
Scalable Misinformation Mitigation in
Social Networks using Reverse

Sampling

Michael Simpson1, Venkatesh Srinivasan2 and Alex Thomo2

1University of British Columbia, Vancouver, Canada
2University of Victoria, Victoria, Canada

Email: mesimp@cs.ubc.ca, {srinivas,thomo}@uvic.ca

We consider misinformation propagating through a social network and study the
problem of its prevention. The goal is to identify a set of k users that need
to be convinced to adopt a limiting campaign so as to minimize the number
of people that end up adopting the misinformation. This work presents RPS
(Reverse Prevention Sampling), an algorithm that provides a scalable solution to
the misinformation mitigation problem. Our theoretical analysis shows that RPS
runs in O((k + l)(n + m)(1

1−γ) logn/ε2) expected time and returns a (1 − 1/e − ε)-

approximate solution with at least 1−n−l probability (where γ is a typically small
network parameter and l is a confidence parameter). The time complexity of
RPS substantially improves upon the previously best-known algorithms that run
in time Ω(mnk · POLY (ε−1)). We experimentally evaluate RPS on large datasets
and show that it outperforms the state-of-the-art solution by several orders of
magnitude in terms of running time. This demonstrates that misinformation
mitigation can be made practical while still offering strong theoretical guarantees.

Keywords: Graph Algorithms, Social Networks, Misinformation Prevention

1. INTRODUCTION

Social networks allow for the widespread distribution
of knowledge and information in modern society as
they have rapidly become a place to hear the news
and discuss social topics. Information can spread
quickly through the network, eventually reaching a large
audience, especially so for influential users. While
the ease of information propagation in social networks
can be beneficial, it can also have disruptive effects.
In recent years, the number of high profile instances
of misinformation causing severe real-world effects
has risen sharply. These examples range across a
number of social media platforms and topics [1, 2,
3, 4, 5, 6]. For example, a series of bogus tweets
from a trusted news network referring to explosions
at the White House caused immediate and extensive
repercussions in the financial markets [1]. During
a recent shooting at YouTube’s headquarters, and
before police managed to secure the area, a wave of
misinformation and erroneous accusations were widely
disseminated on Twitter causing panic and confusion
[2, 3]. Finally, there has been much discussion on the
role misinformation and fake news played in the 2016
U.S. presidential election with sites such as Reddit and
Facebook being accused of harbouring and spreading
divisive content and misinformation [4, 5, 6]. Thus, in

order for social networks to serve as a reliable platform
for disseminating critical information, it is necessary to
have tools to limit the spread of misinformation.

Budak et al. [7] were among the first to formulate
the problem of misinformation mitigation as a
combinatorial optimization problem. By building upon
the seminal work of Kempe et al. [8] on influence
maximization, they introduce two multi-campaign
propagation models, the Multi-Cascade Independent
Cascade (MCIC) and Campaign-Oblivious Independent
Cascade (COIC) models, and present a greedy approach
that provides a (1 − 1/e − ε)-approximate solution.
Unfortunately, their greedy approach is plagued by
the same scaling issues as [8] when considering large
social networks and is further exacerbated by the added
complexity of tracking multiple cascades which requires
costly shortest path computations. This leads us to the
motivating question for this paper: Can we find scalable
algorithms for the misinformation mitigation problem
introduced in [7] under the MCIC model?

The scalability hurdle in the single campaign setting
was resolved by Borgs et al. [9] when they made
a theoretical breakthrough that fundamentally shifts
the way in which we view the influence maximization
problem. Their key insight was to reverse the question
of “what subset of the network can a particular user

The Computer Journal, Vol. ??, No. ??, ????

2 M. Simpson, V. Srinivasan, A. Thomo

influence” to “who could have influenced a particular
user”. Their sampling method runs in close to linear
time and returns a (1 − 1/e − ε)-approximate solution
with at least 1 − n−l probability. In subsequent work,
Tang et al. [10, 11] presented a significant advance
that improved the practical efficiency through a careful
theoretical analysis that rids the Borgs et al. approach
of a large hidden constant in the runtime guarantee.

In this work, we achieve scalability for the
misinformation mitigation problem in the MCIC model.
We complement our theoretical analysis with extensive
experiments which show an improvement of several
orders of magnitude over Budak et al. [7]. Since
influence in the single campaign setting corresponds
to reachability in the network, our solution requires
mapping the concept of reachability to an analogous
notion in the multi-campaign model for misinformation
mitigation. Our first contribution is to show that
reachability alone is not sufficient in determining the
ability to save a particular node from the bad campaign.
In order to address this challenge, we introduce a crucial
notion of “obstructed” nodes, which are nodes such that
all paths leading to them can be blocked by the bad
campaign.

Using our newly defined notion of obstruction, we
develop an efficient algorithm for the misinformation
mitigation problem that provides much improved
scalability over the existing Monte Carlo-based greedy
approach of [7]. A novel component of this algorithm is
a procedure to compute the set of unobstructed nodes
that could have saved a particular node from adopting
the misinformation. We obtain theoretical guarantees
on the expected runtime and solution quality for our
new approach and show that its expected runtime
substantially improves upon the expected runtime of
[7]. Additionally, we rule out sublinear algorithms for
our problem through a lower bound on the time required
to obtain a constant approximation.

Finally, from an experimental point of view, we show
that our algorithm gives a significant improvement over
the state of the art algorithm and can efficiently handle
graphs with more than 50 million edges. In summary,
the contributions of this paper are:

1. We introduce the concept of obstructed nodes
that fully captures the necessary conditions for
preventing the adoption of misinformation in the
multi-campaign model. In the process, we close a
gap in the work of [7].

2. We design and implement a novel procedure for
computing the set of nodes that could save a
particular user from adopting the misinformation.

3. We propose a misinformation mitigation approach
that returns a (1 − 1/e − ε)-approximate solution
with high probability in the multi-campaign model
and show that its expected runtime substantially
improves upon that of the algorithm of Budak et
al. [7].

4. We give a lower bound of Ω(m + n) on the time
required to obtain a constant approximation for the
misinformation mitigation problem.

5. Our experiments show that our algorithm gives an
improvement of several orders of magnitude over
Budak et al. [7] and can handle graphs with more
than 50 million edges.

2. RELATED WORK

Influence Maximization There exists a large body
of work on the Influence Maximization problem first
proposed by Kempe et al. [8]. The primary focus of
the research community has been related to improving
the practical efficiency of the Monte Carlo-based greedy
approach under the Independent Cascade (IC) or Linear
Threshold (LT) propagation models. These works fall
into two categories: heuristics that trade efficiency
for approximation guarantees [12, 13] and practical
optimizations that speed up the Monte Carlo-based
greedy approach while retaining the approximation
guarantees [14, 15, 16]. Despite these advancements,
it remains infeasible to scale the Monte Carlo-based
approach to web-scale networks.

Borgs’ et al. [9] brought the first asymptotic runtime
improvements while maintaining the (1 − 1/e − ε)-
approximation guarantees with their reverse influence
sampling technique. Furthermore, they prove their
approach is near-optimal under the IC model. State-of-
the-art solutions to the IM problem [10, 11, 17, 18, 19]
rely on reverse sampling for their efficiency.

Incorporating the spread of multiple campaigns is
split between two main lines of work: (1) studying
influence maximization in the presence of competing
campaigns [20, 21, 22, 23] and (2) limiting the spread
of misinformation and rumours by launching a truth
campaign [7, 24, 25, 26, 27, 28, 29, 30]. In both cases,
existing propagation models (such as IC and LT) are
augmented or extended.

Misinformation Mitigation Mitigation refers to how
and by what means we can combat or prevent the spread
of misinformation that is currently spreading through a
network. The misinformation mitigation problem was
first studied under an independent cascade model by
Budak et al. [7] and under a linear threshold model
by He et al. [24]. Unfortunately, despite the objective
function proving to be monotone and submodular, the
Monte Carlo-based greedy solutions used in [7, 24] face
the same scalability challenges as [8]. The related
problem of determining the budget required to ensure
that a fixed fraction of the network remains free of
misinformation was investigated in [25, 31, 32].

More recently [33, 29, 26, 27, 28, 30] extend the
reverse influence sampling technique of [9] to spreading
truth to combat misinformation. This line of work aims
to incorporate ideas from the state-of-the-art reverse
sampling techniques used for the IM problem to solving

The Computer Journal, Vol. ??, No. ??, ????

Scalable Misinformation Mitigation 3

the misinformation mitigation problem. However, their
work differs from ours in an important way: they make
use of the COIC model where the edge probabilities
are campaign oblivious. This alternative model does
not capture the notion of misinformation spread as
well as the MCIC model due to the assumption that
users adopt truth and misinformation with identical
probability (see [7] for a discussion). Furthermore, the
shared edge probability assumption comes with added
theoretical benefits that greatly simplify the adaptation
of state-of-the-art reverse sampling solutions for the IM
problem to the misinformation mitigation problem. In
this work, we make a first step towards incorporating
these recent advances to the more challenging setting
under the MCIC model.

Fake News Intervention The intervention problem
seeks to take stronger actions on fake items including
content removal, account suspension and tagging
content with warning labels. These are often inspired by
immunizations techniques for epidemics [34, 35, 36, 37]
and involve actions such as edge manipulation [38,
39, 40], node removal [41] and immunizing vulnerable
nodes [42]. Recently, there has been a concerted effort
from major social media websites including Facebook,
Twitter, Instagram, and Pinterest towards combating
fake news [43, 44, 45, 46, 47, 48] that includes the use
of warning labels on content that has been identified as
false or misleading.

Fake News Detection The detection problem seeks to
identify which items (such as post, tweets, articles) are
fake. See [49] for a recent survey. This area has seen
much attention recently by the database and machine
learning communities among others. Detecting fake
content was cast as a few-shot rare category learning
problem in [50]. An approach for mining user-specified
network structures was proposed in [51] which can aid in
detecting botnets that are posting misinformation. In
[52] an end-to-end fact checking system was proposed.
The work of [53, 54, 55] aimed to leverage crowdsourcing
approaches to improve fake news detection. In [56,
57, 58], a natural interpretation of fact checking to
the classical database problems of data integration and
truth discovery were studied. Recently, the proliferation
of high-quality knowledge graphs has provided an
opportunity to enhance fact checking capabilities by
searching for supporting evidence in a knowledge graph
[59, 60, 61, 62]. Finally, a collection of studies
[63, 64, 65] investigated how to identify fake news by
considering the credibility of the sources of social media
content.

3. PRELIMINARIES

In this section, we formally define the multi-campaign
diffusion model, the eventual influence limitation
problem presented by Budak et al. [7], and present

an overview of the state-of-the-art reverse sampling
approach [8, 9, 10] for the influence maximization
problem.

Diffusion Model Let C (for “bad Campaign”) and
L (for “Limiting”) denote two influence campaigns.
Let G = (V,E, p) be a social network with node set
V and directed edge set E (|V | = n and |E| =
m) where p is a function that specifies campaign-
specific pairwise influence probabilities (or weights)
between nodes. That is, p : E × Z → [0, 1] where
Z ∈ {C,L}. For convenience, we use pZ(e) to
denote p(e, Z). Further, let G = (V,E) denote the
underlying unweighted directed graph. Given G, the
Multi-Campaign Independent Cascade model (MCIC)
of Budak et al. [7] considers a time-stamped influence
propagation process as follows:

1. At timestamp 1, we activate selected sets AC
and AL of nodes in G for campaigns C and L
respectively, while setting all other nodes inactive.

2. If a node u is first activated at timestamp i in
campaign C (or L), then for each directed edge
e that points from u to an inactive neighbour v
in C (or L), u has pC(e) (or pL(e)) probability to
activate v at timestamp i + 1. After timestamp
i+ 1, u cannot activate any node.

3. In the case when two or more nodes from different
campaigns are trying to activate v at a given time
step we assume that the “good information” (i.e.
campaign L) takes effect.

4. Once a node becomes activated in one campaign,
it never becomes inactive or changes campaigns.

He et. al. [24] consider the opposite policy to (3)
where the misinformation succeeds in the case of a tie-
break. We note that our algorithms presented in this
work are applicable for both choices of the tie-break
policy.

3.1. Formal Problem Statement

A natural objective, as outlined in [7], is “saving” as
many nodes as possible. That is, we seek to minimize
the number of nodes that end up adopting campaign
C when the propagation process is complete. This is
referred to as the eventual influence limitation problem
(EIL).

Let AC and AL be the set of nodes from which
campaigns C and L start, respectively. Let I(AC) be
the set of nodes that are activated in campaign C in
the absence of L when the above propagation process
converges and π(AL) be the size of the subset of I(AC)
that campaign L prevents from adopting campaign C.
We refer to AL and AC as the seed sets, I(AC) as the
influence of campaign C, and π(AL) as the prevention
of campaign L. The nodes that are prevented from
adopting campaign C are referred to as saved. Note
that π(AL) is a random variable that depends on the

The Computer Journal, Vol. ??, No. ??, ????

4 M. Simpson, V. Srinivasan, A. Thomo

edge probabilities that each node uses in determining
out-neighbors to activate.

Budak et al. [7] present a simplified version of the
problem that captures the idea that it may be much
easier to convince a user of the truth. Specifically,
the information from campaign L is accepted by users
with probability 1 (pL(e) = 1 if edge e exists and
pL(e) = 0 otherwise) referred to as the high effectiveness
property. In [7] it is shown that even with these
restrictions EIL with the high effectiveness property
is NP-hard. Interestingly, with the high effectiveness
property, the prevention function is submodular and
thus a Monte Carlo-based greedy approach (referred to
here as MCGreedy) yields approximation guarantees.

We motivate the high effectiveness property with the
following two real-world scenarios: (1) the phenomenon
of “death hoaxes” (where celebrities or other notable
figures are claimed to have died) have a strong
corrective measure when the victim, or a close relative,
makes an announcement on their personal account
that contradicts the rumour and (2) false reporting
of natural disasters can be countered by trusted news
organizations providing coverage of the location of the
purported scene. In both cases, the sharing of links
to strong video, photographic, or text evidence that
is also coming from a credible source lends itself to a
scenario following the high effectiveness property. In
addition to the scenarios we have outlined, the model is
attractive because this assumption leads to interesting
theoretical guarantees. Budak et al. study and obtain
results for EIL with the high effectiveness property and
is the problem that we consider in this work.

Problem 1. Given G, seed set AC , and a positive
integer k, the eventual influence limitation (EIL)
problem asks for a size-k seed set AL maximizing the
value of E[π(AL)] under the MCIC model with the high
effectiveness property.

Possible Worlds Interpretation To facilitate a better
understanding of MCIC, we define a Possible World
(PW) model that provides an equivalent view of the
MCIC model and follows a widely used convention
when studying IM and related problems [8, 7, 15,
16, 21, 24, 7, 25, 66]. Given a graph G = (V,E, p)
and the MCIC diffusion model, a possible world X
consists of two deterministic graphs, one for each
campaign, sampled from a probability distribution over
G. The stochastic diffusion process under the MCIC
model has the following equivalent description: we can
interpret G as a distribution over unweighted directed
graphs, where each edge e is independently realized
with probability pC(e) (or pL(e)). Observe, given the
high effectivness property, the deterministic graph that
defines the possible world for campaign L is simply the
underlying unweighted graph G. Then, if we realize a
graph g according to the probability distribution given
by pC(e), we can associate the set of saved nodes in the

original process with the set of nodes which campaign
L reaches before campaign C during a deterministic
diffusion process in g ∼ G by campaign C and in G by
campaign L. That is, we can compute the set of saved
nodes with a deterministic cascade in the resulting
possible world X = (g,G). The following theorem from
[67] establishes the equivalence between this possible
world model and MCIC. This alternative PW model
formulation of the EIL problem under the MCIC model
will be used throughout the paper.

Theorem 1 ([67]). For any fixed seed sets AC and
AL, the joint distributions of the sets of C-activated
nodes and L-activated nodes obtained (i) by running a
MCIC diffusion from AC and AL and (ii) by randomly
sampling a possible world X = (g,G) and running a
deterministic cascade from AC in g and AL in G, are
the same.

3.2. Reverse Sampling for Influence Maximiza-
tion

In this section we review the state-of-the-art approach
to the well studied influence maximization problem
(IM). This problem is posed in the popular Independent
Cascade model (IC) which, unlike the MCIC model,
only considers a single campaign. The goal here is to
compute a seed set SIM of size k that maximizes the
influence of SIM in G. In a small abuse of notation,
this section refers to a possible world as the single
deterministic graph g ∼ G where each edge in G is
associated with a single influence probability p(e).

Borgs et al. [9] were the first to propose a novel
method for solving the IM problem under the IC
model that avoids the limitations of the original Monte
Carlo-based solution [8]. Their approach, which was
later refined by Tang et al. [10], is based on the
concept of Reverse Reachable (RR) sets and is orders of
magnitude faster than the greedy algorithm with Monte
Carlo simulations, while still providing approximation
guarantees with high probability. We follow the
convention of [10] and refer to the method of [9] as
Reverse Influence Sampling (RIS). To explain how
RIS works, Tang et al. [10] introduce the following
definitions:

Definition 1 (Reverse Reachable Set). The reverse
reachable set for a node v in g ∼ G is the set of nodes
that can reach v. (That is, for each node u in the RR
set, there is a directed path from u to v in g.)

Definition 2 (Random RR Set). A random RR set
is an RR set generated on an instance of g ∼ G, for a
node selected uniformly at random from g.

Note, a random RR set encapsulates two levels of
randomness: (i) a deterministic graph g ∼ G is sampled
where each edge e ∈ E is independently removed with
probability (1 − p(e)), and (ii) a “root” node v is
randomly chosen from g. The connection between RR

The Computer Journal, Vol. ??, No. ??, ????

Scalable Misinformation Mitigation 5

sets and node activation is formalized in the following
crucial lemma.

Lemma 1. [9] For any seed set S and node v, the
probability that an influence propagation process from
S can activate v equals the probability that S overlaps
an RR set for v.

Based on this result, the RIS algorithm runs in two
steps:

1. Generate random RR sets from G until a threshold
on the total number of steps taken has been
reached.

2. Consider the maximum coverage problem of
selecting k nodes to cover the maximum number
of RR sets generated. Use the standard greedy
algorithm for the problem to derive a (1 − 1/e)-
approximate solution S∗k . Return S∗k as the seed
set to use for activation.

The rationale behind RIS is as follows: if a node u
appears in a large number of RR sets it should have a
high probability to activate many nodes under the IC
model; hence, u’s expected influence should be large.
As such, we can think of the number of RR sets u
appears in as an estimator for u’s expected influence.
By the same reasoning, if a size-k node set S∗k covers
most RR sets, then S∗k is likely to have the maximum
expected influence among all size-k node sets in G
leading to a good solution to the IM problem. As shown
in [10], Lemma 1 is the key result that underpins the
approximation guarantees of RIS.

The main contribution of Borgs et al. is an analysis
of their proposed threshold-based approach: RIS
generates RR sets until the total number of nodes and
edges examined during the generation process reaches
a pre-defined threshold Γ. Importantly, Γ must be set
large enough to ensure a sufficient number of samples
have been generated to provide a good estimator for
expected influence. They show that when Γ is set to
Θ((m + n)k log n/ε2), RIS runs in near-optimal time
O((m + n)k log n/ε2), and it returns a (1 − 1/e − ε)-
approximate solution to the IM problem with at least
constant probability.

Due to the more complex dynamics involved in
propagation under the MCIC model, adapting the
reverse sampling approach to solve EIL is far from
trivial.

4. NEW DEFINITIONS

In this section we introduce new definitions that are
crucial to the development of our approach. In
particular, we formalize the notion of obstructed nodes
which is required to capture the necessary conditions for
saving a node. Then, we use the notion of obstructed
nodes to define RRC sets which are the analog to RR
sets for the EIL problem.

vu

w

vc

FIGURE 1: An example illustrating the concept of
obstructed nodes where the possible world graph for
campaign C is made up of the solid edges and the possible
world for campaign L is made up of both solid and dashed
lines.

Identifying Saved Nodes Given set AL of vertices and
(unweighted) directed graph g ∼ G, denote SPH(S,w)
for a set S as the shortest path from any node v ∈ S to w
in graph H. For exposition purposes, we abuse notation
and write SPH({v}, w) as SPH(v, w). Then, we denote
clg(AL) as the set of nodes closer to AL in G than to AC
in g. That is, a node w ∈ clg(AL) if there exists a node
v such that v ∈ AL and |SPG(v, w)| ≤ |SPg(AC , w)|.
When g is drawn from G this is a necessary, but not
sufficient3, condition for the set of nodes saved by
AL. We also require that the nodes in clg(AL) not be
obstructed by the diffusion of campaign C in g.

Definition 3 (Obstructed Nodes). A node w ∈
clg(AL) is obstructed and cannot be saved by AL if for
every path p from AL to w there exists a node u on p
such that |SPg(AC , u)| < |SPG(AL, u)|.

Let obsg(AL) be the set of obstructed nodes for AL.
Conceptually, the nodes in obsg(AL) are cutoff because
some node on the paths from AL is reached by campaign
C before L which stops the diffusion of L.

To help illustrate the concept of obstructed nodes,
consider the graph presented in Figure 1 and the
following possible world instance. Assume that the solid
lines are live edges that make up the deterministic graph
g ∼ G for campaign C in the influence propagation
process. The dashed lines are edges that were not
realized for campaign C. The adversary campaign C
starts from vc while the limiting campaign L starts
from v. Recall, the deterministic graph G for campaign
L in this possible world instance is comprised of
both the solid and dashed edges due to the high
effectiveness property. Observe that |SPG(v, w)| = 4
and |SPg(AC , w)| = 5. However, w cannot be saved
in the resulting cascade since at timestamp 1 the node
u will adopt campaign C. This intersects the shortest
path from v to w and therefore campaign L will not
be able to reach node w since a node never switches
campaigns. Thus, we say that node w is obstructed by
C.

3In Budak et al.’s work, the set of nodes closer to AL than
AC is established as a necessary and sufficient condition to save
a node in the MCIC model, but we note that this should be
revised to include our obstructed condition due to a gap in the
proof of Claim 1 in [7].

The Computer Journal, Vol. ??, No. ??, ????

6 M. Simpson, V. Srinivasan, A. Thomo

TABLE 1: Frequently used notation.

Notation Description

G a social network represented as a weighted directed graph G

G, GT
the underlying unweighted graph G and its transpose GT constructed by reversing the direction
of each edge

g
a possible world for campaign C obtained by sampling each edge e ∈ G independently with
probability pC(e)

n, m the number of nodes and edges in G respectively

k the size of the seed set for misinformation mitigation

C, L the misinformation campaign C and the limiting campaign L

pC(e), pL(e) the propagation probability on an edge e for campaigns C and L respectively

π(S) the prevention of a node set S in a misinformation propagation process on G (see Section 4)

ω(R), ωπ(R)
the number of edges considered in generating an RRC set and that originate from nodes in an
RRC set R (see Equation 4)

R the set of all RRC sets generated by Algorithm 1

FR(S) the fraction of RRC sets in R that are covered by a node set S

EPT the expected width of a random RRC set

OPTL the maximum π(S) for any size-k seed set S

KPT Expected prevention of a seed set where seeds are chosen proportional to outdegree

λ see Equation 5

Prevention & Saviours Next, we formally define the
prevention, π(AL), which corresponds to the number
of nodes saved by AL. That is, π(AL) = |Rg(AC) ∩
(clg(AL) \ obsg(AL))| where RH(S) is the set of nodes
in graph H that are reachable from set S (a node v in H
is reachable from S if there exists a directed path in H
that starts from a node in S and ends at v). We write
E[π(AL)] = Eg∼G [π(AL)] for the expected prevention of
AL in G. Finally, let OPTL = maxS:|S|=k{E[π(S)]} be
the maximum expected prevention of a set of k nodes.

We refer to the set of nodes that could have saved u
as the saviours of u. A node w is a candidate saviour
for u if there is a directed path from w to u in G (i.e.
reverse reachability). Then, w is a saviour for u subject
to the additional constraint that w would not be cutoff
by the diffusion of AC in g. That is, a candidate saviour
w would be cutoff and cannot be a saviour for u if for
every path p from w to u there exists a node vb such that
|SPg(AC , vb)| < |SPG(w, vb)|. We refer to the set of
candidate saviours for u that are cutoff as τg(u). Thus,
we can define the saviours of u as the set RGT (u)\τg(u).
Therefore, we have:

Definition 4 (Reverse Reachability without Cutoff
Set). The reverse reachability without cutoff (RRC) set
for a node v in g ∼ G is the set of saviour nodes of
v, i.e. the set of nodes that can save v. (That is, for
each node u in the RRC set, u ∈ RGT (u) \ τg(u).) If
v 6∈ Rg(AC) then we define the corresponding RRC set
as empty since v is not eligible to be saved.

Definition 5 (Random RRC Set). A random RRC
set is an RRC set generated on an instance of g ∼ G,
for a node selected uniformly at random from g.

Closing the Gap Before presenting our reverse sam-
pling approach, we make the following remark regarding

obstruction in the context of prior work. The key ob-
servation that lead to our definition of obstructed nodes
is that the shortest path condition must hold along the
entire path. This observation was missed by [7] in the
MCIC model. Instead, a correct recursive definition
was provided for the set of nodes that are saved, but
the resulting characterization based on shortest paths
misses the crucial case of nodes that are obstructed.

Importantly, the solution in [7] can be recovered with
a modified proof for Claim 1 and Theorem 4.2. In
particular, the statements must include the notion of
obstructed nodes in their inoculation graph definition,
but a careful inspection shows that their objective
function remains submodular after this inclusion. As
a result, the greedy approach of [7] still provides the
stated approximation guarantees and also allows us
to incorporate the ideas of [9] in our solution (as [9]
requires a submodular objective function as well).

5. REVERSE PREVENTION SAMPLING

This section presents our misinformation prevention
method Reverse Prevention Sampling (RPS) that
employs the general reverse sampling framework. At
a high level, RPS, in the same spirit as RIS, consists
of two steps that parallel those described Section 3.2.
The first step (Algorithm 3) leverages a key result that
parallels Lemma 1 to establish a connection between
RRC sets and the prevention process on G in order to
derive a parameter θ that ensures a solution of high
quality will be produced. In the second step, using
the estimate θ from step one, it generates θ RRC
sets (Algorithm 2) and then computes the maximum
coverage on the resulting collection (Algorithm 1).
More precisely, the two steps are:

1. Parameter Estimation. Compute a lower-

The Computer Journal, Vol. ??, No. ??, ????

Scalable Misinformation Mitigation 7

bound for the maximum expected prevention
among all possible size-k seed sets for AL and use
the lower-bound to derive a parameter θ.

2. Node Selection. Sample θ random RRC sets
from G to form a set R and then compute a size-k
seed set S∗k that covers a large number of RRC sets
in R. Return AL = S∗k as the solution to the EIL
problem.

In the rest of this section, we first tackle the
challenging task of correctly generating RRC sets in the
Node Selection step under the MCIC model. Next, we
identify the conditions necessary for the Node Selection
of RPS to return a solution of good quality and
then describe how these conditions are achieved in
the Parameter Estimation phase. Table 1 provides a
reference to some of the frequently used notation.

Node Selection The pseudocode of RPS ’s Node
Selection step is presented in Algorithm 1. Given
G, k, AC , and a constant θ as input, the
algorithm stochastically generates θ random RRC sets,
accomplished by repeated invocation of the prevention
of misinformation process, and inserts them into a set
R. Next, the algorithm follows a greedy approach for
the maximum coverage problem to select the final seed
set AL for the limiting campaign. In each iteration,
the algorithm selects a node vi that covers the largest
number of RRC sets in R, and then removes all those
covered RRC sets from R. The k selected nodes are put
into a set S∗k , which is then used to form the final seed
set AL for campaign L.

Algorithm 1 NodeSelection(G,k,AC ,θ)

1: R ← ∅
2: Generate θ random RRC sets and insert them into
R.

3: Initialize a node set S∗k ← ∅
4: for i = 1,. . . ,k do
5: Identify the node vi that covers the most RRC

sets in R
6: Add vi into S∗k
7: Remove from R all RRC sets that are covered

by vi
8: return S∗k

Lines 4-8 in Algorithm 1 correspond to a standard
greedy approach for a maximum coverage problem. The
problem is equivalent to maximizing a submodular
function with cardinality constraints for which it is well
known that a greedy approach returns a (1 − 1/e)-
approximate solution in linear time [68].

5.1. RRC set generation

Next, we describe how to generate RRC sets correctly
for the EIL problem under the MCIC model, which
is more complicated than generating RR sets for the

IC model [10]. The construction of RRC sets is
done according to Definition 4. Recall that in the
MCIC model, whether a node can be saved or not
is based on a number of factors such as whether v
is reachable via a path in g ∼ G from AC and the
diffusion history of each campaign. Our algorithms
tackle the complex interactions between campaigns by
first identifying nodes that can be influenced by C which
reveals important information for generating RRC sets
for L.

Line 2 generates R by repeated simulation of the
misinformation prevention process. The generation of
each random RRC set is implemented as two breath-
first searches (BFS) on G and GT respectively. The
first BFS is a forward labelling process from AC
implemented as a forward BFS on G that computes the
influence set of AC in a possible world. The second BFS
on GT is a novel bounded-depth BFS with pruning that
carefully tracks which nodes will become obstructed and
is described in detail below.

Forward BFS with Lazy Sampling We first describe
the forward labelling process. As the forward labeling
is unlikely to reach the whole graph, we simply reveal
edge states on demand (“lazy sampling”), based on the
principle of deferred decisions. Given the seed set AC
of campaign C, we perform a randomized BFS starting
from AC where each outgoing edge e in G is traversed
with pC(e) probability. The set of nodes traversed in
this manner (Rg(AC)) is equivalent to I(AC) for g ∼ G,
due to deferred randomness. Note that in each step of
the above BFS we record at each node w the minimum
distance from AC to w, denoted D(w), for use in the
second BFS.

Given a randomly selected node u in G, observe that
for u to be able to be saved we require u ∈ Rg(AC).
Therefore, if the randomly selected node u 6∈ Rg(AC)
then we return an empty RRC set. On the other hand,
if u ∈ Rg(AC), we have D(u) = |SPg(AC , u)| as a
result of the above randomized BFS which indicates the
maximum distance from u that candidate saviour nodes
can exist. We run a second BFS from u in GT to depth
D(u) to determine the saviour nodes for u by carefully
pruning those nodes that would become obstructed.

Bounded-depth BFS with Pruning The second BFS on
GT , presented in Algorithm 2, takes as input a source
node u, the maximum depth D(u), and a directed
graph GT . Algorithm 2 utilizes special indicator values
associated with each node w to account for potential
cutoffs from C. Each node w holds a variable, β(w),
which indicates the distance beyond w that the BFS
can go before the diffusion would have been cutoff by
C propagating in g. The β value for each node w is
initialized to D(w). In each round, the current node w
has an opportunity to update the β value of each of its
successors only if β(w) > 0. For each successor z of w,
we assign β(z) = β(w)− 1 if β(z) = null or if β(z) > 0

The Computer Journal, Vol. ??, No. ??, ????

8 M. Simpson, V. Srinivasan, A. Thomo

vc

u

v
z

D(v)
SPG(u, v)

D(u)

w

SPG(v, w)

I(vc)

FIGURE 2: An overview of the primary scenarios
encountered by Algorithm 2.

and β(w)−1 < β(z). In this way, each ancestor of z will
have an opportunity to apply a β value to z to ensure
that if any ancestor has a β value then so will z and
furthermore, the β variable for z will be updated with
the smallest β value from its ancestors. We terminate
the BFS early if we reach a node w with β(w) = 0.

Figure 2 captures the primary scenarios encountered
by Algorithm 2 when initialized at u. The enclosing
dotted line represents the extent of the influence of
campaign C for the current influence propagation
process. First, notice that if the BFS moves away from
AC = {vc}, as in the case of node z, that, once we move
beyond the influence boundary of C, there will be no
potential for cutoff. As such, the BFS is free to traverse
until the maximum depth D(u) is reached. On the other
hand, if the BFS moves towards (or perpendicular to) vc
then we must carefully account for potential cutoff. For
example, when the BFS reaches v, we know the distance
from vc to v: D(v) = SPg(vc, v). Therefore, the BFS
must track the fact that there cannot exist saviours at a
distance D(v) beyond v. In other words, if we imagine
initializing a misinformation prevention process from a
node w such that SPG(v, w) > D(v) then v will adopt
campaign C before campaign L can reach v. Therefore,
at each out-neighbour of v we use the knowledge of D(v)
to track the distance beyond v that saviours can exist.
This updating process tracks the smallest such value
and is allowed to cross the enclosing influence boundary
of campaign C ensuring that all potential for cutoff is
tracked.

Finally, we collect all nodes visited during the process
(including u), and use them to form an RRC set. The
runtime of this procedure is precisely the sum of the
degrees (in G) of the nodes in Rg(AC) plus the sum of
the degrees of the nodes in RGT (u) \ τ(u).

We briefly note another key difference between RPS
and RIS occurs in the RRC set generation step.
Unlike in the single campaign setting, generating an
RRC set is comprised of two phases instead of just
one. First, we are required to simulate the spread of
misinformation since being influenced by campaign C

is a pre-condition for being saved. As a result, only a
fraction of the simulation steps of RPS provide signal
for the prevention value we are trying to estimate. This
difference is made concrete in the running time analysis
to follow.

Algorithm 2 generateRRC(u, D(u), GT)

1: let R← ∅, Q be a queue and Q.enqueue(u)
2: set u.depth = 0 and label u as discovered
3: while Q is not empty do
4: w ← Q.dequeue(), R← R ∪ {w}
5: if w.depth = D(u) OR β(w) = 0 then
6: continue
7: for all nodes z in GT .adjacentEdges(w) do
8: if β(w) > 0 AND β(z) > 0 then
9: if β(w)− 1 < β(z) then

10: β(z)← β(w)− 1

11: else if β(w) > 0 then
12: β(z)← β(w)− 1

13: if z is not labelled as discovered then
14: set z.depth = w.depth + 1, label z as

discovered and Q.enqueue(z)

15: return R

5.2. Analysis

In this section we focus on two parameters: solution
quality and runtime. For Algorithm 1 to return a
solution with approximation guarantee, we will provide
a lower bound on θ. Then, we will analyze the running
time of the algorithm in terms of θ and a quantity EPT
that captures the expected number of edges traversed
when generating a random RRC set.

Approximation Guarantee We begin by establishing
the crucial connection between RRC sets and the
prevention process on G. That is, the prevention of a
set of nodes S is precisely n times the probability that a
node u, chosen uniformly at random, has a saviour from
S. Note, we say that a node set S covers or overlaps an
RRC set R if S ∩R 6= ∅.

Lemma 2. For any seed set S and any node v, the
probability that a prevention process from S can save
v equals the probability that S overlaps an RRC set for
v.

Proof. Let S be a fixed set of nodes, and v be a fixed
node. Suppose that we generate an RRC set R for v
on a graph g ∼ G. Let ρ1 be the probability that S
overlaps with R and let ρ2 be the probability that S,
when used as a seed set, can save v in a prevention
process on G. By Definition 4, if v ∈ Rg(AC) then ρ1
equals the probability that a node u ∈ S is a saviour for
v. That is, ρ1 equals the probability that G contains
a directed path from u ∈ S to v and u 6∈ τ(v) and
0 if v 6∈ Rg(AC). Meanwhile, if v ∈ Rg(AC) then ρ2

The Computer Journal, Vol. ??, No. ??, ????

Scalable Misinformation Mitigation 9

equals the probability that a node u ∈ S can save v
(i.e. v ∈ (clg(u) \ obsg(u))) and 0 if v 6∈ Rg(AC). It
follows that ρ1 = ρ2 due to the equivalence between the
set of saviours for v and the ability to save v.

For any node set S, let FR(S) be the fraction of RRC
sets in R covered by S. Then, based on Lemma 2, we
can prove that the expected value of n · FR(S) equals
the expected prevention of S in G.

Corollary 1. E[n · FR(S)] = E[π(S)]

Proof. Observe that E[FR(S)] equals the probability
that S intersects a random RRC set, while E[π(S)]/n
equals the probability that a randomly selected node
can be saved by S in a prevention process on G. By
Lemma 2, the two probabilities are equal, leading to
E[n · FR(S)] = E[π(S)].

Corollary 1 implies that we can estimate E[π(S)] by
estimating the fraction of RRC sets in R covered by S.
The number of sets covered by a node v inR is precisely
the number of times we observed that v was a saviour for
a randomly selected node u. We can therefore think of
n ·FR(S) as an estimator for E[π(S)]. Our primary task
is to show that it is a good estimator. Using Chernoff
bounds, we show that n·FR(S) is an accurate estimator
of any node set S’s expected prevention, when θ is
sufficiently large:

Lemma 3. Suppose that θ satisfies

θ ≥ (8 + 2ε)n ·
l log n+ log

(
n
k

)
+ log 2

OPTL · ε2
(1)

Then, for any set S of at most k nodes, the following
inequality holds with at least 1− n−l/

(
n
k

)
probability:∣∣∣n · FR(S)− E[π(S)]

∣∣∣ < ε

2
·OPTL (2)

Proof. Let ρ be the probability that S overlaps with a
random RRC set. Then, θ · FR(S) can be regarded as
the sum of θ i.i.d. Bernoulli variables with a mean ρ.
By Corollary 1,

ρ = E[FR(S)] = E[π(S)]/n

Then, we have

Pr

[
|n · FR(S)− E[π(S)]| ≥ ε

2
·OPTL

]
= Pr

[
|θ · FR(S)− ρθ| ≥ εθ

2n
·OPTL

]
= Pr

[
|θ · FR(S)− ρθ| ≥ ε ·OPTL

2nρ
· ρθ
]

(3)

Let δ = ε · OPTL/(2nρ). By the Chernoff bounds,
Equation 1, and the fact that ρ = E[π(S)]/n ≤
OPTL/n, we have

r.h.s. of Eqn. 3 < 2exp
(
− δ2

2 + δ
· ρθ
)

= 2exp
(
− ε2 ·OPT 2

L

8n2ρ+ 2εn ·OPTL
· θ
)

≤ 2exp
(
− ε2 ·OPT 2

L

8n ·OPTL + 2εn ·OPTL
· θ
)

= 2exp
(
− ε2 ·OPTL

(8 + 2ε) · n
· θ
)
≤ 1(

n
k

)
· nl

Therefore, the lemma is proved.

Based on Lemma 3, we prove that if Eqn. 1 holds,
Algorithm 1 returns a (1 − 1/e − ε)-approximate
solution with high probability by a simple application
of Chernoff bounds.

Theorem 2. Given a θ that satisfies Equation 1,
Algorithm 1 returns a (1−1/e−ε)-approximate solution
with at least 1− n−l probability.

Proof. Let Sk be the node set returned by Algorithm 1,
and S+

k be the size-k node set that maximizes FR(S+
k)

(i.e., S+
k covers the largest number of RRC sets in R).

As Sk is derived from R using a (1− 1/e)-approximate
algorithm for the maximum coverage problem, we have
FR(Sk) ≥ (1 − 1/e) · FR(S+

k). Let S◦k be the optimal
solution for the EIL problem on G, i.e. E[π(S◦k)] =
OPTL. We have FR(S+

k) ≥ FR(S◦k), which leads to
FR(Sk) ≥ (1− 1/e) · FR(S◦k).

Assume that θ satisfies Equation 1. By Lemma 3,
Equation 2 holds with at least 1− n−l/

(
n
k

)
probability

for any given size-k node set S. Thus, by the union
bound, Equation 2 should hold simultaneously for all
size-k node sets with at least 1 − n−l probability. In
that case, we have

E[π(Sk)] > n · FR(Sk)− ε/2 ·OPTL
≥ (1− 1/e) · n · FR(S+

k)− ε/2 ·OPTL
≥ (1− 1/e) · n · FR(S◦k)− ε/2 ·OPTL
≥ (1− 1/e) · (1− ε/2) ·OPTL − ε/2 ·OPTL
> (1− 1/e− ε) ·OPTL

Thus, the theorem is proved.

Runtime First, we will define EPT which captures the
expected number of edges traversed when generating a
random RRC set. After that, we define the expected
runtime of RPS in terms of EPT and the parameter θ.

Let MR be the instance of Rg(AC) used in computing
an RRC set R. Then, we define the width of an RRC
set R, denoted as ω(R), as the number of edges in G
that point to nodes in R plus the number of edges in G
that originate from nodes in MR. That is

ω(R) =
∑
u∈MR

outdegreeG(u) +
∑
v∈R

indegreeG(v) (4)

The Computer Journal, Vol. ??, No. ??, ????

10 M. Simpson, V. Srinivasan, A. Thomo

Let EPT be the expected width of a random RRC
set, where the expectation is taken over the randomness
in R and MR, and observe that Algorithm 1 has an
expected runtime of O(θ ·EPT). This can be observed
by noting that EPT captures the expected number of
edge traversals required to generate a random RRC
set since an edge is only considered in the propagation
process (either of the two BFS’s) if it points to a node
in R or originates from a node in MR. An important
consideration is that, since OPTL is unknown, we
cannot set θ directly from Equation 1. For simplicity,
we define

λ = (8 + 2ε)n ·
(
l log n+ log

(
n

k

)
+ log 2

)
· ε−2 (5)

and rewrite Equation 1 as θ ≥ λ/OPTL. In the
parameter estimation step we employ techniques from
[10], differing in several subtle ways due to the added
complexity of the MCIC model, to derive a θ value for
RPS that is above the threshold but also allows for
practical efficiency.

5.3. Parameter Estimation

Our objective in this section is to identify a θ that
makes θ · EPT reasonably small, while still ensuring
θ ≥ λ/OPTL. We begin with some definitions. Let V∗
be a probability distribution over the nodes in G, such
that the probability mass for each node is proportional
to its indegree in G. Let v∗ be a random variable
following V∗ and recall that MR is a random instance of
Rg(AC) that is equivalent to the influence I(AC) for a
possible world g. We define the prewidth of R, denoted
ωC(R), as the number of edges in G that originate from
nodes in MR, i.e. ωC(R) =

∑
u∈MR

outdegreeG(u).
Then we prove the following.

Lemma 4. mn ·E[π({v∗})] = EPT −E[ωC(R)], where
the expectation of π({v∗}) and ωC(R) is taken over the
randomness in v∗ and the prevention process.

Proof. Let R be a random RRC set, MR be the random
instance of Rg(AC) used to compute R, and pR be the
probability that a randomly selected edge from G points
to a node in R. Then, EPT = E[ωC(R)] + E[pR ·m],
where the expectation is taken over the random choices
of R and MR.

Let v∗ be a sample from V∗ and b(v∗, R) be a boolean
function that returns 1 if v∗ ∈ R, and 0 otherwise.
Then, for any fixed R, pR =

∑
v∗(Pr[v∗] · b(v∗, R)).

Now consider that we fix v∗ and vary R. Define
pv∗,R =

∑
R(Pr[R] ·b(v∗, R)) so that by Lemma 2, pv∗,R

equals the probability that a randomly selected node
can be saved in a prevention process when {v∗} is used
as a seed set. Therefore, E[pv∗,R] = E[π({v∗})]/n. This
leads to

E[pR] =
∑
R

(Pr[R] · pR)

=
∑
R

(Pr[R] ·
∑
v∗

(Pr[v∗] · b(v∗, R)))

=
∑
v∗

(Pr[v∗] ·
∑
R

(Pr[R] · b(v∗, R)))

=
∑
v∗

(Pr[v∗] · pv∗,R)

= E[pv∗,R] = E[π({v∗})]/n

Therefore, EPT = E[ωC(R)]+m·E[pR] = E[ωC(R)]+
m
n · E[π({v∗})]. This completes the proof.

Lemma 4 shows that if we randomly sample a node
from V∗ and calculate its expected prevention p, then
on average we have p = n

m (EPT − E[ωC(R)]). This
implies that n

m (EPT−E[ωC(R)]) ≤ OPTL, since OPTL
is the maximum expected prevention of any size-k node
set. Importantly, the expected prevention of a randomly
sampled node from V∗ is not solely defined by the
expected number of edges traversed when generating an
RRC set. Instead, we must accurately account for those
edges that were traversed in simulating the spread of
campaign C. Unlike the work of [10], where every edge
traversed in generating an RR set provides signal for
the quantity they are trying to estimate (influence), our
setting must balance the fact that only a subset of edges
traversed will provide signal for the quantity we are
trying to estimate, namely prevention. This distinction
manifests itself in the final runtime expression that
follows.

Recall that the expected runtime complexity of
Algorithm 1 is O(θ · EPT). Now, suppose we are able
to identify a parameter t such that t = Ω(nm (EPT −
E[ωC(R)])) and t ≤ OPTL. Then, by setting θ = λ/t,
we can guarantee that Algorithm 1 is correct, since
θ ≥ λ/OPTL, and has an expected runtime complexity
of

O(θ·EPT) = O
(λ
t
·EPT

)
= O

(
λ · EPT

n
m (EPT − E[ωC(R)])

)
(6)

Furthermore, if we define a ratio γ ∈ (0, 1) which
captures the relationship between E[ωC(R)] and EPT
by writing E[ωC(R)] = γEPT , we can rewrite Equation
6 as

O
(m
n

(1

1− γ

)
λ
)

= O((k+l)(m+n)(1/(1−γ)) log n/ε2)

(7)
Note that γ is a data-dependent approximation factor

not present in [10], but arises from the MCIC model.
In particular, the RRC set generation relies crucially
on first computing the spread of misinformation from

The Computer Journal, Vol. ??, No. ??, ????

Scalable Misinformation Mitigation 11

campaign C in order to determine the set of nodes that
can be saved. See Section 6 for a detailed discussion of
γ.

Computing t Ideally, we seek a t that increases
monotonically with k to mimic the behaviour of
OPTL. Suppose we take k samples ei = (vi, wi) with
replacement over a uniform distribution on the edges in
G, and use the vi’s to form a node set S∗. Let KPT
be the mean of the expected prevention of S∗ over the
randomness in S∗ and the prevention process. Due to
the submodularity of the prevention function, it can be
verified that KPT increases with k and

n

m

(
EPT − E[ωC(R)]

)
≤ KPT ≤ OPTL (8)

Additionally,

Lemma 5. Let R be a random RRC set and define the
subwidth of R (ωπ(R)), the number of edges in G that
point to nodes in R, as ωπ(R) =

∑
v∈R indegreeG(v).

Define

κ(R) = 1−
(

1− ωπ(R)

m

)k
(9)

Then, KPT = n · E[κ(R)], where the expectation is
taken over the random choices of R.

Proof. Let S∗ be a node set formed by the vi from k
samples ei = (vi, wi) over a uniform distribution on
the edges in G, with duplicates removed. Let R be a
random RRC set, and αR be the probability that S∗

overlaps with R. Then, by Corollary 1,

KPT = E[π(S∗)] = E[n · αR]

Consider that we sample k times over a uniform
distribution on the edges in G. Let E∗ be the set
of edges sampled, with duplicates removed. Let α′R
be the probability that one of the edges in E∗ points
to a node in R. It can be verified that α′R = αR.
Furthermore, given that there are ωπ(R) edges inG that
point to nodes in R, α′R = 1− (1−ωπ(R)/m)k = κ(R).
Therefore,

KPT = E[n · αR] = E[n · α′R] = E[n · κ(R)]

Which proves the lemma.

Lemma 5 shows we can estimate KPT by computing
n·κ(R) on a set of random RRC sets and averaging over
a sufficiently large sample size. However, if we want
to obtain an estimate of KPT with δ ∈ (0, 1) relative
error with at least 1 − n−l probability then Chernoff
bounds dictate that the number of samples required is
Ω(ln log n · δ−2/KPT) which depends on KPT itself.
This issue is also encountered in [10] and we are able
to resolve it by mimicking their adaptive sampling
approach, which dynamically adjusts the number of

measurements based on the observed values of κ(R),
under the MCIC model.

Algorithm 3 KptEstimation(G,k,AC)

1: for i = 1 to 2 log2 n− 1 do
2: Let ci = (6l log n+ 6 log(log2 n)) · 2i
3: Let sum = 0
4: for j = 1 to ci do
5: Generate a random RRC set R
6: κ(R) = 1− (1− ωπ(R)

m)k

7: sum = sum+ κ(R)

8: if sum/ci > 1/2i then
9: return KPT ∗ = n · sum/(2 · ci)

10: return KPT ∗ = 1/n

Estimating KPT The sampling approach for estimat-
ing KPT is presented in Algorithm 3. We begin with
a high level description of how the algorithm proceeds.
Since KPT is an unknown quantity, we begin with the
assumption that it takes on the value n/2. Then, we
compute an estimate for the expected value of κ(R)
based on a relatively few number of samples. Chernoff
bounds allow us to determine if the computed value of
KPT = n · κ(R) is a good estimator and, if so, the al-
gorithm terminates. However, if the estimate is much
smaller than n/2 we apply the standard doubling ap-
proach and generate an increased number of samples
to determine if KPT takes on a value close to half the
initial estimate. The algorithm continues computing
estimates for KPT , based on an increasing number of
samples, and comparing to values that halve in size until
the error bounds dictated by Chernoff bounds indicate
we have reached a suitably precise estimation of KPT .

In each iteration (Lines 2-7), the goal of Algorithm
3 is to compute the average value of κ(R) over ci
randomly generated RRC sets from G. As described
in Lemma’s 6 and 7 below, the ci are chosen carefully
such that if the average computed for κ(R) over the ci
samples is greater than 2−i then we can conclude that
we have a good estimate for KPT with high probability.
More precisely, that the expected value of κ(R) is at
least half of the average computed. Conversely, if the
average computed is too small then Chernoff bounds
imply that we have a bad estimate for KPT and the
algorithm proceeds to the next iteration.

The IM problem benefits from a lower bound on
KPT of 1 which allows the algorithm to terminate
in log2 n − 1 iterations. However, we do not benefit
from this lower bound for the MCIC problem, since a
seed node for campaign C is not guaranteed to save
any nodes in MR. In the case that the true value of
KPT is very small, the algorithm will terminate in the
2 log2 n-th iteration and return KPT ∗ = 1/n, which
corresponds to the smallest possible KPT under the
mild assumption that |MR| ≥ 2 always holds. This
lower bound follows directly from the probability that

The Computer Journal, Vol. ??, No. ??, ????

12 M. Simpson, V. Srinivasan, A. Thomo

a randomly selected seed used for computing KPT
falls within MR. As we will show in the next section,
KPT ∗ ∈ [KPT/4, OPTL] holds with a high probability
and therefore setting θ = λ/KPT ∗ ensures Algorithm 1
is correct and achieves the expected runtime complexity
in Equation 7.

Performance Bounds Proving the correctness and
demonstrating bounds on the runtime for Algorithm 3
requires a careful analysis of the algorithm’s behaviour.
As shown below, we make use of two lemmas to prove
that the algorithm’s estimate of KPT ∗ is close to KPT .

Let K be the distribution of κ(R) over random RRC
sets in G with domain [0, 1]. Let µ = KPT/n, and si be
the sum of ci i.i.d. samples from K, where ci is defined
as ci = (6l log n + 6 log(log2 n)) · 2i. Chernoff bounds
give

Lemma 6. If µ ≤ 2−j , then for any i ∈ [1, j − 1],

Pr

[
si
ci
>

1

2i

]
<

1

nl · log2 n
(10)

Proof. Let δ = (2−i − µ)/µ. By the Chernoff bounds,

Pr

[
si
ci
> 2−i

]
≤ exp

(
− δ2

2 + δ
· ci · µ

)
= exp(−ci · (2−i − µ)2/(2−i + µ))

≤ exp(−ci · 2−i−1/3) =
1

nl · log2 n

This completes the proof.

By Lemma 6, if KPT ≤ 2−j , then Algorithm 3 is very
unlikely to terminate in any of the first j− 1 iterations.
This prevents the algorithm from outputting a KPT ∗

too much larger than KPT .

Lemma 7. If µ ≥ 2−j , then for any i ≥ j + 1,

Pr

[
si
ci
>

1

2i

]
> 1−

(1

nl · log2 n

)2i−j−1

(11)

Proof. Let δ = (µ− 2−i)/µ. By the Chernoff bounds,

Pr

[
si
ci
≤ 2−i

]
≤ exp

(
− δ2

2
· ci · µ

)
= exp(−ci · (µ− 2−i)2/(2 · µ))

≤ exp(−ci · µ/8) <
(1

nl · log2 n

)2i−j−1

This completes the proof.

By Lemma 7, if KPT ≤ 2−j and Algorithm 3 enters
iteration i > j + 1, then it will terminate in the i-th
iteration with high probability. This ensures that the

algorithm does not output a KPT ∗ that is too much
smaller than KPT .

Based on Lemmas 6 and 7, we prove the following
theorem for the correctness and expected runtime of
Algorithm 3.

Theorem 3. When n ≥ 2 and l ≥ 1/2, Algorithm 3
returns KPT ∗ ∈ [KPT/4, OPTL] with at least 1−2n−l

probability, and runs in O(l(m + n)(1/(1 − γ)) log n)
expected time. Furthermore, E[1

KPT∗] < 12
KPT .

Proof. Assume that KPT/n ∈ [2−j , 2−j+1]. We first
prove the accuracy of the KPT ∗ returned by Algorithm
3.

By Lemma 6 and the union bound, Algorithm 3
terminates no later than the (j − 2)-th iteration with
less than n−l(j − 2)/ log2 n probability. Conversely,
if Algorithm 3 reaches the (j + 1)-th iteration, then
by Lemma 7, it terminates in the (j + 1)-th iteration
with at least 1 − n−l/ log2 n probability. Applying the
union bound and noting that Algorithm 3 has at most
2 log2 n − 1 iterations, Algorithm 3 should terminate
in the (j − 1)-th, j-th, or (j + 1)-th iteration with
probability at least 1 − n−l(2 log2 n − 2)/ log2 n. As
a result, KPT ∗ must be larger than n/2 · 2−j−1, giving
KPT ∗ > KPT/4. Furthermore, KPT ∗ should be n/2
times the average of at least cj−1 i.i.d. samples from K.
Then, Chernoff bounds yield

Pr[KPT ∗ ≥ KPT] ≤ n−l/ log2 n

Applying the union bound again, Algorithm 3
returns, with probability at least 1 − 2n−l probability,
KPT ∗ ∈ [KPT/4,KPT] ⊆ [KPT/4, OPTL].

Next, we analyze the expected runtime of Algorithm
3. Recall that the i-th iteration of the algorithm
generates ci RRC sets, and each RRC set takes O(EPT)
expected time. Given that ci+1 = 2 · ci for any i, the
first j + 1 iterations generate less than 2 · cj+1 RRC
sets in total. Meanwhile, for any i′ ≥ j + 2, Lemma 7

shows that Algorithm 3 has at most n−l·2
i′−j−1

/ log2 n
probability to reach the i′-th iteration. Therefore, when
n ≥ 2 and l ≥ 1/2, the expected number of RRC sets
generated after the first j + 1 iterations is less than

2 log2 n−1∑
i′=j+2

(
ci′ ·

(1

nl · log2 n

)2i−j−1)
< cj+2

Hence, the expected total number of RRC sets
generated by Algorithm 3 is less than 2cj+1 + cj+2 =
2cj+2. Therefore, the expected time complexity of the
algorithm is

The Computer Journal, Vol. ??, No. ??, ????

Scalable Misinformation Mitigation 13

O(cj+2·EPT) = O(2j l log n · EPT)

= O
(

2j l log n ·
(

1 +
m

n

)
·KPT ·

(1

1− γ

))
= O

(
2j l log n · (m+ n) · 2−j ·

(1

1− γ

))
= O

(
l log n · (m+ n) ·

(1

1− γ

))

Here we used Equation 8 in the second equality.
Finally, we show that E[1/KPT ∗] < 12/KPT . Observe
that if Algorithm 3 terminates in the i-th iteration, it
returns KPT ∗ ≥ n ·2−i−1. Let ζi denote the event that
Algorithm 3 stops in the i-th iteration. By Lemma 7,
when n ≥ 2 and l ≥ 1/2, we have

E[1/KPT ∗] =

2 log2 n−1∑
i=1

(
2i+1/n · Pr[ζi]

)

<

2 log2 n−1∑
i=j+2

(
2i+1/n ·

(
n−l·2

i−j−1

/ log2 n
))

+ 2j+2/n

< (2j+3 + 2j+2)/n ≤ 12/KPT

This completes the proof.

5.4. Improved Parameter Estimation

This section describes a new heuristic for improving
the practical performance of RPS, without affecting
its asymptotic guarantees, by improving the estimated
lower bound on OPTL. Our heuristic simplifies the one
introduced in [10] and further, is adapted to the MCIC
setting.

Algorithm 4 RefineKPT(G,k,AC , KPT ∗, ε′)

1: Let λ′ = (2 + ε′)ln log n · (ε′)−2.
2: Let θ′ = λ′/KPT ∗.
3: Generate θ′ random RRC sets; put them into a set
R′.

4: Initialize a node set S′k = ∅.
5: for i = 1 to k do
6: Identify node vi that covers the most RRC sets

in R′.
7: Add vi to S′k.
8: Remove from R′ all RRC sets that are covered

by vi.

9: Let f be the fraction of the original θ′ RRC sets
that are covered by S′k.

10: Let KPT ′ = f · n/(1 + ε′)
11: return KPT+ = max{KPT ′,KPT ∗}

Observe that the KPT ∗ output by Algorithm 3
largely determines the efficiency of RPS. If KPT ∗

is close to OPTL, then θ = λ/KPT ∗ is small and
Algorithm 1 only needs to generate a relatively small
number of RRC sets. However, if KPT ∗ � OPTL then
the efficiency of Algorithm 1 degrades rapidly and, in
turn, so does the overall performance of RPS.

To remedy this issue, we can add an intermediate step
before Algorithm 1 to refine KPT ∗ into a potentially
tighter lower-bound of OPTL. The intuition behind
this heuristic is to generate a reduced number θ′ of
random RRC sets, placing them into a set R′, and then
apply the greedy approach (for the maximum coverage
problem) on R′ to obtain a good estimator for the
maximum expected prevention in R′. Thus, we can
use the estimation as a good lower-bound for OPTL.

Algorithm 4 shows the pseudo-code of the interme-
diate step. It first generates θ′ random RRC sets and
invokes the greedy approach for the maximum coverage
problem on R′ to obtain a size-k node set S′k. Algo-
rithm 4 computes the fraction f of RRC sets that are
covered by S′k so that, by Corollary 1, f · n is an un-
biased estimation of E[π(S′k)]. We set θ′ based on the
KPT ∗ output by Algorithm 3 to a reasonably large
number to ensure that f · n < (1 + ε′) · E[π(S′k)] oc-
curs with at least 1 − n−l probability. Based on this,
Algorithm 4 computes KPT ′ = f · n/(1 + ε′) scal-
ing f · n down by a factor of 1 + ε′ to ensure that
KPT ′ ≤ E[π(S′k)] ≤ OPTL. The final output of Al-
gorithm 4 is KPT+ = max{KPT ′,KPT ∗}. Below we
give a lemma that shows the theoretical guarantees of
Algorithm 4.

Lemma 8. Given that E[1
KPT∗] < 12

KPT , Algorithm 4
runs in O(l(m+n)(1/(1−γ)) log n/(ε′)2) expected time.
In addition, it returns KPT+ ∈ [KPT ∗, OPTL] with at
least 1− n−l probability, if KPT ∗ ∈ [KPT/4, OPTL].

Proof. We first analyze the expected time complexity
of Algorithm 4. Observe that the expected time
complexity of Lines 1-3 of Algorithm 4 is O(E[λ′

KPT∗] ·
EPT), since they generate λ′

KPT∗ random RRC sets,
each of which takes O(EPT) expected time to generate.
By Theorem 3, E[1

KPT∗] < 12
KPT . Therefore,

O

(
E
[

λ′

KPT ∗

]
· EPT

)
= O

(
λ′

KPT
· EPT

)
= O

(
λ′

KPT
·
(

1 +
m

n

)
·KPT ·

(
1

1− γ

))
= O

(
λ′ ·

(
1 +

m

n

)
·
(

1

1− γ

))
= O(l(m+ n)(1/(1− γ)) log n/(ε′)2)

On the other hand, Lines 4-12 run in time linear to the
total size of the RRC sets in R′, i.e. the set of all RRC
sets generated in Lines 1-3 of Algorithm 4. Given that
the expected total size of the RRC sets in R′ should
be no more than O(l(m+ n)(1/(1− γ)) log n), Lines 4-
12 of Algorithm 4 have an expected time complexity of
O(l(m + n)(1/(1 − γ)) log n). Therefore, the expected

The Computer Journal, Vol. ??, No. ??, ????

14 M. Simpson, V. Srinivasan, A. Thomo

time complexity of Algorithm 4 is O(l(m + n)(1/(1 −
γ)) log n/(ε′)2).

Next, we prove that Algorithm 4 returns KPT+ ∈
[KPT ∗, OPTL] with high probability. First, observe
that KPT+ ≥ KPT ∗ trivially holds, as Algorithm
4 sets KPT+ = max{KPT ′,KPT ∗}, where KPT ′

is derived in Line 11 of Algorithm 4. To show that
KPT+ ∈ [KPT ∗, OPTL], it suffices to prove that
KPT ′ ≤ OPTL.

By Line 11 of Algorithm 4, KPT ′ = f · n/(1 + ε′),
where f is the fraction of RRC sets in R′ that is covered
by S′k, where R′ is a set of θ′ random RRC sets, and
S′k is a size-k node set generated from Lines 4-9 in
Algorithm 4. Therefore, KPT ′ ≤ OPTL if and only
if f · n ≤ (1 + ε′) ·OPTL.

Let ρ′ be the probability that a random RRC set is
covered by S′k. By Corollary 1, ρ′ = E[π(S′k)]/n. In
addition, f · θ′ can be regarded as the sum of θ′ i.i.d.
Bernoulii variables with a mean ρ′. Therefore, we have

Pr[f · n > (1 + ε′) ·OPTL]

≤ Pr
[
n · f − E[π(S′k)] > ε′ ·OPTL

]
= Pr

[
θ′ · f − θ′ · ρ′ > θ′

n
· ε′ ·OPTL

]
= Pr

[
θ′ · f − θ′ · ρ′ > ε′ ·OPTL

n · ρ′
· θ′ · ρ′

]
(12)

Let δ = ε′ · OPTL/(nρ′). By the Chernoff bounds, we
have

r.h.s. of Eqn. 12 ≤ exp

(
− δ2

2 + δ
· ρ′θ′

)
= exp

(
− ε′2 ·OPT 2

L

2n2ρ′ + ε′n ·OPTL
· θ′
)

≤ exp

(
− ε′2 ·OPT 2

L

2n ·OPTL + ε′n ·OPTL
· θ′
)

= exp

(
− ε′2 ·OPTL

(2 + ε′) · n
· λ′

KPT ∗

)
≤ exp

(
− ε′2 · λ′

(2 + ε′) · n

)
≤ 1

nl

Therefore, KPT ′ = f ·n/(1+ε′) ≤ OPTL holds with at
least 1−n−l probability. This completes the proof.

Note that the time complexity of Algorithm 4 is
smaller than that of Algorithm 3 by a factor of k,
since the former only needs to accurately estimate the
expected prevention of one node set (i.e. S′k), whereas
the latter needs to ensure accurate estimations for(
n
k

)
node sets simultaneously. Additionally, our new

approach eliminates the need to first compute a seed
set from the RRC sets generated in the last iteration of
Algorithm 3 as in [10].

Wrapping Up In summary, we integrate Algorithm 4
into RPS and obtain an improved solution (referred to
as RPS+) as follows. Given G, k, AC , ε, and l, we first
invoke Algorithm 3 to derive KPT ∗. After that, we
feed G, k, AC , KPT ∗, and a parameter ε∗ (as defined
in [10]) to Algorithm 4, and obtain KPT+ in return.
Then, we compute θ = λ/KPT+, where λ is as defined
in Equation 5. Finally, we run Algorithm 1 with G, k,
AC , and θ as the input and get the output S∗k as the
final result of prevention maximization.

By Theorems 2 and 3, Equation 7, and the union
bound, RPS runs in O((k+l)(m+n)(1/(1−γ)) log n/ε2)
expected time and it can be verified that when ε′ ≥
ε/
√
k, RPS+ has the same time complexity as RPS.

Furthermore, RPS+ returns a (1−1/e−ε)-approximate
solution with at least 1 − 4n−l probability and the
success probability can be increased to 1−n−l by scaling
l up by a factor of 1 + log 4/ log n.

Finally, we note that the time complexity of RPS is
near-optimal up to the instance-specific factor γ under
the MCIC model, as it is only a (1

1−γ) log n factor larger

than the Ω(m+n) lower-bound proved in Section 6 (for
fixed k, l, and ε).

6. LOWER BOUNDS

Comparison with MCGreedy MCGreedy runs in
O(kmnr) time, where r is the number of Monte Carlo
samples used to estimate the expected prevention of
each node set. Budak et al. do not provide a detailed
analysis related to how r should be set to achieve a
(1 − 1/e − ε)-approximation ratio in the MCIC model,
only pointing out that when each estimation of expected
prevention has ε relative error, MCGreedy returns a
(1 − 1/e − ε′)-approximate solution for a particular
ε′ [7]. In the following lemma, we present a more
precise characterization of the relationship between r
and MCGreedy ’s approximation ratio in the MCIC
model.

Lemma 9. MCGreedy returns a (1 − 1/e − ε)-
approximate solution with at least 1− n−l probability,
if

r ≥ (8k2 + 2kε) · n · (l + 1) log n+ log k

ε2 ·OPTL
(13)

Proof. Let S be any node set that contains no more
than k nodes in G, and ξ(S) be an estimation of E[π(S)]
using r Monte Carlo steps. We first prove that, if r
satisfies Equation 13, then ξ(S) will be close to E[π(S)]
with a high probability.

Let µ = E[π(S)]/n and δ = εOPTL/(2knµ). By the
Chernoff bounds, we have

The Computer Journal, Vol. ??, No. ??, ????

Scalable Misinformation Mitigation 15

Pr
[
|ξ(S)− E[π(S)]| > ε

2k
OPTL

]
= Pr

[∣∣∣∣r · ξ(S)

n
− r · E[π(S)]

n

∣∣∣∣ > ε

2kn
· r ·OPTL

]
= Pr

[∣∣∣∣r · ξ(S)

n
− r · E[π(S)]

n

∣∣∣∣ > δ · r · µ
]

< 2 exp

(
− δ2

2 + δ
· r · µ

)
= 2 exp

(
− ε2

(8k2 + 2kε) · n
· r · µ

)
= 2 exp((l + 1) log n+ log k)

=
1

k · nl+1
(14)

Observe that, given G, k, and AC MCGreedy runs
in k iterations, each of which estimates the expected
prevention f at most n node sets with sizes no more than
k. Therefore, the total number of node sets inspected
by MCGreedy is at most kn. By Equation 14 and the
union bound, with at least 1−n−l probability, we have

|ξ(S′)− E[π(S′)]| ≤ ε

2k
OPTL (15)

for all those kn node sets S′ simultaneously. In
what follows, we analyze the accuracy of MCGreedy ’s
output, under the assumption that for any node set S′

considered by MCGreedy, it obtains a sample of ξ(S′)
that satisfies Equation 14. For convenience, we abuse
notation and use ξ(S′) to denote the aforementioned
sample.

Let S0 = ∅, and Si (i ∈ [1, k]) be the node set
selected by MCGreedy in the i-th iteration. We define
xi = OPTL−π(Si), and yi(v) = π(Si−1∪{v})−π(si−1))
for any node v. Let vi be the node that maximizes
yi(vi). Then, yi(vi) ≥ xi−1/k must hold; otherwise, for
any size-k node set S, we have

π(S) ≤ π(Si−1) + π(S \ Si−1)

≤ π(Si−1) + k · yi(vi)
< π(Si−1 + xi−1) = OPTL

which contradicts the definition of OPTL.
Recall that, in each iteration of MCGreedy, it add into

Si−1 the node v that leads to the largest ξ(Si−1 ∪ {v}).
Therefore,

ξ(Si)− ξ(Si−1) ≥ ξ(Si ∪ {v})− ξ(Si−1) (16)

Combining Equations 15 and 16, we have

xi−1 − xi = π(Si)− π(Si−1)

≥ ξ(Si)−
ε

2k
OPTL − ξ(Si−1) +

(
ξ(Si−1)− π(Si−1)

)
≥ ξ(Si−1 ∪ {vi})− ξ(Si−1) (17)

− ε

2k
OPTL +

(
ξ(Si−1)− π(Si−1)

)
≥ π

(
Si−1 ∪ {vi}

)
− π(Si−1)− ε

k
OPTL

≥ 1

k
xi−1 −

ε

k
OPTL (18)

Equation 18 leads to

xk ≤
(
1− 1

k

)
· xk−1 +

ε

k
OPTL

≤
(
1− 1

k

)2 · xk−2 +
(
1 +

(
1− 1

k

))
· ε
k
OPTL

≤
(
1− 1

k

)k · x0 +

k−1∑
i=0

((
1− 1

k

)i · ε
k
OPTL

)
=
(
1− 1

k

)k ·OPTL +
(
1−

(
1− 1

k

)k) · ε ·OPTL
≤ 1

e
·OPTL −

(
1− 1

e

)
· ε ·OPTL

Therefore,

π(Sk) = OPTL − xk
≤ (1− 1/e) · (1− ε) ·OPTL
≤ (1− 1/e− ε) ·OPTL

Thus, the lemma is proved.

Assume that we know OPTL in advance and set r
to the smallest value satisfying the above inequality, in
MCGreedy ’s favour. In that case, the time complexity
of MCGreedy is O(k3lmn2ε−2 log n/OPTL). Towards
comparing MCGreedy to RPS, we show the following
upper bound on the value of γ.

Claim 1. γ ≤ n
n+1

Proof. Let MR be the random instance of Rg(AC) used
to compute R. Furthermore, let us assume that |MR| ≥
2 so that at least one non-seed node is influenced by
campaign C. Then, from Lemma 4 and the definition
of γ we have

1

γ
= 1 +

m

n
· E[π({v∗})]
E[ωC(R)]

Then, observe that the expected number of nodes
saved by v∗ is at least Pr[v∗ ∈MR]. That is, if v∗ ∈MR

then campaign L can save at least one node, namely v∗

itself. Giving

Pr[v∗ ∈MR] =
∑
v∈MR

deg(v)

m
≥
∑
v∈MR

1

m
=
|MR|
m

The Computer Journal, Vol. ??, No. ??, ????

16 M. Simpson, V. Srinivasan, A. Thomo

Therefore, E[π({v∗})]
E[ωC(R)] ≥

1
m . Then, we have 1

γ ≥
1 + m

n ·
1
m = 1 + 1

n . Thus, we get γ ≤ n
n+1 proving

the claim.

Claim 1 shows that the expected runtime for RPS is
at most O((k+ l)mnε−2 log n). As a consequence, given
that OPTL ≤ n, the expected runtime of MCGreedy is
substantially larger than the expected runtime of RPS.
In practice, we observe that for typical social networks
OPTL � n and 1

1−γ � n + 1 resulting in superior
scalability of RPS compared to MCGreedy. Table 3
confirms that 1

1−γ � n+ 1 on our small datasets.

A Lower Bound for EIL In the theorem below, we
provide a lower bound on the time it takes for any
algorithm to compute a β-approximation for the EIL
problem given uniform node sampling and an adjacency
list representation. Thus, we rule out the possibility of
a sublinear time algorithm for the EIL problem for an
arbitrary β.

Theorem 4. Let 0 < ε < 1
10e , β ≤ 1 be given.

Any randomized algorithm for EIL that returns a set of
seed nodes with approximation ratio β, with probability
at least 1 − 1

e − ε, must have a runtime of at least
β(m+n)

24min{k,1/β} .

Proof. We make use of Yao’s Minmax Lemma for the
performance of Las Vegas (LV) randomized algorithms
on a family of inputs [69]. Precisely, the lemma
states that the least expected cost of deterministic
LV algorithms on a distribution over a family of
inputs lower bounds the expected cost of the optimal
randomized LV algorithm over that family of inputs.
We build such an input family of lower bound graphs
via the use of a novel gadget.

Throughout the proof we assume all edge probabili-
ties for both campaigns are 1. Note, for a graph con-
sisting of p = n/2 connected pairs for which each pair
contains a node u ∈ AC , an algorithm must return
at least βk nodes to obtain an approximation ratio of
β. Doing so in at most β2n/2 queries requires that
2βk ≤ β2n, which implies 2k/β ≤ n. We can therefore
assume 2k/β ≤ n.

Define the cost of the algorithm as 0 if it returns
a set of seed nodes with approximation ratio better
than β and 1 otherwise. As the cost of an algorithm
equals its probability of failure, we can think of it as
a LV algorithm. Assume for notational simplicity that
β = 1/T where T is an integer. We will build a family of
lower bound graphs, one for each value of n (beginning
from n = 1 + T); each graph will have m ≤ n, so it will
suffice to demonstrate a lower bound of n

12T min{k,T} .

We now consider the behaviour of a deterministic
algorithm A with respect to the uniform distribution
on the constructed family of inputs. For a given value
T the graph would be made from k components of size
2T and p = n−2kT

2 connected pairs (recall that 2kT =

2k/β ≤ n). Specifically, the k components of size 2T
are structured as follows: for each component there is a
hub node vh that is connected to 2T − 2 leaf nodes and
a node u ∈ AC . Furthermore, each of the p pairs also
contains one node u ∈ AC . If algorithm A returns seed
nodes from l of the k components of size 2T , it achieves
a total prevention of l · (2T − 1) + (k− l) since choosing
either the hub node vh or any leaf node will result in
saving all 2T−1 eligible nodes in the component. Thus,
to attain an approximation factor better than β = 1

T ,
we must have l · (2T − 1) + (k − l) ≥ 1

T · k · (2T − 1),

which implies l ≥ k
2T for any T > 1.

Suppose k > 12T . The condition l ≥ k
2T implies

that at least k
2T of the large components must be

queried by the algorithm, where each random query has

probability k·(2T−1)
n−(p+k) ≥

kT
n of hitting a large component.

If the algorithm makes fewer than n
6T 2 queries, then the

expected number of components hit is n
6T 2 · kTn = k

6T .
Chernoff bounds then imply that the probability of
hitting more than k

2T components is no more than

e−
k
6T ·2/3 ≤ 1

e4/3
< 1− 1

e − ε, a contradiction.
If k ≤ 12T then we need that l ≥ 1, which occurs only

if the algorithm queries at least one of the k · (2T − 1)
vertices in the large components. With n

k·(2T−1) queries,

for n large enough, this happens with probability less
than 1

e − ε, a contradiction.
We conclude that, in all cases, at least n

24T min{k,T}
queries are necessary to obtain an approximation factor
better than β = 1

T with probability at least 1− 1
e −ε, as

required. By Yao’s Minmax Principle this gives a lower
bound of Ω(n

24T min{k,T}) on the expected performance

of any randomized algorithm, on at least one of the
inputs.

Finally, the construction can be modified to apply
to non-sparse networks. For any d ≤ n, we can
augment our graph by overlaying a d-regular graph
with exponentially small weight on each edge. This
does not significantly impact the prevention of any
set, but increases the time to decide if a node is in a
large component by a factor of O(d) (as edges must be
traversed until one with non-exponentially-small weight
is found). Thus, for each d ≤ n, we have a lower bound
of Ω(nd

24T min{k,T}) on the expected performance of A on

a distribution of networks with m = nd edges.

7. GENERALIZATION TO THE MULTI-
CAMPAIGN TRIGGERING MODEL

The triggering model is an influence propagation model
that generalizes the IC and LT models. It assumes that
each node v is associated with a triggering distribution
T (v) over the power set of v’s incoming neighbors.
An influence propagation process under the triggering
model works as follows: (1) for each node v, take
a sample from T (v) and define the sample as the
triggering set of v, then (2) at timestep 1 activate
the seed set S, and (3) in subsequent timesteps, if an

The Computer Journal, Vol. ??, No. ??, ????

Scalable Misinformation Mitigation 17

active node appears in the triggering set of v, then v
becomes active. The propagation terminates when no
more nodes can be activated.

We can define a multi-campaign version of the
triggering model (MCT) that generalizes the MCIC
model by associating each node with a campaign-specific
triggering distribution TZ(v) where Z ∈ {C,L}. The
propagation process under MCT proceeds exactly as
under MCIC with the exception that activation between
rounds (step 2) is determined by TC(v) and TL(v). To
the best of our knowledge, we are the first to formally
define a multi-campaign version of the triggering model.

The key aspect of the MCIC model that enabled the
existence of obstructed nodes is that the two campaigns
are allowed to propagate along different sets of edges
in a possible world X. This is exactly the intuition
captured by the example in Figure 1 and is caused
by L and C having separate propagation probabilities
in G. As a result, the campaigns traverse potentially
unique graphs in X and results in the possibility of
the obstruction of L by C. This observation holds
under the more general setting of MCT due to the
campaign-specific triggering sets and so the obstruction
phenomenon exists under the MCT model.

Remark 1. Propagation under the multi-campaign
triggering model requires the notion of obstruction to
correctly characterize the conditions required to save an
arbitrary node.

Following the observations made in [10], our solutions
can be easily extended to operate under the multi-
campaign triggering (MCT) model with a modified
high effectiveness property. Under MCT, the high
effectiveness property asserts that TL(v) = in(v) where
in(v) is the set of in-neighbours of v in G. Observe that
Algorithm 1 does not rely on anything specific to the
MCIC model, except a subroutine to generate random
RRC sets. Thus, we can revise the definition of RRC
sets to accommodate the MCT model.

Suppose that we generate a possible world g from
G for C by sampling a node set T for each node v
from its triggering distribution TC(v) and removing any
outgoing edge of v that does not point to a node in T .
Let G be the distribution of g induced by the random
choices of triggering sets. We refer to G as the triggering
graph distribution for campaign C in G. Similar to the
MCIC setting, a possible world for L under the high
effectiveness property is the whole graph G. For any
given node v and a possible world g for C sampled from
G, we define the reverse reachable without cutoff (RRC)
set for v in g as the set of nodes that can save v in g.
In addition, we define a random RRC set as one that is
generated on an instance of g randomly sampled from G,
for a node selected from g uniformly at random. These
random RRC sets are constructed in the same fashion
as Algorithm 2 with the modification that the forward
randomized BFS samples triggering sets to determine
which edges to traverse. By incorporating such an

updated forward BFS into Algorithm 1, our solution
extends to the multi-campaign triggering model.

Random RRC sets, as defined above, are constructed
by a randomized BFS as follows. Let v be a randomly
selected node. Given v, we first take a sample T from
v’s triggering distribution TC(v), and then put all nodes
in T into a queue. Then, we iteratively extract the node
at the top of the queue; for each node u extracted, we
sample a set T ′ from u’s triggering distribution, and we
insert any unvisited node in T ′ into the queue. When
the queue becomes empty, we terminate the process,
and form a random RRC set with the nodes visited
during the process. The expected cost of the whole
process is O(EPT), where EPT denotes the expected
number of edges in G that point to the nodes in a
random RRC set. This expected time complexity is
the same as Algorithm 2 for generating random RRC
sets under the MCIC model.

Our next step is to show that the revised solution
retains the performance guarantees of RPS. We first
present an extended version of Lemma 2 for the MCT
model. (The proof of the lemma is almost identical to
that of Lemma 2.)

Lemma 10. Let S be a fixed set of nodes, v be a fixed
node, and G be the triggering graph distribution for G.
Suppose that we generate an RRC set R for v on a
graph g sampled from G. Let ρ1 be the probability that
S overlaps with R, and ρ2 be the probability that S (as
a seed set for campaign L) can save v in an prevention
process on G under the MCT model. Then, ρ1 = ρ2.

Proof. Let S be a fixed set of nodes, and v be a fixed
node. Suppose that we generate an RRC set R for v on
a graph g ∼ G. Let ρ1 be the probability that S overlaps
with R and let ρ2 be the probability that S, when used
as a seed set, can save v in a prevention process on G.
By the definition of RRC sets under the MCT model,
if v ∈ Rg(AC) then ρ1 equals the probability that a
node u ∈ S is a saviour for v. That is, ρ1 equals the
probability that G contains a directed path from u ∈ S
to v and u 6∈ τ(v) and 0 if v 6∈ Rg(AC). Meanwhile,
if v ∈ Rg(AC) then ρ2 equals the probability that a
node u ∈ S can save v (i.e. v ∈ (clg(u) \ obsg(u))) and
0 if v 6∈ Rg(AC). It follows that ρ1 = ρ2 due to the
equivalence between the set of saviours for v and the
ability to save v.

We note that all of the theoretical analysis of RPS is
based on the Chernoff bounds and Lemma 2, without
relying on any other results specific to the MCIC model.
Therefore, once we establish an equivalent to Lemma 2
(Lemma 10), it is straightforward to combine it with
the Chernoff bounds to show that, under the MCT
model, RPS provides the same performance guarantees
as in the case of the MCIC model. Thus, we have the
following theorem:

Theorem 5. Under MCT, RPS runs inO((k+l)(m+
n)(1/(1 − γ)) log n/ε2) expected time, and returns a

The Computer Journal, Vol. ??, No. ??, ????

18 M. Simpson, V. Srinivasan, A. Thomo

TABLE 2: Dataset Statistics

Name |V | |E| Average degree

nethept 15,229 62,752 4.1
word assoc 10,617 72,172 6.8

dblp-2010 326,186 1,615,400 6.1
cnr-2000 325,557 3,216,152 9.9

ljournal-2008 5,363,260 79,023,142 28.5

(1−1/e−ε)-approximate solution with at least 1−4n−l

probability.

8. EXPERIMENTS

The primary goal of this work was to scale up misinfor-
mation mitigation while still providing approximation
guarantees. From this perspective, there is only one ex-
isting approach, namely MCGreedy, which satisfies the
requirement of providing a solution to the EIL prob-
lem with guarantees on the solution quality. We make
a thorough comparison of RPS with MCGreedy in this
section.

Notably, we made a conscious choice not to compare
RPS to the heuristic baselines suggested in [7] for the
following two reasons. First, since RPS is equivalent
to MCGreedy with respect to how it derives a solution
(i.e. greedily optimizing an unbiased estimator), the
solution quality of these two approaches are identical.
The experiments in [7] confirm that MCGreedy strongly
outperforms the heuristic baselines with respect to
solution quality. Therefore, RPS will outperform all
the other heuristic baseline methods, which do not
come with approximation guarantees, when comparing
solution quality. Second, since the heuristics included
as baseline methods in [7] are based on simple structural
properties of the network, their solutions can be
computed in time linear in the number of nodes and
edges in the network. On the other hand, RPS takes
time O((k+l)(n+m)(1

1−γ) log n/ε2) ≈ O((m+n) log n)
due to its emphasis on solution quality. For these
reasons, we believe a comparison with the various
heuristics from [7] would not provide meaningful results
with respect to running time.

Focusing on the algorithm efficiency, measured
in runtime, we demonstrate that RPS provides a
significant improvement of several orders of magnitude
over MCGreedy. Further, we confirm that 1

1−γ �
n + 1 on our small datasets which is strong evidence
that RPS will outperform MCGreedy on typical social
networks. Finally, we observe that the vast majority of
the computation time is spent on generating the RRC
sets for R.

All of our algorithms are implemented in C++
(available at https://github.com/stamps) and tested
on a machine with dual 6 core 2.10GHz Intel Xeon
CPUs, 128GB RAM and running Ubuntu 14.04.2.

Datasets. The network statistics for all of the

TABLE 3: 1
1−γ values for small datasets.

word assoc nethept
k top1 top5 top1 top5

1 23.4471 25.9804 48.3194 48.619
10 24.8521 26.6518 60.5 43.1875
20 24.7509 25.2607 57.0111 61.4167

max 10,618 10,618 15,230 15,230

datasets we consider are shown in Table 2. We obtained
the datasets from Laboratory of Web Algorithmics.4

We divide the datasets by horizontal lines according to
their size, small (S), medium (M), and large (L).

Propagation Model. We consider the MCIC model
(see Section 2.1) of Budak et al. We set the propagation
probability of each edge e as follows: we first identify
the node v that e points to, and then set p(e) = 1/i,
where i denotes the in-degree of v. This setting of p(e)
is widely adopted in prior work [15, 70, 12, 13].

Parameters. Unless otherwise specified, we set
ε = 0.1 in our experiments. We set l in a way that
ensures a success probability of 1−1/n. For MCGreedy,
we set the number of Monte Carlo steps to r = 10000,
following the standard practice in the literature. Note
that this choice of r is to the advantage of MCGreedy
because the value of r required to achieve the same
theoretical guarantees as RPS in our experiments is
always much larger than 10000. In each experiment,
we repeat each run five times and report the average
result.

We are interested in simulating the misinformation
prevention process when the bad campaign C has a
sizable influence on the network to best demonstrate
how the techniques could be used in real world settings.
That is, we believe the scenario in which we are
attempting to prevent the spread of misinformation
when the bad campaign has the ability to influence a
large fraction of the network to be more relevant than
when only a very small number of users would adopt
the bad campaign. Towards this end, we first compute
the most influential vertices for each network and then
randomly select a misinformation seed (|AC | = 1) from
the 99th (top-1) and 95th (top-5) percentiles for each
experiment. This process ensures the misinformation
has a large potential influence in the network.

The focus of our experiments is algorithm efficiency
measured in runtime where our goal is to demonstrate
the superior performance of RPS compared to
MCGreedy. Meanwhile, we observed that the algorithm
accuracy (measured in percentage of nodes saved) of
RPS matches MCGreedy very closely. We observe that,
consistent with the results reported in [7], RPS quickly
approaches a maximal expected prevention value as
k increases across all datasets. This is natural since
both RPS and MCGreedy are maximizing a submodular

4http://law.di.unimi.it/datasets.php

The Computer Journal, Vol. ??, No. ??, ????

Scalable Misinformation Mitigation 19

objective function in a greedy fashion. The novelty of
RPS addresses the scalability hurdle in a similar sense
to Borgs et. al. [9] in relation to Kempe et. al. [8].
For a detailed comparison of the accuracy of MCGreedy
compared to a number of natural heuristics we refer the
interested reader to [7].

Plots. First, we plot the runtimes of MCGreedy
and RPS for a single seed in Figure 3 and observe
that RPS provides a significant improvement of several
orders of magnitude over MCGreedy. Note, we only
compare RPS to MCGreedy on the smallest networks
due to the substantial runtime required for MCGreedy.
Furthermore, for similar scaling issues of MCGreedy, we
restrict our comparison to k = 1. However, since both
approaches scale linearly with k we can conclude that
RPS offers a tremendous runtime improvement over the
approach of [7].

In Figure 4 we plot the prevention (average number
of nodes saved) achieved by MCGreedy and RPS on
the two small datasets for k = 1. The blue (red)
bars correspond to when the AC is selected uniformly
at random from the top-1 (top-5) set. Note, since
the selection is randomized, it is possible that the
misinformation seed generated from the top-5 set has
higher total influence than when selecting from the
top-1 set. In fact, we see this in Figure 4 for the
nethept dataset, where the total influence achieved
when AC was selected from the top-5 set is larger than
when selected from the top-1 set, and thus there is a
greater opportunity to save nodes from adopting the
misinformation. Across both datasets and AC selection
methods, we observe that RPS achieves comparable
prevention to MCGreedy up to sampling errors.

Next, we show the total runtimes (Figures 5, 6)
and a computation breakdown for the medium datasets
(Figure 7). We observe that the vast majority of
the computation time is spent on generating the
RRC sets for R. Furthermore, the amount of time
spent on computing a lower bound increases across all
datasets though remains a small fraction of the overall
runtime. As expected, the time spent refining the lower
bound estimate remains a very small fraction of total
computation time due to the small number of iterations
of the algorithm that improves the lower bound estimate
and only takes up a relatively large fraction of the
computation time on the cnr-2000 top5 dataset (Figure
7c). The density of the cnr-2000 network leads to larger
RRC sets that results in a larger fraction of time spent
on computing and refining a lower bound. We observe
similar trends on the small and large datasets where
the generation of RRC sets dominates the runtime
breakdown by an even larger margin. Finally, we plot
the memory consumption statistics in Figure 8.

Running-time Results. We compare the runtime
trends of our results for the EIL problem to those of
[10] for the IM problem. Tang et al. report that, when
k increases, the runtime of their approach (TIM) tends

to decrease before eventually increasing. They explain
this by considering the breakdown of the computation
times required by each algorithm in TIM. They observe
that the computation time is mainly incurred by their
analog to Algorithm 1 (the node selection phase) which
is primarily determined by the number θ of RR sets
that need to be generated. They have θ = λ/KPT+,
where λ is analogous to ours, and KPT+ is a lower-
bound on the optimal influence of a size-k node set. In
both the IC and MCIC models, the analogs of λ and
KPT+ increase with k, and it happens that for the IM
problem, Tang et al. observe that the increase of KPT+

is more pronounced than that of λ for smaller values of
k, which leads to the decrease in TIM ’s runtime.

On the contrary, for the EIL problem, the increase of
KPT+ does not dominate to a point that the runtime
of RPS decreases as k increases. Instead, we see a linear
increase in runtime as k increases for all the networks
considered. To explain, consider how KPT+ grows in
each setting. In the MCIC model we see that KPT+

rapidly approaches its maximal value which corresponds
to the growth of KPT+ plateauing much sooner. In
contrast, in the IC model, the analogous KPT+ value
continues to grow at a significant rate for a wider range
of k values since the ceiling for the maximal influence
is not tied to a second campaign, as it is in the MCIC
model. As such, the influence estimates do not level
off as quickly. This translates to the growth of KPT+

outpacing the growth of λ.

Memory Consumption. Another set of experiments
monitors the memory consumption required to store the
RRC set structure R. We observe that the size of R for
the EIL problem is larger than that required by the IM
problem. Using the “hypergraph” nomenclature due to
Borgs et al.R is viewed as a hypergraph with each RRC
set in R corresponding to a hyperedge. We observe that
the hyperedges generated for the IM problem are non-
empty in every iteration of the algorithm. Additionally,
each hyperedge has relatively small size. The result is
that the hypergraph generated for the IM problem is
very dense, but each hyperedge is relatively “light” (i.e.
it contains few nodes).

In contrast, in each iteration of RPS we have a
substantial probability to produce an empty RRC set,
since we require that a randomly selected node is in
the randomized BFS tree resulting from the influence
propagation process initialized at AC . These empty
RRC sets are necessary for the computation of expected
prevention to be accurate, but results in a hypergraph
that differs significantly in structure from those of the
IM problem.

In particular, since the generateRRC algorithm is a
deterministic BFS (with specialized stopping conditions
to account for cutoff nodes) it reaches a much larger
fraction of the network. Therefore, while there are far
fewer non-empty hyperedges generated, they are much
large in size: often on the order of half the network.

The Computer Journal, Vol. ??, No. ??, ????

20 M. Simpson, V. Srinivasan, A. Thomo

Thus, the resulting hypergraph is sparse, but contains
very “heavy” edges. These two opposing metrics, a
dense hypergraph with “light” hyperedges versus a
sparse hypergraph with “heavy” hyperedges, result in
the latter requiring more memory to store. Despite
a larger memory requirement compared to the single
campaign setting we show that our approach has the
ability to scale far beyond what was achieved by Budak
et al. and provides orders of magnitude improvement
for the runtime.

9. CONCLUSION & FUTURE WORK

In this work we presented RPS, a novel and scalable
approach to the EIL problem. We showed the
correctness and a detailed running-time analysis of
our approach. Furthermore, we provided two lower
bound results: one on the running-time requirement for
any approach to solve the EIL problem and another
on the number of Monte Carlo simulations required
by MCGreedy to return a correct solution with high
probability. As a result, the expected runtime of
RPS is always less than the expected runtime of
MCGreedy. Finally, we describe how our approach can
be generalized to a multi-campaign triggering model.
In future work we plan to investigate how to adapt
our approach to a scenario where the source of the
misinformation is only partially known.

10. DATA AVAILABILITY

The source code underlying this article are available
at github.com/stamps/misinformation prevention.
The datasets were derived from sources in the
public domain: Laboratory of Web Algorithmics at
http://law.di.unimi.it/datasets.php.

REFERENCES

[1] Foster, P. (2018). ’bogus’ ap tweet about explosion at
the white house wipes billions off us markets.

[2] Oppenheim, M. (2018). Youtube shooting: Twitter
and facebook explodes with misinformation and hoaxes.

[3] Graham, C. (2018). Youtube employee’s twitter
account hacked to spread fake news during attack.

[4] Hautala, L. (2018). Reddit was a misinformation
hotspot in 2016 election, study says.

[5] Solon, O. (2018). Facebook’s failure: did fake news and
polarized politics get trump elected?

[6] Abeshouse, B. (2018). Troll factories, bots and fake
news: Inside the wild west of social media.

[7] Budak, C., Agrawal, D., and El Abbadi, A. (2011)
Limiting the spread of misinformation in social
networks. Proceedings of the 20th International
Conference on World Wide Web, New York, NY,
USA WWW ’11 665–674. Association for Computing
Machinery.

[8] Kempe, D., Kleinberg, J., and Tardos, E. (2003)
Maximizing the spread of influence through a social
network. Proceedings of the Ninth ACM SIGKDD

International Conference on Knowledge Discovery and
Data Mining, New York, NY, USA KDD ’03 137–146.
Association for Computing Machinery.

[9] Borgs, C., Brautbar, M., Chayes, J., and Lucier, B.
(2014) Maximizing social influence in nearly optimal
time. Proceedings of the twenty-fifth annual ACM-
SIAM symposium on Discrete algorithms, pp. 946–957.
SIAM.

[10] Tang, Y., Xiao, X., and Shi, Y. (2014) Influence
maximization: Near-optimal time complexity meets
practical efficiency. Proceedings of the 2014 ACM
SIGMOD International Conference on Management
of Data, New York, NY, USA SIGMOD ’14 75–86.
Association for Computing Machinery.

[11] Tang, Y., Shi, Y., and Xiao, X. (2015) Influence
maximization in near-linear time: A martingale
approach. Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, New
York, NY, USA SIGMOD ’15 1539–1554. Association
for Computing Machinery.

[12] Jung, K., Heo, W., and Chen, W. (2012) Irie: Scalable
and robust influence maximization in social networks.
ICDM ’12, pp. 918–923. IEEE.

[13] Wang, C., Chen, W., and Wang, Y. (2012) Scalable
influence maximization for independent cascade model
in large-scale social networks. Data Mining and
Knowledge Discovery, 25, 545–576.

[14] Leskovec, J., Huttenlocher, D., and Kleinberg, J.
(2010) Predicting positive and negative links in online
social networks. Proceedings of the 19th International
Conference on World Wide Web, New York, NY,
USA WWW ’10 641–650. Association for Computing
Machinery.

[15] Chen, W., Yuan, Y., and Zhang, L. (2010) Scalable
influence maximization in social networks under the
linear threshold model. ICDM ’10. IEEE.

[16] Goyal, A., Bonchi, F., Lakshmanan, L. V. S., and
Venkatasubramanian, S. (2013) On minimizing budget
and time in influence propagation over social networks.
Social Netw. Analys. Mining, 3, 179–192.

[17] Nguyen, H. T., Thai, M. T., and Dinh, T. N. (2016)
Stop-and-stare: Optimal sampling algorithms for viral
marketing in billion-scale networks. Proceedings of
the 2016 International Conference on Management of
Data, pp. 695–710.

[18] Huang, K., Wang, S., Bevilacqua, G., Xiao, X.,
and Lakshmanan, L. V. (2017) Revisiting the
stop-and-stare algorithms for influence maximization.
Proceedings of the VLDB Endowment, 10, 913–924.

[19] Tang, J., Tang, X., Xiao, X., and Yuan, J.
(2018) Online processing algorithms for influence
maximization. Proceedings of the 2018 International
Conference on Management of Data, pp. 991–1005.

[20] Bharathi, S., Kempe, D., and Salek, M. (2007)
Competitive influence maximization in social networks.
International workshop on web and internet economics,
pp. 306–311. Springer.

[21] Lin, Y. and Lui, J. C. (2015) Analyzing competitive
influence maximization problems with partial informa-
tion: An approximation algorithmic framework. Per-
formance Evaluation, 91, 187–204.

The Computer Journal, Vol. ??, No. ??, ????

Scalable Misinformation Mitigation 21

100 101 102 103 104 105

MCGreedy

RPS

Time (s)

top1 top5

100 101 102 103 104

RPS

MCGreedy

Time (s)

top1 top5

FIGURE 3: Runtimes comparison between RPS and MCGreedy for wordassociation-2011 (left) and nethept (right) datasets.

0 20 40

2

4

·103

k
0 20 40

1

2

·103

k
0 20 40

1

2

3

·103

k

0 20 40

0.5

1

·103

k
0 5 10

2

4

6

8
·104

k
0 5 10

2

4

6

·104

k

FIGURE 6: Runtimes (s) for medium & large datasets.
Listed left to right: dblp top1, dblp top5, cnr top1, cnr
top5, ljournal-2008 top1, ljournal-2008 top5.

RPS MCGreedy
0

10

20

30

P
re

ve
n
ti

on

top1 top5

RPS MCGreedy
0

20

40

60

P
re

ve
n
ti

o
n

top1 top5

FIGURE 4: Prevention comparison between RPS and
MCGreedy for wordassociation-2011 (left) and nethept
(right) datasets.

0 20 40

20

40

k
0 20 40

20

40

60

k

FIGURE 5: Runtimes (s) for small datasets. word assoc
on the left and nethept on the right with blue for top1 and
red for top5.

[22] Pathak, N., Banerjee, A., and Srivastava, J. (2010)
A generalized linear threshold model for multiple

cascades. ICDM ’10, pp. 965–970. IEEE.

[23] Li, Y., Chen, W., Wang, Y., and Zhang, Z.-
L. (2013) Influence diffusion dynamics and influence
maximization in social networks with friend and foe
relationships. WSDM ’13, pp. 657–666. ACM.

[24] He, X., Song, G., Chen, W., and Jiang, Q. (2012)
Influence blocking maximization in social networks
under the competitive linear threshold model. SDM
’12, pp. 463–474. SIAM.

[25] Fan, L., Lu, Z., Wu, W., Thuraisingham, B., Ma, H.,
and Bi, Y. (2013) Least cost rumor blocking in social
networks. ICDCS ’13, pp. 540–549. IEEE.

[26] Song, C., Hsu, W., and Lee, M. L. (2017)
Temporal influence blocking: Minimizing the effect of
misinformation in social networks. 2017 IEEE 33rd
International Conference on Data Engineering (ICDE),
pp. 847–858. IEEE.

[27] Tong, A., Du, D.-Z., and Wu, W. (2018) On
misinformation containment in online social networks.
Advances in neural information processing systems, pp.
341–351.

[28] Tong, G. A. and Du, D.-Z. (2019) Beyond uniform
reverse sampling: A hybrid sampling technique for
misinformation prevention. IEEE INFOCOM 2019-
IEEE conference on computer communications, pp.
1711–1719. IEEE.

[29] Tong, G., Wu, W., Guo, L., Li, D., Liu, C., Liu, B.,
and Du, D.-Z. (2017) An efficient randomized algorithm
for rumor blocking in online social networks. IEEE
Transactions on Network Science and Engineering, 7,
845–854.

[30] Saxena, A., Hsu, W., Lee, M. L., Leong Chieu, H., Ng,
L., and Teow, L. N. (2020) Mitigating misinformation
in online social network with top-k debunkers and
evolving user opinions. Companion Proceedings of the
Web Conference 2020, pp. 363–370.

[31] Pham, C. V., Phu, Q. V., and Hoang, H. X. (2018)
Targeted misinformation blocking on online social
networks. Asian Conference on Intelligent Information
and Database Systems, pp. 107–116. Springer.

[32] Pham, C. V., Phu, Q. V., Hoang, H. X., Pei,
J., and Thai, M. T. (2019) Minimum budget for
misinformation blocking in online social networks.
Journal of Combinatorial Optimization, 38, 1101–1127.

[33] Fang, Q., Chen, X., Nong, Q., Zhang, Z., Cao, Y.,
Feng, Y., Sun, T., Gong, S., and Du, D.-Z. (2018)
General rumor blocking: An efficient random algorithm
with martingale approach. International Conference on
Algorithmic Applications in Management, pp. 161–176.
Springer.

The Computer Journal, Vol. ??, No. ??, ????

22 M. Simpson, V. Srinivasan, A. Thomo

1 2 5 10203040

0

2,000

4,000

k
1 2 5 10203040

0

1,000

2,000

k
1 2 5 10203040

0

1,000

2,000

3,000

k
1 2 5 10203040

0

500

1,000

k

FIGURE 7: Breakdown of computation time (s) for medium datasets. Blue stack corresponds to Algorithm 1, red to
improving the lower bound estimation, and green (which is almost invisible) to computing the initial lower bound estimate.
Listed left to right: dblp top1, dblp top5, cnr top1, cnr top5.

0 20 40

0.1

0.2

0.3

0.4

k
0 20 40

0.2

0.4

0.6

k
0 20 40

0

2

4

6

8

k
0 20 40

2
4
6
8

10

k
0 5 10

50

100

150

k

FIGURE 8: Memory consumption (Gb) for all datasets. Blue corresponds to top1 and red to top5. Listed left to right:
word assoc, nethept, cnr, dblp & ljournal-2008.

[34] Prakash, B. A., Chakrabarti, D., Valler, N. C.,
Faloutsos, M., and Faloutsos, C. (2012) Threshold
conditions for arbitrary cascade models on arbitrary
networks. Knowledge and information systems, 33,
549–575.

[35] Prakash, B. A., Adamic, L., Iwashyna, T., Tong, H.,
and Faloutsos, C. (2013) Fractional immunization in
networks. Proceedings of the 2013 SIAM International
Conference on Data Mining, pp. 659–667. SIAM.

[36] Zhang, Y. and Prakash, B. A. (2014) Dava: Distribut-
ing vaccines over networks under prior information.
Proceedings of the 2014 SIAM International Conference
on Data Mining, pp. 46–54. SIAM.

[37] Simpson, M., Srinivasan, V., and Thomo, A. (2016)
Clearing contamination in large networks. IEEE
Transactions on Knowledge and Data Engineering, 28,
1435–1448.

[38] Tong, H., Prakash, B. A., Eliassi-Rad, T., Faloutsos,
M., and Faloutsos, C. (2012) Gelling, and melting, large
graphs by edge manipulation. CIKM, pp. 245–254.

[39] Medya, S., da Silva, A. L., and Singh, A. K.
(2019) Influence minimization under budget and
matroid constraints: Extended version. ArXiv,
abs/1901.02156.

[40] Khalil, E. B., Dilkina, B., and Song, L. (2014) Scalable
diffusion-aware optimization of network topology.
Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pp. 1226–1235.

[41] Chen, C., Tong, H., Prakash, B. A., Tsourakakis,
C. E., Eliassi-Rad, T., Faloutsos, C., and Chau, D. H.
(2015) Node immunization on large graphs: Theory and
algorithms. TKDE, 28, 113–126.

[42] Zhang, Y., Ramanathan, A., Vullikanti, A., Pullum, L.,
and Prakash, B. A. (2019) Data-driven efficient network
and surveillance-based immunization. Knowledge and
Information Systems, 61, 1667–1693.

[43] Facebook (2019). How is facebook addressing
false news? https://www.facebook.com/help/
1952307158131536, Last accessed on 2020-07-07.

[44] Facebook (2019). Helping to protect the 2020
us elections. https://about.fb.com/news/2019/
10/update-on-election-integrity-efforts/, Last
accessed on 2020-07-07.

[45] Twitter (2020). Notices on twitter and what
they mean. https://help.twitter.com/en/rules-
and-policies/notices-on-twitter, Last accessed on
2020-07-07.

[46] Twitter (2020). Our range of enforcement op-
tions. https://help.twitter.com/en/rules-and-
policies/enforcement-options, Last accessed on
2020-07-07.

[47] Instagram (2019). Instagram adds ’false informa-
tion’ labels to prevent fake news from going viral.
https://me.mashable.com/tech/7586/instagram-
adds-false-information-labels-to-prevent-fake-

news-from-going-viral, Last accessed on 2020-07-07.

[48] Pinterest (2019). Health misinformation.
https://help.pinterest.com/en/article/health-
misinformation, Last accessed on 2020-07-07.

[49] Shu, K., Sliva, A., Wang, S., Tang, J., and Liu,
H. (2017) Fake news detection on social media: A
data mining perspective. ACM SIGKDD Explorations
Newsletter, 19, 22–36.

[50] Zhou, D., He, J., Yang, H., and Fan, W. (2018)
Sparc: Self-paced network representation for few-shot
rare category characterization. Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 2807–2816.

[51] Zhou, D., Zhang, S., Yildirim, M. Y., Alcorn, S., Tong,
H., Davulcu, H., and He, J. (2017) A local algorithm for
structure-preserving graph cut. Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 655–664.

The Computer Journal, Vol. ??, No. ??, ????

Scalable Misinformation Mitigation 23

[52] Hassan, N., Zhang, G., Arslan, F., Caraballo,
J., Jimenez, D., Gawsane, S., Hasan, S., Joseph,
M., Kulkarni, A., Nayak, A. K., et al. (2017)
Claimbuster: The first-ever end-to-end fact-checking
system. PVLDB, 10, 1945–1948.

[53] Tschiatschek, S., Singla, A., Gomez Rodriguez, M.,
Merchant, A., and Krause, A. (2018) Fake news
detection in social networks via crowd signals. WWW
’18, pp. 517–524. WWW.

[54] Pennycook, G. and Rand, D. (2018) Crowdsourcing
judgments of news source quality. SSRN.

[55] Kim, J., Tabibian, B., Oh, A., Schölkopf, B., and
Gomez-Rodriguez, M. (2018) Leveraging the crowd
to detect and reduce the spread of fake news and
misinformation. WSDM ’18, pp. 324–332. ACM.

[56] Dong, X. L., Gabrilovich, E., Heitz, G., Horn, W.,
Murphy, K., Sun, S., and Zhang, W. (2014) From data
fusion to knowledge fusion. Proceedings of the VLDB
Endowment, 7, 881–892.

[57] Gao, J., Li, Q., Zhao, B., Fan, W., and Han, J.
(2015) Truth discovery and crowdsourcing aggregation:
A unified perspective. Proceedings of the VLDB
Endowment, 8, 2048–2049.

[58] Rekatsinas, T., Joglekar, M., Garcia-Molina, H.,
Parameswaran, A., and Ré, C. (2017) Slimfast:
Guaranteed results for data fusion and source
reliability. Proceedings of the 2017 ACM International
Conference on Management of Data, pp. 1399–1414.

[59] Shiralkar, P., Flammini, A., Menczer, F., and
Ciampaglia, G. L. (2017) Finding streams in knowledge
graphs to support fact checking. ICDM ’17, pp. 859–
864. IEEE.

[60] Yang, S., Han, F., Wu, Y., and Yan, X. (2016) Fast
top-k search in knowledge graphs. 2016 IEEE 32nd
international conference on data engineering (ICDE),
pp. 990–1001. IEEE.

[61] Hamilton, W., Bajaj, P., Zitnik, M., Jurafsky, D.,
and Leskovec, J. (2018) Embedding logical queries on
knowledge graphs. Advances in neural information
processing systems, pp. 2026–2037.

[62] Ciampaglia, G. L., Shiralkar, P., Rocha, L. M.,

Bollen, J., Menczer, F., and Flammini, A. (2015)
Computational fact checking from knowledge networks.
PloS one, 10, e0128193.

[63] Popat, K., Mukherjee, S., Strötgen, J., and Weikum, G.
(2017) Where the truth lies: Explaining the credibility
of emerging claims on the web and social media. WWW
’17, pp. 1003–1012.

[64] Jin, Z., Cao, J., Zhang, Y., and Luo, J. (2016) News
verification by exploiting conflicting social viewpoints
in microblogs. AAAI ’16, pp. 2972–2978. AAAI Press.

[65] Mukherjee, S. and Weikum, G. (2015) Leveraging joint
interactions for credibility analysis in news communi-
ties. Proceedings of the 24th ACM International on
Conference on Information and Knowledge Manage-
ment, New York, NY, USA CIKM ’15 353–362. As-
sociation for Computing Machinery.

[66] Nguyen, N. P., Yan, G., Thai, M. T., and Eidenbenz, S.
(2012) Containment of misinformation spread in online
social networks. Proceedings of the 4th Annual ACM
Web Science Conference, New York, NY, USA WebSci
’12 213–222. Association for Computing Machinery.

[67] Chen, W., Lakshmanan, L. V. S., and Castillo, C.
(2013) Information and Influence Propagation in Social
Networks Synthesis Lectures on Data Management.
Morgan & Claypool Publishers.

[68] Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L.
(1978) An analysis of approximations for maximizing
submodular set functions—i. Mathematical Program-
ming, 14, 265–294.

[69] Yao, A. C.-C. (1977) Probabilistic computations:
Toward a unified measure of complexity. Proceedings
of the 18th Annual Symposium on Foundations of
Computer Science, USA SFCS ’77 222–227. IEEE
Computer Society.

[70] Chen, W., Wang, Y., and Yang, S. (2009) Efficient
influence maximization in social networks. Proceedings
of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, New York,
NY, USA KDD ’09 199–208. Association for Computing
Machinery.

The Computer Journal, Vol. ??, No. ??, ????

