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ABSTRACT

Conditional generative models have recently achieved remarkable success in vari-
ous applications. However, a suitable metric for evaluating the reliability of these
models, which takes into account their inherent uncertainty, is still lacking. Ex-
isting metrics, which typically assess a single output, may fail to capture the vari-
ability or potential risks in generation. In this paper, we propose a novel evalua-
tion metric called reliability score based on conformal prediction, which measures
the worst-case performance within the prediction set at a pre-specified confidence
level. However, computing this score is challenging due to the high-dimensional
nature of the output space and the nonconvexity of both the metric function and
the prediction set. To efficiently compute this score, we introduce Conformal Re-
Liability (CReL), a framework that can (i) construct the prediction set with desired
coverage; and (ii) accurately optimize the reliability score. We provide theoretical
results on coverage and demonstrate empirically that our method produces more
informative prediction sets than existing approaches. Experiments on synthetic
data and an image-to-text task further demonstrate the interpretability of our new
metric, and the validity and effectiveness of our computational framework.

1 INTRODUCTION

Conditional generative models map a given input condition (e.g., a textual prompt) to high-
dimensional outputs (e.g., images, sequences). Powered by large-scale datasets and models, this
paradigm underpins breakthroughs in diverse domains, from text-to-image synthesis |[Reed et al.
(2016) and drug discovery Bian & Xie|(2021) to autonomous systems|Gasparyan & Qiu| (2024)). Yet,
despite their remarkable generative prowess, a fundamental question remains largely unanswered:
how trustworthy are these models when deployed in the real world?

Current metrics such as the CLIP score Radford et al.| (2021) typically rely on a single generation.
However, because generative models inherently produce uncertain outputs, assessing only one sam-
ple may be unreliable, as it fails to capture the full variability or potential risks of other plausible
outputs. For instance, in an image-to-text task, a model might correctly caption an image as “A
man playing the guitar”, but under different sampling or decoding settings, it could generate a cap-
tion like “A man pointing a gun”, which is entirely incorrect and potentially harmful. Single-output
evaluation, therefore, is not just incomplete—it can be misleading, particularly in safety-critical
applications Gawlikowski et al.| (2023)); He et al.| (2023)).

To provide a more precise assessment of reliability, this paper proposes a new evaluation metric,
the reliability score. Our key insight is simple: rather than asking how good one output is, we ask
how bad it could be. Given a pre-specified similarity metric and a nominal significance level «, the
reliability score is defined as the worst-case performance within a prediction set at a confidence level
of 1 — a. Computing this score requires first constructing a prediction set whose miscoverage does
not exceed «, and then optimizing the worst-case performance within this set. This is particularly
challenging due to the high dimensionality of generative outputs, as well as the non-convexity of the
similarity metrics to be optimized and the prediction set serving as the constraint.

For the regression task with multi-dimensional output, one can apply directional quantile regression
(DQR) Kong & Mizeral (2012)); [Paindaveine & Siman| (2011)), which can yield a convex prediction
set. However, this set may be overly conservative, as it must account for extreme cases in order



to guarantee coverage. Besides, the prediction set may not be informative since the true set may
not be convex. Other methods Xu et al.; Javanmard et al.| (2025); |[Feldman et al.| (2023) leveraged
conformal calibration, which can alleviate some of these issues. For instance, | Xu et al.| modeled
outputs as Gaussian mixtures or projected them into lower-dimensional latent spaces. Yet, none
tackle the optimization of worst-case reliability under a general similarity metric—a problem that is
both computationally and statistically intractable in high-dimensional output spaces.

To address these limitations, we introduce Conformal ReLiability (CReL), a principled computa-
tional framework for quantifying the reliability of conditional generative models. At its core, CReL.
projects high-dimensional outputs into a structured latent space, wherein both conformal calibra-
tion and optimization are performed. Compared to existing approaches that calibrate in the original
output space, our method enjoys better computational efficiency and optimization tractability for
computing the reliability score. Theoretically, we establish that the resulting prediction set satis-
fies the target guarantee. Moreover, reformulating the objective over the latent-space prediction set
transforms the problem into an optimization program with convex constraints, on which the projec-
tion operation can be efficiently computed using linear programming. This formulation enables the
employment of projected gradient descent, endowed with provable global convergence guarantees
for computing the reliability score. We demonstrate the validity and effectiveness of our framework
on synthetic data and the image-to-text application.

To summarize, our contributions are:

* Reliability-Centric Metric: We introduce the reliability score to quantify the worst-case
performance of conditional generative models at a specified confidence level, addressing
risks overlooked by single-sample evaluations.

* CReL Framework: we develop Conformal ReLiability (CReL), a computational framework
that can efficiently and accurately compute the reliability score.

* Theoretical Guarantee: We show that the prediction set generated by our method meets
the coverage guarantee. Additionally, we empirically find that the prediction set given
by our procedure has much smaller or comparable size to other methods, highlighting the
effectiveness of our approach in delivering more informative calibration.

» Empirical Validation: We evaluate our methods on both synthetic data and the image-to-
text task. For synthetic data, we validate the effectiveness of our computational framework.
In the image-to-text task, we demonstrate that our new metric provides more interpretable
evaluations compared to traditional single-output metrics.

2 RELATED WORKS

Evaluating condition generative models.  Typical metrics for evaluating conditional genera-
tive models include Structural Similarity Index Measure (SSIM) [Wang et al.| (2004), Contrastive
Language-Image Pretraining (CLIP) Radford et al.| (2021)), and others. Specifically, SSIM evalu-
ates the structural similarity between generated images and reference images, while CLIP measures
the similarity between generated images and corresponding textual descriptions by projecting both
modalities into a shared embedding space and calculating the cosine similarity between them. Other
popular metrics, like BERT-similarity [Kenton & Toutanova) (2019) and Fréchet Inception Distance
(FID) Heusel et al.| (2017)), also rely on embedding models to quantify how well the generated sam-
ples match the given conditions. However, these metrics evaluate only a single output, which is not
ideal for generative models that are inherently designed to produce multiple diverse outputs.

Conformal prediction for multi-dimensional data. Many works have been done on this topic
recently. [Kong & Mizera| (2012); [Bogek & Siman| (2017) proposed directional quantile regression
(DQR) that estimated quantile hyperplanes for multiple directions in the response space. However,
this approach may remain conservative and uninformative, since the prediction set is constrained to
be convex and requires estimating extreme quantiles to ensure coverage. While the vector quantile
regression |Carlier et al.| (2016) can produce non-convex sets, it restricts the output to linearly depend
on the input. Other attempts include Messoudi et al.[(2022); Xu et al.| that constructed the prediction
set as an ellipsoidal set, and Johnstone & Ndiaye| (2022)); |Gibbs et al.| (2025)); |Plassier et al.| (2024)
that modeled the conditional distribution of the output. In particular, Feldman et al.|(2023)) proposed
to map the high-dimensional response into a lower-dimensional latent space, which can alleviate the



conservativeness problem when applying DQR. However, these works are hindered by intractability
or computational inefficiency in calculating the reliability score. In particular, while the prediction
set constructed by |[Feldman et al.|(2023)) can be tighter than those of others, directly optimizing over
this set is intractable due to the non-convexity of both the similarity metric and the prediction set.

3 METHODOLOGY

We aim to evaluate the reliability of a target model f : RP? — R¢ in conditional regression tasks, with
respect to a user-defined similarity metric p, where higher values of p indicate better performance.
Suppose our data has n independent and identically distributed (i.i.d.) samples {(X;,Y;)},, where
X e R? represents the input condition (e.g., prompt) and Y € R¢ denotes the ground-truth output.
For each X, the target model f generates the output Y; := f (X3).

Our goal is to assess the reliability of f for a new observation X, .1 with respect to p. Given a
confidence level « € (0, 1), we aim to quantify the worst-case performance at confidence level 1 -«

_ min p(?7 GTp41), such that P (?,Hl € Cy(Xn+1)> >1-a, (1)
Yécy(xnn)

where GT,,,1 denotes the ground truth response, i.e., X,,1 (e.g., CLIP similarity between the gen-
erated text and the image) or Y, ;1 (e.g., BERT similarity between the true text and the generated
image). This metric provides a robust, uncertainty-aware lower bound on performance, evaluating
the reliability of the method in the worst-case allowed by the confidence level 1 — a.
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Figure 1: Illustration of our procedure. During DQR training, the latent generative model maps the
target model’s prediction space Y to a latent space Z, where DQR constructs the quantile region
Rz(z) (3) using the loss (2). Then, CReL applies the calibration to adjust Rz (), such that the
calibrated region S7=! () satisfies the marginal coverage at level 1 — o.. The final reliability metric
CReL-p is then computed by optimizing (8).

Because Y is normally high-dimensional, applying directional quantile regression (DQR) can result
in overly conservative prediction sets, which may hinder an accurate assessment of reliability. To
address this issue, we introduce Conformal ReLiability (CReL), a conformal framework built on the
latent generative model, which allows both the calibration procedure and the optimization of p(-, -)
to be performed in a much lower-dimensional latent space (as illustrated in Fig.[T). This approach
yields more informative prediction sets and, consequently, more accurate reliability evaluation.

The rest of this section is organized as follows: Section[3.1]first introduces our conformal procedure
on the latent space. Then, we will show in Section [3.2] that such a procedure can meet the coverage
guarantee as long as the latent generative model is trained well. Finally, Section [3.3]introduces our
optimization methods for computing the reliability score.



3.1 CONFORMAL CALIBRATION

The key insight of our framework is to learn an embedding space Z via a latent generative model,
enabling conformal calibration in such a lower-dimensional space and thereby significantly reducing
the over-conservativeness present in the original output space. Within this latent space, we construct
Cz(X,+1) through conformal calibration following DQR models Kong & Mizera (2012), trans-
forming the original non-convex reliability optimization problem into a computationally tractable
convex-constrained optimization.

We begin by partitioning the training indices into three folds: Zjsy, for training the latent generative
model, Zqq, for training the DQR model, and Z,; for final conformal calibration. We denote the
corresponding datasets as Digp, Dyqr, and De,, respectively.

Step 1: Training the latent generative model. The model is composed of an encoder that trans-

forms ?|X = z into a latent distribution Z, and constructs C'z (X), followed by a decoder that gives
the prediction set Cy (X)) := Dec(Cz(X), X). It is ensured in Theorem [3.3|that Cy,(X) meets the
coverage guarantee, as long as the latent generative model (LGM) can well recover the distribution

}7|X . Typical choices of generative models satisfying this property include the Variational Autoen-
coder (VAE) Khemakhem et al.| (2020); Kingma & Welling (2013)) or the stable diffusion model
(Rombach et al., 2022). To this end, we fit an LGM on {(X;, ?:i)}iezlgxn' After training, we can
obtain an encoder £(-,-) : Y x X ~ Z and the decoder Dec(-,-) : Z x X ~ Y. To align the encoder
and decoder with the similarity metric p, we replace the mean square loss | Y - Dec(£(Y, X), X) |3
with p(Y, Dec(E(Y, X), X)) during training.

Step 2: Fitting the DQR model. After training the LGM, we use the encoder & to obtain (Z;, X;)
from (Y}, X;) for each i € Zyqr, where Z; := £(Y;; X;) € R”. Then, we apply the DQR [Kong &
Mizera (2012) on {Z;, X;}z,,, to obtain an initialized region Rz (x) for any x in the calibration
dataset. Specifically, given a direction u € S := {u e R" : |u| = 1}, DQR models the quantiles
of a response vector in u, allowing us to estimate the a-th quantile for any input X; by projecting
the response vector Z; onto u. Specifically, DQR minimizes the following objective (2) to estimate
the a-th quantile of the projection u' Z; given X;:
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where the pinball loss ¢, (y, ) is defined as:

R CIOR ) ity -9>0,
Caly,9) = {(1 —a)(§-y) otherwise.

Here, fg(X;,u) represents the regression function parameterized by 3, which predicts the value
of the a-th quantile for the projected data. For each direction u, DQR defines a convex half-space
HY (z) ={zeR":u"z > fg(x,u)}. The quantile region is then obtained by taking the intersection
of all such half-spaces across all directions u € S"~*:

Rz(z)= () H,(2), 3)

ueS-1

which yields a convex region in the latent space Z. The DQR fitting procedure is illustrated in Fig.[T}
where the quantile region Rz (x) constructed in Z during training is marked in red.

Step 3: Calibration. When the latent dimension > 1, Rz (X) covers strictly less than 1 — « of
the distribution, due to the intersection of the half-spaces. To address this, we perform calibration
to construct Cz (X ) on Dey) := {(X;, Z;) }iez..,» such that P(Z,41 € Cz(Xp41)) 2 1 - . To this
end, we first define a base region:

ST(x) = {z eR": min d(a,z2)< ’y}7 4)

acRz(x)

where d(-,-) a distance function. The goal is to find a 7., such that Cz(X) = S7(X). To
achieve the target coverage, we expect 7.1 to be the (1 — «)-quantile of the distribution function



OVer MiNger, (x) d (a,-). We first obtain the coverage rate ~iy;; of the uncalibrated base regions (i.e.,
S°(Xi) = Rz(X,)):

1
|Dcal|

where Z; = E(E; X;) for each i € Z,). Since the coverage of Rz (X;) is strictly less than 1 — «
when r > 1, we would have ~in;s < 1 — v as long as the sample size of the calibration data, i.e., |Zca|
is sufficiently large. That means, to achieve coverage guarantee, we should grow the base quantile
region by computing v, as

E:' = min d(a7 Z1)7 Vie Icah
aeRz(X;)

Yeal := [ (|Deat| + 1) (1 — ) |-th smallest value of {E} : 7 € Zc,) }.

HZi:Z; e Rz(X;),i € Leall, ©)

Yinit =

(6)

Finally, the calibrated quantile region C'z (X ) is given by S7=1(X) in .

Remark 3.1. Unlike Feldman et al.| (2023)), which performs calibration in the output space ), we
calibrate directly in the latent space Z. This is motivated by computational and optimization con-
siderations. Specifically, |[Feldman et al.| (2023)) calibrates on Ry (X) = Dec(Rz(X), X). Since
Ry (X) may be non-convex, calibration requires discretization, which can be computationally ex-
pensive, particularly in high-dimensional spaces. In contrast, Rz (X) is convex, allowing the core
E} to be computed efficiently via linear programming. Please refer to Appendix [D| for more de-
tails about computational complexity. Furthermore, direct optimizing over Cy(X,,4+1) can be
intractable, as both Cy(X,,41) and p(-,-) are non-convex. In contrast, as we will show, the opti-
mization can be reformulated into one that optimizes in the latent space Cz (X,,+1) = S71 (X,41).
Because this space is convex and compact, the optimization becomes more tractable.

Step 4: Constructing Cy(X,.1). Our final prediction set is given by Cy(X,41) :=
Dec(S7 (X 11), Xn+1). Alg.|l|summarizes the overall procedure for calibration.

Algorithm 1 Conformal ReLiability
Input: Dataset {(X;,Y;) }i1, target model f, similarity metric p, nominal confidence level « € (0, 1), encoder
E(+,-) and decoder Dec(-,-) in the latent generative model, DQR algorithm, a test point X,+1.
Output: Cy(Xn41).
Training time:
1: Split {1,---,n} into three disjoint sets Zigm, Zaqr» Zcal-
2: Train a latent generative model on { (X, 2)}2»5115“‘, where Y; := f(X;) foreachi=1,...,n.
3: Fita DQR model on {(X;, Z;) }iez,,,, Where Z; := E(Yi; X;), and to obtain Rz (x) .
Calibrating time:
1: Compute the coverage of the uncalibrated quantile regions on {(Xi, Zi) }icz,, via (5).
2: Compute E; and obtain ., according to @
Test time:
1: Obtain a base quantile region Rz (Xy+1) using a pre-trained DQR model.
2: Construct the calibrated quantile region S7<*! (X ,,11) according to @)
3: Construct Cy(Xn+1) = Dec(S7 (Xns1), Xne1).

3.2 THEORETICAL GUARANTEE

In this section, we provide the coverage guarantee for C'y (X,,11). First, we show that after calibra-
tion, Cz(X,,41) = S71(X,,+1) satisfies the coverage guarantee in the latent space.

Proposition 3.2. Suppose data in Digm, Daqr, and Dea1 U { X111, Y11} are independent to each
other. Besides, we assume {X;,Y; }iez.., U (Xn+1, Yns1) are exchangeable. Given a nominal cover-
age level o € (0,1), the quantile region SV (X,,,1) given by Alg.[l| satisfies:

1
1-a<P(Z,41 €57 (X, <l-a+ ——.
« ( +1 ( +1)) «@ 1+ |Dcal|

Proof. The goal is to show that { E} },cz_, U E;},, are exchangeable. First, since f has been trained

and is fixed, {(Xi,?i)}iezcalu{nﬂ} are exchangeable. Since for each 7 € Z.,, Z; is obtained



from & (27 X;), and the encoder £(-,-) is trained on Digy, that are independent to Dc,1, we have
{(X4, Zi) }iez,.iu{n+1} are exchangeable. Since Ej for each i € Z., is determined by Dy, that are
independent t0 D) U { X 41, Yos1}s {E}f }iez,., U E;; are exchangeable. O
Using this property, we can further demonstrate that, provided the latent generative model accurately
recovers the conditional distribution Y| X = z, the resulting prediction set Cy (X,,+1) also satisfies
the desired coverage.

Theorem 3.3. Assume conditions in proposition hold. Besides, we assume that Vxr € X,
Dec(E(Y,x),x) =q¢ P(Y|X = x). Given any nominal coverage level o € (0,1), Cy(Xp41) =
Dec(S7 (X p11), Xna1) given by Alg. [I]satisfies:

]P)(?Tﬁ.l € Cy(Xn+1)) >1-a.

Proof. First, by proposition we have P(Z,,1 € S7(X,41)) > 1 — a. Since Z,41 €
SYel(Xps1) = Dec(Zns1, Xns1) € Dec(S7 (Xpi1), Xns1), we have:

@
P(Dec(Zp41, Xn+1) € Dec(S74 (X pi1), Xni1)) 2 P(Zpi1 € ST (Xpi1)) 21— (7)
Since Dec(E(Y,x),x) =4 P(Y|X = z), we further have
P(Ye1 € Cy(Xni1)) =P (Dec(E(Vnir, Xna1), Xni1) € Cy(Xni1)) 2 1-a.
We complete the proof. O

Remark 3.4. Compared to|Feldman et al.[(2023)), which performs calibration directly in the original
output space ), the prediction set Cy,( X,,+1) generated by our method may be slightly more conser-
vative in terms of coverage. This is due to the effect described in “(1)” of (7), where the decoder can
expand the region. Nevertheless, this slight increase in conservativeness is a worthwhile trade-off, as
it facilitates optimization when computing the reliability score. Moreover, as demonstrated empiri-
cally, the degree of overconservativeness is minor, i.e., the size of the resulting region is comparable
to that reported in (Feldman et al., 2023).

The assumption that LGM can well recover the conditional distribution has been similarly made in
(Feldman et al.,2023)). This property can hold for many types of latent generative models, including
the variational autoencoder [ Khemakhem et al.| (2020), and the stable diffusion model (Rombach
et al., |2022; |L1 et al., 2023)).

3.3 OPTIMIZATION

After constructing C'z(X,,41) 1= S71(X,,41) and Cy(X,,41), we are ready to compute the relia-
bility (1) given a metric p. Since Cy(X,,11) := Dec(Cz(Xn41), Xn+1), it is equivalent to consider
the following objective:
i D 3 Xns1), GT, . 8

zeC?}l)I(lTHl) p(Dec(z; Xni1) 1+1) 8
Compared with the original objective—where both p and the constraint set may be nonconvex—the
feasible region C'z (X,,+1) is convex and compact, as shown below. As such, objective falls into
the category of nonconvex optimization over a convex set, as studied in (Lacoste-Julien, 2016).

Proposition 3.5. If Rz (x) is convex and d(-,-) is jointly convex, S (x) is a convex and compact
set for any .

Remark 3.6. The joint convexity can hold for any norm-induced distance (i.e., d(a,b) := ||a — b|),
Bregman divergence, or f-divergence. In this paper, we choose d(a, b) to be the Euclidean distance.

Moreover, by @, it is easy to see that the projection onto S7 () can be efficiently solved via a linear
programming algorithm. Specifically, suppose d(z,y) = |2 - y[2. To compute Igvea (2)(y) =
arg min.egvea (z) ||y — 2[2 given a new point y to be projected, we can see that:

y lfy € S'Ycal(l:)
* Y-y :
Y F Yeal Ty [ otherwise,

Hgoear (2)(y) = {



where y* = argmin, g, () |y1 — y|2. It is then sufficient to compute I (,)(y), which can be
formulated as the linear programming problem as follows:

min |y, - y3, subject to ujy; > fz(z,uy) foreachk =1,.... K,
Y1

where Bis obtained after DQR training, and Rz () is constructed using K directions uy, ..., ux. As
the projection can be efficiently computed, we can implement projected gradient descent |(Ghadimi
et al.| (2016); Ghadimi & Lan| (2016), whose global convergence property has been established
(Ghadimi & Lan| [2016). To find the global optimal, we use random search to pick several start-
ing points and then apply the projected gradient descent to the initial that has the smallest p.

4 EXPERIMENTS

We evaluate our method on synthetic data and the benchmark MS-COCO 2014 Lin et al.[(2014) for
the image-to-text task.

4.1 EXPERIMENTS ON SYNTHETIC DATASETS

Setups. We consider the nonlinear synthetic setting (see Appendix [B.|for generation details). We
generate 50,000 samples and set p = 38, d = 2, and € = 0.3. The dataset is split as follows: 60%
for training the latent generative model, 24% for training the DQR, 8% for calibration, and 8% for
testing. We report the average coverage ratios of Cz(X) and Cy (X), as well as the area (defined as
the number of grid points falling into the region) of the calibration region C'y (X). For comparison,
we also report the coverage ratios and areas of the calibration regions for the method of |Feldman
et al. (2023)) and the standard DQR method.

Implementation details. We set the latent space dimension to = 2. For the latent generative
model, we choose VAE and set the KL regularization hyperparameter 3 = 0.001 (see Appendix
for the ablation study on the choice of r and (3). For DQR in our method and in Feldman’s method,
the input size is p + d, and each gradient step uses 1,024 directions with « = 0.1. All data are Lo-
normalized before training. Since setting the quantile level to o, DQR does not achieve the target
coverage, we decrease the quantile level until the target coverage is met, resulting in the quantile lev-
els of 0.01 and 0.001 to achieve coverage rates of 1 — a = 0.9 and 0.98, respectively. For simplicity,
we denote them as DQR-0.01 and DQR-0.001. More details can be found in Appendix [B.2}

Calibration result. As shown in Tab.|l} all methods achieve the target coverage, and the prediction
set region of our method is much smaller than that of DQR. We also note that the region is slightly
larger than that of Feldman, which may be due to the expansion caused by the decoder (7).

Table 1: Coverage ratio and area on the nonlinear synthetic dataset with different nominal levels a.

Coverage Areain Y
Ours-Z Ours-)Y Feldman-Y DQR-Z DQR-Y Ours Feldman DQR

0.02  0.9770 0.9760 0.9718 0.9818  0.9872  398.5 377.8 749.1
0.10 0.8953 0.8915 0.8940 0.8823 09145 232.7  234.5 287.4

Visualization. We visualize the region for two different values of X, where Rz represents the
region before calibration (E]), and Ry denotes the decoded region of Rz, i.e., Ry = Dec(Rz,x).
As shown in Fig. 2] the pre-calibrated region (in red) initially excludes the outcome (in green), but
after calibration, the outcome is successfully included. Compared to DQR, the regions produced
by our method and Feldman’s approach are smaller. Additionally, the regions have different shapes
across the two cases, demonstrating the adaptiveness of our calibration procedure.

CReL scales efficiently for high-dimensional calibration. = We evaluate the total calibration
runtime across latent dimensions and find that our method scales efficiently with r, while the grid-
based approach |[Feldman et al| (2023)) incurs exponential growth and becomes infeasible in high
dimensions (see Appendix [E). This confirms CReL’s practicality for modern large-scale systems.
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Figure 2: Visualization of regions produced by various methods (o« = 0.1). Each row represents a
case, i.e., a fixed x. Left: region in Z; Right: region in ). Calibrated regions are marked in red, the
test sample (Zyew OF Yiew) is marked in green.

4.2 EXPERIMENTS ON IMAGE-TO-TEXT TASK

Dataset and preprocessing. We use the MS-COCO 2014 validation set|Lin et al.| (2014) (40, 504
image-caption pairs), and split it into 75% for VAE training, 15% for DQR, 5% for calibration,
and 5% for testing. We evaluate four models: BLIP (base and large) [Li et al. (2022) and GIT
(base and large) Wang et al.[(2022), all at image size 224 x 224. We measure CLIP cosine similarity
(CLIP-SIM) between the condition image and generated caption, i.e., p(Y, GT) = Cos-Sim(Y, X),
where X denotes the image feature and Y denotes the generated caption. We also measure the
BERT cosine similarity (BERT-SIM) between the ground truth caption and generated caption, i.e.,
p(Y,GT) = Cos-Sim(Y,Y"), which first extracts features from ¥ and Y and then computes the
cosine similarity between these feature representations.

Implementation details. Image features are extracted using CLIP ViT-L/14 |Radford et al.|(2021),
and caption features are obtained using BERT-base |[Kenton & Toutanova (2019), where we use
the [CLS] token that serves as a summary feature of the entire caption. Both feature types have
dimension p = d = 768. The maximum text length is set to 50. For VAE, we set = 50 and use
B = 0.001 for KL regularization (see Appendix [C| for ablation study). For DQR, the input size is
p + d, and each gradient step uses 1,024 directions with o = 0.1. All data are Lo-normalized before
training. During optimization, we initialize the procedure with 50 starting points for BERT and
CLIP. More details can be found in Appendix

Table 2: Quantitative results of the image-to-text generation task at a = 0.1, with differences
between CReL-p and p (A) highlighted in blue. Superscripts indicate the performance rank.

CLIP-SIM BERT-SIM
Model
CLIP CReL-CLIP BERT CReL-BERT
BLIP-base 0.2330 0.0070" (-0.2260) 0.8349 0.6335" (-0.2014)
BLIP-large 0.2453 -0.0074" (-0.2527) 0.8106 0.5631 (-0.2475)
GIT-base 0.2511 —0.0021" (-0.2532) 0.8620 0.6474" (~0.2146)
GIT-large 0.2550' —0.0043" (-0.2593) 0.8649" 0.6459° (-0.2190)

Quantitative comparison. We compare two large-scale caption generation models (BLIP and GIT)
in both base and large versions, using two similarity metrics: CLIP-SIM and BERT-SIM. Results
at o = 0.1 is shown in Tab. @ For CLIP-SIM, the rankings among BLIP-base, BLIP-large, and
GIT-large vary after calibration. Notably, BLIP-base ranks last in the original score but first in our
reliability score. This can be explained by Fig. where the distribution of BLIP-base’s scores is
more concentrated around the central region compared to GIT-large, resulting in a higher worst-case
score after calibration. For BERT-SIM, we observe that the gap between BLIP-base and BLIP-
large is enlarged after calibration. Similarly, this can be explained by the more concentrated score
distribution of BLIP-base relative to BLIP-large. In addition, our results also indicate that BLIP-
base is the most reliable one in CLIP-SIM, while the GIT-base/large achieves the highest reliability
in BERT-similarity. This may be because CLIP-SIM captures high-level semantic similarity between
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Figure 3: Distribution of p values for different models on the image-to-text generation task.

GT caption: A baby in a bouncy seat chewing on a plastic toy. CcLIP CReL-CLIP
BLIP-base: a baby in a car seat 0.19204 -0.02022
BLIP-large: there is a baby sitting in a high chair with a toy in his mouth 0.23062 -0.0039"
GIT-base: my son in his high chair 0.2529' -0.04434
GIT-large: sitting in a chair with a red toy 0.22133 -0.0435°
GT caption: Three cell phones lying next to each other on a wooden table. BERT CReL-BERT
BLIP-base: a group of cell phones sitting on a table 0.8825° 0.6388*
BLIP-large: three cell phones are sitting on a table with a wooden surface 0.7509* 0.6560?
GIT-base: three cell phones sitting on top of a wooden table. 0.9880! 0.6627"
GIT-large: three cell phones sitting on a table. 0.97882 0.64213

Figure 4: Qualitative results of image-to-text models (o = 0.1). Superscripts denote rank.

generated image and text, making it more suited to lightweight models like BLIP-base that avoid
overfitting to irrelevant features. In contrast, BERT-SIM focuses on deeper and subtler contextual
similarity. As a result, the GIT model, with its larger capacity and ability to process more intricate
relationships, performs better in this task.

Qualitative results: CReL effectively identifies misalignments.  Figure [] presents examples
illustrating that our calibrated metric better reflects generation quality compared to the original un-
calibrated metric. Specifically, we take examples from CReL-CLIP (image—caption) and CReL-
BERT (caption—caption). In the example for CReL-CLIP (i.e., image-caption), the ground truth
image shows “a baby in a seat playing a toy”, but the GIT-base overlooks the information of “play-
ing a toy”. Despite this omission, CLIP assigns higher similarity scores to the GIT-base than the
BLIP-large, which correctly identifies this semantics and is accurately ranked first by our reliability
metric. In the example for CReL-BERT (i.e., caption-caption), both BLIP-base (“a group of cell
phones on a table”) and GIT-large (“three phones sitting on a table”) fail to specify the number of
phones or mention that the table surface is wooden; however, they are ranked higher than BLIP-
large, whose caption accurately captures both pieces of information. These results demonstrate that
CReL effectively detects visual and semantic discrepancies that standard metrics miss, quantify-
ing model reliability without sacrificing predictive performance. More examples can be found in

Appendix [G.T]
5 CONCLUSION AND FUTURE WORKS

We introduce a worst-case reliability metric based on conformal calibration to evaluate the condi-
tional generative models, which provides a more interpretable assessment of model trustworthiness
than traditional metrics that only consider a single output. A computational framework called Con-
formal ReLiability (CReL) was proposed to compute the reliability. CReL is highly flexible, accom-
modating any under most common or “bespoke’ similarity metrics. In the future, we will extend our
framework to more complex scenarios, such as video generation, 3D reconstruction, or embodied
robotics. Unlike one-to-one conditional generation, these tasks involve one-to-many, many-to-one,
or many-to-many mappings, and will likely require novel joint latent representations and calibration
techniques to ensure robust guarantees.



REPRODUCIBILITY STATEMENT

The proof of proposition [3.2] and theorem [3.3]is provided in Section [3] while the proof of propo-
sition [3.5] is provided in Appendix [A.4] The generation details of synthetic data are provided in
Appendix [B.1] and the implementation details of the latent generative model are introduced in Ap-
pendix e code will be released once the paper is accepted [ﬂ
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A ALGORITHM DETAILS
In this section, we introduce our implementation of the VAE and the Stable Diffusion model.

A.1 VARIATIONAL AUTO ENCODER

The variational lower bound of the model is written as follows |Sohn et al.| (2015)):

logpo(Y) 2 Ey, (zjv) [logpe(Y|Z)] - Dxr (94(Z|Y) |p(Z)), ©)

LeLBo

where Lg1 go denotes the ELBO objective to be maximized. Here:

* Y: response variables (target)

* Z: latent variables

* ¢4(Z|Y): inference model (encoder)
* p9(Y|Z): generative model (decoder)

The latent prior is fixed as p(Z) = A'(0,T). The decoder outputs are denoted as Y.

To incorporate task-specific metric p(Y, ?) (where higher values indicate better performance), we
reformulate the likelihood as an energy-based model:

where A > 0 is a temperature parameter. The intractable normalization constant:
o(Z) = /exp(A-p(Y,?))dY an

is omitted during optimization following energy-based modeling conventions LeCun et al.[(2006).

Substituting into the ELBO definition gives:
Leso = Eq, (z1x,v) EX p(Y,Y) - log C(Z)] - Dxe (44(ZIY)|p(Z)) . (12)
Approximating log C (X, Z) as constant for gradient-based optimization yields:
Lepo » Eq, zpx,v) [ 2(Y. Y)] = Dict. (45(ZIY) [p(Z])) - (13)
The final loss function £ = —Lg1,go is composed of two parts:
L=X-L,+ Lk, (14)

where £, = -E, 5 (ZIX,Y) [p(Y,?)] is the metric-driven reconstruction term with A setting to 1,
and Lx1. = Dx1. (¢4(Z|Y)|p(Z)) is the KL regularization term with /3 controlling its strength.

(a) CVAE “ “ (b) VAE

Figure 5: The reconstruction region of CVAE (subfigure (a)) and the VAE (subfigure (b)) given a
fixed z. In each subfigure, the left image visualizes the encoded region {€(Y;*,x)) }i<n in the Z’s
space; the right image visualizes the decoded region {Dec(E(Y;",x)) }i<n in the Ys space.

VAE vs. CVAE. In Feldman et al.| (2023), the authors used the conditional variational auto-encoder
Sohn et al.| (2015), where the inference model g,(Z|Y) and the generative model py(Y|Z) are
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respectively replaced with ¢, (Z|X,Y) and py(Y|X, Z). However, the CVAE can be very sensitive
to the input condition X, making it easy to collapse when conditioning on a fixed x. Therefore, we
turn to use VAE, which can well reconstruct the output even when conditioning on a fixed z.

To illustrate, we train both a CVAE and a VAE on the dataset {X;,Y;} in the nonlinear setting. At
test time, we fix X = x and generate samples {Y7",..., Y3} from the conditional model Y | X = z.
We then visualize the reconstruction regions: for the CVAE, {Deccvar(Ecvar (Y, z))}icn, and
for the VAE, {Decyar(Evar(Y;",2))}bicn. As shown in Fig. [5| the VAE can reconstruct outputs
faithfully when conditioned on z, whereas the CVAE reconstructions collapse into a much smaller
region.

A.2 STABLE DIFFUSION MODEL

We begin by training the VAE and use its encoder £(Y;) to obtain the low-dimensional latent rep-
resentation Z! = £(Y;) for each i. We then apply the diffusion process in the latent space to evolve

Z? into Z!, and finally reconstruct Y; through the decoder Decy(Z}).

First, we consider the forward noising process:

q(zt | ze-1) :N<Zt ‘ V1-8izi1, ﬁtf),

which admits the closed-form

q(z ] 20) = N (2 | Vag 2o, A= a)I), ap=[](1-8,).

s=1

Thus, at step 7', we have 2z ~ N(0, I'). The reverse process is parameterized by a neural network eg
(where we choose MLP on synthetic data), which predicts the noise component of z;. Conditioning
on x, the model learns to approximate

eg(z,t,x) e, e~ N(0,1).
The denoising distribution is then given by:
po(ze-1lze,2) = N(po (2, t, ), 54 1),

with the mean parameter

po(ze,t,x) = ﬁ(zt - fy 60(Zt7t737))-

The training is based on denoising score matching. Given (x,y) sampled from the dataset, we
encode zg = E,(y), draw ¢ ~ Unif({1,...,7T'}), and generate z, via the forward process. The
objective is

£(0) = EZO,I7t,€ [HG - 69(Ztat7$)“%:| .

At inference, one begins with Gaussian noise zp ~ A (0, I) and applies the learned reverse process
to obtain a latent zy. The decoder then maps zy back to image space:

Y = Decy(20).

A.3 COMPUTING SCORE

To compute the score E; in (@) we view this as a quadratic programming problem bounded by
multiple inequalities:

min ||a - Z||* stuia > fs(Xi,ug), Jug) =1, Ve =1,.., K
a

Now our goal is to find a point ¢* that minimizes the distance to the target point Z; and satisfies all
the half-space constraints. The score takes the value of the Euclidean distance from Z; to a*.
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A.4 PROOFS OF SECTION[3]

Proof of Proposition[3.5] We now show that for any ~, S7(z) is convex and compact. For any
21,29 € SVl (x), we have a1 € Rz(x),as € Rz(x) respectively such that d(a1,21) < v and
d(as,22) < ~y. Besides, as Rz(x) is convex, we have aa; + (1 — a)as € Rz(x). Then for any
0 < a <1, we have:

Iélir(l )d(mazl +(1-a)ze) =d(aa+ (1 -a)a,az; + (1 —a)zs)
acRz(x

<d(aar + (1 -a)ag,azy + (1 - a)zs)
(1)
< afar -2z + (1-a)]az - 222 <,

where “(1)” is due to the jointly convexity of d(-,-). The compactness follows from the compactness
of Rz(X) and that ., is bounded. O

B EXPERIMENTAL DETAILS

B.1 SYNTHETIC DATA DETAILS

Linear data generation. The generation of the condition vector X and the response variable Y in
the linear version of the synthetic data is defined as follows:

X ~ Uniform(0.8,3.2)7,
A~N(0, 1),

e~ N(0,0%)°,
Y=XA+e,

5)

where Uniform(a, b) is a uniform distribution on the interval (a,b), X € RP is the condition vector,
A € RP*? ig the coefficient matrix, ¢ € R? is Gaussian noise with variance o2, and Y ¢ R is the
response variable.

Nonlinear data generation. The nonlinear version of the synthetic data is generated as follows:
X ~ Uniform(0.8,3.2)?,
A~ N(0,1)7,
B~ N(0,1)P*4, (16)
e~ N(0,6%)%,
Y =XA+X?B+e,

where X ¢ RP, A € RP*? B ¢ RP*% ¢ ¢ R and Y ¢ R?. The term X2 denotes element-wise
squaring of X.

B.2 IMPLEMENTATION DETAILS
Network architectures.

e VAE Encoder/Decoder Hidden Dimensions:

— Synthetic data: [64, 128, 256, 256, 128, 64]
— Image-to-text task: [128, 256, 512, 512, 256, 128]

e Stable Diffusion Denoiser:

— MLP hidden dimensions: [128, 256, 128]
— Time embedding dimension: 128

* DOR Network:
— Hidden dimensions: [8, 16, 8]

14



* Dropout (rate 0.1) and batch normalization are applied for the image-to-text dataset.
Training hyperparameters.

e VAE:

- Learning rate: 1 x 1073
— Activation: leaky ReL.U (slope 0.2)

e Stable Diffusion:

— Learning rate: 1 x 1074
— Number of diffusion timesteps (training): 1000

DQR directions.

» Each gradient step uses 1024 distinct directions, sampled from a fixed set of 2048 directions
generated before training.

Discretization.

 Number of grid points to decode region in Z space: 2 x 10*
* Feldman grid in Z space: 2 x 10*
+ Feldman grid in ) space: 2 x 10*

 Number of grid points for area calculation in ) space: 2 x 10*
Hardware.

 Synthetic data simulations: NVIDIA RTX A6000 GPU (48GB VRAM)
* Image-to-text task: NVIDIA H100 GPU (80GB HBM3)

C ABLATION STUDY

C.1 EFFECT OF THE KL REGULARIZATION WEIGHT IN VAE

To investigate the effect of the KL regularization weight (5) in the VAE training loss, we conduct an
ablation study on the nonlinear synthetic data, following the same setup as Section As shown
in Table 3] when /3 = 0.001, our method achieves both the target coverage (« = 0.1) and a compact
informative region. Therefore, we set 5 = 0.001 for all experiments.

Table 3: Ablation study on the effect of the KL regularization weight /3 in the VAE loss. The table
reports the coverage ratios and the area of the region Cy on the nonlinear synthetic dataset for
different values of 3. The target nominal level is & = 0.1.

Metric g=01 p=0.01 p=0.001 [=0.0001 S=0.00001
coverage of Rz 0.5570 0.5525 0.4465 0.4203 0.4910
coverage of Cz  0.8883  0.8995 0.8953 0.8908 0.8945
coverage of Ry  0.9200  0.7280 0.5387 0.5060 0.5730
coverage of Cy  0.9945  0.9525 0.8915 0.8832 0.8895

area of Cy 1044.54  320.58 232.73 213.26 249.41

C.2 CHOICE OF LATENT GENERATIVE MODEL

To explore the effect of different latent generative models in our framework, we compare the Vari-
ational Autoencoder (VAE) and Stable Diffusion (SD) models on the nonlinear synthetic dataset,
using the same experimental setup as Section .1} For the VAE, the KL regularization weight is set
to 8 = 0.001. For the SD model, we use an MLP network as the denoiser; for implementation details
regarding SD, please refer to Section[B.2]
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Table 4: Ablation study of the SD conditional denoiser: coverage and area for different inference
steps 1" on the nonlinear synthetic dataset (o = 0.1).

Metric T=10 T=20 T=30 T=40 T=50

coverage of Rz  0.4452 0.4725 0.4412 0.5503 0.5570
coverage of Cz  0.8968 0.9025 0.8952 0.9000 0.8998
coverage of Ry  0.5595 0.6218 0.6338 0.8055 0.8475
coverage of Cy  0.9065 0.9405 0.9675 0.9773 0.9883

area of Cy, 239.05 285.93 367.64 405.89 525.12

Table 5: Ablation study of the SD unconditional denoiser: coverage and area for different inference
steps 1" on the nonlinear synthetic dataset (o = 0.1).

Metric T=10 T=20 T=30 T=40 T=50

coverage of Rz 0.4460 0.5320 0.5333 0.5507 0.5620
coverage of C'z  0.9008 0.8900 0.8988 0.8960 0.9058
coverage of Ry 0.5668 0.6893 0.7418 0.8085 0.8613
coverage of Cy  0.9203 0.9468 0.9638 0.9790 0.9923

area of Cy, 271.26  309.56 370.03 415.60 542.00

Ablation study: SD denoiser architecture and inference steps. We first conduct an ablation
study on the SD model to investigate the effect of (a) whether the denoiser is conditioned on input,
and (b) the number of inference steps 7' (ranging from 10 to 50). We set the target nominal level
to o = 0.1. As shown in Tables [ and [5] all values of T" achieve the target coverage, with 7' = 10
providing the tightest coverage and, consequently, the least conservative region Therefore, we use
the conditional denoiser with 7" = 10 in all subsequent SD experiments.

Comparison between SD and VAE as latent generative models. Finally, we compare the per-
formance of SD (with conditional denoiser, 7' = 10) and VAE as the latent generative model in our
CReL framework, evaluating both the coverage and the area on the nonlinear synthetic dataset for
two nominal levels (a = 0.02,0.10), as summarized in Table@ Both models achieve the target cov-
erage, but the VAE consistently produces a more compact (informative) covered region in ). Based
on these results, we use the VAE as the default latent generative model in all main experiments, due
to its greater informativeness while maintaining desired coverage.

C.3 EFFECT OF LATENT SPACE DIMENSIONALITY IN VAE

To determine the appropriate dimensionality of the VAE latent space for the image-to-text task, we
conduct an ablation study by varying the latent dimension r and evaluating its impact on the loss
value (BERT-SIM, BLIP-large). The results, shown in Table /] indicate that the loss remains rela-
tively stable across a wide range of latent dimensions. Based on these observations, we empirically
set r = 50 for all image-to-text experiments.

C.4 [EFFECT OF INITIAL POINTS
We analyze how the number of initial points (z() affects the accuracy of reliability estimates. As

described in Section [3] the optimization of [§] combines the projected gradient descent and random

Table 6: Comparison of VAE and SD as latent generative models in the CReL framework on the
nonlinear synthetic dataset. Coverage and area metrics are reported for different cv.

Coverage Areain )
VAE-Z VAE-Y SD-Z SD-Y VAE SD

0.02 09770 09760 0.9810 0.9843 398.51 432.99
0.10 0.8953 0.8915 0.8968 0.9065 232.73 239.05
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Table 7: Ablation study on the dimensionality of the VAE latent space in the image-to-text task. The
table reports the loss value £ for different choices of the latent dimension r-.

r 10 20 50 100 200 300
L 0.0442 0.0418 0.0418 0.0442 0.0422 0.0422

search, where num,, is a key hyperparameter. A larger num,, improves estimation accuracy but
increases computational cost.

To study its impact, we evaluate four generative models on the image-to-text task using CReL.-CLIP
and CReL-BERT at (a = 0.1). As shown in Fig.[6] increasing num_, achieves smaller reliability
score. Besides, it can be shown that when the error stays stable num,, achieves 50. To balance
reliability and efficiency, we set num,, = 50 for CReL-CLIP and CReL-BERT in all experiments.
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Figure 6: Effect of the number of initial points (z) on CReL-p for the image-to-text task.

D COMPUTATIONAL COMPLEXITY COMPARISON

We compare the computational complexity of our continuous calibration scheme with the grid-
based discretization method of Feldman et al. (Feldman et al., 2023). While their approach incurs
exponential costs in both the latent and original data spaces, our method operates directly in the
lower-dimensional embedding and leverages DQR for initialization, yielding a significant reduction
in computational cost. Here, we denote nca) := |Zca1| as the sample size in the calibration set.

Feldman ef al. (grid-based). They discretize both the r-dimensional latent space and the d-
dimensional original space using a uniform grid of size m per axis:
* Latent space discretization: ~ O(m").
* Original space discretization: ~ O(m?).
* Quantile initialization: computing the 90th percentile of all pairwise distances to obtain
Yinit equires O(near - m*? - d -logm).

Ours (continuous calibration). Our method avoids costly discretization and initialization by:

* Latent-space region: directly constructing the quantile region in the r-dimensional embed-
ding space, bypassing any m-grid.

* DQR initialization: using the region obtained from DQR as the calibration starting point,
eliminating the O(nca) - m2? - d - logm) step.
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* Score computation: performing quadratic-programming updates in O(ncal T-q- r), where
T is the number of iterations and ¢ is the number of calibration directions.

Overall Improvement. By operating in the lower-dimensional latent space (r << d) and leveraging
continuous calibration, we reduce the computational complexity of the calibration step from O(ncal .

m2d-d-10gm) to O(ncal-T~q-r).

For empirical runtime comparisons, see Appendix [E]

E CALIBRATION SCHEME RUNTIME COMPARISON

E.1 SETUP

Simulations on synthetic data. We evaluate the runtime of our continuous calibration scheme
against the grid-based discretization method of Feldman et al. (Feldman et al.| [2023)) using a linear
synthetic dataset (generation details in Appendix [B.I). We generate n = 50,000 samples p = 50 and
d = 20, and split them as follows:

VAE training set:  60% (30,000 samples)
DQR training set: 24% (12,000 samples)
Calibration set: 8% (4,000 samples)
Test set: 8% (4,000 samples)

The calibration set is used to measure the runtime of both schemes.

Implementation details. For the VAE, we vary the latent dimension r from 2 to 12 and fix the
loss weight 8 = 0.01. In the grid-based scheme Feldman et al|(2023), we use a uniform grid of
size m = 5 per latent axis and fix the total number of grid points in the original space to 300,000 to
control memory usage. For DQR, the input size is p + d, and each gradient step uses 1024 directions
with @ = 0.1. All data undergo Ly normalization before training. Further details are provided in

Appendix [B.2]

E.2 RESULTS

We report the total calibration runtime (in seconds) for both our continuous calibration scheme and
the grid-based discretization method of Feldman et al. across different latent dimensions. Several
key observations emerge:

Our method exhibits near-linear growth in runtime with respect to 7. Starting at approximately 16.4 s
for r = 2, the total runtime increases modestly to about 63.5s at r = 12, corresponding to an average
incremental cost of under 5 s per additional latent dimension. This behavior is consistent with our
theoretical complexity (Appendix D)), in which r enters only linearly.

In contrast, the grid-based approach exhibits exponential growth: its calibration time increases from
116.6s at r = 2 to 433.3s at » = 8 and finally to 122,795.0s at r = 12. Correspondingly, our
method is over 8x faster at r = 8 (51.37 s vs. 433.3 s) and nearly 1,930x faster at r = 12 (63.54 s vs.
122,795.0s), rendering the grid-based scheme infeasible for moderate-to-high latent dimensions.

These empirical results corroborate our theoretical complexity reduction and demonstrate that by
operating directly in the lower-dimensional embedding space, our continuous calibration scheme
remains computationally feasible even as r grows large. This efficiency gain is critical for scaling
conformal calibration to high-dimensional prediction tasks.

F THE USE OF LARGE LANGUAGE MODELS (LLMS)

We declare that in this work, LLMs were used solely for grammatical correction in writing.
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Figure 7: Comparison of total calibration runtime (in seconds) across different latent dimensions 7.
Our method exhibits favorable scalability, whereas the grid-based approach of [Feldman et al.|(2023))
incurs significantly higher computational cost as r increases.

G ADDITIONAL RESULTS

G.1 QUALITATIVE RESULTS OF IMAGE-TO-TEXT TASK
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CLIP CReL-CLIP

GT caption: A cat sitting on top of a pile of books in a city.

BLIP-base: a cat sitting on a pile of books 0.2698 0.0097
BLIP-large: araffe cat sitting on top of a pile of books on a sidewalk 0.2919 -0.0026
GIT-base: a cat sitting on books in a cafe 0.2932 -0.0105
GlT-large: a cat sitting on top of a book on a table. 0.2737 -0.0313

GT caption: a woman using a white laptop on the bed

BLIP-base: a boy laying on a bed 0.1917 0.0134
BLIP-large: arafed woman laying on bed using laptop computer with pink sheets 0.2082 0.0385
GIT-base: a woman laying on a bed using a laptop. 0.2246 0.0358
GIT-large: a young man laying on a bed looking at a laptop. 0.2769 0.0114

GT caption: The man is laying out in the sand at the beach

BLIP-base: a man laying on the beach 0.2317 0.0224
BLIP-large: there is a man laying on a beach with a surfboard 0.2468 -0.0118
GIT-base: a man laying on the beach in the sand 0.2412 0.0010
GIT-large: a man laying on the beach with his arms stretched out. 0.2574 0.0315

GT caption: A horse that is in the middle of a patch of flowers.

BLIP-base: a flower garden with many different flowers 0.2517 0.0226
BLIP-large: arafed flower garden with a dog in the middle of it 0.2818 0.0057
GlT-base: a dog in a flower bed 0.2799 0.0104
GIT-large: a flower garden with a horse in the middle. 0.2922 0.0241

GT caption: a double decked bus parked by a stadium

BLIP-base: a red bus parked in front of a building 0.2546 0.0017
BLIP-large: arafed bus parked in front of a large tent on a hill 0.2568 -0.0192
GIT-base: a red bus in the parking lot 0.2250 -0.0227
GIT-large: a red double decker bus parked in a parking lot. 0.2218 0.0059

GT caption: A little girl sitting at the end of a bed looking at a teddy bear.

BLIP-base: a little girl sitting on a bed with a teddy bear 0.2958 0.0137
BLIP-large: there is a little girl sitting on a bed with a teddy bear 0.2742 0.0115
GlT-base: a little boy sitting on a bed with a stuffed animal. 0.3096 -0.0280
GIT-large: a child sitting on a bed next to a teddy bear. 0.3176 0.0037

GT caption: A man in a suit and tie standing in the desert.

BLIP-base: a man in a suit and tie standing in a field 0.2758 -0.0032
BLIP-large: arafed man in suit and tie standing in front of a beach 0.2864 0.0313
GIT-base: a man standing on a beach with a suit and tie. 0.2743 0.0386
GIT-large: a man in a suit and tie standing on the beach. 0.2700 0.0386

Figure 8: Qualitative results of image-to-text models (o = 0.1).
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BERT CReL-BERT

GT caption: A boy holds the guitar controller from Guitar Hero.

BLIP-base: a young boy holding a guitar in his living room 0.8825 0.7312
BLIP-large: boy holding a guitar in front of a television with a plant in front of him 0.7915 0.6474
GIT-base: a boy holding a guitar and a guitar. 0.8984 0.7145
GIT-large: a young boy holding a guitar in front of a television. 0.8768 0.7184

GT caption: A man carrying two traffic lights on the side of a street.

BLIP-base: a man is cleaning the street 0.8586 0.6700
BLIP-large: there is a man that is standing on a street corner with a traffic light 0.8252 0.6778
GIT-base: a man standing on a curb holding two traffic lights. 0.9820 0.8061
GlIT-large: a man standing on a sidewalk holding a traffic light. 0.9816 0.7321

GT caption: A man laying on the beach next to a surfboard.

BLIP-base: a man laying on the beach 0.9117 0.6488
BLIP-large: surfers sitting on the beach with their surfboards in front of a mural 0.8754 0.6341
GIT-base: a man laying on the beach with a surfboard. 0.9937 0.6718
GIT-large: a man sitting on the beach with a surfboard. 0.9859 0.6412

GT caption: Elephant walking through the middle of the road in front of a car.

BLIP-base: an elephant walking across the road 0.8817 0.6545
BLIP-large: elephants walking down the road with cars in the background 0.8424 0.6667
GIT-base: a large elephant walking across a road next to a car. 0.9447 0.6799
GIT-large: an elephant walking down a road next to a car. 0.9232 0.6798

GT caption: an image of a black bear in the woods

BLIP-base: a bear is standing in the woods 0.9221 0.6526
BLIP-large: araffe in the woods at night with a stick in its mouth 0.9104 0.4404
GIT-base: a black bear in the woods with a large mouth. 0.8775 0.6351
GIT-large: a black bear walking through a forest at night. 0.7656 0.7144

GT caption: An old styke suitcase being used as a decorative flower pot.

BLIP-base: a wooden box with a plant inside 0.7157 0.6371
BLIP-large: there is a small box with plants inside of it on a table 0.7423 0.6113
GlIT-base: a suitcase filled with plants on top of a wooden floor. 0.8719 0.6730
GIT-large: a suitcase with a bunch of plants inside of it 0.7999 0.6546

GT caption: A woman takes a picture of a train on a track.

BLIP-base: a woman standing on train tracks 0.8111 0.6119
BLIP-large: there is a woman standing on the train tracks looking at a train 0.8076 0.6548
GIT-base: a woman standing on a train track next to a blue train. 0.8644 0.6464
GIT-large: a woman standing on a train track next to a tunnel. 0.8493 0.6252

Figure 9: Qualitative results of image-to-text models (v = 0.1).
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