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Abstract
In this paper we propose a new family of algo-
rithms, ATENT, for training adversarially robust
deep neural networks. We formulate a new loss
function that is equipped with an entropic regular-
ization. Our loss considers the contribution of ad-
versarial samples that are drawn from a specially
designed distribution that assigns high probabil-
ity to points with high loss and in the immedi-
ate neighborhood of training samples. ATENT
achieves competitive (or better) performance in
terms of robust classification accuracy as com-
pared to several state-of-the-art robust learning ap-
proaches on benchmark datasets such as MNIST
and CIFAR-10.

1. Introduction
Deep neural networks have led to significant breakthroughs
in various fields, but have also been shown to be very sus-
ceptible to carefully designed “attacks" (Goodfellow et al.,
2014b; Papernot et al., 2016) both on input data as well as
network weights (Biggio et al., 2013).

Formally, the forward map between the inputs x ∈ Rd and
outputs y ∈ {1, 2 . . .m} is modelled via a neural network as
y = f(w;x) where w represents the set of trainable weight
parameters. The collection of all labeled data {xi, yi}, i =
1, . . . , n can be represented as X and Y . Then, the neural
prediction ŷ(x) = f(ŵ;x), can be very sensitive to changes
in both ŵ and x. For a bounded perturbation to a test image
input (or to the neural network weights), ŷi = f(ŵ;xi + δi)
where δi represents the perturbation, the predicted label ŷi
can be made arbitrarily different from the true label yi.

Typically, adversarial perturbations are constructed by max-
imizing the loss function within a neighborhood around the
test point x (Tramèr et al., 2017; Madry et al., 2018):

x̄worst = arg max
δ∈∆p

L(f(ŵ;x+ δ), y) (1)
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where ŵ are the final weights of a pre-trained network. The
perturbation set ∆p is typically chosen to be an `p-ball for
some p ∈ {0, 1, 2,∞}.

The existence of adversarial attacks motivates the need for a
“defense” mechanism that makes the network under consid-
eration more robust. We discuss several families of effective
defenses. The first involves adversarial training (Madry
et al., 2018). Here, a set of adversarial perturbations are
constructed by solving a min-max objective of the form:

ŵ = min
w

max
δ∈∆p

1

n

n∑
i=1

L(f(w;xi + δ), yi).

Wong & Kolter (2018) use a convex outer adversarial poly-
tope as an upper bound for worst-case loss in robust training.
(Tjeng et al., 2018) propose mixed-integer programming
based certified training for piece-wise linear neural net-
works, (Gowal et al., 2019) use integer bound propagation,
and (Lecuyer et al., 2019; Cohen et al., 2019; Salman et al.,
2019b) show certified defenses via randomized smoothing.
Due to space constraints we push discussion on prior work
to appendix.

In this paper, we propose a new approach for training ad-
versarially robust neural networks. The key conceptual
ingredient underlying our approach is entropic regulariza-
tion. Borrowing intuition from (Chaudhari et al., 2019),
instead of the empirical risk (or its adversarial counterpart),
our algorithm optimizes over a local entropy-regularized
version of the empirical risk: ŵ = arg minw,LDE

LDE =

∫
X′
L(X ′;Y,w)

e(L(X′;Y,w)− γ2 ‖X−X
′‖pp)

Z

 dX ′.
(2)

Intuitively, this new loss function can be viewed as the con-
volution of the empirical risk with a Gibbs-like distribution
to sample points from the neighborhoods, X ′, of the train-
ing data points X that have high loss. Therefore, compared
to adversarial training, we have replaced the inner maxi-
mization with an expected value with respect to a modified
Gibbs measure which is matched to the geometry of the
perturbation set. We use Stochastic Gradient Langevin Dy-
namics (Welling & Teh, 2011) to sample X ′; in this manner,
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Figure 1. TSNE visualization of decision boundaries for a 3-layer neural network trained using different defenses; corresponding natural
and robust test accuracies against `∞ attacks for classifying MNIST digits 5 and 8.

our approach blends in elements from adversarial training,
randomized smoothing, and entropic regularization. We
posit that the combination of these techniques will encour-
age a classifier to learn a better robust decision boundary as
compared to prior art (see visualization in Fig.1). We name
this entire procedure Adversarial Training with ENTropy or
ATENT.

In this paper, we show that ATENT-trained networks pro-
vide improved (robust) test accuracy when compared to state
of art defense approaches such as TRADES and MART.
We also combine randomized smoothing with ATENT to
show competitive performance with the smoothed version
of TRADES. In particular, we are able to train an `∞-robust
CIFAR-10 model to 57.23% accuracy at PGD attack level
ε = 8/255, which is higher than the latest benchmark de-
fenses based on both adversarial training using early stop-
ping (Salman et al., 2019a) (56.8%) as well as TRADES
(56.6%) (Zhang et al., 2019b).

2. Problem Formulation
To model for adversarial perturbations in the samples, we de-
sign an augmented loss that regularizes the data space (data-
space version of Entropy-SGD ((Chaudhari et al., 2019),
recapped in Appendix C). Note that we only seek specific
perturbations of data x that increase the overall loss value
of prediction. In order to formally motivate our approach,
we first make some assumptions.
Assumption 1. The distribution of possible adversarial
perturbations follows:

p(X ′;X,Y,w, γ) = (3){
Z−1
X,w,γe

L(X′;Y,w)− γ2 ‖X
′−X‖2F if L(X ′;Y,w) ≤ R

0 if L(X ′;Y,w) > R

where ZX,w,γ is the partition function that normalizes the
probability distribution.

Intuitively, the neural network is more likely to “see" per-
turbed examples from the adversary corresponding to higher

loss values. The parameter R is chosen to ensure that the
integral of the probability curve is bounded. Here γ con-
trols the penalty of the distance of the adversary from true
data X; if γ → ∞, the sampling is sharp, i.e. p(X ′ =
X;X,Y,w, γ) = 1 and p(X ′ 6= X;X,Y,w, γ) = 0, which
is the same as sampling only the standard loss L, meanwhile
γ → 0 corresponds to a uniform contribution from all possi-
ble data points in the loss manifold.

We design a new loss function LDE(w;X,Y, γ) which in-
corporates the probabilistic formulation in Assumption 1:

LDE =

∫
X′
L(X ′;Y,w)p(X ′;X,Y,w, γ)dX ′ (4)

our new objective is to minimize this augmented objective
function LDE(w;X,Y, γ), which resembles expected value
of the standard loss function sampled according to a distri-
bution that (i) penalizes points further away from the true
training data (ii) boosts data points which correspond to high
loss values. This sampling process (Fig. 3), as well as theo-
retical properties of our augmented loss function (Lemma
C.1) are described in detail in supplement (Appendix C).

If gradient descent is used to minimize the loss in Eq. 4, the
gradient update ∇wLde(w;X,Y, γ) corresponding to the
augmented loss function can be computed as follows

∇wLde = ∇wEX′∼p(X′;X,Y,w,γ)[L(X ′;Y,w)] (5)

Correspondingly, the weights of the network, when trained
using gradient descent, using Eq. 5, can be updated as

w+ = w − η∇wEX′∼p(X′;X,Y,w,γ)[L(X ′;Y,w)] (6)

where η is the step size. The expectation in Eq. 5 is carried
out over the probability distribution of data samples X ′ as
defined in Assumption 1.

The expectation in Eq. 5 is computationally intractable to op-
timize (or evaluate). However, using the Euler discretization
of the Langevin Stochastic Differential Equation (Welling
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& Teh, 2011), it can be approximated well. Samples can be
generated from p(X ′) as:

X ′k+1 = X ′k + η′∇X′ log p(X ′t) +
√

2η′εN (0, I) (7)

where η′ is the step size for Langevin sampling, ε is a scaling
factor that controls additive noise. In Langevin dynamics,
when one considers a starting point of X ′0 then the pro-
cedure above yields samples X ′1 . . . X ′t that follow the
distribution p(X ′).

Observe that X ′ and X have the same dimensions and the
gradient term in the above equation needs to be computed
over n, d-dimensional data points. In practice this can be
computationally expensive. Therefore, in practice we use a
stochastic variant of this update rule, which considers mini-
batches of training data instead (training data is segmented
into J batches [XB1

, XB2
. . . XBJ ]). The update rule is

X ′k+1 −X ′k

η′
= (8)

∇X′kL(X ′k;Y,w) + γ(X −X ′k) +

√
2ε2

η′
N (0, I)

where we have incorporated ZX,wγ in the step size η′. Note
that as the number of updates k →∞, the estimates from
the procedure in Eq. 8 converge to samples from the true
distribution. p(X ′;X,Y,w, γ). We then want to estimate
∇wLde(w;X,Y, γ) = ∇wEX′∼p(X′)

[
L(w;X ′, Y, γ)

]
us-

ing the samples obtained from the above iterative procedure.

This discussion effectively leads to the algorithm shown in
Algorithm 1 in Appendix C, which we refer to as Adversarial
Training using Entropy (or ATENT), designed for `2 attacks.

In Appendix B we discuss analytical comparison of ATENT
to PGD-AT and randomized smoothing.

Extension to defense against `∞-attacks: It is evident that
due to the isotropic structure of the Gibbs measure around
each data point, Algorithm 1, `2-ATENT is best suited for
`2 attacks. However this may not necessarily translate to
robustness against `∞ attacks.
Assumption 2. We consider a modified distribution to ac-
count for robustness against `∞ type attacks:

p(X ′;X,Y,w, γ) = (9){
Z−1
X,w,γe

(L(X′;Y,w)− γ2 ‖X
′−X‖∞) if L(X ′;Y,w) ≤ R

0 if L(X ′;Y,w) > R

where ‖ · ‖∞ is the `∞ norm on the vectorization of its
argument and ZX,w,γ normalizes the probability.

The corresponding Data Entropy Loss for `∞ defenses is:

LDE,∞(w;X,Y ) =

Z−1
X,w,γ

∫
X′
L(X ′;Y,w)e(L(X′;Y,w)− γ2 ‖X−X

′‖∞)dX ′

and the SGD update to minimize this loss becomes:

∇wLDE,∞(w;X,Y ) = ∇wEX′∼p(X′)

[
L(w;X ′, Y )

]
=⇒ w+ = w − η∇wLDE,∞(w;X,Y )

where the expectation over p(X ′) is computed by using
samples generated via Langevin Dynamics:

X ′k+1 = X ′k + η′∇X′ log p(X ′k) +
√

2η′εN (0, I)

Plugging in the distribution in Assumption 2 the update rule
for sampling X ′:

X ′k+1 −X ′k

η′
= (10)

∇X′kL(X ′k;Y,w) + γsign(Xi −X ′ki ) · 1 +

√
2ε2

η′
N (0, I)

where i = arg maxj |Xj −X ′kj | and j scans all elements
of the tensors X,X ′k and 1j = δi,j . The second term in
the update rule navigates the updates X ′k+1 to lie in the
immediate `∞ neighborhood of X . Note that this training
process requires taking gradients of `∞ distance. In the
update rule in Eq. 10, the gradient update only happens
along one coordinate. In practice with this update rule,
the algorithm fails to converge because typically a sizeable
number of elements of X ′ −X have a large magnitude.

Similar to the `∞ Carlini Wagner attack (Carlini & Wagner,
2017a), we replace the gradient update of the `∞ term, with
a clipping based projection oracle. We design an accelerated
version of the update rule in Eq. 10, in which we perform a
clipping operation, i.e. an `∞ ball projection of the form:

X ′k+1 −X ′k (11)

= η′∇X′L(X ′k;Y,w) +
√

2η′εN (0, I),
X ′K −X ′K−1

= Pγ
(
η′∇X′L(X ′K−1;Y,w) +

√
2η′εN (0, I)

)
where element-wise projection Pγ(z) = z if |z| < 1/γ and
Pγ(z) = 1/γ if |z| > 1/γ. Empirically, we also explored
an alternate implementation where the projection takes place
in each inner iteration k, however, we find the version as
described in Algorithm 2 (Appendix C) to give better results.

In both Algorithms 1 and 2, we initialize the Langevin
update step with a random normal perturbation δi radius of
benign samples, which is inversely proportional to γ.

3. Experiments
In this section we perform experiments on a five-layer con-
volutional model with 3 CNN and 2 fully connected layers,
used in (Zhang et al., 2019b; Carlini & Wagner, 2017a),



Adversarially Robust Learning via Entropic Regularization

Table 1. Robust percentage accuracies of 5-layer convolutional net
for MNIST against `2, ε = 2 attack.

Attack→ Benign Acc `2 PGD-40 `2 CW
↓ Defense

SGD 99.38 19.40 13.20
Entropy SGD 99.24 19.12 14.52
`2 PGD-AT 98.76 72.94 -
TRADES 97.54 76.08 -

MMA 99.27 73.02 72.72
`2 ATENT 98.66 77.21 76.72

trained on MNIST. We also train a WideResNet-34-10 on
CIFAR10 (as used in (Zhang et al., 2019b)) as well as
ResNet20. Due to space constraints, we present supple-
mental results in Appendix B. We conduct our experiments
separately on networks specifically trained for `2 attacks
and those trained for `∞ attacks. We also test randomized
smoothing for our `2-ATENT model.

Attacks: For `2 attacks, we test PGD-40 with 10 random
restarts, and CW2 attacks at radius ε2 = 2 for MNIST and
PGD-40 and CW2 attacks at ε2 = 0.43 (≈ ε∞ = 2/255)
and ε2 = 0.5 = 128/255 for CIFAR10. For `∞ attacks, we
test PGD-20, `∞CW, DeepFool attacks at radiii ε∞ = 0.3
for MNIST and ε∞ = 0.031 = 8/255 for CIFAR10. We
test ATENT at other attack radii in Appendix B. For imple-
menting the attacks, we use the Foolbox library (Rauber
et al., 2017) and the Adversarial Robustness Toolbox (Nico-
lae et al., 2018).

Defenses: We compare models trained using: SGD
(vanilla), Entropy SGD (Chaudhari et al., 2019), PGD-AT
(Madry et al., 2018) with random starts (or PGD-AT(E) with
random start, early stopping (Rice et al., 2020)), TRADES
(Zhang et al., 2019b), MMA (Ding et al., 2019) and MART
(Wang et al., 2019). Wherever available, we use pretrained
models to tabulate robust accuracy results for PGD-AT,
TRADES, MMA and MART as presented in their published
versions. Classifiers giving the best and second best accura-
cies are highlighted in each category.

Smoothing: We also test randomized smoothing (Cohen
et al., 2019) in addition to our adversarial training to evaluate
certified robust accuracies.

MNIST: In Tables 1 and 2, we tabulate the robust accuracy
for 5-layer convolutional network trained using the various
approaches discussed above for both `2 and `∞ attacks
respectively. Due to space constraints we push details of
training setup to Appendix B.

CIFAR10: Next, we extend our experiments to CIFAR-10
using a WideResNet 34-10 as described in (Zhang et al.,
2019b; Wang et al., 2019) as well as ResNet-20. Results
for `∞ attacks are in Table 3 and `2 attacks are in Table 3

Table 2. Robust accuracies (in percentages) of 5-layer convolu-
tional net for MNIST against `∞, ε = 0.3 attack.

Attack→ Benign `∞ PGD-20 `∞ CW
↓ Defense Acc ε∞ = 0.3 ε∞ = 0.3

SGD 99.39 0.97 32.37
Entropy SGD 99.24 1.17 34.34
`∞ PGD-AT 99.36 96.01 94.25

TRADES 99.48 96.07 94.03
MMA 98.92 95.25 94.77
MART 98.74 96.48 96.10

`∞ ATENT 99.45 96.44 97.40

Table 3. Robust accuracies of WRN34-10 net for CIFAR10 against
`∞ attack of ε = 8/255.

Defense→ PGD TRADES MART ATENT
↓ Attack AT `∞

Benign 87.30 84.92 84.17 85.67
`∞ PGD-20 47.04 56.61 57.39 57.23

(E) 56.80
`∞ CW 49.27 62.67 54.53 62.34

`∞ DeepFool - 58.15 55.89 57.21

in Appendix B. For PGD-AT (and PGD-AT (E)), TRADES,
and MART, we use the default values stated in their corre-
sponding papers.

Importance of early stopping: Because WRN34-10 is
highly overparameterized (≈ 48 million parameters), it
tends to overfit adversarially-perturbed CIFAR10 examples.
The success of TRADES (and also PGD) in (Rice et al.,
2020) relies on an early stopping condition and correspond-
ing learning rate scheduler. We strategically search different
early stopping points and report the best possible robust
accuracy from different stopping points.

We test efficiency of our `2-based defense on both `2 attacks,
as well as compute `2 certified robustness for the smoothed
version of ATENT against smoothed TRADES (Blum et al.,
2020) in Table 5 in Appendix B. We find that our formu-
lation of `2 ATENT is both robust against `2 attacks, as
well as gives a competitive certificate against adversarial
perturbations for ResNet20 on CIFAR10.

In Appendix B we also consider a pre-trained WRN34-10
and fine tune it using ATENT, similar to the approach in
(Jeddi et al., 2020). We find that ATENT can be used to fine
tune a naturally pretrained model at lower computational
complexity to give competitive robust accuracies while al-
most retaining the performance on benign data.
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A. Prior Work
Evidence for the existence of adversarial inputs for deep neural networks is by now well established (Carlini & Wagner,
2017b; Dathathri et al., 2017; Goodfellow et al., 2015; Goodfellow, 2018; Szegedy et al., 2013; Moosavi-Dezfooli et al.,
2017). In image classification, the majority of attacks have focused on the setting where the adversary confounds the
classifier by adding an imperceptible perturbation to a given input image. The range of the perturbation is pre-specified in
terms of bounded pixel-space `p-norm balls. Specifically, an `p- attack model allows the adversary to search over the set of
input perturbations ∆p,ε = {δ : ‖δ‖p ≤ ε} for p = {0, 1, 2,∞}.

Initial attack methods, including the Fast Gradient Sign Method (FGSM) and its variants (Goodfellow et al., 2014a; Kurakin
et al., 2016), proposed techniques for generating adversarial examples by ascending along the sign of the loss gradient:

xadv = x+ ε sgn(∇xL(f(ŵ;x), y)),

where (xadv − x) ∈ ∆∞,ε. Madry et. al. (Madry et al., 2018) proposed a stronger adversarial attack via projected gradient
descent (PGD) by iterating FGSM several times, such that

xt+1 = Πx+∆p,ε
(xt + α sgn(∇xL(f(ŵ;x), y)),

where p = {2,∞}. These attacks are (arguably) the most successful available attack techniques reported to date, and serve
as the starting point for our comparisons. Both Deep Fool (Moosavi-Dezfooli et al., 2016) and Carlini-Wagner (Carlini &
Wagner, 2017a) construct an attack by finding smallest possible perturbation that can flip the label of the network output.

Several strategies for defending against attacks have been developed. In (Madry et al., 2018), adversarial training is
performed via the min-max formulation Eq. 1. The inner maximization is solved using PGD, while the outer objective is
minimized using stochastic gradient descent (SGD) with respect to w. This can be slow to implement, and speed-ups have
been proposed in (Shafahi et al., 2019) and (Wong et al., 2020). In (Li et al., 2018a; Cohen et al., 2019; Lecuyer et al., 2019;
Salman et al., 2019b;a), the authors developed certified defense strategies via randomized smoothing. This approach consists
of two stages: the first stage consists of training with noisy samples, and the second stage produces an ensemble-based
inference. See (Ren et al., 2020) for a more thorough review of the literature on various attack and defense models.

Apart from minimizing the worst case loss, approaches which minimize the upper bound on worst case loss include (Wong
& Kolter, 2018; Tjeng et al., 2018; Gowal et al., 2019). Another breed of approaches use a modified loss function which
considers surrogate adversarial loss as an added regularization, where the surrogate is cross entropy (Zhang et al., 2019b)
(TRADES), maximum margin cross entropy (Ding et al., 2019) (MMA) and KL divergence (Wang et al., 2019) (MART)
between adversarial sample predictions and natural sample predictions.

In a different line of work, there have been efforts towards building neural network networks with improved generalization
properties. In particular, heuristic experiments by (Hochreiter & Schmidhuber, 1997; Keskar et al., 2016; Li et al., 2018b)
suggest that the loss surface at the final learned weights for well-generalizing models is relatively “flat" 1. Building on this
intuition, Chaudhari et. al. (Chaudhari et al., 2019) showed that by explicitly introducing a smoothing term (via entropic
regularization) to the training objective, the learning procedure weights towards regions with flatter minima by design. Their
approach, Entropy-SGD (or ESGD), is shown to induce better generalization properties in deep networks. We leverage this
intuition, but develop a new algorithm for training deep networks with better adversarial robustness properties.

B. Additional experiments and details
In this section, we provide additional details as well as experiments to supplement those in Section 3. All results were
generated using an Intel(R) Xeon(R) W-2195 CPU 2.30GHz Lambda cluster with 18 cores and a NVIDIA TITAN GPU
running PyTorch version 1.4.0.

B.1. Detailed training setup

Architectures: For MNIST- `∞ experiments, we consider a CNN architecture with the following configuration (same as
(Zhang et al., 2019b)). Feature extraction consists of the following sequence of operations: two layers of 2-D convolutions
with 32 channels, kernal size 3, RelU activation each, followed by maxpooling by factor 2, followed by two layers of 2-D

1This is not strictly necessary, as demonstrated by good generalization at certain sharp minima (Dinh et al., 2017).
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Table 4. Percentage robust accuracies of ResNet-20 for CIFAR10 against `2 attack
↓ Algorithm/Attack→ Model Training param Benign PGD-10 PGD-10

ε2 = 0.5 ε2 = 1
PGD-AT WideResNet28-4 ε2 = 1 83.25 66.69 46.11

MMA WideResNet28-4 d = 1 88.92 66.81 37.22
`2 ATENT ResNet20 γ = 0.05, ε = 0.001N (0,1) 85.44 65.12 47.38

ε2=0.435
TRADES (smooth) ResNet20 ε2 = 0.435, σ = 0.12 75.13 61.03

`2 ATENT ResNet20 γ = 0.05,
√

2η′ε = 0.12N (0,1) 72.10 64.53

convolutions with 64 channels, kernel size 3, ReLU activation, and finally another maxpool (by 2) operation. This is followed
by the classification module, consisting of a fully connected layer of size 1024 × 200, ReLU activation, dropout, another
fully connected layer of size 200× 200, ReLU activation and a final fully connected layer of size 200× 10. Effectively this
network has 4 convolutional and 3 fully connected layers. We use batch size of 128 with this configuration.

Training setup for MNIST: Complete details are provided in Appendix B. Our experiments for `2 attack are presented in
Table 1. We perform these experiments on a LeNet5 model imported from the Advertorch toolbox (architecture details are
provided in the supplement). For `2-ATENT we use a batch-size of 50 and SGD with learning rate of η = 0.001 for updating
weights. We set γ = 0.05 and noise ε ∼ 0.001N (0, I). We perform K = 40 Langevin epochs and set the Langevin
parameter α = 0.9, and step η′ = 0.25. For attack, we do a 40-step PGD attack with `2-ball radius of ε = 2. The step size
for the PGD attack is 0.25, consistent with the configuration in (Ding et al., 2019). We perform early stopping by tracking
robust accuracies of validation set and report the best accuracy found.

In Table 2, we use a SmallCNN configuration as described in (Zhang et al., 2019b) (architecture in supplement). We use
a batch-size of 128, SGD optimizer with learning rate of η = 0.01 for updating weights. We set γ = 3.33 and noise
ε ∼ 0.001N (0, I). We perform L = 40 Langevin epochs and we set the Langevin parameter α = 0.9, and step η′ = 0.01,
consistent with the configuration in (Zhang et al., 2019b). For the PGD attack, we use a 20-step PGD attack with step-size
0.01, for `∞-ball radius of ε = 0.3. We perform an early stopping by tracking robust accuracies on the validation set and
report the best accuracy found. Other attack configurations can be found in the supplement.

Our experiments on the Entropy-SGD (row 2 in Tables 1 and 2) trained network suggests that networks trained to find flat
minima (with respect to weights) are not more robust to adversarial samples as compared to vanilla SGD.

For MNIST-`2 experiments, we consider the LeNet5 model from the Advertorch library (same as (Ding et al., 2019)).
This consists of a feature extractor of the form - two layers of 2-D convolutions, first one with 32 and second one with
64 channels, ReLU activation and maxpool by factor 2. The classifier consists of one fully connected layer of dimension
3136× 1024 followed by ReLU activation, and finally another fully connected layer of size 1024× 10. We use batch size
of 50 with this configuration.

Training setup for CIFAR10: Complete details in Appendix B. Robust accuracies of WRN-34-10 classifer trained using
state of art defense models are evaluated at the `∞ attack benchmark requirement of radius ε = 8/255, on CIFAR10 dataset
and tabulated in Table 3. For `∞-ATENT, we use a batch-size of 128, SGD optimizer for weights, with learning rate η = 0.1
(decayed to 0.01 at epoch 76), 76 total epochs, weight decay of 5 × 10−4 and momentum 0.9. We set γ = 1/(0.0031),
K = 10 Langevin iterations, ε = 0.001N (0, I), at step size η′ = 0.007. We test against 20-step PGD attack, with step size
0.003, as well as `∞-CW and Deep Fool attacks using FoolBox. `∞-ATENT is consistently among the top two performers
at benchmark configurations.

For CIFAR-`∞ experiments we consider a WideResNet with 34 layers and widening factor 10 (same as (Zhang et al., 2019b)
and (Madry et al., 2018)). It consists of a 2-D convolutional operation, followed by 3 building blocks of WideResNet, ReLU,
2D average pooling and fully connected layer. Each building block of the WideResNet consists of 5 successive operations of
batch normalization, ReLU, 2D convolution, another batch normalization, ReLU, dropout, a 2-D convolution and shortcut
connection. We use batch size of 128 with this configuration.

For CIFAR-`2 experiments, we consider a ResNet with 20 layers. This ResNet consists of a 2-D convolution, followed by
three blocks, each consisting of 3 basic blocks with 2 convolutional layers, batch normalization and ReLU. This is finally
followed by average pooling and a fully connected layer. We use batch size of 256 with this configuration.
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Table 5. Smoothed robust accuracies for CIFAR10 against `∞ attack of ε = 2/255 (`2, ε = 0.435), smoothing factor σ = 0.12.
Smoothing radius→ ResNet Standard ε∞

↓ Defense Type 0 2/255
Crown IBP (Zhang et al., 2019a) 110 72.0 54.0
Smoothing (Wong et al., 2018) 110 68.3 53.9

SmoothAdv (Salman et al., 2019b) 110 82.1 60.8
TRADES Smoothing (Blum et al., 2020) 110 78.7 62.6

TRADES Smoothing 20 78.2 58.1
ATENT (ours) 20 72.2 55.41

Training SGD and Entropy SGD models for MNIST experiments: For SGD, we trained the 7-layer convolutional network
setup in (Zhang et al., 2019b; Carlini & Wagner, 2017a) with the MNIST dataset, setting batch size of 128, for `∞ SGD
optimizer using a learning rate of 0.1, for 50 epochs. For Entropy SGD, with 5 langevin steps, and γ = 10−3, batch size of
128 and learning rate of 0.1 and 50 total epochs.

B.2. `2 ATENT

`2-PGD attacks on CIFAR10: We explore the effectiveness of `2-ATENT as a defense against `2 perturbations. These
results are tabulated in Table 4. We test 10-step PGD adversarial attacks at ε2 = 0.5 and ε2 = 1. For the purpose of this
comparison, we compare pretrained models of MMA and PGD-AT at ε2 = 1. To train ATENT, we use γ = 0.08 for ε2 = 1
10 step attack (with 2.5ε2/10 step size), K = 10 langevin iterations, langevin step η′ = 2ε2/K, learning rate for weights
η = 0.1. We also compare models primarily trained to boost the certificate of randomized smoothing. For this we train a
ResNet20 model for both TRADES (at default parameter setting) and `2 ATENT, at η′ = and γ =, such that the effective
noise standard deviation is 0.12. These models are tested against PGD-10 attacks at radius ε2 = 0.435. In all `2 ATENT
experiments, we choose the value of γ such that the perturbation ‖X ′K −X‖F ≈ ε2 of corresponding models of TRADES
and PGD-AT. For all ATENT experiments, we set α = 0.9.

Experiments on randomized smoothing: Since the formulation of ATENT is similar to a noisy PGD adversarial training
algorithm, we test its efficiency towards randomized smoothing and producing a higher robustness certificate (Table 5). For
this we train a ResNet-20 on CIFAR10, at γ = 0.05, η′ = 0.02, η = 0.1,K = 10, and tune the noise ε, such that effective
noise

√
2η′ε has standard deviation σ = 0.12. We compare the results of randomized smoothing to established benchmarks

on ResNet-110 (results have been borrowed from Table 1 of (Blum et al., 2020)). as well as a smaller ResNet-20 model
trained using TRADES at its default settings. We observe that without any modification to the current form of ATENT,
our method is capable of producing a competitive certificate to state of art methods. In future work we aim to design
modifications to ATENT which can serve the objective of certification.

B.3. `∞ ATENT

Training characteristics of `∞ ATENT: In Figure 2 we display the training curves of ATENT. As shown, the robust
accuracies spike sharply after the first learning rate decay, followed by an immediate decrease in robust accuracies. This
behavior is similar to that observed in (Rice et al., 2020). This is also the key intuition used in the design of the learning rate
scheduler for TRADES.

ATENT as Attack: For our `∞-ATENT WideResNet-34-10, we also test `∞-ATENT as an attack. We keep the same
configuration as that of PGD-20, for ATENT. We compare the performance of our `∞-ATENT trained model (specifically
designed to work against ε∞=8/255 attacks). The values (Table 6) suggest that the adversarial perturbations generated by

Table 6. Percentage robust accuracies for CIFAR10 against `∞ PGD and ATENT attacks of different radii.
Attack radius→ 2/255 4/255 8/255 12/255
↓ Attack
PGD-20 79.83 73.35 57.23 39.37

ATENT-20 79.95 73.76 59.69 47.53
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Figure 2. Benign training, test and robust training. test accuracies of ATENT. The learning rate is decayed at epoch 76, where the robust
test accuracy peaks. This is the accuracy reported.

Algorithm 1 `2-ATENT
1: Input: X = [XB1

, XB2
. . . XBJ ], f, η, η′, w = w0, γ, ε, α

2: for t = 1, · · ·T do
(outer loop of SGD)

3: for j = 1, · · · J do
(scan through all batches of data)

4: x0
i ← xi + δi {∀xi ∈ XBj ,K is number of samples generated using Langevin dynamics}

5: µj ← 0
6: for k = 1, · · · ,K do
7: dx′k ← 1

nj

∑nj
i=1∇x=x′kL(f(wt;x)) + γ(xk − x′k)

8: x′k+1 ← x′k + η′dx′k +
√

2η′εN (0, 1) {Langevin update}
9: µk ← 1

B

∑
xi∈XBj

L(wt;x′k+1) {augmented batch loss for XBj}

10: µj ← (1− α)µj + αµk

11: end for
12: dLt ← ∇wµj
13: wt+1 ← wt − ηdLt
14: end for
15: end for
16: Output ŵ ← wT

ATENT are similar in strength to those produced by PGD (worst possible attack).

Computational complexity: In terms of computational complexity, ATENT matches that of PGD and TRADES, as can be
observed from the fact that all three approaches are nested iterative optimizations. Due to the high computational complexity
of all adversarial algorithms, we test a fine-tuning approach, to trade computational complexity for accuracy. This method is
suggested in (Jeddi et al., 2020). In this context, we take a pre-trained WideResNet-34-10 which has been trained on benign
CIFAR10 samples only. This model is then fine tuned on adversarial training data, via `∞ ATENT using a low learning rate
η = 0.0001 and trained for only 20 epochs. The final robust accuracy at ε∞ = 8/255 is 52.1%. This is accuracy marginally
improves upon the robust accuracy observed (51.7%) for fine-tuned WideResNet-28-10 PGD-AT trained model in (Jeddi
et al., 2020). This experiments suggests that ATENT is amenable for fine tuning pretrained benign models using lesser
computation, but at the cost of slightly reduced robust accuracy (roughly 5% drop at benchmark of ε∞ = 8/255).

C. Algorithm, Proofs and Derivations
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Figure 3. Illustration of the sampling procedure in Assumption 1 at fixed weightsw. The distribution produces samples x′ from distribution
p(x′|x = 0.4), and we compute the average loss over these samples. Effectively, this encourages ATENT to search for w where L(x;w)
is relatively flat in the neighborhood of x.
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Algorithm 2 `∞-ATENT
1: Input: X = [XB1

, XB2
. . . XBJ ], f, η, η′, w = w0, γ, ε, α

2: for t = 1, · · ·T do
(outer loop of SGD)

3: for j = 1, · · · J do
(scan through all batches of data)

4: x0
i ← xi + δi {∀xi ∈ XBj ,K is number of samples generated using Langevin dynamics}

5: µj ← 0
6: for k = 1, · · · ,K do
7: dx′k ← 1

nj

∑nj
i=1∇x=x′kL(f(wt;x))

8: x′k+1 ← x′k + PKγ (η′dx′k +
√

2η′εN (0, 1)) {update follows Eq.11, projection active in Kth iteration only.}
9: µk ← 1

B

∑
xi∈XBj

L(wt;x′k+1) {augmented batch loss for XBj}

10: µj ← (1− α)µj + αµk

11: end for
12: dLt ← ∇wµj
13: wt+1 ← wt − ηdLt
14: end for
15: end for
16: Output ŵ ← wT

C.1. Theoretical properties of the augmented loss

We now state an informal theorem on the conditions required for convergence of SGLD in Eq. 7 for estimating adversarial
samples X ′.

Lemma C.1. The effective loss F (X ′;X,Y,w) := γ
2 ‖X − X

′‖2F − L(X ′;Y,w) which guides the Langevin sampling
process in Eq. 8 is

1. β + γ smooth if L(X;Y,w) is β-smooth in X .

2.
(
γ
4 ,

L2

γ + γ
2 ‖X‖

2
F

)
dissipative if L(X;Y,w) is L-Lipschitz in X .

One can then use smoothness and dissipativity of F (X ′;Y,w) to show convergence of SGLD for the optimization over X ′

(Eq. 8) via Theorem 3.3 of (Xu et al., 2017).

We first derive smoothness conditions for the effective loss

F (X ′;X,Y,w) :=
γ

2
‖X −X ′‖2F − L(X ′;Y,w), ∀X ′1, X ′2.

We use abbreviations p(X ′) := p(X ′;X,Y,w), F (X ′) := F (X ′;X,Y,w),L(X ′;Y, z) := L(X ′) and L(X;Y, z) :=
L(X), and assume that X and X ′ are vectorized. Unless specified otherwise, ‖ · ‖ refers to the vector 2-norm.

Proof. Let us show that ‖∇X′F (X ′2)−∇X′F (X ′1)‖ ≤ β′‖X ′2 −X ′1‖. If the original loss function is β smooth, i.e.,

‖∇X′L(X ′2)−∇X′L(X ′2)‖ ≤ β‖X ′2 −X ′1‖,

then:

‖∇X′F (X ′2)−∇X′F (X ′1)‖ ≤ ‖ −∇X′L(X ′2) +∇X′L(X ′1)− γ(X −X ′2) + γ(X −X ′1)‖
≤ ‖∇X′L(X ′2)−∇X′L(X ′1)‖+ ‖γ(X ′2 −X ′1)‖
≤ (β + γ)‖X ′2 −X ′1‖

by application of the triangle inequality.
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Next, we establish conditions required to show (m, b)-dissipativity for F (X ′), i.e. 〈∇X′F (X ′), X ′〉 ≥ m‖X ′‖22 − b for
positive constants m, b > 0, ∀X ′. To show that:

〈∇X′F (X ′), X ′〉 ≥ m‖X ′‖22 − b

where the left side of inequality can be expanded as:

〈∇X′F (X ′), X ′〉 = 〈−∇X′L(X ′) + γ(X ′ −X), X ′〉
= 〈−∇X′L(X ′), X ′〉+ γ‖X ′‖22 − γ〈X,X ′〉

= 〈−∇X′L(X ′), X ′〉+ γ‖X ′‖22 −
γ

2

(
‖X ′‖22 + ‖X‖22 − ‖X −X ′‖22

)
≥ 〈−∇X′L(X ′), X ′〉+ γ‖X ′‖22 −

γ

2

(
‖X ′‖22 + ‖X‖22

)
= 〈−∇X′L(X ′), X ′〉+

γ

2
‖X ′‖22 −

γ

2
‖X‖22 (12)

To find the inner product 〈−∇X′L(X ′), X ′〉, we expand squares:

‖∇X′L(X ′)− γ

2
X ′‖2 = ‖∇X′L(X ′)‖22 +

γ2

4
‖X ′‖22 − γ〈∇X′L(X ′), X ′〉 ≥ 0

−〈∇X′L(X ′), X ′〉 ≥ −‖∇X
′L(X ′)‖22
γ

− γ

4
‖X ′‖22

Plugging this into (12), and assuming Lipschitz continuity of original loss L(X ′), i.e., ‖∇X′L(X ′)‖2 ≤ L:

〈∇X′F (X ′), X ′〉 ≥ 〈−∇X′L(X ′), X ′〉+
γ

2
‖X ′‖22 −

γ

2
‖X‖22

≥ −‖∇X
′L(X ′)‖22
γ

− γ

4
‖X ′‖22 +

γ

2
‖X ′‖22 −

γ

2
‖X‖22

=
γ

4
‖X ′‖22 −

(
L2

γ
+
γ

2
‖X‖22

)
= m‖X ′‖22 − b

where m = γ
4 and b = L2

γ + γ
2 ‖X‖

2
2. Thus, F (X ′) is (γ4 ,

L2

γ + γ
2 ‖X‖

2
2) dissipative, if L(X ′) is L-Lipschitz.

With Lemma C.1 we can show convergence of the SGLD inner optimization loop. To minimize overall loss function, the
data entropy loss LDE is minimized w.r.t. w, via Stochastic Gradient Descent (SGD). The gradient update for weights w are
designed via (5) as follows:

∇wLDE(w;X,Y, γ) = ∇w
∫
X′
L(X ′;Y,w)p(X ′;X,Y,w, γ)dX ′ = ∇wEX′∼p(X′;X,Y,w,γ)[L(X ′;Y,w)]

=

∫
X′
∇w

(
L(X ′;Y,w)p(X ′;X,Y,w, γ)

)
dX ′

=

∫
X′
∇wL(X ′;Y,w) · p(X ′;X,Y,w, γ) +∇wL(X ′;Y,w) · L(X ′;Y,w) · p(X ′;X,Y,w, γ)dX ′

=

∫
X′
∇wL(X ′;Y,w) ·

(
L(X ′;Y,w) + 1

)
· p(X ′;X,Y,w, γ)dX ′

= EX′∼p(X′;X,Y,w,γ)

(
∇wL(X ′;Y,w) · (L(X ′;Y,w) + 1)

)
Then a loose upper bound on Lipschitz continuity of LDE is ‖∇wLDE(w;X,Y, γ)‖2 ≤ L̄(R + 1), if original loss is
L̄-Lipschitz in w and L(X) ≤ R. Due to the complicated form of this expression, establishing β-smoothness will require
extra rigor. We push a more thorough evaluation of the convergence of the outer SGD loop to future work.
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Algorithm 3 Entropy SGD
1: Input: X = [XB1

, XB2
. . . XBJ ], f, η, η′, w = w0, γ, α, ε

2: for t = 0, · · ·T − 1 do
3: for j = 1, · · · J do
4: w′0 ← wt, µ0 ← wt {Repeat inner loop for all training batches j}
5: for k = 0, · · · ,K − 1 do
6: dw′k ← 1

nj

∑nj
i=1−∇w=wkL(f(w;xi)) + γ(wk − w′k) {∀xi ∈ XBj}

7: w′k+1 ← w′k + η′dw′k +
√

2η′εN (0, 1) {Langevin update}
8: µk ← (1− α)µk + αw′k+1

9: end for
10: µt ← µK

11: wt+1 ← wt − ηγ(wt − µt) {Repeat outer loop step for all training batches j}
12: end for
13: end for
14: Output ŵ ← wT

C.2. Entropy SGD

In (Chaudhari et al., 2019) authors claim that neural networks that favor wide local minima have better generalization
properties, in terms of perturbations to data, weights as well as activations. Mathematically, the formulation in Entropy SGD
can be summarized as follows. A basic way to model the distribution of the weights of the neural network is using a Gibbs
distribution of the form:

p(w;X,Y, β) = Z−1
X,β exp

(
−βL(w;X,Y )

)
When β → ∞, this distribution concentrates at the global (if unique) minimizer of L(w∗;X,Y ). A modified Gibbs
distribution, with an additional smoothing parameter is introduced, which assumes the form:

p(w′;w,X, Y, β = 1, γ) = Z−1
w,X,γ exp

(
−L(w′;X,Y )− γ

2
‖w′ − w‖22

)
(13)

where Zw,X,γ normalizes the probability.

Here γ controls the width of the valley; if γ → ∞, the sampling is sharp, and this corresponds to no smoothing effect,
meanwhile γ → 0 corresponds to a uniform contribution from all points in the loss manifold. The standard objective is:

min
w
L(w;X,Y ) := min

w
− log

(
exp

(
−L(w;X,Y )

))
= min

w
− log

(∫
w′

exp
(
−L(w′;X,Y )

)
δ(w − w′)dw′

)

which can be seen as a sharp sampling of the loss function. Now, if one defined the Local Entropy as:

Lent(w;X,Y ) = − log(Zw,X,Y,γ)

= − log

(∫
w′

exp

(
−L(w′;X,Y )− γ

2
‖w − w′‖22

)
dw′

)

our new objective is to minimize this augmented objective function Lent(w;X,Y ), which resembles a smoothed version of



Adversarially Robust Learning via Entropic Regularization

the loss function with a Gaussian kernel. The SGD update can be designed as follows:

∇wLent(w;X,Y ) = −∇w(log(Zw,X,Y,γ))

= Z−1
w,X,γ∇w(Zw,X,γ)

= Z−1
w,X,γ

(∫
w′

exp

(
−L(w′;X,Y )− γ

2
‖w − w′‖22

)
· γ(w − w′)dw′

)

=

∫
w′
p(w′;w,X, Y, γ) · γ(w − w′)dw′

= Ew′∼p(w′)

[
γ(w − w′)

]
Then, using this gradient, the SGD update for a given batch is designed as:

w+ = w − η∇wLent(w;X,Y )

This gradient ideally requires computation over the entire training set at once; however can be extended to a batch-wise
update rule by borrowing key findings from (Welling & Teh, 2011). This expectation for the full gradient is computationally
intractable, however, Euler discretization of Langevin Stochastic Differential Equation, it can be approximated fairly well as

w′t+1 = w′t + ηt∇w′ log p(w′t) +
√

2ηN (0, I)

such that after large enough amount of iterations w+ → w∞ then w∞ ∼ p(w′). One can estimate Ew′∼p(w′)

[
γ(w − w′)

]
by averaging over many such iterates from this process. This result is stated as it is from (Chaudhari et al., 2019):
Ew′∼p(w′)[g(w′)] =

∑
t ηtg(w

′
t)∑

t ηt
. This leads to the algorithm shown in Algorithm 3. One can further accrue exponentially

decaying weighted averaging of g(w′t) to estimate Ew′∼p(w′)[g(w′)]. This entire procedure is described in Algorithm 3.

This algorithm is then further guaranteed to find wide minima neighborhoods of w by design, as sketched out by the proofs
in (Chaudhari et al., 2019).

C.3. Stochastic Gradient Langevin Dynamics

Stochastic Gradient Langevin Dynamics combines techniques of Stochastic Gradient Descent and Langevin Dynamics
(Welling & Teh, 2011). Given a probability distribution π = p(θ;X), the following update rule allows us to sample from
the distribution π:

θt+1 = θt + η∇θp(θt;X) +
√

2η′ε (14)

where η′ is step size and ε is normally distributed. Then, as t→∞, θ ∼ π.

While this update rule in itself suffices, if the parameters are conditioned on a a training sample set X , which is typically
large, the gradient term in Eq. 14 is expensive to compute. (Welling & Teh, 2011) shows that the following batch-wise
update rule:

θt+1 = θt + η∇θp(θt;XBj ) +
√

2η′ε

suffices to produce a good approximation to the samples θt→∞ ∼ π. In Algorithm 1, θ is the set of perturbed points X ′. In
each internal iteration, we look at subset of trainable parameters X ′Bj . We update the estimate for X ′Bj by only considering
data-points XBj at a time. In the current formulation the set of iterable parameters X ′Bj only ’see’ a single batch of data XBj

; a better estimate would require X ′Bj to be updated by iteratively over all possible batches XBk , k = 1, 2....J . However in
practice we observe that just using the corresponding batch XBk=j suffices. In future work, we will explore the theoretical
implications of this algorithmic design.

C.4. PGD-Adversarial Training

In Algorithm 4 we describe the PGD-AT algorithm. In (Madry et al., 2018) authors demonstrate that PGD based-attack is
the best possible attack that can be given for a given network and dataset combination. Theoretically,

x̄worst = arg max
δ∈∆p

L(f(ŵ;x+ δ), y) (15)
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Algorithm 4 PGD AT
1: Input: [XB1

, XB2
. . . XBJ ], f, η, η′, w = w0, ε

2: for t = 0, · · ·T − 1 do
3: for j = 1, · · · J do
4: x′0 ← x {∀x ∈ XBj}
5: for k = 0, · · · ,K − 1 do
6: dx′k ← 1

n

∑n
i=1∇x=xkL(f(wt;x))

7: x′k+1 ← x′k + η′dx′k {Gradient ascent}
8: projectx+∆(x′, ε)
9: end for

10: µt ← L(wt, x′K) {batch loss for XBj}
11: dLt ← ∇wµt {gradient of batch loss}
12: wt+1 ← wt − ηdLt
13: end for
14: end for
15: Output ŵ ← wT

and if this maximization can be solved tractably, then a network trained with the following min-max formulation is said to
be robust:

min
w

max
δ∈∆p

L(f(ŵ;X + δ, Y ), Y ) (16)

Furthermore they show that first order based gradient approaches, such as SGD, are sufficient to suitably optimize the inner
maximization over the perturbed dataset. This can be obtained using the following gradient ascent update rule:

X ′ = X ′ + η′∇X′∈X+δL(f(w,X ′ + δ;Y ), Y )

(see also Step 7 of Algorithm 4). Note that when ∆p = ∆2, this projection rule represents a noise-less version of the update
rule in ATENT (see Algorithm 1, line 8).

Iterative Fast Gradient Sign (IFGS) method effectively captures a similar projection based approach which performs an
update within an `∞ ball. This update is given by:

X ′ = X ′ + η′sign(∇X′L(f(w,X ′ + δ;Y ), Y ))

Note that this update rule constructs an adversarial example within `∞-ball, during the training procedure. Meanwhile, given
our proposed adversarial example sampling criterion in Assumption 2, our update rule is slightly different (see also Eq. 10).

C.5. Comparison to PGD Adversarial Training

The updates of PGD-AT are similar to that of Algorithm 1, consisting broadly of two types of gradient operations in an
alternating fashion - (i) an (inner) gradient with respect to samples X (or batch-wise samples XBj ) and (ii) an (outer)
gradient with respect to weights w. While PGD-AT minimizes the worst-case loss in an ε-neighborhood (specifically `2 or
`∞ ball) of X , ATENT minimizes an average loss over our specifically designed probability distribution (Assumption 2) in
the neighborhood of X . Note that the gradient operation in Eq. 8 is also the gradient for the regularized version of inner
maximation of the adversarial training problem (Madry et al., 2018), but with added noise term,

max
X′
L(X ′;X,Y,w) s.t. ‖X ′ −X‖2F ≤ ε

⇔ max
X′
L(X ′;X,Y,w)− γ

2
‖X ′ −X‖2F (17)

constraint being satisfied if ‖X ′ −X‖F is minimized, or −‖X ′ −X‖F is maximized).

The width of the Gaussian smoothing is adjusted with γ, which is analogous to controlling the projection radius ε in the
inner-maximization of PGD-AT. Then the second and third terms in Eq. 8 are simply gradient of an `2-regularization term
over data space X ′ and noise. In this way, ATENT can be re-interpreted as a stochastic formalization of `2-PGD-AT, with
noisy controlled updates.
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C.6. Comparison to randomized smoothing

In (Cohen et al., 2019), authors describe a defense to adversarial perturbations, in the form of smoothing. A smoothed
classifier g, under isotropic Gaussian noise ε = N (0, σ2I), produces an output:

g(x) = arg max
j

P(f(x) + ε) = j). (18)

where P denotes probability distribution (see Appendix B for detailed discussion). SmoothAdv (Salman et al., 2019a) is
an adversarial attack as well as defense for smoothed classifiers, which replaces standard loss with cross entropy loss of a
smoothed classier. In comparison, we compute a smoothed version of the cross entropy loss of a standard classifier. This
is similar to the setup of (Blum et al., 2020) (TRADES with smoothing). The procedure in Algorithm1 is therefore also
amenable to randomized smoothing in its evaluation.


