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ABSTRACT

Diffusion models exhibit remarkable empirical robustness in adversarial purifica-
tion. The mechanisms underlying such improvements remain unclear. It is possible
that diffusion models effectively purify the adversarial examples via the learned
stimuli prior. Alternatively, the substantial randomness added in the diffusion
models may cause gradient masking that contaminates the empirical estimate of
adversarial robustness. Here, we seek to dissect the contribution of these two
potential factors. Theoretically, we illustrate how a purification system with ran-
domness can cause gradient masking, which can not be addressed by the standard
expectation-over-time (EOT) method. Inspired by this, we propose and justify that
a simple procedure, randomness replay, can provide a better robustness estimate
when randomness is involved. Experimentally, we verify that gradient masking
indeed happens under previous evaluations of diffusion models. After properly
controlling the effect of randomness, the reverse-only diffusion model (RevPure)
provides a similar robustness improvement with the previous DiffPure framework,
suggesting that the robustness improvement is solely attributed to the reverse pro-
cess. Furthermore, our analyses reveal that robustness improvement is caused
by a sequential denoising mechanism that transforms the stimulus to a direction
orthogonal to the original adversarial perturbation, rather than reducing the ℓ2
distance between the transformed and clean stimuli. Our results shed new light on
the mechanisms underlying the empirical robustness from diffusion models, and
shall inform future development of more efficient adversarial purification systems.

1 INTRODUCTION

Neural networks are vulnerable to small adversarial perturbations (Szegedy et al., 2013; Goodfellow
et al., 2014), which presents a fundamental question on the robustness of artificial learning systems.
Adversarial training (Madry et al., 2017), has become the most successful method to overcome
this problem (Shafahi et al., 2019; Pang et al., 2020; Wang et al., 2021). However, research has
found that training with a specific attack usually sacrifices the robustness against other types of
perturbations (Schott et al., 2018; Ford et al., 2019; Yin et al., 2019), indicating that adversarial
training simply overfits the attack rather than achieving an overall robustness improvement.

Adversarial purification provides an alternative path toward adversarial robustness. This approach
typically relies on generative models to purify the stimulus before passing to a classifer (Song et al.,
2017; Samangouei et al., 2018; Shi et al., 2021; Yoon et al., 2021). The basic idea is to leverage
the stimuli prior learned by generative models to project adversarial perturbations back towards
the stimuli manifold. Intuitively, the performance of such purification should depend on how well
the generative models capture the probability distribution of natural stimuli. Recently, adversarial
purification based on diffusion models(Ho et al., 2020; Song et al., 2020b) (DiffPure) was reported
to show promising improvements against various attacks on multiple datasets (Nie et al., 2022).
Diffusion models consist of a forward diffusion process and a reverse process performing sequential
denoising. Notably, both steps inject substantial randomness. It is well known that randomness can
induce gradient masking (Papernot et al., 2017; Athalye et al., 2018) when evaluating the adversarial
robustness with gradient-based attacks (Carlini et al., 2019). This creates an inherent challenge for
evaluating the adversarial robustness of diffusion models.

Thus, previously reported empirical robustness from diffusion models Nie et al. (2022) may consist
of both (i) bona fide improvement due to its ability in denoising and (ii) gradient masking. Through
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a combination of theoretical and empirical analyses, we dissect the contribution of the two in the
empirical robustness of diffusion models. While we focused on adversarial purification based on
diffusion models, our results may have broad implications in other types of adversarial defense that
involve randomness or denoising. Our main contributions are summarized below:

• Theoretically, we show that a purification system with randomness can cause gradient
masking that cannot be solved by expectation-over-time (EOT) (Athalye et al., 2018), thus
providing a false sense of robustness in previous protocols (Sec. 4.2). We propose “random-
ness replay”, which can better estimate the robustness for systems involving randomness
(Sec. 4.3).

• Our empirical results corroborate our theoretical predictions, thus, randomness-induced
gradient masking happens in DiffPure (Sec. 5.1). Experiemnts also show that the forward
process is not critical for robustness—reverse-only diffusion models (RevPure) lead to a
similar robustness improment (Sec. 5.2).

• We identify the mechanisms underlying the adversarial robustness in diffusion models.
Specifically, the reverse process sequentially denoises an adversarial example to an orthogo-
nal direction relative to the adversarial direction, rather than reducing the L2 distances to
the clean stimulus (Sec. 6).

2 RELATED WORK

Diffusion models for adversarial purification Diffusion models (Ho et al., 2020; Song et al.,
2020b) set the SOTA performances on image generation, and represent a natural choice for adversarial
purification. Nie et al. (2022) proposed the DiffPure framework, which utilized both the forward and
reverse process and achieved promising empirical robustness comparable with adversarial training
on multiple benchmarks. Similar improvements were reported with guided diffusion models (Wang
et al., 2022). These studies led to substantial interest in applying diffusion models for adversarial
purification in various domains, including auditory data (Wu et al., 2022) and 3D point clouds (Sun
et al., 2023). However, none of the works systematically studied and evaluated the randomness
and the potential gradient masking effect within diffusion models. The mechanism of empirical
robustness improvement was also not well understood.

Another line of research applies diffusion models to improve certificated robustness Cohen et al.
(2019). Carlini et al. (2022) found that plugging diffusion models as a denoiser into the denoised
smoothing framework (Salman et al., 2020) can lead to non-trivial certificated robustness. Xiao et al.
(2023) further developed this method and explained the improvement in certificated robustness.

Gradient masking and randomness Gradient masking has been defined as “construct a model
that does not have useful gradients” (Papernot et al., 2017). It may provide a false sense of robustness
against gradient-based attacks (Tramèr et al., 2018). Athalye et al. (2018) further identified that
randomness could cause gradient masking as “stochastic gradients”, and proposed the expectation-
over-time (EOT) which became the standard evaluation for stochastic gradients. EOT is often required
to rule out the effect of gradient masking for a fair evaluation of robustness (Carlini et al., 2019).

3 PRELIMINARIES

Adversarial purification Adversarial purification intends to first “purify” the perturbed data (or
image) before classification. Consider a purification system P (x), which processes perturbed data x̃
close to the clean data x, and further been readout by a classifier F (x) = y. Under the assumption
that adversarial purification satisfies P (x̃) ≈ x, the Bypass Direct Approximation (BPDA) (Athalye
et al., 2018) can provide a robustness estimation if P is hard-to-differentiate.

Randomness in diffusion models Diffusion models gradually disassemble an arbitrary distribution
into a standard Gaussian, therefore inherently contain randomness in the forward and reverse process.
The forward process of Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) is

xt =
√
αtxt−1 +

√
1− αtϵ, ϵ ∼ N (0, I), (1)
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in which the ϵ will introduce randomness. Further, the reverse process

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
+ σtz, z ∼ N (0, I) (2)

also introduces randomness through z. Notably, deterministic reverse process has also been proposed,
e.g., in Denoising Diffusion Implicit Models (DDIM) (Song et al., 2020a) the reverse process

xt−1 =
√
ᾱt−1x̂0 +

√
1− ᾱt−1ϵθ(xt, t), x̂0 =

xt −
√
1− ᾱtϵθ(xt, t)√

ᾱt
(3)

is fully deterministic and thus does not introduce randomness.1

4 RANDOMNESS-INDUCED GRADIENT MASKING

4.1 PROBLEM SETUP

For an n-dimensional data point x0 ∈ Rn with label y0, we study the classification performance
under perturbations within an ℓp ball B(x0, ϵ) with radius ϵ. For any perturbations beyond the ball, we
clip it back following the usual practice of adversarial attacks. We first make the following definitions
for a classification system S.
Definition 1 (Absolute robustness). The absolute robustness of S around x0 within ball B is given by

R(S,x0,B) = 1(S(x) = y0, ∀x ∈ B).

Thus, we define it as 1 if it is a perfect robust classification system, and 0 if otherwise there exists an
adversarial point.
Definition 2 (Empirical adversarial robustness). For some adversarial examples generate by attacking
method ξ ∼ Ξ, the empirical adversarial robustness is given by

R̃(S,x0,B,Ξ) = Pr [S(x0 + ξ) = y0] = 1− Pr [S(x0 + ξ) ̸= y0] .

Definition 3 (Empirical adversarial attack failure). For the non-robust case R(S,x0,B) = 0, if
the empirical adversarial robustness R̃(S,x0,B,Ξ) significantly overestimates the robustness, we
identify it as attack failure. It can be quantified by the attack failure rate

∆ = R̃(S,x0,B,Ξ)−R(S,x0,B) =
{
Pr [S(x0 + ξ) = y0] , R(S) = 0

0, R(S) = 1
.

Smaller failure rate ∆ means better estimation of absolute robustness based on the empirical attack.

Note that gradient masking is a special case of attack failure—when the attack is gradient-based, and
the attack failure is caused by manipulating the gradient to be non-optimal.

While the above definitions are based on the point case, they could be generalized to the dataset
case by taking expectations, which is similar to the definition used in Viallard et al. (2021). The
definition 1 may appear to be strict at first glance. Below we explain why it is indeed an appropriate
definition. Consider we run an adversarial attack on a dataset and get an attack success rate of 80%.
Assume the attack is perfect, thus we can always find an adversarial example if there exists one
in the region, which is the ultimate goal for adversarial attack research. Then the accuracy means
for 80% of the data, we manage to find at least one adversarial example within the region. Thus,
the empirical robustness with a perfect attack is a good approximation of the absolute robustness.
Imperfect attacking will affect the probability of finding the example (Def. 2), but will not altering
the absolute robustness as an inherent property of the data and classification system.

4.2 RANDOMNESS-INDUCED GRADIENT MASKING

Following the setup in Sec. 4.1, consider a classifier F (x) with a simply connected adversarial space
A = {x|F (x) ̸= y0,x ∈ B(x0, ϵ)}. Denote the centroid of A as c =

∫
A xdx/

∫
A dx, the radius of

A as r = maxx∈A ∥x− c∥2. Consider the additive Gaussian noise model

P (x) = x+ η ∼ N (0, σ2I). (4)
1We follow the notation of the DDPM paper, thus the form is slightly different from the DDIM paper. The ᾱt

in DDPM is corresponding to the αt in DDIM.
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For a perfect attack (thus can always find an adversarial example if exists), denote the generated
adversarial perturbation as ξ, expectation-over-time (EOT) of the perturbation as Eξ. Then the success
rates of applying such perturbations to the new classification system with randomness S = P ◦ F are
given by the following theorem.
Theorem 1 (Success rate of perfect attack with randomness). For S = P ◦ F ,

Pr[S(x0 + ξ) ̸= y0)] ≤ Ψ

(
r2

2σ2
;n

)
, Pr[S(x0 + Eξ) ̸= y0)] ≤ Ψ

(
r2

σ2
;n

)
,

where Ψ(x;n) is the cdf of chi-square distribution χ2(n).
Corollary 1.1 (Curse of dimensionality). When n → ∞, r/σ ≪

√
n,

lim
n→∞

Pr[P ◦ F (x0 + ξ) ̸= y0)] = lim
n→∞

Pr[P ◦ F (x0 + Eξ) ̸= y0)] = 0.

See Appendix A for the proof. An illustration of the proof is shown in Fig. S1a. Note that the
assumption of simply connected adversarial space is appropriate: Tramèr et al. (2017) showed that
the adversarial space spans a continuous region, where indeed exists orthogonal bases such that their
linear combinations are still adversarial examples with high probability.

The theorem shows that the failure of adversarial attacks involving randomness is essentially a
problem of high-dimensional space. As illustrated in Fig. S1c, the cdf of χ2(n) distribution inclines
to be flat as the dimensionality n rises. The upper bound of the success rate for the non-EOT case
Ψ(r2/2σ2) is strictly smaller than the success rate for the EOT case Ψ(r2/σ2), which explains
the slight benefits of applying EOT in robustness evaluation with randomness. However, the proof
illustrates that the key problem lies in the noise during testing η1, but not during attacking. The
EOT can only handle noise in attacking η0. The non-EOT and EOT methods have no significant
differences as they all approach zero in the high-dimensional case.

The theorem explains why the Yoon et al. (2021) model only observed signification robustness
improvement against BPDA-EOT after injecting Gaussian noise into the system, as well as Byun
et al. (2020) reported robustness against black-box attacks after applying a small amount of Gaussian
noise. Indeed, we can make a non-robust system impossible to attack under the previous evaluation
protocol (but still non-robust) by simply adding Gaussian noise.

4.3 MORE ACCURATE ROBUSTNESS ESTIMATION USING RANDOMNESS REPLAY

To fairly evaluate the absolute robustness, one needs to cancel the effect of noise during testing (such
as removing η1). If randomness is an inherent property of the system (such as diffusion models),
one can achieve this by either (i) the future randomness during testing η1 and compensating it in
attacking, which is not possible for non-pseudo noise, or (ii) during testing, replay the exact same
randomness encountered in generating the attack, thus η1 = η0, to ensure that the calculated attack
is still optimal in this particular model randomness configuration. A more formal description of
randomness replay is given in Algorithm 1.

Algorithm 1 Randomness Replay

Input: A system with randomness S, data x, adversarial attack algorithm Ξ, memory buffer M
Output: Empirical robustness estimation of S at point x

Attacking:
Generate attack ξ ∼ Ξ(S(x;η)) with random-
ness η
Store (x,η, ξ) in M

Testing:
Retrieve (x,η, ξ) from M
return S(x+ ξ;η)

One may be concerned that whether randomness replay would alter the behavior of the model, and
thus, change the robustness of the system. To address this potential concern, we show that randomness
replay does not change the absolute robustness of the system.
Theorem 2 (Equivalence of randomness replay). For any system with randomness S, and its
randomness replay version S′,

R(S,x0,B) ≡ R(S′,x0,B).
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It shows that randomness replay is just an alternative scheme for calculating/applying adversarial
attacks, without changing the properties of the system such as absolute robustness. We immediately
get the following corollary formally states randomness replay can make an accurate robustness
estimation for the system stated in Sec. 4.2.

Corollary 2.1 (Effectiveness of randomness replay). For the system S stated in Sec. 4.2, after
applying randomness replay, the success rate of gradient-based attack is

Pr[S′(x0 + ξ) ̸= y0)] = R(S,x0,B).

To sum up, we gain the following insights from the theoretical analysis:

• Gradient masking can happen in a system with randomness, which is caused by the testing
noise η1 rather than the attacking noise η0.

• EOT would produce a better robustness estimation by canceling the effect of η0, but not
fundamentally solving the problem.

• By randomness replay, we can eliminate the effect of such randomness-induced gradient
masking, and produce a more accurate robustness estimation.

• EOT may not provide any further benefits after applying randomness replay.

Next, we will examine whether such predictions hold in diffusion models for adversarial purification.

5 EXPERIMENTS

5.1 RANDOM-INDUCED GRADIENT MASKING IN DIFFUSION MODELS

Randomness replay by noise fixing We first apply the randomness replay to examine whether
randomness-induced gradient masking happens by the DiffPure method Nie et al. (2022). Ideally, we
should store the randomness encountered while calculating the attack, and replay it during testing
once meet the same stimuli. In practice, we found it more convenient to just control the random seed
to be the same during attacking and testing for the same stimuli. For the i-th batch of data at the t
step of the forward/reverse process, we set the random seed

Seed(i, t) =

{
2× (1000× i+ t) + 1, if forward process
2× (1000× i+ t), if reverse process

(5)

before sampling the Gaussian noise from eq. 1 or eq. 2. This setting ensures that we have a different
random seed for each batch of data and timesteps in the forward/reverse process, but will keep the
randomness the same through the entire purification process if encountering the same data batch.

Gradient masking in DiffPure We evaluate the robustness improvements against BPDA and
BPDA-EOT attacks (Athalye et al., 2018) on CIFAR-10 with ℓ∞ = 8/255, and ℓ∞ = 4/255 on
ImageNet, which are standard evaluations for adversarial purification methods. We used the official
check-point of DDPM on CIFAR-10 as the purification system, and a standard WideResNet-28-10
on CIFAR-10 as the classifier. We used the entire dataset for BPDA, and 10% of the dataset for
BPDA-EOT. We use 15 EOT samples—the same as Nie et al. (2022). For ImageNet experiments, we
used the official checkpoint of 256× 256 unconditional Guided diffusion (Dhariwal & Nichol, 2021)
as the purification system, and ResNet-50 for classification. We evaluate the clean accuracy with
1000 samples from the validation set, and robust accuracy with 200 samples due to computational
efficacy.

Table 1: Randomness-induced gradient masking in diffusion models.

Purification Model Method Fix Noise t∗ Clean BPDA BPDA-EOT

DDPM (CIFAR-10) DiffPure ✗ 100 84.51 82.38 80.8
✓ 100 85.25 60.62 60.7

Guided (ImageNet) DiffPure ✗ 150 69.0 67.0 –
✓ 150 68.5 34.0 –

5



Under review as a conference paper at ICLR 2024

As shown in Table 1, on CIFAR-10, our implementation of DDPM2 with DiffPure achieves 80.8%
against BPDA-EOT, which is comparable with the original result 81.40% (Nie et al., 2022). After
applying randomness replay, there is no significant change in the clean accuracy, but the robust
accuracy (BPDA and BPDA-EOT) will receive a 20% drop. On ImageNet, we achieve a similar
performance on the clean accuracy (69.0% vs. originally 67.79%). Again, randomness replay will not
affect the clean accuracy, but provide a 33% lower robust estimation against BPDA. The 34% BPDA
robustness is even lower than the originally reported full gradient AutoAttack method (40.93%). Note
that without randomness replay, EOT provides a slightly lower (better) robustness estimation than
non-EOT, but the difference is subtle and not comparable with randomness replay. Those phenomena
are precisely consistent with our theoretical predictions. All combined together, we conclude that
randomness-induced gradient masking indeed happened on both CIFAR-10 and ImageNet datasets in
the previous evaluation of diffusion models for adversarial purification.

Randomness largely determines the purified states We further examine how strong can random-
ness alters the purified state for diffusion models. We considerd two scenarios: with the same initial
state and different randomness, and different initial states within a small ℓ2 ball but with exactly
the same randomenss. The correlation matrices of the eventual purified directions are shown in
Fig. 1. With different noises, the diffusion model purifies the same state into diffrent (but positively
correlated) directions. However, with the same noise, the diffusion model purifies different initial
states within a small ball into almost the same directions (correlation > 0.99). This shows that if the
perturbation of initial states is small, randomness is a decisive factor for the evantual purified state. If
not properly controlling the randomness, the gradients calculated for the previous randomness will
be applied to an alternative purified state and non-optimal. This is an extra piece of evidence for
randomness-induced gradient masking can happen in diffusion models.
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(a) Same initial state, different noise.
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(b) Different initial states, same noise.

Figure 1: Randomness largely determines the purified states of diffusion models. Correlation matrices
of the purified state directions with (a) same initial state, different noises. With different noises, the
diffusion model purifies the same state into diffrent (but positively correlated) directions. (b) Different
initial states, same noise. Provided with the same noise, the diffusion model purifies different initial
states within a small ball into almost the same directions (correlation > 0.99). This shows that if the
perturbation of initial states is small, randomness is a decisive factor for the evantual purified state.

5.2 COMPARISON OF DIFFPURE AND REVERSE-ONLY DIFFUSION MODELS (REVPURE)

Reverse-only diffusion models (RevPure) The DiffPure (Nie et al., 2022) framework proposed to
utilize both the forward and reverse processes of diffusion models for adversarial purification. Since
the forward process introduces a large amount of randomness, we want to explore whether it’s possible
to remove the forward process, thus only using the reverse process of diffusion models for adversarial
purification (RevPure). A similar reverse-only framework was proposed in DensePure (Xiao et al.,
2023), but further equipped with a majority voting mechanism to study the certificated robustness.

DDIM Besides randomness replay, an alternative way to eliminate the effect of randomness is
to use a deterministic reverse process. As shown in eq. 3, the reverse process of DDIM Song et al.

2We focus on discrete-time diffusion models in this paper because there may be extra sources of gradient
masking beyond randomness in continuous-time models due to numerical solvers (Huang et al., 2022).
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(2020a) does not involve any randomness. Thus, by applying the reverse-only DDIM, we can get a
fully deterministic diffusion model-based adversarial purification system.

Table 2: The comparison of DiffPure and reverse-only diffusion models (RevPure).

Purification Model Method Fix Noise t∗ Clean BPDA BPDA-EOT

DDPM (CIFAR-10) DiffPure ✓ 150 79.61 68.00 67.2
RevPure ✓ 150 81.92 74.20 74.9

DDIM (CIFAR-10) RevPure – 150 75.81 44.12 44.7

Guided (ImageNet) DiffPure ✓ 150 68.5 34.0 –
RevPure ✓ 100 57.1 32.0 –

As shown in Table 2, the RevPure framework can provide a better clean and robustness accuracy than
DiffPure on CIFAR-10. The deterministic method DDIM does not exhibit comparable robustness
improvements. For ImageNet, there is a decrease in clean accuracy by RevPure (see Fig. 2c). This
can be explained as the reverse process of the diffusion model on ImageNet fails to perform normally
on clean stimuli, thus will require the forward diffusion process to inject appropriate noise. However,
the robust performances of DiffPure and RevPure are still similar. In all, the reverse denoise process
in diffusion models seems to play a more fundamental role in adversarial purification.

5.3 THE EFFECT OF SEQUENCE LENGTH AND SUBSEQUENCING

Sequence length We modified the sequence length (t∗ = 1, 50, 100, 150, 200) and measured the
robustness of DDPM with DiffPure, RevPure (with randomness replay, same for further evaluations)
and DDIM against BPDA on 10% of CIFAR-10. The results are shown in Fig. 2a. The clean accuracy
decreases monotonically with the sequence length. The robustness accuracy first increases with
sequence length, until reaching the optimal, and further decreases as the decreasing of clean accuracy
becomes the dominant effect. For both DDPM and DDIM with RevPure, the optimal robustness
sequence length is at around t∗ = 150, while for DDPM with DiffPure, the optimal is attained at
t∗ = 200 and will further decrease (not shown). Fig. 2a shows that DDPM with RevPure outperforms
DiffPure for both clean accuracy and robustness. The DDIM model performs worst. On ImageNet,
the effects are similar except that the clean accurary of RevPure decreases considerably faster than
DiffPure, as shown in Fig. 2c.
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(a) Sequence length (CIFAR-10).
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Figure 2: The effect of sequence length and subsequencing. (a) Sequence length t∗. Clean accuracy
decreases monotonically with the sequence length. Robustness increases with the sequence length
until reaching the optimal, and then decreases as the drop of clean accuracy dominates. (b) Subse-
quence length s∗. Subsequencing deteriorates robustness. (c) Sequence length on ImageNet. The
effects are similar on ImageNet, except that the clean accurary of RevPure decreases considerably
faster than DiffPure. Dashed lines mark the clean accuracy and solid lines mark the BPDA accuracy.

Subsequencing We further introduced the subsequencing technique for acceleration to explore its
effects on robustness. For a purification model with a sequence length t∗, we picked a subsequence
with length s∗ = 5, 10, 20, 50, 75. We used a linear scheduler for the subsequencing. As shown
in Fig.2b, the clean accuracy of DDPM first decreases and then increases with the decrease of
the subsequence length. This can be explained as there are two effects influencing the accuracy:
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subsequencing itself as an approximation deteriorates accuracy, while a shorter sequence length
benefits accuracy. For the DDIM model, the clean accuracy increases with subseqeuncing, reflecting
the fact that DDIM is a better model for subsequence than DDPM. However, as for the robustness
performance, subsequncing significantly decreases the BPDA accuracy, showing that the robustness
improvement relies on adequate iterations of the dynamics.

5.4 FID SCORE MAY NOT SIGNIFICANTLY AFFECT ROBUSTNESS IMPROVEMENT

We next investigate whether the image generation ability of diffusion models determines their
robustness improvements for adversarial purification. Since the exponential moving average (EMA) is
a critical trick of diffusion models for high-quality image generation, we simply tested the robustness
of DDPM models with and without EMA during training. As shown in Fig. 3, the EMA model
performs better than the non-EMA model for both clean classification and BPDA attack, which
is aligned with their image generation ability. However, given their relatively large difference in
image generation ability (FID score 3.212 vs. 12.138), their robustness difference (BPDA 71.57% vs.
67.47%) is less significant. This is consistent with the intuition that a low-quality but clean image
may already be sufficient for the classifier to perform image classification. Thus, improvements in
the FID score of diffusion models may not lead to commensurate improvement in robustness.

Table 3: Comparison of robustness for models with different image generation abilities.

Purification Model Method Fix Noise t∗ FID Clean BPDA
DDPM (EMA) RevPure ✓ 150 3.212 81.92 74.20
DDPM (Non-EMA) RevPure ✓ 150 12.138 80.15 70.21

6 HOW DO THE DIFFUSION MODELS IMPROVE ROBUSTNESS?

To gain a deeper understanding of the mechanisms of how diffusion models improve robustness,
we investigate how the purified states evolve over time. Denote x0 as the clean image, x̃0 as the
perturbed image, and xt as the purified image at timestep t. We quantify the change relative purified
state vector xt − x0 with the initial BPDA perturbation.

The reverse process is not a simple ℓ2 denoiser We first measure the length of the vector
(∥(xt − x0)∥2). As shown in Fig. 3a, the DiffPure framework exhibits a clear two-stage process—
first increase the ℓ2 distance by forward process and further decrease by reverse. RevPure also exhibits
an increase-decrease trend. However, the ℓ2 distances can not explain the robustness improvement—
compared to the initial adversarial perturbation, the end distances increase for all models, and the
worst performing model DDIM has the least distance.
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Figure 3: The evolution of relative purified state vector xt − x0 over time on CIFAR-10. (a) Length.
ℓ2 distance between the purified states xt and clean stimuli x0. (b) Angle. Cosine similarity between
the adversarial direction x̃0−x0 and the purified direction xt−x0. (c) Projection. The inner product
of x̃0 − x0 and xt − x0. The projections onto the adversarial direction, but not the ℓ2 distances,
reflect robustness improvements from different models.
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(a) Sequential denoising.
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Figure 4: Sequential denoising removes the adversarial projection. (a) An illustration of the sequential
denoising in reverse process. (b) The hisotogram of correlations of initial perturbations and purified
directions. Initially, the perturbation are non-correlated. After the diffusion model, the purified
states are positively correlated around a direction. This illustrates that the diffusion model has an
internal bias direction from image priors. (c) The PCA analysis of initial perturbations (before
diffusion) and purified directions (after diffusion). It shows that the purified directions lie in a much
lower dimensional space comparing with before purification. The dashed dot line marks 90% of
accumulated exlained variance.

Sequential denoising removes the adversarial projection We further measure the cosine similarity
and inner product between the relative adversarial vector x̃0−x0 and the relative purified state vector
xt − x0, as shown in Fig.3b and 3c. An illustration of the sequential denoising process is shown
in Fig. 4a. The reverse process indeed gradually removes the projection on the original adversarial
direction, eventually reaching the direction that is near-orthogonal to the adversarial direction. These
results further support the idea that forward process may not be useful for robustness. It also explains
why we find shorter sequence lengths do not achieve significant robustness improvements as the
fewer steps do not remove the adversarial projections sufficiently.

Diffusion models purify the states toward a biased direction in a low-dimensional space We
finally analyse the structure of purified directions. We generated 30,000 random initial perturbations
aorund a clean CIFAR-10 stimulus (which is a order greater than the data dimension), and recorded
the corresponding purified directions after passing the diffusion model. As shown in Fig. 4b, the initial
perturbations before diffusion models are non-correlated. After the diffusion model, the purified states
are positively correlated around a direction. Further PCA analysis (Fig. 4c) illustrates that the purified
directions lie in a much lower dimensional space. In all, this illustrates that the diffusion model has an
internal bias direction from image priors. This biased direction is unlikely to be adversarial directions,
as otherwise if the diffusion models purifiy towards adversarial directions, we should witness a major
decrease in clean accurary even without any attack. The low dimensional structure encodes the image
prior learned form the dataset, which will filter out abnormal perturbations and thus, make the system
harder to attack.

7 CONCLUSION

In this paper, we carefully studied the empirical robustness improvement from adversarial purification
with diffusion models. The key is to properly understand the effect of randomness on the evaluation
of empirical adversarial robustness. Leveraging a simple theoretical example, we illustrate how a
purification system with randomness can cause gradient masking that cannot be solved by the standard
EOT method. The theoretical arguments explain why some of the previous work relies on injecting
random noise to observe “robustness improvements (Yoon et al., 2021), and question whether the
promising empirical robustness from diffusion models is gradient masking (Nie et al., 2022). We
propose randomness replay to provide a better robustness estimation of any randomness-involved
systems. Experiments confirm that gradient masking happens in diffusion models with the previous
protocol. Reverse-only diffusion models (RevPure) indeed provide a similar robustness improvements
with the DiffPure framework. Further analyses show that the reverse process improves robustness
by sequentially removing adversarial projections. The purified directions are postively correlated,
and lie in a lower dimensional space, refelcting the image prior learned by diffusion models. A more
efficient adversarial projection removal mechanism, rather than the generation ability (FID score),
should lead to a better adversarial purification system.
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A PROOFS

A.1 PROOF OF THEOREM 1

(a) Illustration of the proof. (b) Randomness replay.
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(c) Curse of dimensionality.

Figure S1: Random-induced gradient masking. (a) Illustration of the example and proof. The region
considered is a ℓ2 hypoerball around x0 with radius ϵ. The simply connected adversarial region A
can be covered by a hyperball around c with radius r. EOT of the gradient-based attack Eξ is able
to cancel the effect of noise during generating the attack η0, thus pointing to the optimal direction
c− x0. The success rate of applying such attack with testing noise η1 is effectively the possibility of
η1 does not escape the small r ball. (b) Randomness replay. After randomness replay, since η1 = η0,
the attack is optimal again, thus pointing back to the adversarial region. (c) Curse of dimensionality.
The cdfs of χ2(n) distribution becomes flat as the dimensionality n → ∞. This would yield the
gradient-based and EOT attacks approaching probability zero to success when r/σ ≪

√
n. The

critical point is at (n, 1/2).

Proof. Since c is the centroid of the adversarial space A with a radius of r = maxx∈A ∥x− c∥2, the
adversarial space can be covered by a hyperball, A ⊆ B2(c, r).

Assume P generates noise η0 while calculating the attack, then the generated attack is
ξ = x1 − (x0 + η0),∀x1 ∈ A. (6)

The EOT of the attack
Eξ = c− x0, (7)

which points to the centroid of the adversarial space. During testing, assume P generates noise η1.
The probability of the EOT attack successfully fools the system
Pr[P ◦F (x0+Eξ) ̸= y0)] = Pr[F (c+η1) ̸= y0] = Pr[(c+η1) ∈ A] ≤ Pr[(c+η1) ∈ B2(x1, r)],

(8)
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which is upper bounded by the probability that after perturbation the attack is still within the hyperball.
Thus,

Pr[∥η1∥2 ≤ r] = Pr

[
n∑

i=1

η21i ≤ r2

]
= Pr

[
n∑

i=1

(η1i
σ

)2
≤ r2

σ2

]
. (9)

Since the normalized i-th component η1i/σ ∼ N (0, 1), the LHS is the sum of square of standard
Gaussians,

∑n
i=1 (η1i/σ)

2 ∼ χ2(n), therefore the probability is the cdf of χ2(n), thus

Pr[P ◦ F (x0 + Eξ) ̸= y0)] ≤ Ψ

(
r2

σ2
;n

)
. (10)

For the non-EOT case,

Pr[P ◦ F (x0 + ξ) ̸= y0)] = Pr[x1 + (η1 − η0) ∈ A] ≤ Pr[x1 + (η1 − η0) ∈ B2(c, r)]. (11)

Since (η1 − η0) ∼ N (0, 2σ2I), the probability

Pr[P ◦ F (x0 + ξ) ̸= y0)] ≤ Pr[∥(x1 − c) + (η1 − η0)∥2 ≤ r]

≤ Pr[∥(η1 − η0)∥2 ≤ r] = Ψ

(
r2

2σ2
;n

)
.

(12)

A.2 PROOF OF COROLLARY 1.1

Proof. By CLT, when n → ∞, the cdf of χ2(n) becomes the cdf of N (n, 2n), thus

Pr[P ◦ F (x0 +Eξ) ̸= y0)] ≤ Φ

(
r2

σ2
;n, 2n

)
=

1

2

(
1 + erf

r2

σ2 − n

2
√
n

)
≈ 1

2

(
1− erf

√
n

2

)
, (13)

where Φ(x;µ, σ) denotes the cdf of Gaussian distribution. By the squeeze theorem, we have

lim
n→∞

Pr[P ◦ F (x0 + Eξ) ̸= y0)] = 0, (14)

and similarly,
lim
n→∞

Pr[P ◦ F (x0 + ξ) ̸= y0)] = 0. (15)

A.3 PROOF OF THEOREM 2

Proof. If R(S) = 1, by definition, ∀x ∈ B, S(x) = y0. Since S and S′ have the same domain, and
will produce the same outputs with the same inputs and randomness, ∀x ∈ B, S′(x) = y0. Thus,
R(S′) = 1.

If R(S) = 0, then ∃x̃0 and a randomness configuration η, s.t. S(x̃0;η) ̸= y0. Again, since S and
S′ have the same domain, and will produce the same outputs with the same inputs and randomness, if
encounter the same randomness and inputs, S′(x̃0;η) = S(x̃0;η) ̸= y0. Thus, R(S′) = 0.

A.4 PROOF OF COROLLARY 2.1

As shown in Fig. S1b, after randomness replay, since η1 = η0, the attack is optimal again, thus
pointing back to the adversarial region. Therefore Pr[S′(x0 + ξ) ̸= y0)] = R(S′,x0,B) =
R(S,x0,B).
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B ADDITIONAL DATA

Table S1: The effect of sequence length t∗ (raw data for figure 2a).

Metric Model t∗ 1 50 100 150 200

Clean
DDPM (DiffPure-Replay) 94.0 89.4 83.7 80.7 75.5
DDPM (RevPure-Replay) 94.9 91.6 86.7 83.1 77.7
DDIM (RevPure) 95.0 90.1 81.8 77.6 69.4

BPDA
DDPM (DiffPure-Replay) 0.0 31.2 60.2 67.2 68.8
DDPM (RevPure-Replay) 0.0 50.2 72.8 75.2 72.8
DDIM (RevPure) 0.0 22.7 39.3 44.3 41.3

Table S2: The effect of subsequence length s∗ (raw data for figure 2b).

Metric Model s∗ 5 10 20 50 75 150

Clean
DDPM (DiffPure-Replay) 66.6 47.7 33.6 34.5 48.1 80.7
DDPM (RevPure-Replay) 81.3 70.3 54.4 58.8 68.4 83.1
DDIM (RevPure) 95.2 95.3 94.3 91.4 87.5 77.6

BPDA
DDPM (DiffPure-Replay) 0.0 0.0 0.0 0.5 3.5 67.2
DDPM (RevPure-Replay) 0.0 0.0 0.1 1.8 11.9 75.2
DDIM (RevPure) 0.0 0.0 0.0 2.2 11.3 44.3

Table S3: Robustness correspondence of classifier and adversarial projection (raw data for figure ??).

Model Adv. Projection BPDA PGD-ℓ2 ϵ Model
DDPM (DiffPure-Replay) 0.0972 ± 0.0985 68.00 61.75 0.0972
DDPM (RevPure-Replay) 0.0571 ± 0.0758 74.20 78.50 0.0571 WideResNet-28-10
DDIM (RevPure) 0.2001 ± 0.1280 44.12 26.49 0.2001
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C VISUALIZATION OF THE PURIFICATION PROCESS

x x 1 50 100 150 175 200 250 300

(a) DDPM (DiffPure-Replay).

x x 1 10 25 50 75 100 125 150

(b) DDPM (RevPure-Replay).

x x 1 10 25 50 75 100 125 150

(c) DDIM (RevPure).

Figure S2: Visualization of the purification process. The first column is the clean stimuli, the second
is the perturbed stimuli, and the rest are purified states.
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