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Abstract

Metamorphic testing has recently been used to001
check the safety of neural NLP models. Its002
main advantage is that it does not rely on a003
ground truth to generate test cases. However,004
existing studies are mostly concerned with005
robustness-like metamorphic relations, limit-006
ing the scope of linguistic properties they can007
test. We propose three new classes of meta-008
morphic relations, which address the prop-009
erties of systematicity, compositionality and010
transitivity. Unlike robustness, our relations011
are defined over multiple source inputs, thus012
increasing the number of test cases that we can013
produce by a polynomial factor. With them,014
we test the internal consistency of state-of-the-015
art NLP models, and show that they do not al-016
ways behave according to their expected lin-017
guistic properties. Lastly, we introduce a novel018
graphical notation that efficiently summarises019
the inner structure of metamorphic relations.020

1 Introduction021

Many recent advances in neural models for NLP022

have been driven by the ability to learn from unla-023

beled data (Devlin et al., 2019; Liu et al., 2019b).024

This approach allows for training the models on025

large-scale corpora without the costly process of026

annotating them. As a result, the accuracy and com-027

plexity of state-of-the-art neural models for NLP028

have increased (Brown et al., 2020).029

This trend towards unlabeled data does not have030

a counterpart in testing NLP models. Instead, both031

in-distribution testing and out-of-distribution test-032

ing (Yin et al., 2019; Teney et al., 2020) rely on033

comparing the model’s predictions to the ground034

truth. Similarly, attempts at probing the internal035

computation of large NLP models use supervised036

classifiers as a diagnostic tool (Ettinger et al., 2016;037

Belinkov et al., 2017).038

In general, such extreme reliance on ground-039

truth data limits the quantity and quality of test040

cases we can produce, which is a known problem in041

the software testing community (Barr et al., 2015). 042

In this regard, a promising solution is metamorphic 043

testing (Chen et al., 2018). Under this paradigm, 044

we test the internal consistency of an NLP model 045

by checking whether it satisfies a necessary rela- 046

tion of its inputs and outputs (Ribeiro et al., 2020). 047

Consequently, metamorphic testing relies on our 048

ability to formally express our expectations on the 049

behaviour of an NLP model. 050

Still, most of the metamorphic relations pro- 051

posed in the literature target the same type of be- 052

haviour, as we show in this paper. Indeed, the 053

majority of them are robustness relations, which 054

require that the output of an NLP model remains 055

stable in the face of small input perturbations (As- 056

pillaga et al., 2020). These perturbations may in- 057

volve simple typos (Belinkov and Bisk, 2018; Gao 058

et al., 2018; Heigold et al., 2018), replacing indi- 059

vidual words with a synonym (Li et al., 2017; Jia 060

et al., 2019; La Malfa et al., 2020), or adding ir- 061

relevant information to the input (Tu et al., 2021). 062

Due to their simple structure, robustness-like re- 063

lations have been applied to the testing of several 064

NLP tasks, including sentiment analysis (Ribeiro 065

et al., 2020), machine translation (Sun and Zhou, 066

2018), and question answering (Chan et al., 2021). 067

Even testing the fairness of NLP models falls in 068

this category (Ma et al., 2020). 069

At the same time, we expect state-of-the-art NLP 070

models to exhibit a broader range of linguistic prop- 071

erties than just robustness. First and foremost, NLP 072

models should generalise systematically, i.e. their 073

ability to understand some inputs should be intrinsi- 074

cally connected to their ability to understand related 075

ones (Fodor and Pylyshyn, 1988). While the ex- 076

act definition of systematic behaviour varies in the 077

literature (Hupkes et al., 2020), a common require- 078

ment is that the model’s predictions are a result of a 079

composition of syntactic and semantic constituents 080

of the input (Baroni, 2020). Several supervised 081

methods to test against such requirements exist (Et- 082
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tinger et al., 2016; Goodwin et al., 2020), but they083

all rely on comparing the model’s predictions to084

the ground truth. Likewise, Yanaka et al. (2021)085

interprets systematicity as the ability to generalise086

over transitive relations. Their supervised method087

shows that current models struggle to do so.088

In this paper, we propose three new classes of089

metamorphic relations, which are designed to test090

the systematicity, compositionality and transitivity091

of NLP models. In true metamorphic fashion, our092

relations do not rely on ground-truth data and scale093

up the generation of test cases by a polynomial094

factor. For each proposed relation, we provide an095

illustrative experiment where we test state-of-the-096

art models for the expected linguistic behaviours.097

More in detail, our main original contributions are:098

• Pairwise systematicity. First, we propose a099

general class of metamorphic relations to test100

the systematicity of NLP models (Section 4).101

The relations in this class are based on pairs102

of inputs, which yields a quadratic number of103

test cases from a single dataset. We test the104

pairwise systematicity of a sentiment analysis105

model in Section 4.1, with positive results.106

Then, in Section 4.2, we give a geometrical107

intuition of the constraints imposed by our108

relations on the model’s embedding space.109

• Pairwise compositionality. Second, we mod-110

ify pairwise systematicity to test the presence111

of compositional constituents in the hidden112

layers of neural models (Section 5). Accord-113

ingly, we test the pairwise compositionality of114

a natural language inference (NLI) model in115

Section 5.1, and show that it does not behave116

in a compositional way.117

• Three-way transitivity. Third, we introduce118

a class of relations to test the internal transi-119

tivity of an NLP model (Section 6). These120

relations are defined over triplets of source121

inputs. In Section 6.1, we test a state-of-the-122

art model that predicts the lexical relation of123

words (synonymy, hypernymy), and show that124

it does not behave in a transitive way.125

• Graphical notation. Fourth, we propose a126

formal graphical notation for NLP metamor-127

phic relations, that efficiently expresses their128

internal structure (Section 2).129

• Taxonomy of existing work. Fifth, we re-130

view the existing literature on metamorphic131

testing for NLP, and show that the relations 132

proposed therein share the same structure with 133

a single source input (Section 3). 134

Lastly, in Section 7 we conclude and outline pos- 135

sible future work. We discuss the ethical implica- 136

tions of our work in Appendix A. We provide a 137

quick-reference guide to our contribution in Ap- 138

pendix B. The code of our experiments and re- 139

producibility checklist are available at https: 140

//doi.org/10.5281/zenodo.5703459. 141

2 A graphical notation for NLP 142

metamorphic relations 143

This section gives preliminary definitions and pro- 144

poses a compact graphical notation for NLP meta- 145

morphic relations. 146

Definition 2.1 (NLP model). Let f : X → Y be a 147

machine learning model that maps a textual input 148

x ∈ X to a suitable output Y ∈ Y . Here, we 149

assume that f is a neural network, and Y ≡ Rk 150

is either a k-dimensional embedding space or the 151

soft-max output of a k-class classifier. 152

In general, a metamorphic relation can be de- 153

fined as (Chen et al., 2018): 154

Definition 2.2 (Metamorphic relation). A 155

metamorphic relation R is a property 156

of f across multiple inputs and outputs 157

(x1, . . . ,xv, f(x1), . . . , f(xv)), such that 158

R ⊆ X1 × · · · × Xv × Y1 × · · · × Yv. 159

However, we are interested in the internal struc- 160

ture of such a relation. Thus, let us discriminate 161

between two types of inputs (Chen et al., 2018): 162

Definition 2.3 (Source inputs). Given a relation R 163

with v inputs, let (x1, . . . ,xu) with u ≤ v be the 164

sequence of source inputs. These can be chosen 165

freely, e.g. by extracting them from a dataset D. 166

Definition 2.4 (Follow-up inputs). Given a relation 167

R with u source inputs, let (xu+1, . . . ,xv) with 168

u ≤ v be the sequence of follow-up inputs. These 169

are computed by a transformation of the source 170

inputs xi = Ti(x1, . . . ,xu) for i ∈ [u+ 1, v]. 171

Furthermore, all the relations in this paper pre- 172

scribe specific conditions over the model’s output: 173

Definition 2.5 (Output property). Define P ⊆ 174

Y1, . . . ,Yv as a relation over the output. Here, we 175

always write it in decidable first-order logic. 176

Altogether, the structure of an NLP metamor- 177

phic relation can be easily described in graphical 178
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form. To do so, we introduce the following com-179

pact notation (see example in Figure 1). Textual180

variables are represented as circles, whereas numer-181

ical variables (e.g. embeddings, softmax outputs)182

are squares. Moreover, source inputs are shaded183

in grey, while all other nodes are in white. Arrows184

represent the neural function f and the transforma-185

tion Ti. Lastly, the output property P is linked to186

the relevant nodes with dashed lines.187

3 A taxonomy of existing NLP188

metamorphic relations189

Most of the existing literature on NLP metamorphic190

testing proposes relations that fit in the structure of191

Figure 1. Due to their reliance on just one source192

input, we refer to these metamorphic relations as193

single-input. The individual differences among194

them can be ascribed to the specific transformation195

T and property P . The present section derives a196

taxonomy of existing NLP relations by organising197

them along these two axes T and P .198

x

x′

y

y′

f

f

T P

Figure 1: Structure of a single-input metamorphic rela-
tion. Property P expresses how the output of model f
should change when the source input x is modified via
T . Most relations in the literature follow this structure.

The transformation T is defined over the input199

text and thus allows for considerable creative free-200

dom. A list of common options is presented here:201

• Character-level T . Character-level transfor-202

mations are typically used to introduce noise203

in the input. Examples include replacing indi-204

vidual characters with a neighbouring one on a205

computer keyboard (Belinkov and Bisk, 2018)206

or a random one (Heigold et al., 2018). More207

aggressive transformations may involve swap-208

ping neighbouring characters (Belinkov and209

Bisk, 2018; Gao et al., 2018; Heigold et al.,210

2018) and shuffling a subset of the characters211

in a word (Belinkov and Bisk, 2018). Alterna-212

tively, a collection of real-world typos can be213

retrieved from datasets with edit history (e.g.214

Wikipedia) (Belinkov and Bisk, 2018).215

• Word-level T . A common word-level trans- 216

formation involves replacing words with their 217

synonym (Li et al., 2017). This operation has 218

been shown to produce adversarial examples 219

in (Jia et al., 2019; La Malfa et al., 2020). The 220

use of antonyms has also been explored in Tu 221

et al. (2021). In contrast, changing the gender 222

of keywords in the input text can reveal the so- 223

cial biases of an NLP model (Ma et al., 2020). 224

Similarly, swapping keywords in the context 225

of a question-answer (QA) system can reveal 226

inconsistent answers (Ribeiro et al., 2020). 227

• Sentence-level T . Removal or concatenation 228

of entire sentences from the input text has 229

been tried too. Aspillaga et al. (2020) experi- 230

ments with adding positive and negative tau- 231

tologies at the end of the input. Similarly, 232

Ribeiro et al. (2020) propose to concatenate 233

both well-formed sentences and randomly- 234

generated URLs. More generally, the whole 235

input text can have its sentences shuffled (Tu 236

et al., 2021) or paraphrased (Li et al., 2017). 237

Regarding the output property P , the current 238

literature only offers three choices. We list them 239

here, alongside their first-order logic formulation: 240

• Equivalence P . Robustness relations require 241

that the output does not change in the face 242

of small input perturbations. Thus, we need 243

a notion of equivalence between the source 244

output y and its follow-up y′ (see Figure 1). 245

For classification models, we can express it 246

via the softmax output y=(y1, . . . , yc) as: 247

Peq : ∃i ∀j 6= i (yi > yj) ∧ (y′i > y′j) (1) 248

where i is the predicted class. In rarer cases, 249

where the output is textual, verbatim compari- 250

son can be used (Sun and Zhou, 2018). 251

• Similarity P . For other applications, the 252

equivalence property cannot be applied. For 253

example, when testing QA systems, we want 254

to detect similar but not identical answers. In 255

such cases, we can define a similarity score 256

s(y,y′) ∈ R, e.g. cosine similarity between 257

the embeddings of the two answers (Tu et al., 258

2021). With it, we can write similarity as: 259

Psim : s(y,y′) > θ (2) 260

where θ is an arbitrary threshold chosen ac- 261

cording to the user’s domain knowledge. 262

3



• Order P . At the same time, we can estab-263

lish an order relation between the two out-264

puts y and y′. This order relation is useful in265

conjunction with transformations that have a266

monotonic effect on the output. For example,267

concatenating positive sentences to the input268

of a sentiment analysis system (Ribeiro et al.,269

2020). In such cases, let us define an order270

score s(y) ∈ R, and write the output property271

as:272

Pord : s(y) < s(y′) (3)273

In Sections 4, 5 and 6 we employ some of the274

transformations T and properties P defined here as275

building blocks for new metamorphic relations.276

4 Pairwise NLP metamorphic relations277

for testing systematicity278

We introduce a new class of metamorphic relations279

to test the systematicity of NLP models. Here,280

we take the general definition of systematicity in281

Fodor and Pylyshyn (1988), which states that the282

predictions of an NLP model across related inputs283

should be intrinsically connected and express it284

as a metamorphic relation (see Figure 2). Since285

we do not want to rely on ground-truth data, we286

first establish a baseline for the model’s behaviour287

by comparing its predictions across two different288

source inputs. Then, we perturb both source inputs289

via the same transformation and test whether the290

model’s behaviour changes accordingly.291

x1

x′
1

y1

y′
1

y2

y′
2

x2

x′
2

P

f

f

f

f

T T

Figure 2: Structure of pairwise-systematicity relations.
The two source inputs allow us to establish a base-
line for the behaviour of model f , and test whether it
changes according to expectations once T is applied.

More formally, we define pairwise-systematicity292

relations as follows. Let x1,x2 ∈ D be a pair293

of source inputs, and x′
1,x

′
2 their corresponding294

follow-up inputs via transformation T . Further-295

more, denote with y1,y2,y
′
1,y

′
2 the outputs pro-296

duced by model f . Finally, define the output prop-297

erty P in the following form:298

P : Psrc(y1,y2) =⇒ Pflw(y
′
1,y

′
2) (4)299

Note that this definition does not rely on ground- 300

truth data. In fact, we trust the model’s predic- 301

tions (y1,y2) over the source inputs to establish 302

our premise Psrc. The actual test checks whether 303

transforming the source inputs with T produces out- 304

puts that satisfy the expected property Pfwl. Any 305

violation of this property, i.e. when Psrc ∧ ¬Pfwl, 306

reveals an inconsistency in the model’s predictions 307

that breaks the user’s expectation of systematic 308

behaviour. In Section 4.2, we give an intuitive 309

geometrical explanation of the type of constraints 310

imposed by pairwise-systematicity relations on the 311

embedding space of a neural NLP model. 312

A hidden advantage of metamorphic relations 313

with multiple source inputs (see also Sections 5 314

and 6) is that they naturally produce more test cases 315

than single-input ones. In the case of pairwise sys- 316

tematicity, each input in the pair (x1,x2) is ex- 317

tracted from the same dataset D. Thus, a dataset 318

with |D| = k entries generates an O(k2) number 319

of test cases, as opposed to O(k) for single-input 320

relations. We see an example of this in Section 4.1. 321

4.1 Illustrative example: pairwise 322

systematicity of sentiment analysis 323

Now, let us apply the pairwise-systematicity re- 324

lation structure shown in Figure 2 to a sentiment 325

analysis task. To do so, we choose the following: 326

• Transformation T . For each source input xi, 327

we create a follow-up input x′
i = T (xi) by 328

concatenating a short sentence to it. A list of 329

all transformations we use is in Table 1. 330

• Output premise Psrc. Let spos(y1) and 331

spos(y2) be the (positive) sentiment scores 332

predicted by model f . Define the baseline be- 333

haviour of f as the order property Psrc=Pord 334

between these two scores (see Equation 3). 335

• Output hypothesis Pflw. Let spos(y′
1) and 336

spos(y
′
2) be the sentiment scores of the follow- 337

up inputs. We require that their order matches 338

the one of the source inputs. More formally: 339

Pflw=Pord and Psrc ⇐⇒ Pflw. 340

Our rationale is that the sentiment of any input 341

shifts when we concatenate additional text. If we 342

have ground-truth information on the sentiment of 343

the text we are adding, we can test whether our 344

predictions shift in the expected direction. For 345

instance, concatenating “I am very happy” should 346

make the score of any input more positive. This is 347
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Safety Concatenated Text Position
0.900 My friends were happy,

though.
End

0.910 Anyway, the sound of the
rain outside was sooth-
ing.

End

0.922 As always: popcorn and
coke make everything
better!

End

0.932 Thank you. Start
0.943 I watched this movie with

my brother.
Start

0.955 Here is my review: Start

Table 1: Input transformations sorted by safety.

an example of single-input relation (see Section 3348

and Ribeiro et al., 2020).349

However, if we do not have such ground truth,350

we can still test our model. We do so by considering351

a pair of inputs (x1,x2), and concatenating the352

same text to both of them. Then, whenever x1 is353

predicted more positive than x2, we require that its354

transformed version x′
1 is also more positive than355

x′
2 and vice versa. This is pairwise systematicity.356

Experiment description and results. We se-357

lect a fine-tuned version of RoBERTa (Liu et al.,358

2019b) for sentiment analysis from the Hugging-359

Face library.1. We choose 10,605 movie reviews360

from Socher et al. (2013) as our dataset D. From361

it, we generate all 112M+ possible source input362

pairs. We repeat our experiment with different neu-363

tral transformations T , and report their aggregated364

results in Table 1. Note how the proportion of365

satisfied relations (“Safety”) varies across differ-366

ent transformations. Yet, the model’s behaviour is367

fairly systematic, never exceeding 10% violations.368

We get a different picture by counting the num-369

ber of violations per each source input xi ∈ D (see370

Table 2). There, we can see that some inputs are371

more likely to make the source order Psrc(y1,y2)372

unstable across all the transformations T . Interest-373

ingly, a quick read through the reviews in Table374

2 shows that they are all misclassified. Thus, we375

can conclude that pairwise-systematicity testing376

reveals a different issue in the model f than clas-377

sic non-metamorphic testing. For this reason, we378

encourage practitioners to perform both types of379

testing on their NLP models, as it will give a clearer380

1https://huggingface.co/siebert/
sentiment-roberta-large-english

Safety Source Input Pred.
0.731 This isn’t a “Friday” worth

waiting for.
Pos

0.741 The audience when I saw
this one was chuckling at all
the wrong times, and that’s
a bad sign when they’re sup-
posed to be having a collec-
tive heart attack.

Pos

. . . . . . . . .
1.000 As a director, Paxton is

surprisingly brilliant, deftly
sewing together what could
have been a confusing and
horrifying vision into an in-
tense and engrossing head-
trip.

Neg

1.000 Intended to be a com-
edy about relationships, this
wretched work falls flat in
just about every conceivable
area.

Pos

Table 2: Source inputs and their sentiment predictions,
sorted by the number of times they appear in a safe pair.

picture of their strengths and weaknesses. 381

4.2 Geometric interpretation of pairwise 382

systematicity 383

Metamorphic relations impose constraints between 384

the inputs and outputs while treating the model f 385

as a black box (Chen et al., 2018). Still, in neu- 386

ral networks, it is possible to trace the effect of a 387

relation R on the hidden layers. Here, we give a 388

geometric explanation of the type of constraints 389

pairwise-systematicity relations put on the last em- 390

bedding space of a neural NLP model. 391

To this end, let us consider the relations in Sec- 392

tion 4.1. Recall, that model f outputs a sentiment 393

score s(y), which is a one-dimensional projection 394

of the embedding space (see Figure 3). Accord- 395

ingly, the premise Psrc and hypothesis Pflw are 396

only concerned with the position of each embed- 397

ding y along direction s. However, since the source 398

and follow-up inputs differ due to transformation 399

T , the two output properties Psrc and Pflw act on 400

different points in the embedding space. Once we 401

require that Psrc ⇐⇒ Pflw, we set the expectation 402

that f is exceptionally consistent at mapping pairs 403

of inputs (x1,x2) onto space Y in the same order. 404
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−1 0 1

−1

0

1 output
score s

Psrc(y1,y2)

y1

y2

−3 −2 −1 0 1 2

−2

0

2 output
score s

Pfwl(y
′
1,y

′
2)

y′
1 y′

2

Figure 3: Pairwise systematicity relates pairs of source outputs (left) to pairs of follow-up outputs (right) in the
embedding space. For the relations in Section 4.1, the order of each pair along dimension s must be preserved.

Such expectation is met if and only if f is a sys-405

tematic, though not necessarily correct, function.406

Similar considerations apply if Psrc and Pflw407

are based on equality or similarity rather than order.408

Indeed, equality (see Equation 1) is defined over409

the softmax outputs, which are affine combinations410

of the embeddings (Bishop, 2006). In such case,411

the condition Psrc =⇒ Pflw translates to a require-412

ment that if the source inputs are both mapped to413

the same half-space, the follow-up inputs should414

be too. Conversely, similarity (Equation 2) defines415

a measure on the embedding space. Source in-416

puts that are within a certain threshold θ should be417

matched by follow-up inputs that are also close.418

The following section introduces a class of pair-419

wise relations where the output premise and hypoth-420

esis are defined over different embedding spaces.421

5 Pairwise NLP metamorphic relations422

for testing compositionality423

Many probing works train simple supervised clas-424

sifiers on top of the hidden representations of an425

NLP model (e.g. Hewitt and Manning, 2019).These426

classifiers, called probes, can reveal whether the427

neural model has learnt to recognise some funda-428

mental constituents of the input language early on.429

The presence of such building blocks is a necessary430

condition for an NLP model to exhibit composi-431

tional behaviour (Baroni, 2020). Here, we propose432

to test the presence of compositional constituents433

in the hidden layers via metamorphic testing.434

Consider the graph in Figure 4. There, the neural435

model is split into the mathematical composition436

of two functions f ◦ g. More precisely, z = f(x)437

are the hidden representation of some hidden layer,438

and y = g(z) is the final output. Now, let us define439

the output property P as follows: 440

P : Phid(z1, z2) =⇒ Pout(y1,y2) (5) 441

A relation in this form allows us to express 442

whether specific precursor signals in z are expected 443

to have a direct effect on y. In a similar way to 444

the relations in Section 4, both the premise Phid 445

and hypothesis Pout are established by comparing 446

across pairs of inputs, rather than a ground-truth. 447

In Section 5.1, we show how our technique can 448

reveal the presence (or absence) of compositional 449

building blocks in an NLP model. 450

x1

x2

z1

z2

y1

y2

f

f

g

g

P

Figure 4: Structure of pairwise-compositionality rela-
tions. Comparing the hidden representations z1, z2 of
the source inputs reveals whether the model f ◦ g uses
them to produce the output in a compositional fashion.

5.1 Illustrative example: pairwise 451

compositionality of NLI 452

Here, we apply the metamorphic relation in Fig- 453

ure 4 to test a natural language inference (NLI) 454

model. In general, the input x = (xa,xb) of an 455

NLI model is the concatenation of two pieces of 456

text: the premise xa and the hypothesis xb. The 457

model’s goal is to predict whether xb logically fol- 458

lows from xa, i.e. their entailment. 459

To test whether the model’s predictions exhibit a 460

compositional behaviour, we construct our test in- 461

puts according to Rozanova et al. (2021). Namely, 462
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Safety Context Mon.
0.387 So there is no dedicated 〈x〉

for every entity and no distinc-
tion between entity mentions
and non-mention words.

Down

. . . . . . . . .
0.626 There was no 〈x〉. Down
0.627 We stood on the brink of a 〈x〉. Up

. . . . . . . . .
0.746 There are some old houses in

this 〈x〉.
Up

0.754 Some 〈x〉 bloom in spring and
others in autumn.

Up

Table 3: Contexts sorted by increasing safety.

we first choose a prototypical sentence template463

C(`), which we call a context. Each context in-464

cludes a placeholder token ` that can be replaced465

with some insertion text. Second, we construct466

each input x = (C(`a), C(`b)) by copying the467

same context twice with different insertions.468

Finally, we choose the contexts Ci and insertion469

pairs (`a, `b)j in such a way that their composition470

(C(`a), C(`b))ij has a well-definite entailment re-471

lation. Namely, the insertion pairs (see Table 4) are472

either hypernyms (⊇), hyponyms (⊆), or unrelated473

(none). Similarly, the contexts (see Table 3) are474

either upward monotone if they preserve the inser-475

tion relation, or downward monotone if they invert476

it. As a result, only the compositions Up(⊆) and477

Down(⊇) are entailed, while the rest are not.478

Now, assume that both inputs x1 and x2 in Fig-479

ure 4 are based on the same context Ci. We can480

test whether the NLI model build its output by rea-481

soning over the monotonicity of Ci and the lexical482

relation of the insertion pairs (`a, `b)j as follows:483

• Hidden premise Phid. Let z be the embed-484

dings of the second to last layer, for the to-485

kens corresponding to the insertions `a and486

`b. Train a linear probe shyp on z (Liu et al.,487

2019a) to predict whether `a is a hypernym of488

`b. Define Phid =Pord as the order property489

(see Equation 3) over the hypernymy scores490

shyp(z1) and shyp(z2) of the two inputs.491

• Output hypothesis Pout. Let sent(y) be the492

entailment score produced by the full neural493

model f ◦ g. Moreover, define Pout = Pord494

as the order of the two output scores sent(y1)495

and sent(y2). Then, consider the monotonic-496

Safety Insertion Pair Lex. Rel.
0.417 (gun,woman) none
0.475 (woman,gun) none
0.508 (tree,cherry tree) ⊇

. . . . . . . . .
0.590 (fruit,apple) ⊇
0.591 (pine,tree) ⊆

. . . . . . . . .
0.696 (potatoes,animals) none
0.726 (animals,potatoes) none

Table 4: Insertions sorted by increasing safety.

ity of the input context. If Ci is downward 497

monotone, let Phid ⇐⇒ Pout, since more 498

hypernymy means more entailment. If Ci is 499

upward monotone, let Phid ⇐⇒ ¬Pout, since 500

more hypernymy means less entailment. 501

If the NLI model f ◦ g had a compositional be- 502

haviour, the order Phid of the hypernymy scores 503

in the hidden layer should be reflected in the order 504

Pout of the entailment scores in the output. Here, 505

we show that this is not the case for a popular state- 506

of-the-art NLI model. 507

Experiment description and results. We build 508

a dataset D of 292 insertions pairs and repeat our 509

experiment with 211 contexts, for a total of about 510

9M test cases. We chose a fine-tuned version of 511

RoBERTa for NLI as our model.2 The accuracy 512

of the hypernymy probe is 0.9881. We report the 513

aggregated result by context in Table 3. Note how 514

downward monotone contexts lead to less composi- 515

tional behaviour: overall, we have 0.6880 success- 516

ful test cases with upward contexts and only 0.4808 517

with downward ones. This phenomenon is known 518

in the literature (Yanaka et al., 2019), but we show 519

that metamorphic testing can independently detect 520

it. If we aggregate the results by insertion pair (see 521

Table 4), the picture does not change. The over- 522

all safety is 0.5936, which is barely above random 523

chance. Any deviations from this baseline can be 524

interpreted as noise. 525

6 Three-way NLP metamorphic relations 526

for testing transitivity 527

An NLP model that generalises correctly should 528

exhibit transitive behaviour under the right circum- 529

stances Yanaka et al. (2021). That is, if the model 530

2https://huggingface.co/
roberta-large-mnli
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Figure 5: Structure of three-way transitivity relations.
The three source inputs x1,x2,x3 are combined into
all possible pairs. If two pairs are predicted as true by
model f , the third must be predicted true as well.

predicts a transitive linguistic property over the in-531

put pairs (x1,x2) and (x2,x3), then it should also532

predict it for the pair (x1,x3). Here, we propose533

to test this behaviour in a metamorphic way.534

More specifically, let us introduce the three-way535

transitivity relation in Figure 5. There, the three536

source inputs x1,x2,x3 are combined to form all537

possible input pairs xij = (xi,xj). Then, we can538

test whether their corresponding outputs are transi-539

tive with the following output property:540

P : v(y12) ∧ v(y23)⇒ v(y13) (6)541

where v(·) : Y → {0, 1} is the Boolean prediction542

of model f . Note that the output property P , being543

defined over three outputs, has a different structure544

from those in Sections 3, 4 and 5.545

6.1 Illustrative example: three-way546

transitivity of lexical relations547

In this section, we apply the metamorphic struc-548

ture from Figure 5 to test the transitivity of lexi-549

cal semantic relations, e.g. synonymy and hyper-550

nymy (Santus et al., 2016). In general, learning551

these linguistic properties is crucial for solving sev-552

eral NLI tasks (Glockner et al., 2018). Thus, we553

can expect an NLP model to generalise over them554

in a transitive way. We can test whether this is true555

in the following way:556

• Transformation T . The model f we test al-557

ready accepts a pair of words xij = (xi,xj)558

as input. Thus, T is merely a formalism here.559

• Output Property P . Property P in Equation560

6 depends on the definition of v(·). Here, we561

train two classification heads on top of a pre-562

trained model f . The first vsyn(·) predicts563

synonymy, the second vhyp(·) hypernymy.564

Language Syn. Safety Hyp. Safety
English 0.191 0.277
German 0.240 0.287
Chinese 0.390 0.394
Italian 0.341 0.259

Table 5: Proportion of successful three-way transitivity
tests for a state-of-the-art lexical relation model.

Note that transitivity can be tested in a super- 565

vised fashion by comparing the model’s predictions 566

to a ground truth (Yanaka et al., 2021). In contrast, 567

the three-way transitivity relations we propose test 568

the internal transitivity of a model trained to predict 569

lexical relations. 570

Experiment description and results. We re- 571

produce a state-of-the-art model for lexical rela- 572

tions (Wachowiak et al., 2020), which is a fine- 573

tuned version of the multi-lingual transformer 574

model xlmroberta (Conneau et al., 2020). We 575

extract the multi-lingual test set from the Co- 576

gALex_VI shared task (Santus et al., 2016), and 577

generate a random sample of source triplets from 578

its corpus of words, keeping those that satisfy 579

v(y12) ∧ v(y23). We present our empirical results 580

in Table 5, organised by the language of the source 581

words and lexical relation v predicted by the model. 582

As the table shows, this state-of-the-art NLP model 583

fails to predict v(y13) in a transitive way across 584

all languages. This is in contrast with the results 585

of classic supervised testing in Wachowiak et al. 586

(2020), which show that their model can predict 587

the correct lexical relations (synonym, hypernym, 588

antonym or random) with at least 0.5 of accuracy. 589

7 Conclusions and future work 590

In this paper, we presented three new classes on 591

metamorphic relations. Thanks to them, we could 592

test the systematicity, compositionality and tran- 593

sitivity of state-of-the-art NLP models. The ad- 594

vantage of our approach is that it does not rely on 595

ground-truth annotations. It can generate a polyno- 596

mially larger number of test cases than supervised 597

testing, revealing whether the NLP model under 598

test is internally consistent. 599

Still, testing is only one side of the coin. Like 600

in recent work about robustness (Aspillaga et al., 601

2020), the tested models have not been trained on 602

a metamorphic objective (e.g. as an additional loss 603

term). We believe that doing so could improve the 604

safety and consistency of a model’s predictions. 605
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Appendix A. Ethics statement837

Intelligent systems are becoming increasingly838

widespread, and NLP models are often used as839

important components in their architecture. How-840

ever, once these systems are deployed in the real841

world, there is a risk of them exhibiting biased, er-842

ratic or dangerous behaviour. In order to prevent843

such events from happening, it is crucial to perform844

a thorough testing and validation process. Indeed,845

this is one of the tenets of the ACM Code of Ethics846

and Professional Conduct3. Namely, paragraph 2.5847

therein recites “Extraordinary care should be taken848

to identify and mitigate potential risks in machine849

learning systems.” The contributions we propose850

in the present paper are directed towards this goal.851

More specifically, we believe that metamorphic852

testing is a valuable tool in the model tester’s ar-853

senal, and our contributions widen its scope of ap-854

plication. As a result, more instances of unwanted855

behaviour can be identified and addressed before856

their impact is felt by the end user.857

Appendix B. Quick-reference guide858

In this paper, we discuss and compare four classes859

of metamorphic relations. For ease of reference,860

we summarise them in Tables 6, 7, 8 and 9. These861

tables contain the formal definitions of the trans-862

formation T and output property P , a concrete863

example of possible inputs, and a reference to the864

corresponding sections in the present paper.865

3https://www.acm.org/code-of-ethics

11

https://www.acm.org/code-of-ethics


Single-input metamorphic relations

Input:
x = The cat sat on the mat.
x′ = The pet stood onto the mat.

T : replace any word of the input with a synonym.
P : y = f(x) ∧ ∃i∀j 6= i (yi > yj) ∧ (y′i > y′j)

Table 6: Example of robustness relations from the literature (Li et al.,
2017). Robustness relations belong to the class of single-input rela-
tions (see Section 3).

Pairwise systematicity metamorphic relations

Input:

x1 = Light, cute and forgettable.

x2 = A masterpiece four years in the making.

x′
1 = Thank you. Light, cute and forgettable.

x′
2 = Thank you. A masterpiece four years in the making.

T : concatenate the text Thank you. at the beginning of the input.
P : spos

(
f(x1)

)
> spos

(
f(x2)

)
⇐⇒ spos

(
f(x′

1)
)
> spos

(
f(x′

2)
)

Table 7: Example of pairwise systematicity relations defined on a sentiment analysis
task (see Section 4.1).

Pairwise compositionality metamorphic relations

Input:
x1 = There was no tree. There was no cherry tree.

x2 = There was no fruit. There was no apple.

Hidden:
f(x1) = contextual embeddings of the tokens ( tree. cherry tree. )

f(x2) = contextual embeddings of the tokens ( fruit. apple. )
P : shyp

(
f(x1)

)
> shyp

(
f(x2)

)
⇐⇒ sent

(
g(f(x1))

)
> sent

(
g(f(x2))

)
Table 8: Example of pairwise compositionality relations defined on a natural language inference
task (see Section 5.1). Pairwise compositionality relations do not have a transformation T .

Three-way transitivity metamorphic relations

Input:

x1,x2,x3 = arrangement symmetrical together

x12 = ( arrangement symmetrical )

x23 = ( symmetrical together )

x13 = ( arrangement together )
T : choose two words from the source triplet x1,x2,x3

Psyn: vsyn
(
f(x12)

)
∧ vsyn

(
f(x23)

)
=⇒ vsyn

(
f(x13)

)
Phyp: vhyp

(
f(x12)

)
∧ vhyp

(
f(x23)

)
=⇒ vhyp

(
f(x13)

)
Table 9: Example of three-way transitivity relations defined on the lexical
relations of synonymy and hypernymy (see Section 6.1).
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