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Abstract

A central challenge in transfer learning is design-
ing algorithms that can quickly adapt and gener-
alize to new tasks without retraining. Yet, the
conditions of when and how algorithms can ef-
fectively transfer to new tasks is poorly char-
acterized. We introduce a geometric character-
ization of transfer in Hilbert spaces and define
three types of inductive transfer: interpolation
within the convex hull, extrapolation to the lin-
ear span, and extrapolation outside the span. We
propose a method grounded in the theory of func-
tion encoders to achieve all three types of trans-
fer. Specifically, we introduce a novel train-
ing scheme for function encoders using least-
squares optimization, prove a universal approxi-
mation theorem for function encoders, and pro-
vide a comprehensive comparison with exist-
ing approaches such as transformers and meta-
learning on four diverse benchmarks. Our experi-
ments demonstrate that the function encoder out-
performs state-of-the-art methods on four bench-
mark tasks and on all three types of transfer.

Project page: tyler-ingebrand.github.io/FEtransfer

1. Introduction
Learned models must be able to draw upon multiple knowl-
edge sources to handle tasks that were not encountered dur-
ing training. For example, robots operating in remote, un-
structured environments must be able to adapt to unseen
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Figure 1. The Categorization of Transfer Learning. Black
points are functions present in the training set. Purple points indi-
cate type 1 transfer, interpolation within the convex hull. Orange
points represent type 2 transfer, extrapolation to the linear span.
The red point is type 3 transfer, extrapolation to the Hilbert space.

scenarios or terrain, and computer vision models for med-
ical diagnoses should be able to generalize to entirely new
tasks, such as identifying emerging or rare diseases. While
training on internet-scale data has shown promise in im-
proving generalization performance by increasing data di-
versity, it does not avoid the fundamental issue of gaps in
the data, does not directly address knowledge transfer, and
does not innately enable adaptation to new, evolving tasks.
Thus, a crucial goal is to develop models that are capable
of transfer at runtime without retraining. Addressing these
challenges requires incorporating mathematical structure
with learning-based representations to quantify and exploit
the relatedness of tasks seen during training.

We consider an inductive transfer setting and present a ge-
ometric characterization of inductive transfer using princi-
ples from functional analysis. Inductive transfer involves
transferring knowledge to new, unseen tasks while keeping
the data distribution the same. For instance, labeling im-
ages according to a new, previously unknown class, where
only a few examples are provided after training. While
prior works have studied transfer learning, gaps remain in
identifying when learned models will succeed and when
they will fail. We seek a characterization of inductive trans-
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fer, based on Hilbert spaces, which will provide intuition
about the difficulty of a given transfer learning problem.
Formally, we consider a Hilbert space H of tasks, and the
inductive transfer problem is to accurately represent a new,
unknown task f ∈ H without retraining, using only a few
data examples provided at runtime.

Specifically, we characterize transfer using three types:

(Type 1) Interpolation within the convex hull. Tasks that
can be represented as a convex combination of ob-
served source tasks.

(Type 2) Extrapolation to the linear span. Tasks that are in
the linear span of source tasks, which may lie far
from observed data but share meaningful features.

(Type 3) Extrapolation to the Hilbert space. Tasks that are
outside the linear span of the source predictors
in an infinite-dimensional function space. Type
3 transfer is the most important and challenging
form of transfer.

We propose a novel method to achieve transfer across all
three types using the theory of function encoders (Inge-
brand et al., 2024b). Function encoders learn a set of neural
network basis functions to represent elements in a Hilbert
space. We generalize the theory of function encoders to
the full Hilbert space transfer learning setting. Further, we
show that this approach has a natural and principled means
of extrapolation, a difficult task for existing inductive trans-
fer learning approaches.

1.1. Related Work

Transfer learning and generalization have been a key focus
of the machine learning community. However, much of
the existing literature focuses on statistical shifts (out-of-
distribution generalization) rather than structural and task-
related perspectives (Zhuang et al., 2021). We employ the
definitions from Pan & Yang (2010), which distinguishes
transfer learning based on differences between the source
and target domains. Our focus is on inductive transfer
learning. Several transfer learning approaches focus on
modeling task relatedness, including via graph-based rep-
resentations (Eaton et al., 2008) and manifolds (Ko et al.,
2024). We consider a similar geometric view of task relat-
edness which depends on the relationship between a target
task and the training data.

Meta-learning approaches, such as MAML (Finn et al.,
2017) and related meta-adaptation methods (Nichol et al.,
2018), aim to adapt to new tasks by learning parame-
ters or representations that can quickly adapt to new data
(Hospedales et al., 2022). These approaches are effective
in scenarios with a high degree of similarity between the

source and target tasks. However, they require task-specific
fine-tuning or retraining, which may fail when tasks are
only weakly related or when task relatedness is not explic-
itly modeled. In contrast, we compute a task representation
from data without retraining the underlying model.

Other approaches use the idea of basis functions, but in dis-
tinct ways. Kernel methods fit a function by placing a ba-
sis function at every observed data point, and represent the
function as a linear combination of these basis functions
(Hofmann et al., 2008). Kernel methods can also be used
for transfer learning (Radhakrishnan et al., 2023). How-
ever, kernel methods may scale poorly with data, because
the size of the Gram matrix grows with the amount of data,
and require prior knowledge, e.g., the user must choose the
kernel. In contrast, the function encoder scales well the
amount of data because it uses a fixed number of basis func-
tions, and requires no prior knowledge because the basis
functions are learned. Dictionary learning decomposes a
data matrix into a set of atoms. Functions are represented as
a linear combination of the atoms, often with sparse regu-
larization (Tillmann, 2015; Aharon et al., 2006). However,
these atoms are only represented at fix input locations, and
thus are more akin to a discretized representation of a basis
function. In contrast, the function encoder can be evaluated
at any point in the input domain.

Internet-scale training and fine-tuning pretrained models is
gaining interest for improving generalization performance.
For example, the Open-X Embodiment dataset (O’Neill
et al., 2024) aggregates data from diverse robot platforms
to train models that generalize across tasks and robot sys-
tems. These approaches seek to leverage sheer data volume
and scale to enable transfer instead of leveraging structural
insights or feature relationships between tasks. Transform-
ers (Vaswani et al., 2017) and generative pretrained models
perform well on language tasks and time-series prediction,
but perform poorly even in simplistic benchmark transfer
tasks. There is some preliminary work on assessing trans-
fer quality for pretrained models (Mehra et al., 2024). Our
approach may be useful for such models, e.g. in mixture-
of-experts (Jacobs et al., 1991).

1.2. Contributions

We summarize our contributions as follows.

A geometric characterization of transfer. We define and
characterize three types of inductive transfer, which capture
geometric task relationships in Hilbert spaces.

A method to achieve transfer across all three types. We
present a principled method for inductive transfer using the
theory of function encoders (Ingebrand et al., 2024b). We
propose a novel approach to train function encoders us-
ing least squares, prove a universal function space approx-
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imation theorem for function encoders, and generalize the
function encoder to new function spaces.

A comprehensive comparison with the state of the art.
We compare state-of-the-art approaches for inductive trans-
fer and meta-learning with our proposed approach on sev-
eral benchmark transfer tasks, including regression, image
classification, camera pose estimation, and dynamics mod-
eling. We demonstrate that our approach achieves compa-
rable performance at type 1 transfer and superior perfor-
mance at type 2 and type 3 transfer.

2. Background
2.1. Inductive Transfer in Hilbert Spaces

We present the following definitions, adapted from Pan &
Yang (2010) of domains, tasks, and transfer learning.

Definition 1 (Domain). A domainD = (X ,P(X )) consists
of an input space X and a marginal distribution P(X ).
Definition 2 (Task). A task T = (Y, f) consists of an out-
put space Y and a predictor f : X → Y , which is not
observed, but can be learned from data. Alternatively, the
predictor can be a conditional distribution P(Y | X ).

In general, we presume that we do not have access to the
predictors directly. Instead, we presume access to a dataset
consisting of pairs (x, y) ∈ X × Y .

Definition 3 (Dataset). A dataset D = {(xi, yi)}mi=1 con-
sists of points xi drawn from P(X ), and the corresponding
labels yi from Y .

Definition 4 (Transfer Learning, Pan & Yang, 2010, Defi-
nition 1). Let DS and TS be the source domain and task,
and DT and TT be the target domain and task. Transfer
learning seeks to improve the target predictor fT using the
knowledge in DS and TS , where DS ̸= DT or TS ̸= TT .

Specifically, we focus on an inductive transfer scenario,
where the source and target predictors differ, meaning fS ̸=
fT or, alternatively, P(YS | XS) ̸= P(YT | XT ), but the
output spaces YS = YT and domains DS = DT are the
same. For simplicity of notation, we drop the subscripts S
and T on X and Y where appropriate. Additionally, we
presume that multiple source datasets DS1

, . . . , DSn
are

available during training, which is similar to the so-called
multi-task learning scenario (Caruana, 1997). The model
thus has access to multiple datasets during training, and
we seek to transfer the knowledge from the source domain
DS and tasks TS1

, . . . , TSn
to a new target task fT . This

scenario is increasingly common in practice. For instance,
in few-shot image classification, we have access to a large
dataset of diverse images and their corresponding labels,
and we seek to transfer to a new class. In robotics, we
have access to data collected from multiple environments,

and we aim to transfer dynamics estimates or policies to a
new environment. To make use of Hilbert space theory, we
make the following assumption about the tasks.

Assumption 1. Consider a Hilbert space H of functions
from X to Y equipped with the inner product ⟨·, ·⟩H. We
assume that the predictors fS1

, . . . , fSn
and fT are ele-

ments ofH.

Note that Assumption 1 is not restrictive because Hilbert
spaces are generally flexible and encompass a wide number
of problems of interest. For instance, under mild regularity
assumptions, the space L2 of square-integrable functions is
a Hilbert space. We can define Hilbert spaces over many
types of functions and tasks, such as probability distribu-
tions. See Appendix C for more information.

2.2. A Geometric View of Transfer

We first seek to characterize the various geometric rela-
tionships between the target task fT and the source tasks
fS1 , . . . , fSn via the properties of the Hilbert space. Specif-
ically, we define three types of inductive transfer in Hilbert
spaces: interpolation within the convex hull of source pre-
dictors, extrapolation to the linear span of source predic-
tors, and extrapolation to the rest ofH.

We first consider a typical case of generalization for learned
models, where the target predictor lies within the convex
hull Ch of the source predictors fS1 , . . . , fSn ,

Ch =

{
f ∈ H

∣∣∣∣ f =

n∑
i=1

αifSi
,

n∑
i=1

αi = 1, αi ≥ 0

}
.

(1)

Definition 5 (Type 1, Interpolation in the Convex Hull).
Given source predictors fS1

, . . . , fSn
the target task pre-

dictor fT is in the convex hull Ch of the source predictors.

Next, we consider extrapolation beyond the convex hull of
the source predictors to the linear span,

span{fS1
, . . . , fSn

} =
{
f ∈ H

∣∣∣∣ n∑
i=1

αifSi
, αi ∈ R

}
.

(2)

Definition 6 (Type 2, Extrapolation to the Linear Span).
Given source predictors fS1 , . . . , fSn the target task pre-
dictor fT ∈ span{fS1 , . . . , fSn}. We presume f ̸∈ Ch to
distinguish extrapolation from interpolation.

Extrapolation to the linear span extends beyond standard
generalization performance and tests whether the learned
features are meaningful. In other words, extrapolation to
the linear span implies that the model has learned some-
thing about the structure of the space of predictors.

3



Function Encoders: A Principled Approach to Transfer Learning in Hilbert Spaces

Lastly, we consider the extreme case where the target task
lies outside the span of source predictors. This type of
transfer is often the most desirable, since it involves trans-
ferring (partial) knowledge to entirely different tasks.

Definition 7 (Type 3, Extrapolation to H). The target task
predictor fT ∈ H, but fT ̸∈ span{fS1 , . . . , fSn}.

Note that this scenario is particularly challenging, since it
involves transferring to parts of H that significantly differ
from the observed tasks. Additionally, H is typically infi-
nite dimensional, while we have finite training tasks, and so
there are infinite dimensions on which fT may differ from
the source tasks. It is not possible, a priori, to determine
which of these infinite dimensions are relevant.

3. Function Encoders
A natural representation of a task f ∈ H is via a lin-
ear combination of basis functions. We employ a method
for learning a finite set of neural network basis functions
in Hilbert spaces called the function encoder (Ingebrand
et al., 2024b). Function encoders learn a set, {g1, . . . , gk},
of basis functions parameterized by neural networks to
span a Hilbert space of functions. Then, functions in the
learned space are represented via a linear combination of
the learned basis,

f(x) =

k∑
j=1

cjgj(x | θj). (3)

We first provide a brief overview of the theory of function
encoders. Then, we present a novel approach to training
function encoders using least-squares optimization, which
offers several numerical and computational benefits. Ad-
ditionally, we present a universal approximation theorem
for function encoders. Lastly, we remark that we have gen-
eralized all function encoder definitions to use only inner
products. Thus by appropriately defining the inner prod-
uct, we also generalize the algorithm to any function space,
e.g., probability distributions for classification.

Function encoders consist of two steps: offline training of
the basis functions and online inference.

3.1. Offline Training Procedure

The basis functions {g1, . . . , gk} are first trained using a
set of datasets {DS1 , . . . , DSn} as in Definition 3 corre-
sponding to the source predictors fS1 , . . . , fSn . For each
function fSi

and dataset DSi
, we first compute the coeffi-

cients of the basis functions and then obtain an empirical
estimate f̂Si

of fSi
via (3).

During training, the coefficients c corresponding to a func-

tion f can be computed using the inner product method,

c :=

⟨f, g1⟩H...
⟨f, gk⟩H

 , (4)

which leads to a stable learning algorithm (Ingebrand et al.,
2024b). Computing (4) involves evaluating the inner prod-
uct. Many commonly used inner products such as the L2

inner product ⟨f, g⟩L2 =
∫
X f(x)g(x)dx involve comput-

ing integrals over the input space, which is computationally
intractable. Instead, we can use Monte Carlo integration
to approximate the inner product using data. For exam-
ple, we can estimate the L2 inner product using a dataset
D = {(xi, yi)}mi=1 as

⟨f, gj⟩L2 =

∫
X
f(x)gj(x)dx ≈

V

m

m∑
i=1

f(xi)gj(xi), (5)

where V is the volume of X and f(xi) = yi. Since gj is a
neural network basis function, we can query it for arbitrary
data points xi. In practice, V is unknown, so we assume
V = 1, which scales the inner product by a constant value
1/V . This approximation induces a weighted inner product
if P(X ) is not uniform. For a discussion, see Appendix D.

The inner product method of computing the coefficients
suffers from two main drawbacks. First, as noted in In-
gebrand et al. (2024b), the basis functions naturally tend
toward orthonormality during training to minimize the loss.
However, during training, the inner product method intro-
duces errors in the coefficient calculations if this property
is not explicitly enforced at each step, e.g., using Gram-
Schmidt, which can be computationally expensive. Sec-
ond, estimating the coefficients via the inner product con-
verges slowly as the basis functions must converge to or-
thonormality to minimize loss. Below, we provide a faster
and more accurate method for computing the coefficients.

Computing Coefficients via Least Squares. We pro-
pose modifying the function encoder training procedure to
compute the coefficients as the solution to a least-squares
optimization problem,

c := argmin
c∈Rk

∥∥∥∥f − k∑
j=1

cjgj

∥∥∥∥2
H
. (6)

The least-squares problem in (6) admits a closed-form so-
lution. The coefficients c for function f are computed as

c =

⟨g1, g1⟩H . . . ⟨g1, gk⟩H
...

. . .
...

⟨gk, g1⟩H . . . ⟨gk, gk⟩H


−1 ⟨f, g1⟩H...
⟨f, gk⟩H

 , (7)

where the inner products are estimated using Monte Carlo
integration as in (5). To compare the relative performance
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Algorithm 1 Function Encoder Training (LS)
given source datasets {DS1 , . . . , DSn}, learning rate α
Initialize basis {g1, . . . , gk} with parameters θ
while not converged do

for all DSℓ
∈ {DS1

, . . . , DSn
} do

cℓ =

⟨g1, g1⟩H . . . ⟨g1, gk⟩H
...

. . .
...

⟨gk, g1⟩H . . . ⟨gk, gk⟩H


−1 ⟨fSℓ

, g1⟩H
...

⟨fSℓ
, gk⟩H


f̂Sℓ

=
∑k

j=1 c
ℓ
jgj

end for
L← 1

n

∑n
ℓ=1∥fSℓ

− f̂Sℓ
∥2H

Lreg ←
∑k

i=1(∥gi∥2H − 1)2

θ ← θ − α∇θ(L+ Lreg)
end while
return {g1, . . . , gk}

of the two coefficient calculation methods, we distinguish
the inner product method (IP) using (4) and the least-
squares method (LS) using (7).

The solution in (7) provides a theoretically optimal projec-
tion onto the learned basis in the least-squares sense. The
key benefit of least squares is that it does not require the
basis functions to be orthonormal. Instead, we only pre-
sume that the basis functions are linearly independent, a
mild assumption (see Lamperski, 2022). In practice, this
advantage is significant, and least squares performs better
in most cases.

Although least squares is conceptually simple, the use of
least squares during the training process imposes additional
computational challenges. Primarily, least squares requires
additional regularization to ensure the basis function mag-
nitudes remain in an acceptable range. See Appendix A.

Training Algorithm. To train the basis functions, we as-
sume access to a dataset DSℓ

for each source task fSℓ
. Us-

ing this dataset, we compute the coefficients cℓ for each
fSℓ

using either IP or LS, depending on the method cho-
sen. This yields an approximation for fSℓ

via (3). The loss
is the mean approximation error over source tasks,

L =
1

n

n∑
ℓ=1

∥∥∥∥fSℓ
−

k∑
j=1

cℓjgj

∥∥∥∥2
H
. (8)

The basis functions are trained via gradient descent to min-
imize this loss. See Algorithm 1 for the pseudo-code.

3.2. Online Inference

After training, we may approximate a target task fT given
a small dataset DfT . We use the dataset to compute the
coefficients, and approximate fT as a linear combination

of the basis functions. Notably, the coefficient calculations
are computationally simple. The inner product approxima-
tion is effectively a sample mean, which can be computed
quickly in parallel. Furthermore, if using the least-squares
method, the Gram matrix in (7) is of size k × k, which we
select as a hyperparameter, meaning the matrix inverse can
be computed quickly even for large datasets.

3.3. Universal Function Space Approximation Theorem

An important question is which properties a Hilbert space
must have to be well represented by learned basis functions.
In this section, we provide an existence proof to show that a
function encoder can represent any separable Hilbert space
with arbitrary precision.
Theorem 1. Let K ⊂ Rn be compact. Define the in-
ner product ⟨f, g⟩H :=

∫
K
f(x)⊤g(x)dx and the induced

norm ∥f∥H :=
√
⟨f, f⟩H. Let H = {f : K →

Rm|f continuous, ∥f∥H < ∞} be a separable Hilbert
space. Then, there exist neural network basis functions
{ê1, ê2, ...} such that for any ϵ > 0 and for any function
f ∈ H, there exists N ∈ N and c ∈ RN such that

||f −
N∑
i=1

ciêi||H < ϵ||f ||H.

Proof (Sketch). Every separable Hilbert space H has
a countable orthonormal basis {e1, e2, . . .} (Oden &
Demkowicz, 2018, Theorem 6.3.1), and any function f ∈
H can be represented in terms of the basis. Let êi be a neu-
ral network approximation of ei. By the universal approx-
imation theorem of neural networks (Leshno et al., 1993),
such a neural network always exists with arbitrary error.
Bound the error of each basis function approximation as
a decreasing geometric series. Then, the overall error of
representing any function as a linear combination of these
approximations is finite and arbitrarily small.

The proof shows that in the limit of infinite basis functions,
any member of the Hilbert space is well approximated by a
function encoder. See Appendix B for the full proof and a
discussion.

4. Experimental Comparison of Transfer
We compare our proposed approach against existing trans-
fer approaches on challenging transfer scenarios. Specifi-
cally, we compare function encoders using the inner prod-
uct (IP) method (Ingebrand et al., 2024b), function en-
coders using the least-squares (LS) method (ours), auto
encoders, transformers (Vaswani et al., 2017), transformer
functional encodings (TFE), an oracle with privileged in-
formation, MAML (Finn et al., 2017), and two naive algo-
rithms: brute force (BF) and brute force to basis (BFB). We

5



Function Encoders: A Principled Approach to Transfer Learning in Hilbert Spaces

Figure 2. Empirical Results on the Polynomial Dataset. While many approaches demonstrate moderate type 1 transfer, only the
function encoder successfully achieves all three types, as illustrated by its orders of magnitude advantage over other approaches.

Figure 3. Qualitative Analysis of Transfer on the Polynomial Dataset. In this illustrative example, we visualize the function encoder
and one baseline, the auto encoder, on each of the three types of transfer. We observe that both approaches achieve reasonable per-
formance for type 1 transfer. For type 2 transfer, the target function is much larger in magnitude than any function in the training set.
The auto encoder fails at this function because it has only learned to output functions from the training function space. In contrast, the
function encoder generalizes to the entire span of the training function space by design. For type 3 transfer, the target function is a
cubic function. The auto encoder nonetheless outputs a function that is similar to the ones seen during training. When using a function
encoder with only three basis functions, the basis functions only span the three-dimensional space of quadratic functions, and so its
approximation is the best quadratic to fit the data. When using 100 basis functions, the basis functions spans the space of quadratics, but
additionally have 97 unconstrained dimensions. Due to the use of least squares, the function encoder with 100 basis functions optimally
uses these extra 97 dimensions to fit the new function. Therefore, it is able to reasonable approximate this function as well, despite
having never seen a cubic function during training.

assess the capability of these existing approaches to trans-
fer to new tasks that have varying geometric relationships
to the set of observed source predictors. See Appendix I for
more information on the baselines.

We consider four benchmark transfer tasks: 1) a polyno-
mial regression task to illustrate the proposed categories,
2) a CIFAR image classification task, 3) an inference task
on the 7-Scenes dataset, and 4) a dynamics estimation task
on MuJoCo data. See Appendix H for more information.
We show that the proposed approach, FE (LS), transfers to
new tasks, even when the tasks are outside the convex hull
of source predictors. The algorithm learns the underlying
structure and can transfer knowledge to new domains.

4.1. An Illustrative Polynomial Regression Task

We first consider transfer on a simple polynomial regres-
sion task. This problem is designed to be simple while still
demonstrating the types of transfer and failure modes of

current approaches. The models are trained using polyno-
mials {ax2+bx+c | a, b, c ∈ [−3, 3]}. We evaluate type 1
transfer by sampling unseen functions from the same space.
We evaluate type 2 transfer be sampling polynomials with
coefficients a, b, c ∈ [−20, 20]. We then consider extrapo-
lation to a new function class, {f(x) = ax3+bx2+cx+d |
a, b, c, d ∈ [−3, 3]}, to evaluate type 3 transfer.

In Figure 2, we see that existing approaches achieve moder-
ate type 1 transfer, interpolation in the convex hull. How-
ever, existing approaches fail to extrapolate to the linear
span (type 2) or to other functions in H (type 3), while the
function encoder using least squares achieves low L2 error.

The function encoder’s excellent performance is the result
of least squares, which is the optimal projection of the tar-
get task onto the learned basis. For type 1 and type 2 trans-
fer, this projection is almost a perfect recreation of the tar-
get task, since the basis functions are trained to span the
source tasks, and the target task lies in the span of the
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Figure 4. Empirical Results on the CIFAR Dataset. The training curves show the two ad-hoc baselines seem to be performing best, and
many algorithms fail to converge on all or some seeds. However, when measuring type 1 transfer, the function encoder performs best,
achieving slightly better performance than Siamese networks. For type 3 transfer, few-shot classification of unseen classes, the function
encoder again performs best, albeit similar to Siamese networks. The key idea is that function encoders are performing comparably to
ad-hoc approaches despite being designed for a more general setting.

source tasks. For type 3 transfer, this projection necessar-
ily has error, but the error is minimized given the learned
basis. See Figure 3 for a visualization of how this property
greatly improves transfer.

4.2. CIFAR Dataset: Classifying Unseen Objects

We evaluate the function encoder and relevant baselines on
the CIFAR 100 dataset (Krizhevsky, 2009). Specifically,
we evaluate on the few-shot classification problem, where
the classifier is given a set of images belonging to a class
and a set of counterexamples that belong to other classes,
and must determine if a new image belongs to the speci-
fied class. The classifier function corresponding to a given
class is one function from the function space. For exam-
ple, the “apple” classifier returns true if an image contains
an apple and false otherwise. 90 classes are used during
training, and 10 are held out for testing. Type 1 transfer is
evaluating a model’s performance on unseen images from
the training classes. Indeed, these are the training func-
tions, but for new inputs. Type 2 transfer is not readily
testable with this dataset. Conceptually, linear combina-
tions of classes would correspond to images which belong
to both classes. An “apple” classifier plus a “green” clas-
sifier would correspond to a “green apple” classifier. Type
3 transfer is the model performance on unseen classes. See
Figure 19 for a visualization of the data setting.

The function encoder uses a probability distribution-based
inner product; See Appendix C.2 for more information. To
make a fair comparison, we also train other algorithms,
where applicable, using the same inner produced-based dis-
tance function. In Appendix H.1, we include an experi-
ment for other algorithms using a cross-entropy loss func-
tion. Furthermore, as is common for image based classifi-
cation problems, weight-regularization is necessary to pre-
vent overfitting for some algorithms, including the function
encoder. In addition to the standard baselines, we also use
two ad-hoc baselines: Siamese networks (Bromley et al.,

1993) and prototypical networks (Snell et al., 2017).

Our results indicate that the function encoder and the two
ad-hoc baselines perform best. While many approaches
have some convergent seeds, most do not converge con-
sistently, indicating the difficulty of learning in this setting.
Furthermore, the two ad-hoc baselines perform best on the
training set, but demonstrate a significant drop in perfor-
mance in a type 1 or type 3 setting. The best algorithm
overall is the function encoder, although Siamese networks
are similar. The key result of this experiment is that the
function encoder is achieving comparable performance to
ad-hoc algorithms designed explicitly for this setting, de-
spite the fact that the function encoder is more general.

4.3. 7-Scenes Dataset: Estimating Position from Images

We use the 7-Scenes dataset (Shotton et al., 2013), where
the goal is to estimate the position of a camera from an
image. The example dataset consists of pairs of images
and their locations within the scene. As the name suggests,
there are seven unique scenes in this dataset, along with
various trajectories of images in each scene. Six scenes are
used for training, and one is heldout.

Type 1 transfer is again evaluated on the training scenes,
but on heldout images. Type 2 transfer is not readily
testable, though it conceptually corresponds to a change in
units, e.g., changing the position from meters to centime-
ters, or changing the origin. Type 3 transfer corresponds to
the performance on the unseen scene. See Figure 21 for a
visualization of the data setting.

The results indicate that while most algorithms achieve
strong training performance, all see significant decreases
in performance for type 1 and type 2 transfer. The function
encoder however achieves the best transfer due to its use of
least squares. Effectively, the function learns a useful set of
features for the training dataset, and then optimally lever-
ages these features for transfer, even though these features

7
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Figure 5. Empirical Results on the 7-Scenes Dataset. Many approaches converge during training. As expected, all approaches
perform much worse at type 1 transfer, indicating a degree of over-fitting. The function encoder performs best at both type 1 and type 3
transfer, indicating its ability to optimally use the learned features for unseen data.

Figure 6. Empirical Results on the Ant Dataset. All algorithms demonstrate convergence during training, albeit to various levels.
However, many algorithms perform much worse for type 1 transfer. The function encoder performs best, although many approaches,
such as the transformer and MAML(n=5), are comparable. Furthermore, the function encoder is clearly best for type 2 transfer. Type
3 transfer tells an interesting story. The function encoder has the best stable performance, although approaches such as the transformer
and the auto encoder are not far behind. At the beginning of training, the auto encoder shows the best overall performance, although
it degrades as training continues. This is because training is not optimizing for type 3 transfer, and the best model parameters for the
training dataset are not the best model parameters for type 3 transfer. Thus, its performance is unstable.

are likely suboptimal for the unseen images.

4.4. MuJoCo Dataset: Estimating Unseen Dynamics

We adapt the hidden-parameter MuJoCo Ant dataset from
Ingebrand et al. (2024a). This dataset consists of a Mu-
JoCo Ant (four-legged robot) walking on a flat surface.
The lengths of the robot’s limbs, and the control authority,
are varied which effectively changes the dynamics func-
tion. The goal is to predict the next state of the robot given
the current state and action, where the example dataset pro-
vides data from the current set of hidden parameters.

During training, hidden parameters are sampled from 0.5x
to 1x the default robot values. Type 1 transfer consists of
unseen hidden-parameters sampled from that same space.
Type 2 transfer consists of synthetically generated dynam-
ics which correspond to linear combinations of the dynam-
ics sampled from the type 1 parameter space. Type 3 trans-
fer consists of hidden parameters sampled from 1.5x to
2x the default values, which corresponds to a much larger
robot. See Appendix H.3 for more details on this dataset.
See Figure 6 for experimental results.

The results indicate that many approaches achieve some
but not all types of transfer on this dataset. Meta learning

achieves good type 1 transfer, but fails at type 2 and type 3.
Interestingly, the auto encoder briefly achieves great type
3 transfer, but its performance degrades as training pro-
gresses. This is because minimizing training loss may di-
rectly conflict with minimizing type 3 transfer, and type 3
transfer by definition cannot be used for training. The func-
tion encoder achieves the overall best transfer, although
some algorithms may be comparable for a given type of
transfer. Additionally, for simplicity the function encoder
did not use either the residuals method (see Appendix E) or
neural ODE basis functions, which are minor changes that
have been shown to lead to great improvements in accuracy
for this problem (Ingebrand et al., 2024b;a).

5. Conclusion
We have introduced a novel categorization of transfer learn-
ing based on the geometric interpretation of Hilbert spaces.
We made novel improvements to the function encoder al-
gorithm, and argued that it is a natural solution to transfer
learning in Hilbert spaces. We empirically validated this
argument using four transfer learning datasets.

We leave many open questions for future work. Primar-
ily, applying the function encoder algorithm to other set-
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tings requires a well-defined inner product. Therefore, de-
signing inner products for sequences and graphs is a neces-
sary and interesting challenge. Furthermore, this work does
not address how to efficiently represent a low-dimensional
manifold lying in an infinite dimensional space. In such
a setting, naively learning basis functions may require an
unpractical number of basis functions to reasonable span
the manifold, while the manifold itself is low-dimensional.
Thus there may be similar algorithms which learn a basis
only for the manifold.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Basis Function Regularization
As with all (unregularized) least-squares approaches, the Gram matrix can occasionally be close to singular which makes
the matrix inverse numerically unstable during training. Thus, we add a small regularization λ to the diagonal of the Gram
matrix in the style of Ridge regression, which improves the numerical stability of the inverse. Yet, the regularization term
causes the eigenvalues to increase, meaning the solution to the regularized least-squares problem will be a slight under-
approximation. Since the basis functions are trained to minimize the error of the approximation, and the approximation is
an underestimate, the basis functions constantly grow in magnitude. Thus, we additionally impose an overall regularizer
on the norm of the basis functions to be close to 1 to prevent this:

Lreg =

k∑
i=1

(∥gi∥2H − 1)2 (9)

Note that we do not need the basis functions to be unit, we only require that they do not grow infinitely in magnitude as
training progresses.

B. Universal Function Space Approximation Theorem
Theorem 1 (Restated). Let K ⊂ Rn be compact. Define the inner product ⟨f, g⟩H :=

∫
K
f(x)⊤g(x)dx and the induced

norm ∥f∥H :=
√
⟨f, f⟩H. Let H = {f : K → Rm | f continuous, ∥f∥H < ∞} be a separable Hilbert space. Then,

there exists neural network basis functions {ê1, ê2, ...} such that for any ϵ > 0 and for any function f ∈ H, there exists
N ∈ N and c ∈ RN such that

||f −
N∑
i=1

ciêi||H < ϵ||f ||H.

This theorem states that any separable Hilbert space can be arbitrarily well approximated with (a potentially infinite number
of) sufficiently large neural network basis functions.

We will build on the universal function approximation theorem for neural networks (Hornik et al., 1989; Cybenko, 1989).
We use the results stated in (Leshno et al., 1993):

Theorem 2 (Leshno et al., 1993). Let σ be a non-polynomial activation function such that the closure of its discontinuous
points is of zero Lebesgue measure. Then for n ∈ N, compact K ⊂ Rn, f ∈ C(K,R), δ > 0, there exists neural network
parameters ℓ ∈ N, A ∈ Rℓ×n, B ∈ Rℓ, D ∈ Rℓ such that

sup
x∈K
|f(x)− f̂(x)| < δ,

where f̂(x) = D · (σ(A · x+B)).

This theorem states that any continuous, scalar-valued function can be arbitrarily well approximated by a sufficiently wide
neural network.

Proof. First, we will extend the universal function approximation theorem from continuous, scalar-valued functions to
continuous, vector-valued functions. Suppose the functions map to Rm instead of R, and consider the Euclidean norm.
Then there exists a neural network such that ||f(x)− f̂(x)||22 = (f(x)− f̂(x))⊤(f(x)− f̂(x)) < δ2m for all x, where the
only change to the neural network is that D ∈ Rℓ×m. This results from the fact that we can treat each output dimension
independently, and each output dimension has arbitrarily small error. Thus the sum of the squared errors is also arbitrarily
small.

Since the point-wise error is bounded in a Euclidean sense and K has finite measure, then ||f − f̂ ||H =
∫
K
(f(x) −

f̂(x))⊤(f(x) − f̂(x))dx <
∫
K
δ2mdx = V δ2m, where V is the volume of K. Therefore, the universal approximation

theorem for neural networks implies that any function f ∈ H can be arbitrarily well approximated by a sufficiently wide
neural network.
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Next, we will leverage the fact that every separable Hilbert space has a countable orthonormal basis (Oden & Demkowicz,
2018, Theorem 6.3.1). Let {e1, e2, ...} be such a basis. Then for any f ∈ H,

f =

∞∑
i=1

ciei := lim
N→∞

N∑
i=1

ciei,

where ci = ⟨f, ei⟩. This sequence converges because span{e1, e2, ...} is dense in H (Oden & Demkowicz, 2018, Chapter
6.3). Also, these basis functions are members ofH, and are thus continuous.

Let êi be the neural network approximation of ei with ||êi − ei||H < δ
2i , for some δ > 0. By the universal function

approximation theorem (extended to the vector-valued case), such a neural network always exists.

Each êi can be decomposed into ei and an error vector di,

êi = ei + di.

By definition,

||di||H <
δ

2i
.

Let

f̂N =

N∑
i=1

ciêi =

N∑
i=1

ci(ei + di) =

N∑
i=1

ciei +

N∑
i=1

cidi.

Consider lim
N→∞

||f̂N − f ||H.

lim
N→∞

||f̂N − f ||H = lim
N→∞

||
N∑
i=1

ciei +

N∑
i=1

cidi − f ||H

≤ lim
N→∞

||
N∑
i=1

ciei − f ||H + ||
N∑
i=1

cidi||H

Notice that ||
∑N

i=1 cidi||H ≤
∑N

i=1 |ci| ||di||H by the triangle inequality. Also, by the definition of di,
∑N

i=1 |ci| ||di||H <∑N
i=1 |ci|

δ
2i .

Furthermore, for a given f of size ||f ||H, the largest value of |ci| is achieved if f = a · ei for some a ∈ R, i ∈ N, and in
this case |ci| = |a| = ||f ||H. Thus, we can bound |ci| ≤ ||f ||H. Therefore,

||
N∑
i=1

cidi||H < δ||f ||H
N∑
i=1

1

2i
.

We can rewrite the limit above as

lim
N→∞

||f̂N − f ||H < lim
N→∞

||
N∑
i=1

ciei − f ||2 + δ||f ||H
N∑
i=1

1

2i
.

∑N
i=1

1
2i is a geometric series whose limit is 1 as N →∞. Since both components are finite in the limit,

lim
N→∞

∥f̂N − f∥H < lim
N→∞

∥∥∥∥∥
N∑
i=1

ciei − f

∥∥∥∥∥
H

+ lim
N→∞

δ∥f∥H
N∑
i=1

1

2i
= δ∥f∥H.

Thus, in the limit of infinite basis functions, the error of the approximation is proportional to the magnitude of the function
and an arbitrarily small constant δ. To achieve an error of ||f̂N − f ||H < ϵ||f ||H with a finite number of basis functions
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N , we only need to choose a δ such that ϵ > δ > 0. Then we can find a sufficiently large N such that ||f̂N − f ||H <
δ + (ϵ− δ) = ϵ. This concludes the proof,

∀ϵ > 0, f ∈ H,∃N ∈ N, c ∈ RN :

||f −
N∑
i=1

ciêi||H < ϵ||f ||H.

Discussion. In the following, we discuss several implications of the proof. First, this proof does not imply that an infinite
dimensional function space only needs a finite dimensional basis. A infinite dimensional function space unavoidably
requires infinite basis functions. However, for any given function in this space, we only need a finite number of basis
functions to achieve an arbitrary error. Second, this proof implies that for a finite dimensional space, we only need a finite
number of learned basis functions and we can achieve an arbitrarily small error for all functions in this function space.
Lastly, the requirement that each basis function êi has smaller error than the basis function êi−1 implies that the size of
basis function êi will tend to be bigger than the basis function êi−1. In other words, increasing basis function precision
likely increases neural network width.

C. Choosing an Inner Product
The key design decision for function encoders is the choice of an appropriate and well-defined inner product. Fortunately,
many prior works have determined viable inner products for many spaces of interest, such as deterministic function spaces
and probability distributions. In general, we define a valid inner product over the output space Y , where Y is a Hilbert
space also, and use the Bochner-Lebesgue integral to define the inner product forH := {f : X → Y},

⟨f, g⟩H :=

∫
X
⟨f(x), g(x)⟩Ydx. (10)

Vector addition and scalar multiplication forH are defined pointwise:

(f + g)(x) := f(x) + g(x) (11)

(αf)(x) := αf(x) (12)

Thus, function encoders can be extended to many function spaces with minimal modifications. Below, we describe three
common inner products, along with some equivalent forms that improve computational efficiency.

C.1. Euclidean Vectors

The most common output space is a real vector space Y = Rm. We use the standard Euclidean vector operations. The
resulting inner product forH := {f : X → Rm} is

⟨f, g⟩H :=

∫
X
f(x)⊤g(x)dx. (13)

C.2. Discrete Probability Distributions

Another common output space is discrete probability distributions over classes. The distributions themselves are un-
observed but we instead observe samples from the distributions. We leverage the Hilbert space definitions for discrete
probability distributions from Egozcue et al. (2003). The D-class probability distribution is defined as

SD :=

{
x = [x1, x2, ..., xD] : xi > 0,

D∑
i=1

xi = 1

}
. (14)
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Note that this implies the probability of any class is always greater than 0. This is necessary to ensure the space is a Hilbert
space. The corresponding vector operations are defined as follows:

x+ y :=

[
x1y1∑D
i=1 xiyi

,
x2y2∑D
i=1 xiyi

, ...,
xDyD∑D
i=1 xiyi

]
(15)

αx :=

[
xα
1∑D

i=1 x
α
i

,
xα
2∑D

i=1 x
α
i

, ...,
xα
D∑D

i=1 x
α
i

]
(16)

where x and y are in SD. The inner product is defined as

⟨x, y⟩SD :=

D∑
i=1

log
xi

G(x)
log

yi
G(y)

, (17)

where G(x) = (x1x2...xD)1/D is the geometric mean. Under these definitions, SD is a Hilbert space (Egozcue et al.,
2003). However, as vector addition requires multiplication and scalar multiplication requires exponentiation, these defini-
tions are computationally inefficient.

Instead, we can leverage equivalent definitions that use addition and multiplication instead of multiplication and exponen-
tiation, respectively. To do so, we will define equivalent operations in logit space lD, which is simply RD with a modified
inner product. We define logit : SD → lD as

logit(x) = [log(x1), ..., log(xD)] (18)

and probability : lD → SD as

probability(y) =

[
ey1∑D
i=1 e

yi

, ...,
eyD∑D
i=1 e

yi

]
(19)

These two operations allow us to move from probability space to logit space and vice versa. Note that logit space is D-
dimensional while probability space is actually (D − 1)-dimensional. Effectively, we are working with a quotient space
where members of RD are equivalent if they map to the same probability distribution. Logit space is convenient because
the vector operations become the standard operations in RD, i.e. they use addition for vector addition and multiplication
for scalar multiplication. These operations are significantly cheaper and produce more stable gradients than the equivalent
probability space operations. The inner product for logit space lD is

⟨x, y⟩lD :=

D∑
i=1

(xi − µ(x))(yi − µ(y)), (20)

where µ(x) = 1
D

∑D
i=1 xi is the mean of x. Under these definitions, we can work entirely in logit space and only convert

to probability distributions when necessary.

Practical Data Considerations In practice, we do not observe the probability distribution directly. Instead, we observe
one sample point from the distribution. Therefore, we take the maximum likelihood perspective and would assign all
probability mass to the observed class and 0 to the others. However, this would violate the requirement that the probability
of a given class is non-zero. Therefore, we assign a high probability (or a positive logit) to the observed class and low
probability (or negative logits) to the other classes. The exact value chosen for the high probability (or logit) is a hyper-
parameter, and affects the model’s confidence. For example, choosing 80% probability for the observed class will make
the model appear uncertain, while choosing 99.9% probability will make the model outputs appear very certain. Thus, this
parameter should be carefully chosen.

Conditional Discrete Probability Distributions Typically, we are concerned with probability distributions conditioned on
some input, i.e. assigning a class to an input. In this case, we simply use the Bochner-Lebesgue integral to define the inner
product for functions mapping to discrete probability distributions. Thus, the function encoder is applicable to conditional,
discrete probability distributions that are prevalent in classification problems. Below, we illustrate what this looks like for
the CIFAR dataset.

Let the input spaceX be the set of possible images and the output space Y consists of the categories True and False. The
classifier for a given object, fobj , determines if an image contains the object. In other words, if the specified object appears
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in the image x, fobj(x) = True. If not, fobj(x) = False. A dataset D = {(xi, yi)}mi=1 consists of pairs of images and
True/False labels. Let lpos and lneg be the positive and negative logits as described above. Then True ≈ [lpos, lneg]
and False ≈ [lneg, lpos]. In other words, the first dimension of the distribution corresponds to the (log) probability
that the object is contained in the image, and the second dimension corresponds to the (log) probability that object is not
contained in the image. Thus, the True/False labels are converted to distributional representations. Lastly, we only need
to define the approximate inner product for two classifiers f and h given a dataset of m images and labels:

⟨f, h⟩ =
∫
X
⟨f(x), h(x)⟩lDdx ≈

1

m

m∑
i=1

⟨f(xi), h(xi)⟩lD

In summary, we have defined an inner product for conditional distributions, and can thus directly apply the function encoder
algorithm to model conditional distributions.

C.3. Continuous Probability Distributions

Similar to discrete distributions, it is often useful to estimate probability densities in continuous spaces. We leverage
the definitions of Egozcue et al. (2006), which is analogous to the discrete distribution case with integration in place of
summation. For a finite interval (a, b),

A(a, b) := {f : (a, b)→ R, f > 0 a.e., log f ∈ L2(a, b)} (21)

The vector operations are

(f + h)(x) :=
f(x)h(x)∫ b

a
f(σ)h(σ)dσ

, (22)

(αf)(x) :=
f(x)α∫ b

a
f(σ)αdσ

. (23)

Note the similarity to the discrete case. Lastly, the inner product is

⟨f, h⟩A(a,b) :=

∫ b

a

log
f(x)

G(f)
log

h(x)

G(h)
dx, (24)

where G(f) = exp( 1
V

∫ b

a
log(f(x)) is the geometric mean of the function f . Thus, we can learn probability distributions

using a function encoder. Similar to the discrete case, we can improve computational efficiency by using logits. Thus we
define an equivalent logit space l(a, b) := {f : (a, b) → R, f ∈ L2(a, b)}. Vector addition and scalar multiplication for
logit space are the traditional point-wise operations. The inner product is defined as

⟨f, h⟩l(a,b) :=
∫ b

a

(f(x)− µ(f))(h(x)− µ(h))dx, (25)

where again µ(f) := 1
V

∫ b

a
f(x)dx is the mean of f .

The continuous distribution case is mostly analogous to the discrete case, but with a few important distinctions. Given d
samples from some distribution P (Y = y) defined over a set Y , we again wish to use the maximum likelihood perspective.
However, while for the discrete case we can iterate all possible classes which were not sampled, in the continuous case there
are infinite values in Y not sampled. Therefore, we must also sample “negative” values from the support of the distribution.
In practice, this means either defining a uniform sampling function over Y , and using these uniformly sampled values as
negative examples, or using a dataset of values in Y and sampling uniformly from this dataset. The former case makes
sense in simpler problems where we can properly define Y , for example if Y is an interval (0, 1). However, there are many
cases where the set Y is hard to define, especially in real-world datasets where it is not clear what range of values Y can
take. In this case, we can uniformly sample from a dataset.

These negative samples are used to define points which are not likely, since they were not sampled. Without them, the
empirical distribution is uniform over the positive samples, and therefore the distribution of best fit would be uniform over
all of Y . The negative samples provide additional information on which samples of Y are unlikely. Intuitively, the model
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only has access to “positive” examples, which means the simplest solution is a uniform model over all of X . The negative
samples prevent this behavior.

Analogous to the discrete case, we again assign some large probability mass (positive logits) to the sampled values of Y ,
and some small probability mass (negative logits) to the negative samples.

Lastly, we again need a method to convert from probability densities to logits and vice versa. Analagous to the discrete
case, we define logit : A(a, b)→ l(a, b) as

logit(f)(y) = log(f(y)) (26)

and probability : l(a, b)→ A(a, b) as

probability(h)(y) =
eh(y)∫ b

a
eh(σ)dσ

. (27)

D. The Approximate Inner Product and the Distribution of Inputs
The approximate inner product is an important aspect of the function encoder, and Monte-Carlo integration makes many
implicit assumptions. For the sake of simplicity, the following will use the L2 inner product, but holds for a more general
Bochner-Lebesgue setting too.

Consider the following Mote Carlo approximation,

⟨f, g⟩ :=
∫
X
f(x)g(x)dx (28)

≈ V

m

m∑
i=1

f(xi)g(xi) (29)

This approximation assumes that the distribution over X is uniform. If this is not the case, then this approximation will
not hold. Suppose the inputs are sampled according to a distribution p. Then the correct Monte-Carlo approximation with
importance sampling is

⟨f, g⟩ ≈ 1

m

m∑
i=1

f(xi)g(xi)

p(xi)
. (30)

Unfortunately, importance sampling is not possible in many settings because we cannot estimate the distribution p. For
example, in an image classification setting, we cannot estimate the probability of seeing a given image. In reinforcement
learning, the distribution of states is extremely difficult to estimate, and furthermore varies depending on the policy.

Instead, we consider the weighted inner product

⟨f, g⟩p :=

∫
X
f(x)g(x)p(x)dx. (31)

This inner product corresponds specifically to the distribution p. If we use importance sampling, the approximation is

⟨f, g⟩p ≈
1

m

m∑
i=1

f(xi)g(xi)p(xi)

p(xi)
, (32)

≈ 1

m

m∑
i=1

f(xi)g(xi). (33)

Thus, by weighting the inner product by the probability distribution, we no longer need to estimate the distribution directly.
Put another way, by using (33), we are implicitly redefining the inner to be weighted by the probability distribution. The
inner product in (31) effectively assigns more weight to the input values that are more likely to be sampled. This assumption
is often reasonable. For example, consider an image classification task. The majority of images appear like white noise,
and are not of interest. These images should not affect the inner product calculation for two functions defined on images.
The naive Monte Carlo integration automatically reduces the importance of these images in the implicit weighted integral.
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We may also have the case that the distribution of inputs and the function change simultaneously. For example, this occurs
in reinforcement learning where the distribution of states is heavily dependent on the hidden parameters. In this case, we
still cannot estimate p, and so we must use the approximation in (33). However, by doing so we now have a separate
inner product defined for each function in the training set. This is true even in the extreme case where the distributions are
disjoint, i.e., domain transfer.

Interestingly, even in the presence of distribution shifts, if there exists a set of basis functions which spans all of the training
functions, these basis functions are still optimal. Regardless of the inner product, these basis functions would still be able
to reproduce the training functions, and therefore minimize the loss. However, if this is not the case, for example if the
dimensionality of the space is larger than the number of basis functions, this function-specific inner product is going to
affect which solutions are locally optimal. Future work should explore what implications Monte Carlo integration has on
performance, and what changes should be made to account for it, if any.

E. The Residuals Method
The residuals method for the function encoder was introduced in Ingebrand et al. (2024b). For the sake of completeness,
we include a small discussion below.

In the residuals method, a neural network called the average function is trained to fit the function space. As the average
function is a single function, it cannot accurately fit the entire function space; Instead, the function it learns is the geometric
center of the training functions. Then, the basis functions are trained to minimize the residual error of the average function.
See Figure 7. In effect, this allows the function encoder to learn an affine subspace of the function space which may not
include the zero vector.

Formally, the average function f̄θ is solving the following minimization problem:

f̄θ = argmin
θ

1

n

n∑
i=1

||fSi
− f̄θ||2H. (34)

This optimization problem is solved via gradient descent on the neural network parameters θ. Then, the basis functions are
trained on the residuals. For a given function fℓ, the coefficients are calculated as

cℓ = argmin
c∈Rk

∥∥∥∥(fℓ − f̄θ
)
−

k∑
j=1

cℓjgj

∥∥∥∥2
H
. (35)

Lastly, the error of the approximation is evaluated as

L =
1

n

n∑
ℓ=1

∥∥∥∥fSℓ
−
(
f̄θ +

k∑
j=1

cℓjgj

)∥∥∥∥2
H
. (36)

Note the loss in (36) is only used to train the basis functions.

As a byproduct, using the residuals method means the learned function space may not include the zero vector. However, this
may sometimes be advantageous. For example, prior work (Ingebrand et al., 2024b) has demonstrated that the residuals
method is effective for dynamics prediction in hidden-parameter Markov decision processes. This is because the zero-
function, i.e. dynamics that return 0 for all transitions, is not typically a valid transition function under any set of hidden
parameters.

Another benefit is the inductive bias of the function estimate. In online settings, it is often convenient to estimate a function
from an insufficient amount of data. Using the residuals method is beneficial because its predictions are already centered
around the average function in the training dataset. For example, consider the problem of estimating the transition dynamics
of a robot from online data. Initially, there is no example data to compute the coefficients. For the residuals method, setting
the coefficients to 0 will still give a decent estimate of dynamics, since it will be the average function. Furthermore, one
could constrain the coefficients to be close to 0 through additional regularization, which would ensure that the function
estimate does not deviate too far from the training dataset.
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Function Encoder Function Encoder + Residuals

2D Linear
Subspace

2D Affine
Subspace

f̄θ

Figure 7. An Illustration of the Residuals Method. The standard function encoder algorithm learns a subspace which most accurately
spans the training functions. This necessarily implies that the zero vector is representable using coefficients c = 0. In contrast, when
using the residuals method, the average function first shifts the origin of the basis functions to the center of the training data. Effectively,
this allows function encoder to instead learn an affine subspace, or a linear manifold, of the Hilbert space. When using the residuals
method, the zero vector is not necessarily representable, and c = 0 corresponds to the average function in the training set.

F. Architecture
The function encoder algorithm is agnostic to the architecture of the basis functions, so long as they are differentiable. Prior
work has shown that using neural ODEs for the basis functions greatly improves the performance of the function encoder
on continuous-time dynamics prediction tasks (Ingebrand et al., 2024a). This paper demonstrated that the function encoder
inherits the inductive biases of the underlying architecture. We conjecture that this trend will hold for other architectures,
such as RNNs, GNNs, transformers, etc.

Another consideration is whether to implement the basis functions as completely separate neural networks run in parallel,
or one neural network with multiple output heads. From a computational standpoint, current software is optimized for
single neural networks, rather than multiple parallel neural networks, and so one network with multiple output heads is
much faster during both training and inference. However, this raises a question of whether one approach performs better
than the other. We run ablations to compare the performance of the two approaches. See Figure 8. Note that the total
number of parameters is held approximately constant, and so the parallel neural networks are much smaller individually
than the single, multi-headed neural network.

The results indicate that the performance is roughly equal for type 1 and type 2 transfer. That is, both methods accurately
learn the function space present in the training set. However, parallel basis functions are significantly worse at type 3
transfer. We posit that the reason is basis function diversity. For a multi-headed neural network, a change to one basis
function changes all, since the weights are shared. This constantly perturbs every basis function, so a given basis function
is unlikely to learn a simple function, or even to remain stagnant. Consequently, the basis functions are diverse. This
diversity improves type 3 transfer because diverse basis functions are less likely to be linearly dependent.

In contrast, parallel neural networks allow individual basis function updates. It is therefore possible for the learning
procedure to train only a few basis functions, while the rest remain unused, if the dimensionality of the space is low. We
validate this intuition empirically. See Figure 9 for a visualization of this problem.

While this phenomenon degrades type 3 transfer, it has an interesting side effect that the parallel strategy trains an approx-
imately minimal number of basis functions. It would therefore be possible to prune the unused basis functions to get a
minimal set. This method could be useful in computationally limited settings, where the total number of basis functions
and parameters could greatly be reduced after training.

G. Ablations
Number of Basis Functions. We vary the number of basis functions and run FE (LS) on all four datasets. We would
expect that using more basis functions improves performance, but there would be diminishing returns. Once the number
of basis functions exceeds the dimensionality of the space, performance should stop improving. The experimental results
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Figure 8. Multi-Headed Neural Network vs Parallel Neural Networks on the Polynomial Dataset. For type 1 and type 2 transfer,
both architecture methods perform roughly equally. However, parallel neural networks perform much worse at type 3 transfer.

Figure 9. A Comparison of Learned Basis Functions on the Polynomial Dataset. Each line indicates one basis function. Left: One
multi-headed neural network learns a diverse set of basis functions. Right: Parallel neural networks learn a small set of diverse basis
functions, while the majority lack diversity or interesting structure.
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agree with this hypothesis. See Figures 11, 12, 13, and 14. The figures show the performance at the end of training,
averaged over the last 50 evaluations. 3 seeds are run per quantity of basis functions, and figures show min, median, and
max values over the seeds. We also consider the cost of increasing the number of basis functions with respect to the training
time, and find that it is minor. See Figure 10. Therefore, a reasonable method to choose k is to simply overestimate the
dimensionality of the space. We find that 100 basis functions are enough for many problems.

Number of example data points We vary the number of example data points and evaluate the effect on performance.
We would expect that using more example data improves performance, but with diminishing returns. The experimental
results, shown in Figures 15, 16, 17, and 18, agree with these claims. The results suggest that a minimal amount of data
is required for the function encoder to make accurate predictions, and that the minimal amount depends on the dataset.
Similar to the above ablation, the figures show 3 seeds evaluated after training, with their performance averaged over the
last 50 evaluation steps.

Figure 10. An Ablation on the Number of Basis Functions vs Compute Time. This figures shows the percentage increase in training
time relative to one basis function. The figure shows that the increase in cost is less than 20% for up to 100 basis functions.
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Figure 11. An Ablation on the Number of Basis Functions - Polynomial Dataset. This figure shows the final performance of FE (LS)
after training for a varying number of basis functions. The performance initially improves as the number of basis functions increases,
and then levels off.

Figure 12. An Ablation on the Number of Basis Functions - CIFAR Dataset. This figure shows the final performance of FE (LS)
after training for a varying number of basis functions. The figure shows steady improvement as the number of basis functions grows,
until it levels off around 20 basis functions. This indicates only 20 features are necessary for good performance.

Figure 13. An Ablation on the Number of Basis Functions - 7-Scenes Dataset. This figure shows the final performance of FE (LS)
after training for a varying number of basis functions. The figure shows steady improvement as the number of basis functions grows,
although it begins leveling off around 100 basis functions. This indicates the dimensionality of the space is relatively high.

Figure 14. An Ablation on the Number of Basis Functions - MuJoCo Ant Dataset. This figure shows the final performance of FE
(LS) after training for a varying number of basis functions. For type 1 and type 2 transfer, increasing the number of basis functions
improves performance until around 50 basis functions, where it levels off. Interestingly, the number of basis functions does not greatly
affect type 3 transfer performance, suggesting type 3 transfer in this setting is challenging.
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Figure 15. An Ablation on the Number of Example Data Points - Polynomial Dataset. This figures shows the final performance of
FE (LS) after training for a varying number of example data points.

Figure 16. An Ablation on the Number of Example Data Points - CIFAR Dataset. This figures shows the final performance of FE
(LS) after training for a varying number of example data points.

Figure 17. An Ablation on the Number of Example Data Points - 7-Scenes Dataset. This figures shows the final performance of FE
(LS) after training for a varying number of example data points.

Figure 18. An Ablation on the Number of Example Data Points - MuJoCo Ant Dataset. This figures shows the final performance of
FE (LS) after training for a varying number of example data points.
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Figure 19. A Visualization of the CIFAR Dataset. For each class, 200 images are provided as examples, half of which are positive and
half are negative. Positive images (left) are images from the class, whereas negative images (center) are images from other classes. The
model should evaluate whether the query images (right) belong to the class or not. The two images on the right in each column are not
evaluated together, and their probabilities are unrelated. This figure shows the performance of FE (LS) after 50,000 gradient steps in
type 3 transfer. The model gets most of the shown query images correct, although it mistakes a skunk for a bear.

H. Datasets
All figures smooth the plot with a moving average of size 40 to reduce noise in the training curves. This is necessary due to
some approaches which show inconsistent performance across functions and/or input samples, especially the transformer
baseline.

H.1. CIFAR

We use a modified version of the CIFAR 100 dataset (Krizhevsky, 2009). Each function is a classifier corresponding to a
specific class. For example, the “apple” classifier should label images of apples with True and images of anything else
with False. 200 examples images are provided to the algorithm for each class. 100 are positive images from the correct
class, and 100 are negative images from other classes, selected uniformly at random. The classifier should then classify
query images as True if they belong to the given class and False otherwise. See Figure 19.

Cross Entropy on CIFAR We run the same CIFAR dataset with cross entropy loss functions for all baselines. We report
the results in Figure 20. The results are largely unchanged, with FE (LS) and Siamese networks still performing best.

H.2. 7-Scenes

We use a modified version of the 7-Scenes dataset (Shotton et al., 2013). We down-sample the images to 40x30 for the
sake of compute time. 200 example images and their locations are provided. Then, the model should estimate the location
of any new query image. We hold out the “Red Kitchen” scene for type 3 transfer. See Figure 21.

H.3. MuJoCo Ant

We use a modified version of the MuJoCo Ant environment where the lengths of the limbs and the control authority change
every episode (Ingebrand et al., 2024a). We use 10,000 episodes of length 1,000 for training. The first 200 transitions are
used as example data, and the next 800 are query points. The policy is uniformly random. Type 1 hidden parameters are
sampled from 0.5x to 1x the default values. Type 3 hidden parameters are sampled from 1.5x to 2x the default values. See
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Figure 20. Cross Entropy Results on CIFAR. The empirical results for each baseline using cross entropy instead of the Hilbert space
norm as a loss function. Function encoders, prototypical networks, and Siamese networks cannot use cross entropy, but are included for
a comparison.

Figure 21. A Visualization of the 7-Scenes Dataset. 200 Example images (left) and their locations are provided to the model. The
model then estimates the location of the query images (right). This figure shows the performance of FE (LS) in type 3 transfer.
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Figure 22. A Visualization of the Ant Dataset. Type 1 transfer data is generated from robots smaller than the default settings. Type 2
transfer (not shown) is linear combinations of the dynamics experienced in type 1 transfer. Type 3 transfer data is generated from robots
much larger than the default settings.

Figure 22 for a visualization of how the hidden parameters affect the robot.

I. Baselines
We implement various baselines to benchmark the function encoder against. Furthermore, we use the Hilbert space distance
function as the loss function. For the non-classification datasets, this corresponds to a scaled version of mean squared error.
For the classification task, we use the discrete distribution-based inner product for the main results, and cross entropy in the
appendix. Below, we describe each baseline in detail. For datasets using images, an additional CNN is used to transform
the image to a latent representation. As is typical, the CNN is trained as an additional component using the algorithm’s
standard loss function. Each algorithm is a predictor f̂ : X × (X × Y)m → Y which maps from a query point x and a
dataset DfT = {xi, fT (xi)}mi=1 to ŷ. For most algorithms, m need not be fixed. Where obvious, we omit reference to
model parameters. All baselines use approximately one million total parameters.

• FE (IP) - The function encoder from Ingebrand et al. (2024b) which uses (4) to compute the coefficients of the basis
function. This approach does not ensure orthonormality of the basis functions explicitly, but a non-orthonormal basis
has high loss.

• FE (LS) - The modified version of the function encoder introduced in this paper. This approach uses (7) to compute
the coefficients, and regularizes the basis functions to prevent exponential growth.

• AE - An auto encoder which has two components, the encoder and the decoder. The encoder is a learned function e :
X × Y → Rk. The encoder is used to generate a latent representation using z := 1

m

∑m
i=1 e(xi, f(xi)). The decoder

is a learned function d : X ×Rk → Y . The decoder is used to estimate query points using f̂(x,DfT ) = d(x, z). The
full formula is therefore f̂(x,DfT ) = d(x, 1

m

∑m
i=1 e(xi, f(xi))). Both components are neural networks trained on

end-to-end loss.

• Trans. - A encoder-decoder transformer (Vaswani et al., 2017). This transformer has four components: An example
encoder eex, a query encoder eq , a transformer t, and a decoder d. The example encoder represents each example
point as zexi := eex(xi, f(xi)). The query encoder represents queries as zq := eq(x). The transformer accepts two
input sequences, one to each side of the transformer, and outputs a latent representation, zout = t({zexi }mi=1, z

q).
Lastly, the decoder converts the latent representation to the output space, f̂(x,DfT ) = d(zout). The full equation is
f̂(x,DfT ) = d(t({eex(xi, f(xi)}mi=1, eq(x))). All components are trained on end-to-end prediction loss. Positional
encodings are not used because the data is unordered, and empirically they do not improve performance for unordered
data.

• TFE - Transformer functional encodings. This model uses a decoder-only transformer to output the coefficients of
basis functions. This model has four components: an example encoder e, a transformer t, and decoder d, and a set
of basis functions g. The encoder represents the example points zi := e(xi, f(xi)). The transformer converts the
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set of example point representations to an output representation, zout := t({zi}mi=1). The decoder converts the latent
representation to the coefficients of the basis functions, c := d(zout). Lastly, the estimate is a traditional linear com-
bination of basis functions, f̂(x,DfT ) = g(x)⊤c. The full formula is f̂(x,DfT ) = g(x)⊤d(t({e(xi, f(xi))}mi=1)).
All four components are trained on an end-to-end loss.

• Oracle - The oracle is learned function fθ which is provided with hidden information H . In the Polynomial dataset,
H is the coefficients of the polynomials. In the CIFAR dataset, H is a one-hot encoding of the class. In the 7-
Scenes dataset, H is a one-hot encoding of the scene (the sequence, specifically). Lastly, in the Ant dataset, H is a
normalized version of the hidden environment parameters (e.g. the length of the robot’s limbs). Thus the estimate is
f̂(x,H) = fθ(x,H), and this neural network is trained end-to-end.

• BFB - A naive brute force implementation with basis functions. BFB is two neural networks, a coefficient calculator
b : (X × Y)m → Rk and basis functions g : X → Yk. b is a neural network which takes all of the example data as
input and outputs the coefficients of the basis functions, c := b({xi, f(xi)}mi=1). Thus it has the form f̂(x,DfT ) =
b({xi, f(xi)}mi=1)

⊤g(x). It is trained end-to-end.

• BF - A naive brute force implementation. BF is a single neural network which takes as input all of the example data
and the query point, and outputs the estimated value. Thus it has the form f̂(x,DfT ) = fθ(x, {xi, f(xi)}mi=1). It is
trained end-to-end.

• MAML - A meta learning algorithm for few-shot adaptation. This algorithm consists of a single model fθ : X → Y .
The inference procedure consists of using the example dataset DfT to fine-tune fθ, and then using this fine-tuned
model to estimate the query points. This is known as the inner training step. During training, gradients are back-
propagated through the inner training step to update the initial model weights θ. This is know as the outer training
step. MAML trains the model fθ to be easily fine-tuned for a given source target task. An additional hyper parameter,
n, is the number of internal gradient steps. For more information on this algorithm, see (Finn et al., 2017). MAML
additionally required hyper-parameter tuning, especially the internal learning rate. We find that the best internal
learning rate for one type of transfer is not typically the best for the other types of transfer, and sometimes MAML
may even be unstable, as seen in the Ant experiments.

The following ad-hoc algorithms are only applicable to classification problems, in this case the CIFAR dataset.

• Siamese networks - Uses a triplet loss to learn a latent space which maximizes the distance between different classes.
The chosen class for a query image is the label of the most similar image in the example dataset. See Bromley et al.
(1993) for more information.

• Prototypical networks - Learns a latent representation of each image. The prototype of a class is the average of the
representations of the corresponding images, and the label for a query image is the class corresponding to the nearest
prototype in the latent space. See Snell et al. (2017) for more information.

Connections between Siamese networks and Hilbert spaces. Siamese networks performed well on the few-shot clas-
sification problem. We believe this is because there are deep connections between Siamese networks and Hilbert space
theory. Siamese networks use a contrastive loss to minimize the distance between inputs belonging to the same category
and to maximize the distance otherwise. If you consider the network as a set of basis functions, then the mean output
from one category can be interpreted as a mean embedding from kernel literature. Consequently, the difference in these
mean embeddings is analogous to the maximum mean discrepancy. Therefore, maximizing the distance between individual
embeddings from different classes is similar to maximizing the difference between mean embeddings, and thus Siamese
networks are potentially learning basis functions which maximally distinguish between the distributions corresponding to
each category.
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