicates that, in a single-layer context, DNP outperforms NP significantly and performs slightly
better than BP, with DBP performing better still. It appears that part of the benefit of decorrelation is due
to a lack of correlation in the input unit features and a corresponding ease in credit assignment without
confound. An additional benefit from decorrelation, that is specific to NP-style updates, is explained by the
way in which decorrelation reduces the covariance of NP weight updates, as described in the methods section
above.

3.3 Muilti-layer networks can be trained effectively with node perturbation

We proceed by determining the performance of the different algorithms in multi-layer neural networks. See
Appendix [F] Table [3] for peak accuracies. Figure [3]shows the performance when training a multi-layer fully
connected network. We see all decorrelated algorithms convincingly outperforming their non-decorrelated
counterparts. We also see (D)INP outperform (D)ANP and (D)NP, almost keeping up with BP. Performance
benefits of (D)ANP over (D)NP are not as clear in these results. Note that DNP performs much better in a
three-hidden-layer network than in the single-layer networks, indicating that DNP does facilitate multi-layer
credit assignment much more than regular NP, which actually performs worse in the deeper network.
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Figure 3: Performance of (D)NP, (D)ANP, (D)INP and (D)BP on CIFAR-10 in a three-hidden layer network.
For both figures, curves report mean train and test accuracy. Shaded areas indicate the maximal and minimal
accuracy obtained for three random seeds. Note that all NP methods have an equivalent formulation in a
single-layer network.

3.4 Resampling allows for scaling to larger systems

To further investigate the capabilities of our approach, we apply BP, DNP, DANP and DINP to the more
challenging Tiny ImageNet dataset (Le and Yang| [2015) using a deeper architecture consisting of three
convolutional layers and three fully connected layers. The Tiny ImageNet dataset has 200 classes and thus
has a larger output space than CIFAR-10. Larger output spaces are known to be challenging for traditional
NP-style algorithms (Hiratani et al.| 2022)). RGB-values for the images, which are ImageNet images downsized
to 64 x 64 pixels, were standardized as a preprocessing step. For network architecture and learning rates, see

Appendix
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Figure 4: Train and test accuracy for BP, DNP, DANP and DINP on Tiny ImageNet. DANP and DINP
applied with 1, 10, 30 and 100 noise samples per update step. DNP applied with 100 noise samples per
update step.

Figure [f shows that, in their naive implementation, DNP, DANP and DINP do not appreciably learn this task.
We demonstrate that, for such a difficult task, this is due to the accuracy of the gradient estimation. To show
this, we resampled the random noise 10, 30 and 100 times before applying each update, effectively carrying
out 10/30/100 noisy passes to compare against each single clean pass. For DNP, only an experiment with
100 iterations was included, as this algorithm did not match the performance of DINP and DANP. Results
again demonstrate that both DANP and DINP improve meaningfully on DNP in deeper networks. The
additional noise sampling comes at significant computational expense but could in principle be parallelized
with sufficiently powerful hardware. The results indeed show that, as our theory suggests, sampling the noise
distribution multiple times per update step significantly improves alignment with backpropagation, with
DINP with 100 samples per update closely approximating BP’s learning trajectory. See Appendix [F] Table []
for peak accuracies.
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3.5 Robot control task

As an additional demonstration that our results generalize to other datasets with applications in robotics, we
report results on the SARCOS dataset (Vijayakumar and Schaal, |2000).
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Test Loss
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Figure 5: Train and test loss for (D)NP, (D)ANP and (D)BP on the SARCOS dataset. Curves report mean
train and test loss. Error bars indicate the maximal and minimal loss obtained for three random seeds.

Figure [5| shows train and test loss for (D)NP, (D)ANP and (D)BP for the SARCOS dataset
land Schaall 2000). The task is to solve inverse dynamics problem for a seven degrees-of-freedom SARCOS
anthropomorphic robot arm by mapping from a 21-dimensional input space (7 joint positions, 7 joint velocities,
7 joint accelerations) to the corresponding 7 joint torques. The network is a fully connected architecture
with two 32-unit hidden layers and was trained with MSE loss and the leaky ReLU activation function. The
network was trained for 500 epochs and results were averaged over three random seeds. A learning rate search
for each algorithm was started at 10~7, doubling the learning rate until the algorithm became unstable. A
decorrelation learning rate of 10™* was used for DNP and DANP and 10~3 for DBP.

The results indicate that while NP and ANP lag BP in performance, DNP and DANP perform almost as well
as BP. Like in other experiments reported in this work, DBP performs best overall. Final test losses were
11.18 (NP), 10.51 (DNP), 15.86 (ANP), 9.79 (DANP), 9.48 (BP) and 7.02 (DBP).

3.6 Node perturbation allows learning in noisy systems

One of the most interesting applications of perturbation-based methods for learning are for systems that are
inherently noisy but have the property that the noise cannot be measured directly. This includes both biological
nervous systems as well as a range of analog computing and neuromorphic hardware architectures (Kaspar,

et al] 2021).

To demonstrate that our method is also applicable to architectures with embedded noise, we train networks
in which there is no clean network pass available. Instead, two noisy network passes are computed and one is
taken as if it were the clean pass. That is, we use

sa; =&l —a”

in Eq. @ where both él(l) and él(z) are generated by running a forward pass under noise perturbations. This is
similar in spirit to the approach suggested by . In this case, we specifically compare DANP
to DNP in terms of their robustness to a noisy baseline. DANP does not assume that the learning algorithm
can independently measure noise. Instead it can only measure the present, and potentially noisy, activity and
thereafter measure activity differences to guide learning.

Figure [f] shows that computing updates based on a set of two noisy passes, rather than a clean and noisy
pass, produces extremely similar learning dynamics for DANP with some minimal loss in performance. DNP,
in contrast, learns more slowly during early training and becomes unstable late in training, decreasing in
train accuracy. It also does not reach the same level of test performance as it does without the noisy baseline.
The similarity of the speed of learning and performance levels for DANP suggests that clean network passes
may provide little additional benefit for the computation of updates in this regime. These results are most
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Figure 6: Performance of DNP and DANP when using two noisy network passes. Results are reported for a
three-layer fully-connected network trained for CIFAR-10 classification (comparable to Figure ??, bottom
panel). Curves report mean train and test accuracy. Shaded areas indicate the maximal and minimal accuracy
obtained for three random seeds.

promising for application of DANP to systems in which noise is an inherent property and cannot be selectively
switched off or read out.

4 Discussion

In this work, we explored several formulations of NP learning and also introduced a layer-wise decorrelation
method which strongly outperforms baseline implementations. In our results we show robust speedups
in training compared to regular NP, suggesting that our alternative formulations of NP could prove to
be competitive with traditional BP in certain contexts. We attribute this increased efficacy to a better
alignment with theoretically derived directional derivatives and a more efficient credit assignment by virtue
of decorrelated input features at every layer.

The performance of all of our proposed methods is substantially improved by including decorrelation. When
comparing NP, INP and ANP, a number of observations are in order. First, INP yields the best results
stemming from its robust relationship to the directional derivative and underlying gradient. The INP method
does, however, require running as many forward passes as there are layers in the network (plus one ‘clean’
pass). This is a drawback for this method and should be considered when analyzing its performance, though
it should also be considered that it could remain efficient on hardware in which all forward passes are
parallelizable. Second, ANP consistently outperforms NP. This can be attributed to its ability to subsume all
noise from previous layers into a given layer’s update and to not have any issues of correlation with these
past layers. Finally, decorrelation aids all NP variants to achieve higher performance and faster convergence.

It is important to note that adding decorrelation matrices to a neural network does increase the amount of
computation required in the forward pass. Appendix [G] provides details on the exact amount of additional
computation and memory required when running BP, DBP or DANP. It should be noted, however, that several
computational tricks are available that will significantly reduce said computational burden. These methods
have not been applied in the current work, due to the small architectures trained, but would likely benefit
runtimes in larger networks. First, the decorrelation matrix R can be fused with forward weights W, such
that A = WR and x = Az, moving the multiplication by R to W, which does not contain a batch dimension,
significantly reducing computation in the forward pass. Second, the update of R need not be estimated
using the entire mini-batch, but can also be estimated using a heavily downsampled mini-batch (Dalm et al.|
2024)). Third, in the case of convolutional layers, only the local image patch on which the convolutional kernel
operates could be decorrelated (Dalm et al., [2024). As the only correlations that matter when updating a
convolutional kernel are the local correlations within its receptive field, this should not diminish performance
gains, while greatly reducing computational overhead.

Testing the scalability of these approaches to tasks of greater complexity is also important, as are their
application to other network architectures such as residual networks, recurrent networks and attention-based
models. Training accuracy, of even the best NP variants, also show some lag behind backpropagation’s
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accuracy achievements in deeper networks. Further investigation is needed to determine how to bridge this gap
and if it has implications for harder tasks. Our scaling results do demonstrate that by resampling the noise
we achieve better and better alignment with the gradient direction, by virtue of the formal correspondence
between directional derivatives and our formulations of node perturbation. In this sense, our approach can
be viewed as an alternative to forward accumulation, where we exchange memory complexity (maintaining
all partial derivatives) for time complexity (repeated forward passes with resampled noise vectors).

Noise-based learning approaches might also be ideally suited for implementation on neuromorphic hard-
ware (Kaspar et all 2021). First, as demonstrated in Figure |§|, our proposed DANP algorithm scales well
even when there is no access to a ‘clean’ model pass. Furthermore, DANP does not require access to the noise
signal itself, in contrast to NP. This means that such an approach could be ideally suited for implementation
in noisy physical devices (Gokmen, |2021)) even in case the noise cannot be measured. Even on traditional
hardware architectures, forward passes are often easier to optimize than backward passes and are often
significantly faster to compute. This can be especially true for neuromorphic computing approaches, where
backward passes require automatic differentiation implementations and a separate computational pipeline for
backward passes (Zenke and Neftci, 2021)). In these cases, a noise-based approach to learning could prove
highly efficient.

Exploring more efficient forms of noise-based learning is interesting beyond credit-assignment alone. This
form of learning is more biologically plausible as it does not require weight transport nor any specific feedback
processing (Grossberg), (1987 (Crick) [1989; |Lillicrap et al.l |2016). There is ample evidence for noise in biological
neural networks (Faisal et al., 2008|) and we suggest here that this could be effectively used for learning.
Furthermore, the positive impact of decorrelation on learning warrants further investigation of how this
mechanism might be involved in neural plasticity. It is interesting to note that various mechanisms act to
reduce correlation or induce whitening, especially in early visual cortical areas (King et al.;|2013). Additionally,
lateral inhibition, which is known to occur in the brain, can be interpreted as a way to reduce redundancy in
input signals akin to decorrelation, making outputs of neurons less similar to each other (Békésyl |1967). As
described in (Ahmad et al., [2023), decorrelation updates can rely exclusively on information that is locally
available to the neuron, making it amenable to implementation in biological or physical systems.

In general, our work opens up exciting opportunities since it has the potential to bring gradient-free training of
deep neural networks within reach. That is, in addition to not requiring a backward pass, efficient noise-based
learning may also lend itself to networks not easily trained by backpropagation, such as those consisting of
activation functions with jumps, binary networks or networks in which the computational graph is broken, as
in reinforcement learning.
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A The directional derivative as a measure of the gradient

In the main text, we relate the measurement of directional derivatives to the gradient. Specifically, for a
feedforward deep neural network of L layers, we state that

N, <Vvﬁvl>
v/,

where v = (v1,...,vy) and vi ~ N(0,0°1;) if k = and vj = 0 otherwise.

Let us now demonstrate the equivalence of the gradient to the expectation over this directional derivative. For
simplicity, let us consider a single layer network, such that L = 1 and v = v; = vy. A directional derivative
can always be equivalently written as the gradient vector dot product with a (unit-length) direction vector,
such that
VoL=vL
vl

Substituting this form into the above equation requires ensuring that our directional derivative term is no
longer treated as a scalar but as a R!*! matrix. We also a transpose the gradient vector and then untranspose
the entire expression to allow derivation with clarity. Further, we remove the now redundant subscripts, such

that:
T\ T T\ T T\ T
g=N<Vv£V> :N<V£T"V> :N<VV2> VL.
v/« VIl vl / IvI[2/

If we assume that our noise distribution is composed of independent noise with a given variance, ¥ = 021
then we obtain

vv ! T I
g=N({——= VL:OCNNV,C=V£.

[IvIl?

Note that normalization of every vector means that the correlations (vv' /||v|[*) are not changed in sign
but only in scale, as the noise vectors are now all scaled to lie on a unit sphere (without any rotation). In
our specific case of a diagonal correlation matrix, this expectation is also therefore diagonal and all diagonal
elements are equal. The average value of these diagonal elements is then simply the variance 1/N of a random
unit vector in N dimensional space. For other noise distributions, in which there does exist cross-correlation
between the noise elements, this is no longer an appropriate treatment. Instead, one would have to multiply
by the inverse of the correlation matrix to fully recover the gradient values.

B Derivation of activity-based node perturbation

Here we explicitly demonstrate how the INP rule can give rise to the ANP rule under some limited assumptions.
Consider the INP learning rule, which is designed to return a weight update for a specific layer of a DNN,

vy
AWINP = N, 6£W x| .
This rule has been derived in the main text in order to optimally make use of noise to determine the directional
derivative with respect to a single layer of a deep network, [, while all other layers receive no noise. For this
purpose, the noise vector is defined such that v; ~ N(0,02%I;) if K = [ and v;, = 0 otherwise. In moving
from INP to ANP, we aim to fulfill the following conditions. First, update a whole network in one pass rather
than per layer. Second, allow updating without explicit access to the noise at every layer, but instead access
only to the activity difference.

These goals can be accomplished in a simple manner. To achieve the first goal, we can simply treat the whole
network as if it is a single layer (even if it is not). The only change required for this modification is to assume
that this rule holds even if vy ~ N(0,0%1;) for k € [1,..., L]. Le., that noise is injected for all layers and all
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layers are simultaneously updated. To achieve the second goal, we can assume that one does not have access
to the noise vector directly, but instead has access to the output activations from a clean and noisy pass, a;
and a; respectively. Thus, rather than measuring the noise directly, one can measure the impact of all noise
upon the network by substituting the noise vector, v for the activity difference da = & — a. Thus, with these
two modifications we arrive at the ANP learning rule

oa
ANP _ a7 LT
AW, (5/3”(5&”2 X1

which can be computed via two forward passes only.

C Impact of perturbation scale on performance

NP Sensitivity to 02 INP Sensitivity to o? ANP Sensitivity to o?
100 100 100

951 95

Update Angle Relative to BP
(degrees)

Update Angle Relative to BP
(degrees)

Update Angle Relative to BP
(degrees)

1072 1072 107 107 107% 1077 10°® 10°? 102 107 10™* 107 107° 1077 10°® 10°° 1072 107 107* 107° 107° 10~7 107% 107°
a? o? o?

Figure 7: The alignment of NP, INP, and ANP updates measured against BP are shown across a range
of perturbation parameters (62). These angles are measure from updates computed for the second hidden
layer of a randomly initialized three-hidden layer network being using a 1000 sample mini-batch from the
CIFAR-10 dataset. The network from which these are sampled is equivalent to that used in Figure

In all simulations of this paper, random noise is drawn from a set of independent Gaussian distributions
with zero mean and some variance, o2. As can be seen in Figure[7] the NP, INP, and ANP methods show a
robust performance (when measured based upon alignment with BP updates) to the choice of this variance
of the perturbation distribution. For values across multiple orders of magnitude, from 10~% to 1076, there
performance is completely stable. For smaller values of the variance, 02 < 10~7, precision errors cause a
decrease in performance (increase in angle). And for larger values of the variance, o2 > 1073, the size of the
perturbation begins to affect network dynamics and thus the approximation of the directional derivative. In
this work we exclusively use 02 = 1075, the smallest value possible before precision errors become an issue.
We do not find significantly different results, even if o2 is set to be an order of magnitude greater.

D Experimental details

Experiments were performed using fully-connected or convolutional neural networks with leaky ReLLU
activation functions and a categorical cross-entropy (CCE) loss on the one-hot encoding of class membership.
The Adam optimizer with default parameters g1 = 0.9, 52 = 0.999, € = 1le — 7, was used for optimization. All
experiments were run on an HP OMEN GT13-0695nd desktop computer with an NVIDIA RTX 3090 GPU.
The experiments required about a week of total computation time and several more weeks of computation
time during exploratory experiments. Table [I| provides details of the employed neural network architectures.
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Table 1: The neural network architectures consist of fully connected (FC) and convolutional (Conv) layers.
All layers except the output layer are followed by a leaky ReLU transformation. Convolutional layer size is
given as height xwidth xoutput channels, stride.

NETWORK LAYER TYPES ‘ LAYER SIZE
SINGLE LAYER FC 10

3 x FC 1024
THREE HIDDEN LAYERS

FC 10

6 x FC 1024
SIX HIDDEN LAYERS

FC 10

9 x FC 1024
NINE HIDDEN LAYERS

FC 10

ConNv 3x3x16, 2

CoNv 3x3x32, 2
CONVNET Conv 3x3x64, 1

FC 1024

FC 10

CoNv 5x5x32, 2

Conv 3x3x64, 2
CONVNET TINY IMAGENET CoNV 5x5x128, 1

FC 512

FC 512

FC 200

Table [2 shows the learning rates 7 used in each experiment. For each experiment, the highest stable learning
rate was selected. For the decorrelation learning rate a fixed value of o = 10~3 was chosen based on a prior
manual exploration. Note that the minibatch size was fixed for every method at 1000. When using NP
methods, activity perturbations were drawn from a univariate Gaussian with variance 02 = 1076,

Table 2: Learning rates used for different learning algorithms and architectures.

METHOD | 1 LAYER | 3 HIDDEN LAYERS | 6 HIDDEN LAYERS | 9 HIDDEN LAYERS | CONVNET | CONVNET TINY IMAGENET
NP 1.0x 1073 | 1.0x 1074 - - - -

DNP 1.0x 1072 | 1.0 x 1073 5.0 x 1073 5.0 x 1073 - 1.0 x 1073

ANP - 1.0 x 1074 - - 1.0x107% | -

DANP - 1.0 x 1073 5.0 x 1073 5.0 x 107° 1.0x107* | 1.0x 1073

INP - 1.0 x 1074 - - 1.0x 107% | -

DINP - 1.0 x 1073 5.0 x 1073 5.0 x 1073 1.0x107* | 1.0x 1073

BP 1.0x 1073 | 1.0x 1074 - - 1.0x 1072 | 1.0x 1074

DBP 1.0x 1072 | 1.0x 1073 - - 1.0x 1073 | -

E Alignment as a function of noisy forward passes

Figure [§] shows the same data as Figure [I| but the z-axis displays the number of noisy forward passes
performed, instead of the number of noise iterations. This figure essentially compares NP, ANP and INP
given the same amount of computation.
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Figure 8: Angles between BP’s weight update and an update calculated by NP, ANP and INP as a function
of the number of noisy forward passes.

F Peak accuracies

Table [3] shows peak accuracies for all algorithms used in the CIFAR-10 experiments and Table [4] shows peak
accuracies for the Tiny ImageNet experiment.

Table 3: Peak percentage accuracies for different learning algorithms and architectures on CIFAR-10. Best
performance across all methods is shown in boldface.

1 LAYER | 3 HIDDEN LAYERS | 6 HIDDEN LAYERS | 9 HIDDEN LAYERS | CONVNET
METHOD | TRAIN TesT | TRAIN TesT | TRAIN TesT | TRAIN TesT | TRAIN TEST
BP 41.3 39.3 59.6 51.5 100.0 62.1
DBP 44.9 40.9 99.6 54.3 — — — — 100.0 60.5
NP 38.5 38.2 28.1 28.1 — — — — 45.2 44.5
DNP 42.8 40.2 44.9 42.1 46.7 43.1 40.5 38.6 50.2 47.9
ANP 30.4 30.6 52.7 49.9
DANP — — 48.5 44.4 47.3 44.2 44.8 42.7 58.2 52.6
INP — — 32.0 32.0 — — — — 52.3 49.9
DINP — — 52.6 46.3 53.0 46.6 52.0 45.3 57.9 52.2

Table 4: Peak percentage accuracies for different learning algorithms on Tiny ImageNet. Best performance
across all methods is shown in boldface.
TINY IMAGENET

METHOD TRAIN TEST
BP 55.5 14.5
DANP 1 ITER 2.2 2.1
DANP 10 ITERS 13.5 9.0
DANP 30 ITERS 32.8 11.3
DANP 100 ITERS 35.4 12.0
DINP 1 ITER 2.0 2.0
DINP 10 ITERS 11.4 8.1
DINP 30 ITERS 26.7 11.8
DINP 100 1TERS 60.8 13.4
DNP 100 1TERS 9.7 7.5
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G Computational overhead of decorrelation

This section describes the theoretical amount of extra computation and memory that is required when
applying decorrelation two a fully connected layer, a convolutional kernel and the amount of measured
extra memory use in a three-layer fully connected network. Tables [5] and [f] display FLOPs and memory
requirements for a fully connected layer and a convolutional layer, respectively. Table [7] shows measured
memory consumption for a three-layer fully connected network for the various algorithms.

Table 5: Approximate FLOPS required for a forward pass through a fully connected 1000 x 1000 layer, batch
size 1000, for BP, DBP, and DANP

Algorithm Approx. Brief Description of Calculation Approx. Memory Required
FLOPS
BP Total 6,000,000,000 forward pass + backward pass + weight O(batchisize x (in_dim + out__dim) +
update . . . . in_dim X outidim)
= 6 X batch__size X in_ dim X out_ dim
DBP Total 14,000,000,000 forward + R x z + backward + R" x e + (’)(batchisize x (in_dim + out_ dim) +

weight update + XX T + R update

= 6 X batch__size X in_ dim X out_ dim +

4 x batch_size x in_ dim? + 2 x in_ dim?
DANP Total 14,000,000,000 2 x (forward + R X z) + weight update O(batchisize X (in_dim + out_ dim) +

+XXT + R update

= 4 X batch_size X in__dim X out_ dim +

4 x batch_size x in_ dim? + 2 x in_ dim?

in_dim X out_ dim + infdimz)

in_dim X out_ dim + infdimQ)

Table 6: Approximate FLOPS required for a forward pass through a convolutional kernel of 5 x 5 x 3 x 8 (H,
W, chan__in, chan_ out), batch size 1000, for BP, DBP, and DANP

Algorithm FLOPS Brief description of calculation Approx. Memory Required

BP Total 3,600,000 forward pass + backward pass (BP) + weight O(batchisize x (in_dim + out__dim) +
update . . . . in_dim X outidim)
= 6 X batch_size X in_ dim X out_ dim

DBP Total 38,193,750 forward + R X z + backward (BP) + O(batchisizc X (in_dim + out_ dim) +

decorrelation backward (same as forward) +
weight update + XX T + R update

= 6 X batch_size X in_ dim x out_dim + 4 x
batch_size X in_ dim? + 2 X in_ dim?

DANP Total 38,193,750 2 X (forward + R X z) + weight update O(batch_size X (in_dim + out_ dim) +
+XXT 4+ R update
= 4 X batch_size X in__dim X out_dim + 4 x
batch_size x in_dim? + 2 X in_ dim?

in_dim X out_dim + inidimQ)

in_dim X out_ dim + in_dimz)

Table 7: Empirical memory use for parameters in MB in a 3-layer fully connected network trained on
CIFAR-10

Algorithm Memory Use (MB)

BP 20.04
DBP 68.04
ANP 20.04
DANP 68.04
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