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Abstract
Offline reinforcement learning (RL) aims to find
an optimal policy for sequential decision-making
using a pre-collected dataset, without further in-
teraction with the environment. Recent theoreti-
cal progress has focused on developing sample-
efficient offline RL algorithms with various re-
laxed assumptions on data coverage and func-
tion approximators, especially to handle the
case with excessively large state-action spaces.
Among them, the framework based on the linear-
programming (LP) reformulation of Markov de-
cision processes has shown promise: it enables
sample-efficient offline RL with function approx-
imation, under only partial data coverage and re-
alizability assumptions on the function classes,
with favorable computational tractability. In this
work, we revisit the LP framework for offline
RL, and provide a new reformulation that ad-
vances the existing results in several aspects, re-
laxing certain assumptions and achieving optimal
statistical rates in terms of sample size. Our key
enabler is to introduce proper constraints in the
reformulation, instead of using any regulariza-
tion as in the literature, also with careful choices
of the function classes and initial state distribu-
tions. We hope our insights bring into light the
use of LP formulations and the induced primal-
dual minimax optimization, in offline RL.

1. Introduction
Recent years have witnessed tremendous empirical suc-
cesses of reinforcement learning (RL) in many sequential-
decision making problems (Mnih et al., 2015; Silver et al.,
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2016; Vinyals et al., 2017; Levine et al., 2016). Key to
these successes are two factors: 1) use of rich function ap-
proximators, e.g., deep neural networks; 2) access to exces-
sively large interaction data with the environment. Most
successful examples above are extremely data-hungry. In
some cases, the interaction data can be easily obtained in
an online fashion, due to the existence of powerful simula-
tors such as game engines (Silver et al., 2016; Vinyals et al.,
2017) and physics simulators (Todorov et al., 2012).

On the other hand, in many other domains of RL, such
online interaction is impractical, either because data col-
lection is expensive and/or impractical, or the environment
is simply difficult to simulate well. Many real world ap-
plications fall into this setting, including robotics and au-
tonomous driving (Levine et al., 2018; Maddern et al.,
2017), healthcare (Tseng et al., 2017), and recommender
systems (Swaminathan et al., 2017). Moreover, even in the
cases where online interaction is available, one might still
want to utilize previously collected data, as effective gener-
alization requires large datasets (Levine et al., 2020). Of-
fline RL has thus provided a promising framework when
one really targets deploying RL in the real-world.

However, in practice, offline RL is known to suffer from the
training instability issue due to the use of function approx-
imation, e.g., neural networks, and the distribution shift
issue due to the mismatch between the offline data distri-
bution and the targeted (optimal) policy distribution (Fuji-
moto et al., 2019; Kumar et al., 2020). As a result sample-
efficiency guarentees for offline RL with function approx-
imation usually relies on strong assumptions on both the
function classes and the dataset. In particular, many ear-
lier results (Munos & Szepesvári, 2008; Scherrer, 2014;
Chen & Jiang, 2019; Zhang et al., 2021) require the func-
tion classes to be Bellman-complete, i.e., the value function
class is closed under the Bellman operator, and the dataset
to have full coverage, i.e., the data covers the state distribu-
tions induced by all policies. Both assumptions are strong:
the former is non-monotone in the function class, i.e., the
assumption can be violated when a richer function class is
used, and is much stronger than the common assumption of
realizability (i.e., the optimal solution lies in the function
class) in statistical learning theory; the latter essentially re-
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quires the offline data to cover all the possible state-action
pairs, which is violated in most real-world applications.

Significant progress has been made lately to relax these
assumptions. For example, (Liu et al., 2020; Jin et al.,
2020; Rashidinejad et al., 2021; Xie et al., 2021; Uehara
& Sun, 2021) have shown that using the pessimistic mech-
anism that chooses the worst-cast value function or model
in the uncertainty set during learning, the full coverage as-
sumption can be relaxed to only a single-policy (i.e., an
optimal policy) coverage assumption. Nonetheless, the
results all rely on completeness-type (which includes the
tabular setting) or even stronger assumptions, and some
of the algorithms are not computationally tractable (Xie
et al., 2021; Uehara & Sun, 2021). On the other hand,
some works require only realizability, but with addition-
ally either stronger (than all-policy coverage) assumptions
on data coverage (Xie & Jiang, 2021), or the uniqueness of
the optimal policy (Chen & Jiang, 2022), and can be com-
putationally intractable.

More recently, (Zhan et al., 2022) has successfully re-
laxed both the full data coverage and the complete-
ness assumptions, through the seminal use of the linear-
programming (LP) reformulation of Markov decision pro-
cesses (MDPs). The LP framework not only signifi-
cantly weakens the assumptions, but also better enables
computationally tractable algorithms. However, the algo-
rithms and analyses in (Zhan et al., 2022) strongly de-
pend on a regularized version of the LP formulation, which
calls for stronger assumptions than single-policy coverage,
and leads to statistically suboptimal rates (i.e., O(1/n1/6)
where n is the size of the dataset). In this paper, we revisit
and further investigate the power of the LP-framework for
offline RL with performance guarantees, and advance the
existing results in several aspects.

Contributions. We propose LP-based offline RL algo-
rithms with optimal (in terms of sample size) O(1/

√
n)

sample complexity, under partial data coverage and gen-
eral function approximation, and without any behavioral
regularization as (Zhan et al., 2022). In particular, first, we
obtain theO(1/

√
n) optimal rate under the standard single-

policy concentrability (SPC) assumption (Rashidinejad
et al., 2021), with some completeness-type assumption
on the function class. Second, our result leads to the
near-optimal rate of O(

√
|S|/((1 − γ)

√
n)) when reduc-

ing to the tabular case, improving even the state-of-the-art
tabular-case result (Rashidinejad et al., 2021). Most gen-
eral function approximation get a loose bound upon such
a reduction. Third, with only the realizability assumption,
we obtain O(1/(Gap ·

√
n)) rate under a partial coverage

assumption that is a slight variant of standard SPC, where
Gap denotes the minimal difference between the values of
the best action and the second-best one among all states. Fi-
nally, note that our algorithms inherit the favorable compu-

tational tractability as other LP-based offline RL algorithms
(Zhan et al., 2022; Rashidinejad et al., 2022). Inspired by
novel error bounds, our techniques involve adding validity
constraints of the occupancy measure in the first case, and
a lower bound on the density ratio in the second case.

A more detailed literature review, a summary of our tech-
niques, as well as the notation we use in this paper are given
in Appendix A. Furthermore, we have relegated the proofs
of some results to the appendix due to space limitation.

2. Background
2.1. Model and Setup

Markov Decision Processes. Consider an infinite-
horizon MDP characterized by a tuple 〈S,A, P,R, γ, µ0〉,
where S = {s1, · · · , s|S|} and A = {a1, · · · , a|A|} denote
the state and action spaces of the agent, R : S×A→ [0, 1]
is the reward function1, P : S × A → ∆(S) denotes the
transition kernel, γ ∈ [0, 1) denotes the discount factor,
and µ0 ∈ ∆(S) denotes the initial state distribution. We
assume S and A are finite (but potentially very large), in
order to ease the notation. However, our results later do not
depend on the cardinalities of S and A. Let π : S → ∆(A)
denote a Markov stationary policy of the agent, determin-
ing the distribution over actions at each state. Each π leads
to a discounted occupancy measure over the state-action
spaces, denoted by

θπ,µ0
(s, a) = (1− γ)

∞∑
t=0

γtPπ(st = s, at = a;µ0), (1)

where Pπ(st = s, at = a;µ0) is the probability of the
event of visiting the pair (s, a) at time t under the policy π,
starting from s0 ∼ µ0(·).

Correspondingly, with a slight abuse of notation, we use
θπ,µ0(s) =

∑
a∈A θπ,µ0(s, a) to denote the discounted

occupancy measure over states. For notational conve-
nience, we concatenate the state-action occupancy measure
θπ,µ0

(s, a) in a vector θπ,µ0
, defined as

θπ,µ0
=
[
θπ,µ0

(s1, a1), · · · , θπ,µ0
(s1, a|A|), · · · ,

θπ,µ0
(s|S|, a1), · · · , θπ,µ0

(s|S|, a|A|)
]> ∈ R|S||A|+ . (2)

Given any policy π, one can then define the correspond-
ing state-action and state value functions, Qπ and vπ , as

1Note that we stick to the case of deterministic reward for ease
of presentation. Our results can be readily extended to the case of
random rewards.
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follows:

Qπ(s, a) = Est+1∼Pst,at (·),at∼π(·|st)

[ ∞∑
t=0

γtr(st, at)

∣∣∣∣∣
s0 = s, a0 = a] ,

where the trajectory is generated following the policy π,
and vπ(s) = Ea∼π(·|s)[Qπ(s, a)]. The overall goal is to
find a policy π∗ that solves the following problem:

max
π

Jµ0
(π) := (1− γ) · Es∼µ0

[
vπ(s)

]
, (3)

where Jµ0
(π) denotes the return under π and µ0, i.e., the

(1 − γ)-times expected value function under policy π and
initial distribution µ0. Note that Jµ0

(π) can also be equiv-
alently written as Jµ0

(π) = r>θπ,µ0
, where

r = [r(s1, a1), · · · , r(s|S|, a|A|)]> ∈ [0, 1]|S||A|. (4)

It is known that the optimal solution to the MDP is a
Markov Stationary policy. For a general distribution ρ ∈
∆(S), we use θπ,ρ and Jρ(π) to denote the discounted oc-
cupancy measure and the average value function under pol-
icy π, but starting from the initial distribution ρ. We some-
times just write θπ and J(π) for simplicity, when the initial
distribution is clear from context.

Note that the optimal policy π∗ may not be unique. We
define v∗ = vπ∗ and Q∗ = Qπ∗ . For convenience, we
sometimes denote m = |S||A|.

Offline RL. Consider an offline RL problem, where one
has collected a dataset D containing n samples drawn
from some distribution. Suppose D = {(si, ai, s′i, ri)}ni=1,
where the independent and identically distributed (i.i.d.)
samples (si, ai) are drawn from some distribution µ(·, ·).
We let µ(s) =

∑
a µ(s, a) which implies that si are drawn

i.i.d. from the distribution µ(·). We denote the conditional
distribution of a given s induced from µ as πµ(a | s), i.e.,
πµ(a | s) = µ(s, a)/µ(s) if µ(s) > 0; and πµ(· | s) can
be defined as any distribution in ∆(A), e.g., a uniform one
with πµ(a | s) = 1/|A|, if µ(s) = 0. πµ can also be de-
fined as the behavior policy if µ happens to correspond to
the occupancy measure of some policy.

In this paper, we assume that the behavior policy πµ(a | s)
is known, as in (Zhan et al., 2022; Rashidinejad et al.,
2022). We provide extensions of our algorithms when
the behavior policy is not known in Appendix D. Given
a state-action pair (si, ai), we have ri = r(si, ai) and
s′i ∼ Psi,ai(·). Moreover, let nD(s, a) be the subset of
the sample indices {1, · · · , n} that includes the indices of
the samples in D that visit state-action pair in the sense
of (si, ai) = (s, a). Similarly, we use nD(s, a, s′) and
nD(s) to denote the sets of indices of data samples in

D such that (si, ai, s
′
i) = (s, a, s′) and si = s, respec-

tively. We define the empirical version of µ, i.e., µD, as
µD(s, a) = nD(s, a)/n. The goal of offline RL is to make
use of the dataset D to learn a policy π̂, such that the opti-
mality gap Jµ0

(π∗)− Jµ0
(π̂) is small.

Partial data coverage. Throughout the paper, we con-
sider the scenario where the offline data only has partial
coverage, instead of a full one. To illustrate the difference,
we first introduce the following definition of policy concen-
trability.
Definition 1 (Policy Concentrability). For any policy π
and initial state distribution ρ, and the given offline data
distribution µ, we define Cπ,ρ > 0 to be the policy con-
centrability coefficient, which is the smallest upper-bound
such that θπ,ρ(s,a)

µ(s,a) ≤ Cπ,ρ for all (s, a) ∈ S ×A.

Note that Cπ,ρ characterizes how well the trajectory gen-
erated by the policy π starting from some ρ is covered by
the offline data. In earlier offline RL literature, it is usually
assumed that the data has full coverage: there exists a con-
stant C that upper bounds Cπ,µ0

for all policy π (Munos
& Szepesvári, 2008; Scherrer, 2014). In contrast, when we
choose π = π∗, this leads to a single optimal policy con-
centrability assumption that is much weaker than the full
one. We will focus on this partial coverage setting, and
specify this assumption later.

2.2. LP-based Reformulations

It is known that for tabular MDPs, any optimal policy π∗

optimizes Jρ(π) starting from any distribution ρ ∈ ∆(S)
(including the actual initial distribution ρ = µ0 in the
model in Section 2.1) (Puterman, 1994), as it simultane-
ously maximizes vπ(s) for all states s ∈ S. Moreover, the
optimality condition of the MDP when starting from any
distribution ρ can also be written as the following linear
program (Puterman, 1994):

minv (1− γ)ρ>v

s.t. γP>(s,a)v + r(s, a) ≤ v(s), ∀s ∈ S, a ∈ A,
(5)

where P(s,a) = [Ps,a(s1), · · · , Ps,a(s|S|)]> ∈
∆(S) is the vector of state transition probabil-
ities for the state-action pair (s, a). Let P =
[P(s1,a1), · · · , P(s1,a|A|), · · · , P(s|S|,a1), · · · , P(s|S|,a|A|)] ∈
R|S|×m and 1|A| = [1, 1, · · · , 1]> ∈ R|A|.

Note that we keep the initial-state distribution used in
the LP (5) to be ρ (instead of µ0) for generality, which
does not affect the solution in the tabular case. However,
as we will specify in later sections, the choice of ρ can
make a difference in the function approximation setting,
and may help address some challenging settings in offline
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RL. Interestingly, such a distinction has already been ob-
served and studied in the linear function approximation
case (De Farias & Van Roy, 2003) in the context of ap-
proximate dynamic programming. The corresponding dual
formulation of the LP (5) can be written as follows:

maxθ r>θ :=
∑
s∈S,a∈A r(s, a) · θ(s, a)

s.t. Mθ = (1− γ)ρ, θ ≥ 0,
(6)

where the matrix M is defined as: M :=
Diag(1>|A|, · · · ,1

>
|A|) − γP. Note that the optimal

solution of the dual problem corresponds to the discounted
occupancy measure of an optimal policy (see (Puterman,
1994)). Hence, we use the notation θ to denote the
optimization variable of the dual problem.

We focus on solving the dual formulation (6) in this paper.
Then, the optimal θ∗ can be used to generate a policy πθ∗ ,
where πθ is defined as

πθ(a | s) =
θ(s, a)∑

a′∈A θ(s, a
′)
, (7)

if
∑
a′∈A θ(s, a

′) > 0; and πθ(· | s) can be defined as any
distribution in ∆(A), e.g., a uniform one with πθ(a | s) =
1/|A|, if

∑
a′∈A θ(s, a

′) = 0. This πθ∗ then corresponds
to an optimal policy π∗ of the MDP (Puterman, 1994).

To better study the relationship between the occupancy
measure and the data distribution, we also consider the
scaled version of the LP. This is also referred to as the
marginal importance sampling formulation of the MDP
in the literature (Nachum et al., 2019; Lee et al., 2021;
Zhan et al., 2022). First, we define w ∈ Rm+ such that
w(s, a)µ(s, a) = θ(s, a), i.e., w(s, a) denotes the ratio be-
tween the occupancy measure of the target policy and the
offline data distribution.

For each (s, a, s′) ∈ S × A × S, let Ks′,(s,a) ∈
R|S|×m be a matrix satisfying Ks′,(s,a)(s, (s, a)) = 1,
Ks′,(s,a)(s

′, (s, a)) = −γ and all other entries are zeros.
Define the distributions ν and νD over S × A × S as fol-
lows: ν(s, a, s′) := Ps,a(s′)µ(s, a) and νD(s, a, s′) :=
|nD(s, a, s′)|/n. Finally, we also define the matrices

K = E(s,a,s′)∼νKs′,(s,a), KD = E(s,a,s′)∼νDKs′,(s,a). (8)

Furthermore, we define u ∈ Rm such that u(s, a) :=
r(s, a)µ(s, a). Then, we have the following lemma which
relates these quantities to the ones in Problem (6).
Lemma 1. We have u>w = r>θ and Kw = Mθ.

Proof. Note that the first inequality directly follows from
the definitions of u and w.

The second equality can be derived as follows. Let
K(s′, (s, a)) and M(s′, (s, a)) denote the (s′, (s, a))-th el-
ement of the matrices K and M , respectively. Note that

K(s′, (s, a)) = M(s′, (s, a)) · µ(s, a) for all (s, a, s′) ∈
S ×A× S. Now:

[Kw]s =
∑
(s̃,ã)

K(s, (s̃, ã))w(s̃, ã)

=
∑
(s̃,ã)

M(s, (s̃, ã))µ(s̃, ã)w(s̃, ã) = [Mθ]s

thereby completing the proof.

Using Lemma 1, we can rewrite Problem (6) as follows:

max
w≥0

u>w s.t. Kw = (1− γ)ρ. (9)

Let w∗ be the solution to (9), then we can obtain the opti-
mal policy by computing πw∗ , where with a slight abuse of
notation, πw is defined as

πw(a | s) :=

{
w(s,a)πµ(a|s)∑

a′∈A w(s,a′)πµ(a′|s) , if c > 0
1
|A| if c = 0

(10)

where c :=
∑
a′∈A w(s, a′)πµ(a′ | s). We recall that πµ

is the conditional distribution of a given s under µ, which
can also be viewed as the behavior policy.

The equivalent primal-dual minimax reformulation of
Problem (9) is given by:

min
w∈Rm+

max
v∈R|S|

− u>w + v>(Kw − (1− γ)ρ). (11)

Throughout the paper, we define

`(w, v) := −u>w + v>(Kw − (1− γ)ρ). (12)

2.3. Empirical Formulation

Since we do not have access to the exact distributions in the
RL setting, we cannot solve Problem (11) directly. Let ρ̂ be
an empirical estimate of ρ (we can use ρ̂ = ρ if ρ is known
to us). We thus define the following empirical counterpart
of (12):

`D(w, v) := −u>Dw + v>(KDw − (1− γ)ρ̂), (13)

where we recall the definition of KD in (8), and define
uD ∈ Rm as uD(s, a) = r(s, a)µD(s, a), with µD(s, a) =
nD(s, a)/n. We will then focus on the following empirical
minimax optimization problem:

min
w∈Rm+

max
v∈R|S|

`D(w, v). (14)

Finally, we also give a brief introduction to Function Ap-
proximation next.
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2.4. Function Approximation

To handle massively large state and action spaces, func-
tion approximation is usually used for the decision vari-
ables when solving MDPs, e.g., for the value functions as
well as the density ratios when one uses the LP framework
as in (9) or (11). Note that for finite state-action spaces,
the variables v and w are real vectors of dimensions |S|
and |S||A|, respectively. Following the convention in the
literature (Chen & Jiang, 2019; 2022; Zhan et al., 2022;
Rashidinejad et al., 2022), we will refer to v and w as func-
tions, i.e., v : S → R and w : S × A → R. We will then
use function classes V and W to approximate the func-
tions v and w, which usually have much smaller cardinal-
ity/covering number than the whole function space. The
same convention also applies to other vectors of dimen-
sions |S| and/or |S||A|. We now introduce the following
relationship of completeness between two function classes,
which will be used later in the analysis.

Definition 2 (Completeness). For two function classes F
and G, and a mapping φ : F → G, we say they satisfy
(F ,G)-completeness under φ, if for all f ∈ F , φ(f) ∈ G.

Note that the common notion of Bellman-completeness cor-
responds to the case where F = G is the function class for
approximating value functions, and φ is the Bellman oper-
ator (Bertsekas, 2017).

In the following two sections, we propose two offline RL
algorithms with function approximation to different vari-
ables. In Section 3, we relax the equality constraint in (9)
to some inequality constraints and use function approxima-
tion tow and another additional variable. Under some com-
pleteness assumption, we prove that our algorithm achieves
optimal sample complexity in terms of sample size, and
even improves the state-of-the-art results specialized to the
tabular case. In Section 4, we use function approxima-
tion in the minimax problem (14) in its original form, and
achieve the 1/

√
n rate that also depends on the gap function

ofQ (see definition in Section 4), with only the realizability
assumption of the function classes.

3. Case I: Optimal Rate with
Completeness-type Assumption

We first solve offline RL with an optimal O(1/
√
n) sample

complexity using the LP formulation, under single-policy
concentrability and some completeness-type assumptions.
Throughout this section, we choose the distribution ρ in
the LP reformulations in Section 2.2 to be the initial state
distribution µ0.

Before proceeding further, we need some additional prop-
erties on the relationship between occupancy measure θ
and the induced policy πθ, as shown next.

3.1. Properties of the Induced Policy πθ

Recall the definition of the occupancy measure induced by
policy π as θπ,µ0

Note that for simplicity, we may omit the
subscript µ0 in θπ,µ0

throughout this section, as the initial
distribution considered here is only µ0, and should be clear
from the context. Notice that a vector θ ∈ Rm+ is not nec-
essarily an occupancy measure of any policy π. The first
lemma below shows that θ is an occupancy measure if it
satisfies the constraints in Problem (6) with ρ = µ0.
Lemma 2. If some θ ∈ Rm satisfies θ ≥ 0 andMθ = (1−
γ)µ0, we have θ = θπθ , where we recall the definition of
πθ in (7). Moreover, in this case, we have Jµ0(πθ) = r>θ.

This lemma is a special case of the next lemma and the re-
sults in Section 6.9 of (Puterman, 1994). The next question
is how close θ is to θπθ if θ is not in the set {θ | Mθ =
(1 − γ)µ0, θ ≥ 0}, i.e., it does not satisfy the constraints.
The following lemma provides an error bound that relates
the occupancy measure constraint violation and the abso-
lute difference between r>θ and r>θπθ .
Lemma 3. For any θ ≥ 0, we have |r>(θ − θπθ )| ≤
‖Mθ−(1−γ)µ0‖1

1−γ .

Note that the term r>θπθ in Lemma 3 exactly corresponds
to J(πθ). Next, we introduce the following definition.
Definition 3 (Sign Function). For any w ∈ Rm+ , we de-
fine the mapping φ : Rm → R|S| such that φ(w) ∈
arg maxx:‖x‖∞≤1 x

>(Kw−(1−γ)µ0) as the sign function
of the occupancy validity constraint Kw − (1− γ)µ0 = 0
in (9). In particular, note that φ(w)>(Kw− (1− γ)µ0) =
‖Kw − (1− γ)µ0‖1.

By the definition of dual norm, we refer to φ(w) as the sign
function, where we follow the convention that the sign of 0
can be any arbitrary x with ‖x‖∞ ≤ 1. We are now ready
to state our assumption on function classes.
Assumption 1. Let xw := φ(w) with φ given in Defini-
tion 3. Let W and B be the function classes for w and
xw, respectively. Then, we have realizability of W , and
(W,B)-completeness under φ, i.e., w∗ ∈ W and xw ∈ B
for all w ∈W . Furthermore, we assume thatW andB are
bounded, i.e., ‖w‖∞ ≤ Bw for all w ∈W and2 ‖x‖∞ ≤ 1
for all x ∈ B.

We discuss this assumption in detail in Appendix B.1.
Next, we make the following SPC assumption, as in
(Rashidinejad et al., 2021; 2022). Note that it is made for
the original MDP we would like to solve, and is weaker
than the policy concentrability assumption in (Zhan et al.,
2022), which additionally includes the concentrability as-
sumption for some regularized problem.

2Note that w∗ ∈ W implies that Bw ≥ 1 since w∗ is a supre-
mum of the ratio between two distributions.
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Assumption 2 (Single-Policy Concentrability). There ex-
ists some constant C∗ > 0 such that for all (s, a) ∈ S×A,
θπ∗,µ0 (s,a)

µ(s,a) ≤ Cπ∗,µ0
= C∗ for the optimal policy π∗ =

πw∗ , where w∗ is given in Assumption 1 3.

3.2. A Reformulated LP

Now we can state our approach. From Lemma 3, we know
that if we control ‖Mθ − (1 − γ)µ0‖1 = ‖Kw − (1 −
γ)µ0‖1, we can make the inner product r>θ be close to
the actual reward under the policy πθ, i.e., r>θπθ . This
motivates us to add a constraint to control ‖Kw − (1 −
γ)µ0‖1.

Recall that uD ∈ Rm is defined as uD(s, a) =
r(s, a)µD(s, a). Our approach is to solve the following LP-
based optimization problem constructed from the dataset
D:

max
w∈W

u>Dw

s.t. x>(KDw − (1− γ)µ0) ≤ En,δ,∀x ∈ B (15)

where En,δ :=
Bw
√

2 log(|B||W |/δ)√
n

. Program (15) can be
viewed as a relaxation of the empirical version of Problem
(9), by relaxing the constraint KDw− (1− γ)µ0 = 0 to an
inequality.

Suppose that we have a solution to Problem (15), denoted
by wD, we can obtain the policy πD by setting πD = πθ̃D ,
where for each (s, a) ∈ S ×A

θ̃D(s, a) = wD(s, a)πµ(a | s). (16)

The performance of the policy πD is given in the following
theorem:
Theorem 1. Suppose Assumptions 1 and 2 hold. Then, we
have, with probability at least 1− 6δ,

Jµ0
(π∗)− Jµ0

(πD) ≤
2
√

2Bw
√

log(|B||W |/δ)
(1− γ)

√
n

.

Note that Theorem 1 gives an optimal sample complexity
of O(1/

√
n) in terms of sample size n, with general func-

tion approximation. Compared to the recent work (Zhan
et al., 2022) that also uses the LP framework for offline RL,
we exchange the realizability assumption on v∗ therein for
some completeness-type assumption, while improving the
sample complexity from O(1/n1/6) to O(1/

√
n). Com-

pared to other offline RL algorithms with general function
approximation that have the optimal O(1/

√
n) rate, e.g.,

(Xie et al., 2021; Uehara & Sun, 2021; Chen & Jiang,
2022), which are computationally intractable, our algo-
rithm is tractable if the function classes are convex, inher-
iting the computational advantage of the LP framework for
offline RL (Zhan et al., 2022; Rashidinejad et al., 2022).

3Note that this implies C∗ ≤ Bw.

Finally, compared with the independent work (Rashidine-
jad et al., 2022), we both require the realizability of W
for w∗ and some completeness-type assumptions (we need
one such assumption while they need two, which may not
be comparable as the function classes used are different).
Moreover, we do not need the realizability of v∗ and have
better (1 − γ)−1 dependence ((1 − γ)−1 v.s. (1 − γ)−3),
with a relatively simpler algorithm and analysis. We note
that the key to obtain O(1/

√
n) rate in (Rashidinejad et al.,

2022) is also to enforce the constraint of wD, where they
use the technique of augmented Lagrangian, while we in-
troduce a constrained program directly.

Remark 1. Note that whenW,B are continuous sets, The-
orem 1 can still be true if we replace the cardinality by the
covering number or the number of extreme points. Then,
if W and B are convex, our algorithm is computationally
tractable since it is just solving a convex program.

3.3. The Tabular Case

In this subsection, we show that our results above can be di-
rectly reduced to the tabular case, maintaining the optimal
O(1/

√
n) sample complexity.

Here we need realizable function classes W and B. To
make the algorithm computationally tractable, we use con-
tinuous and convex function classes W and B, instead of
discrete, finite ones. In particular, let W = {w ∈ Rm+ |∑
a w(s, a) ≤ Bw,∀s ∈ S} and B = [−1, 1]|S|, which

are convex and compact, and satisfy the boundedness as-
sumptions in Assumption 1. Then we solve the following:

max
w∈W

u>Dw,

s.t. max
x∈B

x>(KDw − (1− γ)µ0) = ‖KDw − (1− γ)µ0‖1

≤
Bw
√
|S| log(2|A|+ 2) log(1/δ)√

n
. (17)

We have the following theorem:
Theorem 2. Suppose Assumption 2 holds, and the MDP is
non-degenerate in the sense that min{|A|, |S|} > 1. Then,
we have, with probability ≥ 1− 6δ, for any δ < 1/3:

Jµ0(π∗)− Jµ0(πD) ≤
2Bw

√
|S| ·

(
log(2|A|+ 2) log(1/δ)

)
(1− γ)

√
n

.

Compared to the concurrent and most related result
(Rashidinejad et al., 2022), our result yields a better sam-
ple complexity when reduced to the tabular case. In par-
ticular, (Rashidinejad et al., 2022) leads to a Õ(1/((1 −
γ)4
√
n)) rate4, while we have Õ(1/((1 − γ)

√
n)). In

fact, our reduction is comparable to and even better than

4Note that we did not specify the dependence on |S| explic-
itly here, since it depends on the function classes being used in
(Rashidinejad et al., 2022) (which are different from ours and not
comparable), which we believe can be of order

√
|S| as ours. We
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(in terms of (1 − γ)) the state-of-the-art result specifically
for the tabular case (Rashidinejad et al., 2021), which is5

Õ(
√
|S|/((1 − γ)3/2

√
n)), while ours is Õ(

√
|S|/((1 −

γ)
√
n)). Finally, note that the lower-bound for the tabu-

lar case is Ω(
√
|S|/(

√
(1− γ)n)), in (Rashidinejad et al.,

2021) and we believe that using the Bernstein’s (instead of
Hoeffding’s) concentration inequality together with some
variance reduction technique (Sidford et al., 2018) may fur-
ther improve our dependence on 1/(1 − γ), and attain the
lower bound.We leave these directions of improvement as
future work, since our focus is on the general function ap-
proximation case, and on the optimality of sample com-
plexity in terms of n.

Though attaining the O(1/
√
n) rate under the LP frame-

work, the results above still rely on some completeness-
type assumption. This naturally raises the question:

Can we have tractable offline RL algorithms with
O(1/

√
n) rate but only realizability and partial data

coverage assumptions?

which was the open question left in the literature (Zhan
et al., 2022; Chen & Jiang, 2022). Next, we provide an
answer to this question, using the LP framework.

4. Case II: Realizability-only with Gap
Dependence

In this section, we solve the LP-induced minimax opti-
mization (11), by introducing function approximation to
the variables v and w. Notice that such a setting is also
considered in (Zhan et al., 2022) (see Section 4.5 therein).
It is also related to the setting in (Chen & Jiang, 2022),
where function approximation was used for the state-action
function Q and w.

We select w, v from finite sets6 W,V . Throughout this sec-
tion, we sometimes write θπ,ρ as θπ for notational conve-
nience. Also, we specify the ρ in the LP formulation (9)
and (11) as ρ(s) = µ(s) for all s ∈ S throughout this
section, unless otherwise noted. This assumption enables
us to use a crucial lower bound in our problem formula-
tion (See Formulation (18)). At the end of this section, we
will relate the return Jρ(π) back to Jµ0

(π). We note that
we have access to the empirical version µD of µ, where
µD(s, a) = nD(s, a)/n.

thus only focus on the dependence of 1/(1 − γ) and n. Also,
the additional (1 − γ)−1 comes from that Bv therein is of order
(1− γ)−1.

5Note that the definition of Jµ0 in (Rashidinejad et al., 2021)
is (1− γ)-factor off from our definition.

6As in several related works (Zhan et al., 2022; Rashidinejad
et al., 2022), in the case they are infinite classes, we can replace
the results in this section with a standard covering argument.

The next proposition specifies a lower bound of θπ:
Proposition 1. For any optimal policy π∗ and any initial
state distribution ρ ∈ ∆(S), we have

∑
a∈A θπ∗,ρ(s, a) ≥

(1− γ) · ρ(s) for all s ∈ S.

This is a direct corollary of the fact that for any pol-
icy π, by definition we have

∑
a∈A θπ,ρ(s, a) ≥ (1 −

γ)
∑
a∈A ρ(s, a) = (1 − γ)ρ(s) for all s ∈ S. In par-

ticular, we would like to note that Proposition 1 is true for
the initial state distribution ρ(s) = µ(s).

The design of algorithms in this section is based on the fol-
lowing intuitive idea: According to Equation (10), for the
w such that

∑
a w(s, a)πµ(a | s) = 0, the policy πw has to

be assigned randomly (as a uniform distribution for exam-
ple), and cannot be decided from the offline data. To avoid
this case, one direct approach is to add a lower bound con-
straint to the vanilla minimax problem (11). Specifically,
we consider the following population minimax problem:

min
w∈Rm+

max
v∈R|S|

−u>w + v>(Kw − (1− γ)µ)

s.t.
∑
a w(s, a)πµ(a | s) ≥ (1− γ), ∀s ∈ S. (18)

Note that compared to the vanilla minimax problem (11),
the only difference is that we enforce the lower bound con-
straints on

∑
a w(s, a)πµ(a | s). This lower bound con-

straint, along with the upper bound shown in Lemma 6, will
help control the probability of choosing an inactive state-
action pair by the policy generated by the solution of (18).
Furthermore, by Proposition 1, we know that the optimal
solution w∗ is not eliminated by adding the lower bound
constraints. Then we turn to solving (18) using function
approximation, i.e., our algorithm is to solve the following
program:

min
w∈W

max
v∈V

−u>w + v>(Kw − (1− γ)µ), (19)

where W is defined such that for all w ∈W we have∑
a∈A

w(s, a)πµ(a | s) ≥ (1− γ),∀s ∈ S. (20)

Notice that this does not conflict with the constraint of w ∈
Rm+ in (18), as we can intersect the sets corresponding to
these two constraints when defining W .

To learn an approximate optimal policy from the offline
data, we solve the following empirical version of the mini-
max problem in (19):

min
w∈W

max
v∈V

−u>Dw + v>(KDw − (1− γ)µD),

s.t. W satisfies (20). (21)

4.1. Assumptions

Before moving to the main theoretical result in this section,
we first state our assumptions and some additional notation.
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We first make the realizability assumptions for the function
classes W and V .

Assumption 3 (Realizability and Boundedness of W ).
There exists some solutionw∗ ∈W ⊆ Rm+ solving (18) and
hence solving (11). Moreover, we suppose ‖w‖∞ ≤ Bw for
all w ∈W .

Assumption 4 (Realizability and Boundedness of V ). Sup-
pose that v∗ ∈ V ⊆ [−1/(1− γ), 1/(1− γ)]|S|.

Notice that similar assumptions are used in (Zhan et al.,
2022; Chen & Jiang, 2022). Next, we make the assump-
tion regarding data coverage, which suggests that the of-
fline data should cover some single optimal policy. For ease
of presentation, we use the following definitions.

Definition 4. We denote by S0, the set of states visited by
the offline data distribution µ, i.e., S0 := {s ∈ S | µ(s) >
0}, where we recall that µ(s) =

∑
a∈A µ(s, a) for any s ∈

S 7. Also, for any policy π and any s ∈ S, we define

Sπ(s) := {a ∈ A | π(a | s) > 0},
T (s) := {a ∈ A | Q∗(s, a) = v∗(s)}.

Next, we define the set of (in)active state-action pairs.

Definition 5 (Active State-Action Pairs). We say that a
state-action pair (s, a) ∈ S × A is active if Q∗(s, a) =
v∗(s). Otherwise, (s, a) ∈ S × A is an inactive pair. Let
I ⊆ S × A be the set of inactive state-action pairs, and
S ×A \ I thus corresponds to that of the active ones.

We then have the following lemma which characterizes the
optimal policy in terms of the inactive set I:

Lemma 4. If π0 is an optimal policy, then θπ0,µ(s, a) = 0
for any (s, a) ∈ I. If π0(a | s) = 0 for any (s, a) ∈ I, then
π0 is an optimal policy.

Now we state the partial data coverage assumption. We first
introduce the following definitions for convenience.

Definition 6 (Data Coverage). We say that π is a µ-policy
if π(a | s) > 0 implies µ(s, a) > 0 for any s ∈ S0. A µ-
optimal policy is an optimal policy that is also a µ-policy.
Suppose there exists at least one µ-optimal policy, then,
a policy π∗ is called a max-µ-optimal policy if it is a µ-
optimal policy that satisfies |Sπ∗(s)| = |Sπµ(s) ∩ T (s)|
for any s ∈ S0.

Remark 2. A µ-policy means that this policy is covered by
the behavior policy in some sense. For any state s ∈ S0,
it is reasonable to assume that a optimal pair (s, a) can
be visited by the behavior policy with positive probabil-
ity, where a is an optimal action that maximizes Q(s, a).

7Note that we do not need to know S0 for our algorithm to be
stated later. We only need the definition of S0 for analysis.

Therefore, it is reasonable to assume that a µ-optimal pol-
icy exists. If a µ-optimal policy exists, then the max-µ-
optimal policy must exist.

We are now ready to state the SPC assumption.

Assumption 5 (Single-Policy Concentrability+). There ex-
ist some max-µ-optimal policy π∗, and some constant
C∗ > 0 such that for all (s, a) ∈ S × A, θπ∗,µ(s,a)

µ(s,a) ≤
Cπ∗,µ = C∗.

Note that Assumption 5 is slightly stronger than the
usual single-policy concentrability assumption (Rashidine-
jad et al., 2021; 2022), which assumes the coverage of any
optimal policy. Assumption 5 means that if an optimal pol-
icy is covered by the behavior policy, then its occupancy
measure should also be covered by the offline data distri-
bution. It is reasonable in practice when the data is gener-
ated by sampling from a mixed Markov chain under some
behavior policy (Liu et al., 2018; Levine et al., 2020). See
a detailed discussion in Appendix C.2.

4.2. Main Results

Proposition 2. Let π∗ be a max-µ-optimal policy for which
Assumption 5 holds. There exist constants C∗, Cmax > 0
such that:
1.) θπ∗(s, a) ≤ C∗µ(s, a) for any (s, a) ∈ S ×A;
2.) For any µ-optimal policy π, we have θπ(s) ≤
Cmaxµ(s) for any s ∈ S.

Before moving to our main theorem, we define the gap of
the optimal Q-function below, which is the minimal differ-
ence of the optimal Q-value between the optimal and the
second optimal actions, among all states s ∈ S.

Definition 7 (Gap). For each (s, a) ∈ S × A, we define
the gap ∆Q(s, a) := v∗(s) −Q∗(s, a). We then define the
minimal gap as ∆Q := min(s,a)∈I ∆Q(s, a), where we
recall that I is the set of inactive state-action pairs given
in Definition 5.

Note that as long as I is not empty, then ∆Q(s, a) > 0 for
any (s, a) ∈ I, leading to ∆Q > 0 by definition. If I is
empty, then the problem becomes degenerate since any ac-
tion is active for any state, i.e., any policy is an optimal pol-
icy. We hereafter focus on the non-degenerate case where
∆Q > 0. This gap notion was also used in (Chen & Jiang,
2022) in the context of offline RL. However, in contrast
to this work, our definition here does not need to assume
that the maximizer of maxa Q∗(s, a) is unique for each
s, which is more standard in the online RL setting (Sim-
chowitz & Jamieson, 2019; Lattimore & Szepesvári, 2020;
Papini et al., 2021; Yang et al., 2021). Also, our algorithm
does not need to know the gap ∆Q and is tractable, com-
pared to that in (Chen & Jiang, 2022). Now we are ready
to present the following theorem.

Theorem 3. Under Assumptions 3, 4, 5, we have, with

8
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probability ≥ 1− δ

Jµ(π∗)− Jµ(πD) ≤ 8
√

2BwCmax

∆Q(1− γ)3
·
√

log(|W ||V |/δ)√
n

.

Theorem 3 provides an optimal O(1/
√
n) sample com-

plexity under some single-policy concentrability and the
realizability-only assumption, for the return with initial dis-
tribution ρ = µ for the LP, with the aid of the lower bound
1 − γ on

∑
a w(s, a)πµ(a | s). However, this bound de-

pends on all µ−optimal policies, due to Cmax. We relax
this dependence in Appendix D.2. The proof of the theorem
is based on the primal gap analysis proposed in (Ozdaglar
et al., 2022), which was shown to be critical in characteriz-
ing the generalization behaviors in stochastic minimax op-
timization. Note that in Theorem 3, the value function Jµ is
based on initial distribution µ. The next corollary connects
back to the reward with initial distribution µ0.
Corollary 1. Under Assumptions 3, 4, 5, and suppose that
µ0 is covered by µ, i.e., maxs∈S

µ0(s)
µ(s) ≤ Cµ for some con-

stant Cµ > 0, we have, with probability ≥ 1− δ,

Jµ0(π∗)− Jµ0(πD) ≤ 8
√

2BwCmaxCµ
∆Q(1− γ)3

·
√

log(|W ||V |/δ)√
n

.

Corollary 1 follows by a direct change of measure argu-
ment and is thus omitted. We provide a detailed discussion
of this corollary in Appendix C.4.

Recall the definitions of ` and `D in (12) and (13), re-
spectively, and the fact that we set ρ = µ, we have
`(w, v) = −u>w + v>(Kw − (1− γ)µ) and `D(w, v) =
−u>Dw + v>(KDw − (1 − γ)µD). The population and
empirical primal gaps are defined as follows.
Definition 8 (Primal Gap). Let `V (w) = maxv∈V `(w, v)
and `VD(w) = maxv∈V `D(w, v). The empirical primal
gap is defined as ∆W,V

D (w) = `VD(w)−minw′∈W `VD(w′),
and the population primal gap is defined as ∆W,V (w) =
`V (w) − minw′∈W `V (w′). For notational simplicity, we
omit the superscripts W,V hereafter.

Let wD be the solution to problem (21). We have
∆D(wD) = 0. We can upper bound of the population pri-
mal gap at wD as follows:
Lemma 5. Suppose Assumptions 3, 4 hold. Then, with
probability ≥ 1− δ, we have

∆(wD) ≤
4
√

2Bw
√

log(|V ||W |/δ)
(1− γ)

√
n

.

Next, we need to relate the primal gap to the accuracy of
policy πD in terms of Jµ(π∗) − Jµ(πD). Notice that in-
spired by Lemma 4, the sub-optimality gap of πD can be
captured by the violation of πD(a|s) = 0 for (s, a) ∈ I.
πD(·|s) is the normalization of θD(s, ·), where θD(s, a) =
w(s, a)µ(s, a). Hence, we bound θD in I as follows:

Lemma 6. We have
∑

(s,a)∈I θD(s, a) ≤ ∆(wD)
∆Q

.

Finally, combining the lower bound constraints in Program
(19), we have the following estimate of Jµ(π∗)− Jµ(πD).

Lemma 7. We have

Jµ(π∗)− Jµ(πD) ≤ 2Cmax

(1− γ)2∆Q
∆(wD).

Combining Lemma 5 and Lemma 7, Theorem 3 follows.

5. Concluding Remarks
In this paper, we revisited the linear programming frame-
work for offline RL with general function approximation,
which has been advocated recently in (Zhan et al., 2022) to
obtain provably efficient algorithms with only partial data
coverage and function class realizability assumptions. We
proposed two offline RL algorithms with function approx-
imation to different decision variables, and established op-
timal O(1/

√
n) sample complexity with partial data cov-

erage, relying on either certain completeness-type assump-
tion, or a slightly stronger data coverage assumption than
standard single-policy concentrability. Key to our analy-
sis is adding proper constraints in the LP and the induced
minimax optimization problems for solving the MDPs.

Our work has opened up avenues for future research in
offline RL. For example, is it possible to achieve optimal
sample complexity with the standard single-policy concen-
trability assumption and only realizability, under the LP
framework? What is the gap-dependent lower bound for
offline RL with general function approximation? If the
behavior policy is not known, is there an approach better
than direct behavior cloning? Would policy-based offline
RL algorithms be able to handle partial data coverage and
realizability-only assumptions simultaneously? We hope
our results can provide some insights into addressing these
questions, especially when the LP framework is used.
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Supplementary Materials for
“Revisiting the Linear-Programming Framework for Offline RL

with General Function Approximation”

A. Omitted Details in Section 1
A.1. Related Work

We provide a more detailed literature review in this subsection, and categorize the results based on their assumptions on
data and function class.

Data coverage assumptions. Early theoretical works on offline RL usually require the all-policy concentrability assump-
tion, i.e., the offline data has to be exploratory enough to cover the state distributions induced by all policies (Munos &
Szepesvári, 2008; Scherrer, 2014; Chen & Jiang, 2019). We refer to this assumption as the full data coverage assumption.
Slightly weaker variant that assumes some weighted version of the all-policy concentrability coefficient is bounded has
also been investigated (Xie & Jiang, 2021; Uehara et al., 2020). More recently, significant progress has been made to relax
full coverage assumption to partial coverage ones. (Jin et al., 2020; Rashidinejad et al., 2021; Li et al., 2022) developed
pessimistic value iteration based algorithms for tabular or linear MDPs, under the single-policy concentrability assumption
on data coverage. When general function approximation is used, some variants of the SPC assumption were proposed to
account for partial data coverage (Uehara & Sun, 2021; Xie et al., 2021; Cheng et al., 2022). However, these algorithms
are either computationally intractable (Uehara & Sun, 2021; Xie et al., 2021), or statistically suboptimal (Cheng et al.,
2022). Other recent works that require only partial data coverage are (Zhan et al., 2022; Chen & Jiang, 2022) which will
be discussed next.

Function class assumptions. One common assumption on function class is the Bellman-completeness on value functions
(Munos & Szepesvári, 2008; Scherrer, 2014; Chen & Jiang, 2019; Xie et al., 2021; Cheng et al., 2022), which requires the
value function class to be closed under the Bellman operator. By definition, such an assumption is automatically satisfied
for the tabular and linear MDP cases mentioned above (Jin et al., 2020; Rashidinejad et al., 2021; Li et al., 2022), and is
implied when realizability of the MDP model (Uehara & Sun, 2021) is assumed, see (Chen & Jiang, 2019). This strong
assumption has been recently relaxed to only realizability, i.e., the function class only needs to contain (approximately)
the target function of interest (e.g., optimal value function) (Xie & Jiang, 2021). However, (Xie & Jiang, 2021) relies on
data coverage assumption that is even stronger than all-policy concentrability. In fact, there have been hardness results
(Wang et al., 2020; Amortila et al., 2020; Zanette, 2021; Foster et al., 2021) showing that even with good data coverage,
realizability-only assumption on the value function is not sufficient for sample-efficient offline RL. This motivated the use
of function approximation for density ratio (in addition to value function), as in (Nachum et al., 2019; Zhan et al., 2022;
Chen & Jiang, 2022; Jiang & Huang, 2020) and our work. In particular, (Zhan et al., 2022; Chen & Jiang, 2022) are the
most related recent works that assume only realizability, on both value function and density ratio, and partial data coverage.
However, they are either statistically suboptimal (Zhan et al., 2022) or computationally intractable (Chen & Jiang, 2022).
Moreover, (Zhan et al., 2022) additionally requires the data coverage of the regularized problem; and (Chen & Jiang, 2022)
additionally requires that the greedy optimal action is unique for all states.

Independent work (Rashidinejad et al., 2022). While preparing our paper, we came across a concurrent and indepen-
dent work (Rashidinejad et al., 2022), which also obtained the optimal O(1/

√
n) rate under general function approxi-

mation via the LP framework, and also without behavioral regularization. Note that (Rashidinejad et al., 2022) requires
completeness-type assumptions throughout, which can be viewed as mirroring the first half of our results (i.e., Section 3),
while we also have the realizability-only results under a slightly different data coverage assumption (i.e., Section 4).

(Rashidinejad et al., 2022) and Section 3 of our paper are different in the following aspects: First, (Rashidinejad et al., 2022)
is based on an augmented Lagrangian method (ALM), while we propose to solve the optimization with constraints directly.
Second, the function classes being used, and the corresponding completeness and realizability assumptions are different
(see Section 3 for more details). Third, with a different and rather simple analysis, our results have better dependence on
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(1 − γ), and even improves the state-of-the-art result when specializing to the tabular case (Rashidinejad et al., 2021).
Finally, we also note that interestingly, both works have noticed the importance of occupancy validity constraints, and
our constrained formulation in Section 3 mirrors the role of ALM in (Rashidinejad et al., 2022), to enforce such validity
constraints.

A.2. Our Key Techniques

The key idea to our approaches is to study properly constrained versions of the LP reformulation of the underlying MDP.
In particular, we focus on the dual problem of a variant of the standard LP reformulation, based on the marginal importance
sampling framework (Nachum et al., 2019; Lee et al., 2021), where the dual variable corresponds to the ratio between the
state-action occupancy measure and the offline data distribution (also referred to as the density ratio).

Our first set of results relies on a key error bound lemma that relates the value function suboptimality with the `1-norm
violation of the validity constraint on the occupancy measure in the LP (see Lemma 3). This lemma leads to a constrained
dual formulation without the need of behavior regularization as in (Zhan et al., 2022). Using function approximation for
the density ratio and the sign function of the occupancy validity constraint (see Definition 3), this formulation organically
allows us to obtain O(1/

√
n) sample complexity under the realizability of density ratio function class, and certain com-

pleteness assumption on the sign function, together with standard SPC assumption (Rashidinejad et al., 2021; Chen &
Jiang, 2022).

To remove any completeness assumption, in the second part, we consider the minimax reformulation of the dual LP, which
dualizes the occupancy measure validity constraints. To stabilize the normalization step in generating the policy from the
LP solution (see Equation (10)), we introduce an additional lower-bound constraint on the density ratio, which does not
lose optimality if the initial state distribution coincides with the offline data distribution. Under this new formulation,
we establish gap-dependent O(1/

√
n) sample complexity with only realizability assumptions on the value function and

density ration, and a slightly stronger SPC assumption that assumes certain optimal policy covered by the behavior policy
is also covered by the offline data distribution.

A.3. Notation

For a vector v ∈ Rd, we use ‖v‖p to denote its `p norm (where p ∈ [0,∞], and if there is no subscript, ‖v‖ denotes the `2
norm. Note that ‖v‖0 denotes the number of non-zero elements in v. For a matrix M ∈ Rm×n, we use ‖M‖ and ‖M‖F
to denote its `2-induced and Frobenius norm, respectively, and use M> to denote its transpose. For a set S, we use |S|
to denote its cardinality, and ∆(S) to denote the probability distribution over S. For a function class F , we use |F| to
denote its cardinality if it is discrete, and its covering number if it is continuous. We use E to denote expectation. For any
matrix M ∈ Rm×n, M ≥ 0 denotes that each element of M is non-negative. We also use Rd+ to denote the d-dimensional
real vector space with all elements being non-negative. We use Diag(M1, · · · ,Mn) to denote the block diagonal matrix
of proper dimension whose diagonal blocks M1, · · · ,Mn have the same dimension. We follow the convention of 0/0 = 0
throughout, unless otherwise noted.
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B. Omitted Details in Section 3
B.1. Discussion on Assumption 1

Several remarks are in order. First, we introduce xw to calculate the `1-norm of Kw − (1 − γ)µ0, since the `1-norm
will be related to the suboptimality gap of the policy obtained from w (see Lemma 3 below). Second, Assumption 1
contains not only realizability of W for w∗, but also the completeness-type assumption of B for xw ∈ B for any w ∈ W .
The completeness-type assumptions are standard in the offline RL literature (Munos & Szepesvári, 2008; Chen & Jiang,
2019; Xie et al., 2021), and can be challenging or even impossible to remove in certain cases due to some hardness results
(Foster et al., 2021). To the best of our knowledge, the only existing results that merely assume realizability of the optimal
solutions are (Uehara & Sun, 2021; Zhan et al., 2022; Chen & Jiang, 2022), which are either statistically sub-optimal or
computationally intractable. We defer our solution to the realizability-only case to Section 4.

Third, interestingly, some completeness assumption is also made in the concurrent work (Rashidinejad et al., 2022) that
achieves the optimal O(1/

√
n) rate as well (see their Theorem 4), mirroring our Assumption 1. Note that we only need the

completeness of one function classB for xw, while (Rashidinejad et al., 2022) requires the completeness of U for u∗w (with
the notation therein), the realizability of v∗, together with either the realizability of the model P (which is deemed as even
stronger than Bellman-completeness (Chen & Jiang, 2019; Zhan et al., 2022; Uehara & Sun, 2021)), or the completeness
of two function classes U and Z therein.

B.2. Proof of Lemma 3

Let the policy that is obtained by normalizing both θ and θπθ be πθ (note that normalizing both of these vectors gives the
same policy). Next, we define:

θ̄(s) =
∑
a∈A

θ(s, a), and θ̄πθ (s) =
∑
a∈A

θπθ (s, a). (22)

Note that we can write θ(s, a) = θ̄(s)πθ(a | s) and θπθ (s, a) = θ̄πθ (s)πθ(a | s).

Let Pπθ ∈ R|S|×|S| be a column stochastic matrix (the sum of all entries of every column is 1) which describes the state
transition probabilities under the policy πθ, i.e.,

Pπθ (j, i) =
∑
a∈A

Psi,a(sj) · πθ(a | si).

Also, we define the matrix Gθ = Diag(πθ(· | s1), πθ(· | s2), · · · , πθ(· | s|S|)) ∈ R|S||A|×|S|, and notice the fact that
MGθ = I − γPπθ . Now, since θπθ satisfies the constraints in Problem (6), we have Mθπθ = (1− γ)µ0. This implies:

‖Mθ − (1− γ)µ0‖1 = ‖M(θ − θπθ )‖1
= ‖MGθ(θ̄ − θ̄πθ )‖1
= ‖(I − γPπθ )(θ̄ − θ̄πθ )‖1
≥ (1− γ)‖θ̄ − θ̄πθ‖1. (23)

Here the last inequality is because γ‖Pπθ (θ̄ − θ̄πθ )‖1 ≤ γ‖θ̄ − θ̄πθ‖1, which follows from the fact that Pπθ is a column
stochastic matrix.

On the other hand, since r(s, a) ∈ [0, 1] for all (s, a), we have:

|r>(θ − θπθ )| = |r>Gθ(θ̄ − θ̄πθ )|
≤ ‖θ̄ − θ̄πθ‖1. (24)

Combining inequalities (23) and (24), we get the result.

B.3. Proof of Theorem 1

First, we need to guarantee the feasibility of the optimization problem (15).
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Lemma 8. Any w∗ ∈W (see Assumption 1) is feasible to (15) with probability at least 1− δ.

Proof. Use Hoeffding’s inequality, we have that for any x ∈ B:

P(x>(K −KD)w∗ ≥ t) ≤ exp

(
−nt2

8B2
w

)
. (25)

This is using the fact that x>(K −KD)w∗ is a random variable which lies in the interval [−Bw(1 + γ), Bw(1 + γ)]. Note

that we use the fact of ‖w∗‖∞ ≤ C∗ ≤ Bw, by Assumption 1. Now, taking t = 2
√

2Bw

√
log(|W ||B|/δ)√

n
, we have

P(x>(K −KD)w∗ ≥ t) ≤ δ

|W ||B|
. (26)

Now, taking the union bound over all x ∈ B and also all w ∈W , we get the final result.

Next, we show that the objective value u>DwD is close to u>w∗.
Lemma 9. We have

u>DwD ≥ u>w∗ −
√

2Bw√
n

√
log

1

δ

with probability at least 1− 2δ.

Proof. From Lemma 8, we have

u>DwD ≥ u>Dw∗

with probability at least 1− δ (since w∗ is feasible to (15) with probability 1− δ).

Then we can use Hoeffding’s inequality to bound (u− uD)>w∗ as follows:

P(u>Dw
∗ ≤ u>w∗ − t) ≤ exp

(
−nt2

2B2
w

)
. (27)

Setting this upper bound to be equal to δ, we have:

t =

√
2Bw√
n

√
log

1

δ
. (28)

Combining the two events completes the proof.

Next, we provide a bound for ‖KwD − (1− γ)µ0‖1.
Lemma 10. We have

‖KwD − (1− γ)µ0‖1 ≤ 2En,δ

with probability at least 1− 2δ.

Proof. We first have

x>(K −KD)w ≤ En,δ, ∀x ∈ B (29)

for any x ∈ B, w ∈ W with probability at least 1− δ, by a concentration bound and union bound (similar to the proof of
Lemma 8). This directly implies our lemma since wD ∈W .

Therefore:

‖KwD − (1− γ)µ0‖1 ≤ ‖KDwD − (1− γ)µ0‖1 + ‖(K −KD)wD‖1
≤ En,δ + En,δ, (30)

where the first term on the right-hand side is due to that wD satisfies the constraint in (15). This completes the proof.
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Finally, combining the above lemmas and Lemma 3, we can prove Theorem 1:

Proof of Theorem 1. From Lemma 9, we have:

Jµ0
(π∗) = u>w∗ ≤ u>DwD +

√
2Bw√
n

√
log

1

δ
. (31)

This tells us that u>DwD is close to u>w∗ = Jµ0
(π∗). Next, using Hoeffding’s inequality and union bound, similarly we

know that

u>Dw ≤ u>w +

√
2Bw√
n

√
log
|W |
δ

(32)

for any w ∈W . Then since wD ∈W , we have

u>DwD ≤ u>wD +

√
2Bw√
n

√
log
|W |
δ

(33)

with probability at least 1 − δ. Define θ̂D(s, a) = θ̃D(s, a)µ(s) where we recall the definition of θ̃D in (22). Note that
θπθ̂D

= θπθ̃D
. Next, using the definition of u, we have u>wD = r>θ̂D. Now, using Lemma 3, we can bound the difference

r>θ̂D ≤ r>θπθ̃D +
‖Mθ̂D − (1− γ)µ0‖1

1− γ
, (34)

where we recall that πθ̃D is generated by θ̃D by normalization. Note that here we have r>θπθ̃D = Jµ0
(πθ̃D ) = Jµ0

(πD).

Finally, using Lemma 10, we can bound ‖Mθ̂D − (1− γ)µ0‖1 = ‖KwD − (1− γ)µ0‖1, which completes the proof.

B.4. Proof of Theorem 2

Note that Theorem 1 is not directly applicable to derive the sample complexity of this algorithm. Though not directly
applicable, we can still base our analysis on the derivations above. Specifically, here we provide a proof for this theorem
based on the number of extreme points of the convex sets.

Proof. The number of extreme points of W and B are (|A|+ 1)|S| and 2|S|. With a slight abuse of notation, we let ‖W‖e
and ‖B‖e denote the number of extreme points of W and B, respectively.

According to the proof of Theorem 1, we only need to modify two union concentration bounds – (29) and (32). These two
inequalities can be replaced by the following two inequalities in terms of the number of extreme points:

1. |x>(K −KD)w| ≤ 2Bw
√
|S| log((2|A|+ 2)/δ)/

√
n for any w ∈W, x ∈ B with probability ≥ 1− δ;

2. |(u− uD)>w| ≤ 2Bw
√
|S| log((|A|+ 1)/δ)/

√
n for any w ∈W with probability ≥ 1− δ.

We only prove the first claim and the second one follows similarly. Let W0 = {w1, · · · , w‖W‖e}, B0 = {x1, · · · , x‖B‖e}
be the sets of extreme points of W,B, respectively. Then for any w ∈W , we have

w =

‖W‖e∑
i=1

λiwi,

and for any x ∈ B,

x =

‖B‖e∑
j=1

ζjxj ,
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for some λ = (λ1, · · · , λ‖W‖e)> and ζ = (ζ1, · · · , ζ‖B‖e)> that lie in the corresponding simplices. For any wi, xj , using
Hoeffding inequality and union bound on the sets W0, B0, we have

|x>j (K −KD)wi| ≤ 2Bw
√
|S| log((2|A|+ 2)/δ)/

√
n

with probability ≥ 1− δ. Then using the decomposition

x>(K −KD)w =

‖W‖e∑
i=1

‖B‖e∑
j=1

λiζjx
>
j (K −KD)wi

and the Jensen’s inequality, we prove that with probability ≥ 1− δ, we have

|x>(K −KD)w| ≤ 2Bw
√
|S| log((2|A|+ 2)/δ)/

√
n

This completes the proof of the first claim. Using the same strategy as the proof of Theorem 1, we prove Theorem 2.
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C. Omitted Details in Section 4
C.1. Proof of Lemma 4

We prove the first part as follows. If π0 is optimal, π0(a | s) = 0 for any inactive (s, a). Therefore, Prπ0(st = s, at =
a;µ) = 0 for any t and any (s, a) ∈ I. Therefore, θπ0,µ(s, a) = 0 for any (s, a) ∈ I.

For the second part, we prove it as follows. Let v∗ be the optimal value function. We only need to prove vπ0 = v∗. For a
policy π, define

Pπ(j, i) =
∑
a∈A

Psi,a(sj) · π(a | si)

and

rπ = (r(s1, ·)>π(s1, ·), · · · , r(s|S|, ·)>π(s|S|, ·))>.

Then we know that vπ0
is the unique solution to the linear equation:

v = γP>π0
v + rπ0 . (35)

We then prove that v∗ is also a solution to this equation. In fact, letting Pπ(i) be the i-th column of Pπ , we have

γP>π0
(i)v∗ + rπ0(i) (36)

=
∑

a∈Sπ0 (si)

π0(a | si)(γP>si,av
∗ + r(si, a)) (37)

=
∑

a∈Sπ0 (si)

π0(a | si)Q∗(si, a) (38)

= v∗(si), (39)

where the second equality is because γP>v∗+ r = Q∗ and the third equality is because Q∗(s, a) = v∗(s) for a ∈ Sπ0
(s).

Then v∗ is the solution to (35). Since the solution to (35) is unique (Puterman, 1994), we have v∗ = vπ0
, which yields the

desired result.

C.2. Discussion on Assumption 5

Note that Assumption 5 is slightly stronger than the usual single-policy concentrability assumption (Rashidinejad et al.,
2021; 2022), which assumes the coverage of any optimal policy. Assumption 5 means that if an optimal policy is covered
by the behavior policy (i.e., it is a µ-optimal policy), then its occupancy measure should also be covered by the offline
data distribution. It is reasonable in the following sense: In practice, the offline data distribution is usually generated from
the stationary distribution of the Markov chain under some behavior policy, which can be obtained by rolling out some
infinitely (or sufficiently) long trajectories using the policy (Liu et al., 2018; Levine et al., 2020). Thus, µ satisfies the fixed
point equation

µ(s′) =
∑
s,a

µ(s, a)Ps,a(s′). (40)

Then the usual single-policy concentrability with initial distribution µ implies Assumption 5. To see this, first, we note that
usual SPC with initial µ implies that the covered policy π∗ is a µ-optimal policy by definition. Hence, there must exist a
max-µ-optimal policy.

Second, we show that for any µ-optimal policy π∗, if θπ∗,µ(s) > 0 for some s ∈ S, then µ(s) > 0. We show it by
contradiction. Suppose that µ(s) = 0 but θπ∗,µ(s) > 0. Then with positive probability, there exists some trajectory
{s0, s1, · · · , sT } with sT = s generated by the µ-optimal policy π∗. Note that µ(sT ) = 0 implies that there must exist
some t ≤ T , such that µ(st) = 0 (with t = T being the largest one). Let t0 be the smallest t such that µ(st) = 0. Then
we have t0 > 0 since the initial distribution that generates θπ∗,µ is µ, i.e., s0 is sampled from µ and thus µ(s0) > 0. We
thus have µ(st0−1) > 0 by the definition of t0. Moreover, there must exist some a ∈ A such that π∗(a | st0−1) > 0
and Pst0−1,a(st0) > 0, since we have observed the transition from st0−1 to st0 . By the definition of µ-policy, we have
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µ(st0−1, a) > 0 because π∗(a | st0−1) > 0 for this a. We thus have µ(st0) > 0 by (40), which contradicts the assumption.
Hence we have shown that θπ∗,µ(s) > 0 can imply µ(s) > 0.

Third, the second point also implies that for any µ-optimal policy π∗ (including the max-µ-optimal policy), θπ∗,µ(s) = 0
for any s /∈ S0. Consequently, θπ∗,µ(s, a) > 0 implies s ∈ S0 and π∗(a | s) > 0, which further implies that µ(s, a) > 0
since π∗ is a µ-policy. Combining these three points, we obtain our Assumption 5.

Finally, we note that if the µ-optimal policy is unique, Assumption 5 is reduced to the specific single-policy concentrability
assumption used in (Chen & Jiang, 2022). In particular, (Chen & Jiang, 2022) directly assumes that the optimal policy of
the original problem is unique.

C.3. Proof of Proposition 2

The first part directly follows from Assumption 5. Next, we prove the second part. For any µ-optimal policy π, we define
Cπ = maxs∈S

θπ(s)
µ(s) .

We first prove that Cπ is finite if π is a µ-optimal policy. Since µ is fixed, we have µ(s) > 0 for any s ∈ S0. For s /∈ S0,
by Assumption 5, we have θπ(s) = 0. Also we have θπ(s) is upper bounded by 1. Then Cπ is finite since we let 0/0 = 0.
Then we just let Cmax = supπ:µ−optimal C

π .

C.4. Discussion on Corollary 1

Note that Corollary 1 additionally requires the coverage of µ0 by µ, which we argue is a mild assumption in the following
sense:

1. Recall that S0 is the set of states that can be visited by µ, i.e., S0 = {s ∈ S | µ(s) > 0}. This means that we only
have data for states s ∈ S0, and it seems not plausible to learn anything outside S0 from data, without additional
assumptions on the correlation among states. Therefore, we can not expect to deal with initial states outside S0 and
hence it is reasonable to only consider the initial distribution µ0 that is covered by µ;

2. The commonly assumed single-policy concentrability in (Zhan et al., 2022; Chen & Jiang, 2022; Rashidinejad et al.,
2021; 2022) (and our Assumption 2) implies that µ0 is covered by µ, because

max
s∈S

µ0(s)

µ(s)
=

1

1− γ
·max
s∈S

(1− γ)
∑
a µ0(s)π∗(a | s)∑
a µ(s, a)

≤ 1

1− γ
·max
s∈S

∑
a θπ∗,µ0(s, a)∑
a µ(s, a)

≤ 1

1− γ
· max
s∈S,a∈A

θπ∗,µ0(s, a)

µ(s, a)
≤ Cπ∗,µ0

1− γ
=: Cµ.

3. As stated in (Liu et al., 2018; Tang et al., 2019; Levine et al., 2020; Zhan et al., 2022), µ usually can be viewed as
a valid occupancy measure under some behavior policy of πµ, starting from µ0. In this case, Cµ exists and satisfies
Cµ ≤ 1/(1− γ).

Compared to (Chen & Jiang, 2022), they require arg maxaQ
∗(s, a) to be unique for any s, and the algorithm is not

computationally tractable. Also, note that our algorithm does not require the knowledge of the gap ∆Q. Compared to
(Zhan et al., 2022), we only need some single-policy concentrability assumption for the original problem, instead of
the regularized problem, together with only the realizability assumption on the function classes. Moreover, our sample
complexity is O(1/ε2) with a gap dependence, while that in (Zhan et al., 2022) is O(1/ε6).

Note that (Zhan et al., 2022) also considered the vanilla version of the minimax formulation without regularization (see
Section 4.5 therein). However, their analysis requires all-policy-concentrability assumption, which is stronger than our as-
sumption that only requires to cover some single optimal policy. Finally, compared with the concurrent work (Rashidinejad
et al., 2022) (and also our results in Section 3), which also achieved O(1/ε2) sample complexity, our result here is gap-
dependent and does not rely on any completeness-type assumption.
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C.5. Proof of Lemma 6

We have

∆(wD) = `(wD)− `(w∗)
≥ `(wD, v∗)− `(w∗, v∗)

=

(
−
∑
s,a

r(s, a)µ(s, a)wD(s, a) +
∑
s,a

wD(s, a)µ(s, a)

(
v∗(s)− γ

∑
s′∈S

Ps,a(s′)v∗(s′)

)
− (1− γ)v∗

>
µ0

)

−

(
−
∑
s,a

r(s, a)µ(s, a)w∗(s, a) +
∑
s,a

w∗(s, a)µ(s, a)

(
v∗(s)− γ

∑
s′∈S

Ps,a(s′)v∗(s′)

)
− (1− γ)v∗

>
µ0

)

=
∑
s,a

(wD(s, a)µ(s, a)− w∗(s, a)µ(s, a))

(
v∗(s)−

(
r(s, a) + γ

∑
s′

Ps,a(s′)v∗(s′)

))
=
∑
s,a

(wD(s, a)µ(s, a)− w∗(s, a)µ(s, a)) (v∗(s)−Q∗(s, a))

≥ ∆Q

∑
(s,a)∈I

wD(s, a)µ(s, a), (41)

where the first inequality is due to the definition of `(·), the second to forth equalities are due to the definitions of `(·)
and Q∗. The second inequality uses the fact that w∗(s, a)µ(s, a) = θπ∗(s, a) = 0 for (s, a) ∈ I (see Lemma 4) and the
definition of ∆Q. This completes the proof.

C.6. Proof of Lemma 5

The proof is given by the following lemma, along with the fact that ∆D(wD) = 0

Lemma 11. Suppose Assumptions 3, 4 hold. With probability at least 1− δ, we have

|∆(w)−∆D(w)| ≤
4
√

2Bw
√

log(|V ||W |/δ)
(1− γ)

√
n

for any w ∈W .

Proof. By definition, we have:

|∆(w)−∆D(w)| ≤ |`(w)− `D(w)|+ | min
w∈W

`D(w)− min
w∈W

`(w)|

=
∣∣∣max
v∈V

`(w, v)−max
v∈V

`D(w, v)
∣∣∣+
∣∣∣ min
w∈W

max
v∈V

`D(w, v)− min
w∈W

max
v∈V

`(w, v)
∣∣∣

≤ max
v∈V

∣∣∣`(w, v)− `D(w, v)
∣∣∣+ max

w∈W
max
v∈V

∣∣∣`D(w, v)− `(w, v)
∣∣∣. (42)

First, we can bound each term using Hoeffding’s inequality, for each w, v. We have

|`(w, v)− `D(w, v)| ≤ |(uD − u)>w|+ |v>(K −KD)w|+ (1− γ)|v>(µD − µ)|. (43)

Now, with probability at least 1− δ/(|V ||W |), we have:

|(uD − u)>w| ≤
√

2Bw

√
log(|V ||W |/δ)√

n

|v>(K −KD)w| ≤ 2
√

2Bw

√
log(|V ||W |/δ)
(1− γ)

√
n

(1− γ)|v>(µD − µ)| ≤
√

2

√
log(|V ||W |/δ)√

n
. (44)

Finally, taking a union bound over all w ∈ W and v ∈ V , and noting that Bw ≥ 1 since w∗ ∈ W and Bw ≥ ‖w∗‖∞ ≥ 1,
we get the desired result.
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C.7. Proof of Lemma 7

Recall θD(s, a) = wD(s, a)µ(s, a). Next, we define a policy π̃∗ as follows:

1. For any s ∈ S0 and ã such that ã ∈ T (s) and µ(s, ã) > 0, we let θ̃(s, ã) = θD(s, ã) + 1
|T (s)|

∑
a′:(s,a′)∈I θD(s, a′).

For any other a′ 6= ã with (s, a′) ∈ S × A \ I, we let θ̃(s, a′) = θD(s, a′). Finally, for any other a′ with (s, a′) ∈ I,
we let θ̃(s, a′) = 0.
Then for s ∈ S0, π̃∗(a | s) is generated by normalizing θ̃(s, ·), i.e., π̃∗(a | s) = θ̃(s, a)/

∑
a′∈A θ̃(s, a

′). Note that
by definition we have

∑
a′∈A θ̃(s, a

′) =
∑
a′∈A θD(s, a′), and by the lower bound constraint in (20), we have∑

a′∈A
θD(s, a′) =

∑
a′∈A

wD(s, a′)πµ(a′ | s)µ(s) ≥ (1− γ)µ(s) > 0.

Hence, the normalization of obtaining π̃∗(a | s) is not degenerate in the sense that
∑
a′∈A θ̃(s, a

′) > 0.

2. For any s /∈ S0, we choose any â such that (s, â) ∈ S × A \ I, i.e., â that maximizes Q∗(s, a). Then we let
π̃∗(â | s) = 1 and set π̃∗(a′ | s) = 0 for any other a′ ∈ A.

Note that this π̃∗ is an optimal policy by construction and by Lemma 4. Moreover, the next lemma shows that π̃∗ is a
µ-optimal policy.
Lemma 12. π̃∗ is a µ-optimal policy. Furthermore, θπ̃∗(s, ·) = 0 for any s /∈ S0.

Proof. By the construction of π̃∗, we know that for any s ∈ S0, we have µ(s, a) > 0 if π̃∗(a | s) > 0. Also we know that
π̃∗ is an optimal policy due to Lemma 4. Then π̃∗ is a µ-optimal policy. The second part follows directly from Assumption
5. Specifically, first, Assumption 5 implies that for any s /∈ S0, since µ(s, a) = 0 for all a ∈ A, we have π∗(a | s) = 0
for all a ∈ A. Then, by the definition of max-µ-optimal policy, the states visited by the µ-optimal policy π̃∗ should be
visited by the max-µ-optimal policy π∗. This is because the max-µ-policy π∗ can take all actions that π̃∗ can take. Hence,
whenever π∗(a | s) = 0, we should have π̃∗(a | s) = 0 and thus θπ̃∗(s, a) = 0. This completes the proof.

Finally, we prove Lemma 7 using Lemmas 6, 12, Proposition 2, and the performance difference lemma (Kakade & Lang-
ford, 2002).

Proof of Lemma 7. We use performance difference lemma to π̃∗, πD to obtain

Jµ(π̃∗)− Jµ(πD) ≤ 1

1− γ
∑
s∈S

θπ̃∗(s)‖πD(· | s)− π̃∗(· | s)‖1.

Because θπ̃∗(s, a) = 0 for s /∈ S0 by Lemma 12, we have

Jµ(π̃∗)− Jµ(πD) ≤ 1

1− γ
∑
s∈S0

θπ̃∗(s)‖πD(· | s)− π̃∗(· | s)‖1.

By the construction of π̃∗, we have

Jµ(π̃∗)− Jµ(πD) ≤ 1

1− γ
∑
s∈S0

θπ̃∗(s)‖πD(· | s)− π̃∗(· | s)‖1 (45)

=(∗1) 2

1− γ
∑
s∈S0

θπ̃∗(s)∑
a θD(s, a)

·
∑

a:(s,a)∈I

θD(s, a) (46)

=
2

1− γ
∑
s∈S0

θπ̃∗(s)/µ(s)∑
a θD(s, a)/µ(s)

·
∑

a:(s,a)∈I

θD(s, a) (47)

≤(∗2) 2Cmax

(1− γ)2

∑
(s,a)∈I

θD(s, a) (48)

≤(∗3) 2Cmax

(1− γ)2∆Q
·∆(wD), (49)

where (∗1) follows from the construction of π̃∗ from θD, (∗2) is because of Proposition 2 and definition of S0, and (∗3)
is due to Lemma 6.
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D. Extensions
D.1. The Case where the Behavior Policy is Unknown

In the previous two sections, we assume that the behavior policy πµ is known. If the behavior policy is unknown to
us, it is not easy to attain a policy corresponding to wD. To tackle this issue, we can use behavior cloning as in (Zhan
et al., 2022). We omit the details and the reader can refer to (Zhan et al., 2022) for more details. Instead of this behavior
cloning approach, in this section, we propose a method that can attain the same accuracy as solving Programs (15) and
(19) by adding additional L0 constraints. The approach is based on a simple idea: If ‖wD(s, ·)‖0 = 1 for any s, then we
can compute πwD (s, ·) without knowing πµ. Concretely speaking, πwD (s, a) = 1 if wD(s, a) 6= 0 and πwD (s, a) = 0
otherwise. Here ‖ · ‖0 means the number of nonzero elements of a vector. The policy πwD (·|s) is just the normalization
vector of {wD(s, a)πµ(a|s)}.

D.1.1. MODIFICATION OF PROGRAM (15)

We first make a slight change to Assumption 1. We assume that W realizes a deterministic optimal policy instead of an
arbitrary optimal policy.
Assumption 6. Let xw := φ(w) with φ given in Definition 3. Let W and B be the function classes for w and xw,
respectively. Then, we have realizability of W for a w∗ corresponding to a deterministic optimal policy, and (W,B)-
completeness under φ, i.e., w∗ ∈ W for some optimal w∗ such that πw∗ is a deterministic optimal policy and xw ∈ B for
all w ∈W . Furthermore, we assume that W and B are bounded, i.e., ‖w‖∞ ≤ Bw for all w ∈W and8 ‖x‖∞ ≤ 1 for all
x ∈ B.

Then we add an L0 constraint to (15) as follows:

max
w∈Rm+

u>Dw

s.t. x>(KDw − (1− γ)µ0) ≤ En,δ, ∀x ∈ B
w ∈W,
‖w(s, ·)‖0 ≤ 1,∀s ∈ S. (50)

Let the solution of the above problem to be wD. We can compute πD = πwD as πwD (a|s) = 1 if w(s, a) > 0 and
πwD (a|s) = 0 otherwise. Let w̄ = W ∩ {w | ‖w(s, ·)‖0 ≤ 1,∀s}. Then we have the following theorem:
Theorem 4. Suppose Assumptions 2 and 6 hold. Then, we have

Jµ0
(π∗)− Jµ0

(πD) ≤ 2
√

2Bw
√

log(|B||W̄ |/δ)
(1− γ)

√
n

with probability at least 1− 6δ.

The proof is the same as Theorem 1.

D.1.2. MODIFICATION OF PROGRAM (19)

Let W satisfy
W ⊆

{
w : w ∈ Rm+ , ‖w(s, ·)‖0 ≤ 1, max

a∈A
w(s, a) ≥ (1− γ), for all s ∈ S

}
. (51)

First, we slightly change Assumption 3 such that the function classes contain at least one deterministic optimal policy.
Assumption 7 (Realizability and Boundedness of W ). There exists some solution w∗ ∈ W ⊆ Rm+ corresponding to a
deterministic optimal policy π∗ solving (18) and hence solving (11). Moreover, we suppose ‖w‖∞ ≤ Bw for all w ∈W .

Then we solve the following minimax problem using W defined in (7)

min
w∈W

max
v∈V

−u>w + v>(Kw − (1− γ)µ), (52)

Suppose wD is a solution. We let πD = πwD . Then we have the following result:

8Note that w∗ ∈W implies that Bw ≥ 1 since w∗ is a supremum of the ratio between two distributions.
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Theorem 5. Under Assumptions 4, 5, and 7, we have

Jµ(π∗)− Jµ(πD) ≤ 8
√

2BwCmax

∆Q(1− γ)3
·
√

log(|W ||V |/δ)√
n

,

with probability ≥ 1− δ.

The proof is the same as Theorem 3.

Remark 3. Similarly, this approach does not require to know the behavior policy πµ but it might be harder to solve since
(52) is a mixed integer programming.

D.2. Reducing Cmax

In Theorem 3, the error bound of J(π) depends on Cmax, which depends on all µ-optimal policies as stated in the proof
of Proposition 3. In this subsection, we discuss how to modify the algorithm such that the error bound can only depend on
one optimal policy. To do this, we need to slightly strengthen the realizability assumption in Section 4. We first give the
following definition:

Definition 9. A uniform µ-max optimal policy is a µ-max optimal policy that takes the same probability over all a ∈ T (s)
for any s.

Assumption 8 (Realizability and Boundedness of W ). There exists some solution w∗ ∈W ⊆ Rm+ solving (18) and hence
solving (11) such that πw∗ is a uniform µ-max optimal policy. Moreover, we suppose ‖w‖∞ ≤ Bw for all w ∈W .

Then we modify Program (19) as follows:

min
w∈W

max
v∈V

−u>w + v>(Kw − (1− γ)µ)

s.t. w(s, a)πµ(a|s) = y(s)λ(s, a), λ(s, a) ∈ {0, 1}. (53)

Suppose the solution is wD. Define W̄ = W ∩ {w | w(s, a)πµ(a|s) = y(s)λ(s, a), λ(s, a) ∈ {0, 1}}. In other words, W̄
contains w such that the nonzero elements of w(s, ·) are the same. Then we have the error bound for πwD .

Theorem 6. Under Assumptions 3, 5, and 8, we have

Jµ(π∗)− Jµ(πD) ≤ 8
√

2B2
w

∆Q(1− γ)3
·
√

log(|W̄ ||V |/δ)√
n

,

with probability ≥ 1− δ.

Proof. The proof is just following the same strategies as the proof of Theorem 3. The only improvement is that we can
prove π̃∗ is a uniform µ-max policy because the nonzero elements of π̃∗(· | s) are the same for any s. Hence Equation (48)
in the proof of Theorem 3 can be modified as follows:

2

1− γ
∑
s∈S0

θπ̃∗(s)/µ(s)∑
a θD(s, a)/µ(s)

·
∑

a:(s,a)∈I

θD(s, a) ≤ 2Bw
(1− γ)2

∑
(s,a)∈I

θD(s, a). (54)

The rest of the proof is identical to the proof of Theorem 3.

Remark 4. Notice that the error bound only depends on Bw, which only need to be larger than the ratio between µ and
the occupancy of the uniform µ-max policy. Hence, the statistical bound is improved. However, the integer variable λ(s, a)
makes (53) a mixed integer programming problem, which is more difficult to solve.
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