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ABSTRACT

Generating high-quality synthetic data with privacy protections remains a challeng-
ing ad-hoc process, requiring careful model design and training often tailored to
the characteristics of a targeted dataset. We present MAPS, a model-agnostic post-
hoc framework that improves synthetic data quality for any pre-trained generative
model while ensuring sample-level privacy standards are met. Our two-stage ap-
proach first removes synthetic samples that violate privacy by being too close to real
data, achieving O-identifiability guarantees. Second, we employ importance weight-
ing via a binary classifier to resample the remaining synthetic data according to
estimated density ratios. We evaluate MAPS across two healthcare datasets (TCGA-
metadata, GOSSIS-1-eICU-cardiovascular) and four generative models (TVAE,
CTGAN, TabDiffusion, DGD), demonstrating significant improvements in fidelity
and utility while maintaining privacy. Notably, MAPS achieves substantial improve-
ments in fidelity metrics, with 40 out of 48 statistical tests demonstrating significant
improvements in marginal distributional measures and notable enhancements in cor-
relation structure preservation and joint distribution similarity. For example, Joint
Jensen-Shannon Distance reduced from ranges of 0.7888-0.8278 to 0.5434-0.5961
on TCGA-metadata and 0.6192-0.7902 to 0.3633-0.4503 on GOSSIS-1-eICU-
cardiovascular. Utility improvements are equally impressive, with classification
F1 scores improving from ranges of 0.0866-0.2400 to 0.3043-0.3848 on TCGA-
metadata and 0.1287-0.2085 to 0.2104-0.2497 on GOSSIS-1-eICU-cardiovascular
across different model-dataset combinations. Additionally, uncertainty quantifica-
tion analysis via split conformal prediction demonstrates that MAPS considerably
improves calibration quality, reducing average prediction set sizes by 55-77%
while maintaining target coverage on TCGA-metadata. The code of this project is
available at https://anonymous.4open.science/r/MAPS—-EBFS8.

1 INTRODUCTION

The proliferation of data-driven applications in privacy-sensitive domains has created an urgent need
for synthetic data that preserves statistical fidelity while protecting individual privacy (van Breugel
et al.,[2024} [Tucker et al.}2020). However, generating high quality synthetic data that satisfies both
privacy requirements and downstream task performance remains challenging, requiring practitioners
to navigate complex trade-offs between competing objectives - privacy and fidelity (Kaabachi et al.|
2025} Yan et al.,[2022)). This privacy-fidelity trade-off forces practitioners to choose between models
that provide strong privacy guarantees but produce data of limited practical value, and models that
generate high fidelity synthetic data but potentially leak sensitive information. This challenge is
compounded by the substantial technical expertise required to design, train, and tune generative
models effectively (Belgodere et al.| 2024} Padariya et al., 2025).

Existing approaches typically fall into two distinct categories, each with significant limitations.
Privacy-first methods such as ADS-GAN (Yoon et al.,2020), PATE-GAN (Jordon et al., 2018), and
DP-GAN (Xie et al.|[2018) incorporate privacy constraints during training, providing formal privacy
guarantees but often producing synthetic data with notably degraded utility. Conversely, fidelity-first
approaches like TVAE (Xu et al.,2019), CTGAN (Xu et al., [2019), TabDDPM (Kotelnikov et al.,
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2023) and DGD (Schuster & Kroghl 2023) focus on generating high fidelity synthetic data but no
privacy protections beyond sampling design.

We present MAPS (Model Agnostic Post-hoc Synthetic Data Refinement Framework), a novel two-
stage approach to refining synthetic datasets from any generator that addresses both privacy and
fidelity concerns through complementary mechanisms. The first stage minimizes re-identification
risks by implementing O-identifiability guarantees, systematically removing synthetic samples that
violate privacy by being closer to real samples than those real samples are to their nearest real
neighbors. The second stage enhances data fidelity through theoretically grounded importance
weighting, where we train a binary classifier to distinguish between real and synthetic data, then
use this classifier to estimate density ratios following the likelihood-free importance weighting
framework (Grover et al.,[2019). The framework is currently designed to refine static tabular synthetic
data produced by any generation method.

2 METHODOLOGY

In this section, we first formalize the problem setup, then detail the privacy filtering mechanism
that enforces 0-identifiability constraints, describe the importance weighting approach that improves
distributional fidelity through density ratio estimation, and finally present the Sampling-Importance-
Resampling procedure for selecting the refined synthetic dataset.

2.1 PROBLEM FORMULATION

Let D = {z;}}¥, denote a dataset of N real samples drawn i.i.d. from an unknown distribution p(z),
and D = {&; };‘il denote a synthetic dataset of M samples generated by some generative model

with distribution pg(x). Our objective is to refine D to produce a subset D C D of size N that (1)
provides formal identifiability protections with respect to D, and (2) exhibits improved fidelity to the
true data distribution p(zx).

2.2  STAGE 1: PRIVACY FILTERING

The first stage protects privacy by removing synthetic samples that violate identifiability constraints.
We build upon the e-identifiability framework (Yoon et al.l 2020) and set it to be O-identifiability to
maximize protection using this privacy standard. Note that we can use any privacy metric that works
on single samples in this stage.

For each real sample x; € D, we define its distinctness threshold as:

L ; s — s 1
T xjelgl\?zi}llw (4 xJ)H (H

where w is a feature weight vector that accounts for the relative importance of different features in
measuring similarity{ﬂ

For each real sample x;, we also compute its proximity to the synthetic dataset:
i = min [[w- (z; — &;)]| 2
#;€D
The e-identifiability of synthetic dataset D with respect to real dataset D requires that:

N
I(D,D) = %Zﬂ(ﬁ <) <e A3)
=1

where I is the indicator function.

In MAPS, we enforce the constraint of O-identifiability by removing all synthetic samples £ ; such that
there exists a real sample x; for which ||w - (z; — Z;)|| < r;. This ensures that no synthetic sample
is closer to any real sample than that real sample’s nearest real neighbor, providing the strongest
possible identifiability guarantee using this measure.

'In our implementations, we treat all features with the same weight 1.
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2.3 STAGE 2: FIDELITY ENHANCEMENT VIA IMPORTANCE WEIGHTING

The second stage improves the fidelity of the identifiability-filtered synthetic data through importance
weighting and resampling. We train a binary probabilistic classifier ¢, () : X — [0, 1] to distinguish
between real and synthetic samples, then use this classifier to estimate importance weights.

The classifier outputs an estimate of the probability that a given sample belongs to the real data
distribution:

co(x) = Py = 1|z) ©)
where y = 1 indicates that sample  comes from the real data distribution p(z).
Using Bayes’ theorem, we can express this probability as:
p(z)m1 + po(z)mo

cy(w) =

where m; = P(y = 1) and mop = P(y = 0) are the prior probabilities of observing samples from the
real and synthetic distributions, respectively, in the training set used for the classifier.

The estimated importance weight, representing the estimated density ratio Ife ((mw)) , can be derived as:
. p(x) _mo cy(x)
Wy (z) = =— (6)
)= 0@ I co(@)

This formulation follows the ideas from the likelihood-free importance weighting framework
of (Grover et al.|[2019), enabling us to estimate density ratios without explicit density models.

2.4 SAMPLING-IMPORTANCE-RESAMPLING

Using the estimated importance weights, we apply Sampling-Importance-Resampling (SIR) to select
a refined synthetic dataset. Given importance weights for the M’ identifiability-filtered synthetic
samples, we normalize these weights and sample N samples according to the normalized probabilities:

_ ()

- M’ R R (7)
>on=1We(EN)

The final refined synthetic dataset D contains N samples that satisfy both identifiability constraints

and exhibit improved fidelity to the real data distribution. The full algorithm can be found in
Appendix [A] Figure ] provides an overview of our two-stage approach to achieve these objectives.

pj
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Figure 1: Overview of the MAPS two-stage framework. Stage 1 removes synthetic samples violating
0-identifiability (marked with x, with the number of X). Stage 2 trains a binary classifier to estimate
importance weights via density ratios, then applies SIR to produce refined synthetic data that better
approximates the real data distribution.
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3 EXPERIMENTAL SETUP

Generative Models. We investigate MAPS’ capabilities using four representative generative models
covering the major paradigms in tabular data synthesis:

* TVAE (Xu et al.;,|2019): A representative variational autoencoder specifically designed for
tabular data generation.

* CTGAN (Xu et al.,2019): The most widely adopted GAN-based model for tabular synthetic
data generation.

* TabDDPM (Kotelnikov et al. [2023): A diffusion-based model representing the latest
paradigm in generative modeling for tabular data.

* DGD (Schuster & Krogh| 2023): An encoder-free deep generative decoder with simple
architecture that enhances learning of multi-modal data.

Datasets. We evaluate on two publicly available healthcare datasets:

* TCGA-metadata: The largest public cancer dataset covering 33 different cancer types with
11,315 records. We selected 21 variables with minimal missing data for our experiments.

* GOSSIS-1-eICU-cardiovascular: A large public cardiovascular ICU dataset with 41,396
records and 68 variables, representing complex clinical data with mixed data types.

The detailed data pre-processing procedure is described in Appendix [B.T]

Evaluation Protocol. For each generative model and dataset combination, we generate a synthetic
data pool of size M = 30N where N is the number of real samples. This large pool enables mean-
ingful selection during the refinement process. The baseline synthetic dataset consists of N randomly
sampled synthetic samples from this pool, while the MAPS-refined dataset also contains N samples
but selected through our two-stage refinement process. We assess MAPS effectiveness across three
dimensions: (1) distributional fidelity using statistical tests and similarity measures to evaluate how
well synthetic data captures real data distributions, (2) utility preservation through downstream task
performance including clustering and classification tasks(with uncertainty quantification evaluation)
using a "train-on-synthetic, test-on-real" evaluation scheme, and (3) privacy protection via resistance
to membership inference attacks to ensure refinement does not compromise privacy standards. A
detailed description of the implementations and evaluation methods can be found in Appendix [B|and
Appendix [C]respectively.

4 RESULTS AND DISCUSSION

In this section, we present a comprehensive evaluation of MAPS across multiple dimensions to
demonstrate its effectiveness in improving synthetic data quality while maintaining privacy protections.
Our analysis examines distributional fidelity improvements, utility enhancements in downstream
tasks, and privacy preservation across two healthcare datasets and four generative models.

4.1 MARGINAL DISTRIBUTION SIMILARITY

As an illustrative example of improvements in distributional alignment, we compare selected marginal
distributions between the real data, the raw synthetic data, and the refined synthetic data produced
by MAPS. Figure [2]shows examples across numerical and categorical variables demonstrating the
benefits of MAPS refinement. For instance, when examining the initial_weight variable for
TVAE, the raw synthetic data exhibits spurious fluctuations when initial_weight is around 100,
which are eliminated after refinement. Similarly, for TabDDPM, the problematic bump in the long tail
region of the raw synthetic data distribution is corrected in the refined version. Categorical variable
improvements manifest as refined synthetic data better reflecting the true proportional distributions of
real data categories, with more accurate frequency representations across all category levels.

The quantitative assessment in Table[T|reveals that 40 out of 48 statistical tests demonstrate significant
improvements in marginal distributional measures. The Jensen-Shannon Distance shows particularly
impressive improvements across all model-dataset combinations: TVAE demonstrates substantial
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Figure 2: Marginal distribution comparison across models and variables. The 4x4 subplots compare
marginal distributions across generative models and variables, including: initial weight
and tumor_status from TCGA metadata (numerical and categorical, respectively), and
dl_arterial_po2_diff and diabetes_mellitus from GOSSIS-1-eICU-cardiovascular.
Real refers to the real data, Raw to raw synthetic data, and Refined to MAPS-refined outputs.

reductions from 0.0807 to 0.0388 on TCGA-metadata and from 0.0652 to 0.0308 on GOSSIS-1-
elCU-cardiovascular, while CTGAN achieves similar dramatic decreases from 0.0760 to 0.0373 on
TCGA-metadata and from 0.0443 to 0.0269 on GOSSIS-1-eICU-cardiovascular. Total Variation
Distance exhibits equally striking improvements, with TVAE reducing from 0.0684 to 0.0312 on
TCGA-metadata and CTGAN dropping from 0.0427 to 0.0222 on GOSSIS-1-eICU-cardiovascular.

Table 1: Marginal distribution fidelity assessment. Results show mean + standard deviation across
multiple runs. Arrows indicate improvement direction: 1 higher is better, | lower is better. Bold
values denote statistically significant improvements (p < 0.05, paired -test) between raw and refined
results for each model. This criterion is used consistently throughout all result tables.

TCGA-metadata
TVAE CTGAN TabDDPM DGD
Metric Raw Refined Raw Refined Raw Refined Raw Refined
Kolmogorov-Smirnov 1 0.8142+00017  0.8180+0.0008  0.810740.0010  0.8110400015  0.9433100000  0.9492+00020  0.9082+0.0011  0.9439+0.0013
Chi-square Test 0.542240.1286  0.6130%0.0406  0.873840.0007  0.7518%0.1017  0.718240.0914  0.677540.0s500 0.72224-0.0008 0.72253-0.0006

Jensen-Shannon Dist. | 0.0807+0.0008  0.0388+0.0012  0.076040.0006 0.037320.0021  0.0479=+0.0012  0.0347+0.0013  0.040210.0005  0.0362-t0.0008
Total Variation Dist. | 0.0684+0.0010  0.0312+0.0015  0.073440.0005  0.0328+0.0029  0.0356+0.0012  0.0263+0.0013  0.0391+0.0006  0.03180.0011
Hellinger Distance | 0.0845+0.0009  0.0397400012  0.0780400006  0.0377-+00021  0.0499+0.0013  0.0354+0.0013  0.040610.0005  0.0366-0.0008
Inverse KL Divergence T 0.9345+00026  0.9808=+00007  0.9604=+00005  0.9883+0000s 0.9821+00013  0.9901+00024  0.9860=+0.0005  0.9910=0.0004

GOSSIS-1-eICU-cardiovascular
TVAE CTGAN TabDDPM DGD
Metric Raw Refined Raw Refined Raw Refined Raw Refined

Kolmogorov-Smirnov T 0.8556+0.0003  0.8738+0.0004  0.8631+0.0004 0.8788+0.0003 0.8746+0.0016 0.9707+0.0003 0.8067+0.0008 0.8352+0.0006
Chi-square Statistic 1 0.8061+0.0021  0.8839+00366  0.9061+00302  0.9201+00006  0.8096+0.0016 0.8357+0.0009 0.876740.0283  0.902240.0007
Jensen-Shannon Dist. | 0.0652+0.0005  0.0308+0.0002  0.0443%0.0008  0.0269+0.000s 0.0665+0.0007 0.0418+0.000s 0.0472x0.0004  0.0406-0.0005
Total Variation Dist. | 0.0595+00003  0.0244+0.0004  0.0427400008  0.0222+00003  0.0596-+0.0006  0.0436+0.0005  0.0408+0.0003  0.0438-0.0005
Hellinger Distance | 0.0667+0000s  0.0312+0.0002  0.045540.0008  0.0272+00006  0.0681+0.0007  0.042240.0005  0.0493+0.0004  0.0411-0.0005
Inverse KL Divergence T 0.9601%0.0005  0.9867+00000 0.9705400012  0.9882100004 0.9694400004  0.9811400003 0.980740.0003 0.98574-0.0003

Inverse KL divergence is consistently enhanced, with values moving from the 0.93-0.98 range for
raw synthetic data to above 0.98 for all refined models. Notably, CTGAN shows improvements from
0.9604 to 0.9883 on TCGA-metadata and from 0.9705 to 0.9882 on GOSSIS-1-eICU-cardiovascular,
while TabDDPM achieves near-perfect scores improving from 0.9821 to 0.9901 on TCGA-metadata.
These consistent improvements across distributional metrics highlight MAPS’s effectiveness in
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correcting marginal misalignments across diverse generative paradigms. Moreover, while our results
reveal variability in output quality among generative models, they also underscore the practical value
of MAPS as a flexible post-hoc add-on applicable to any architecture or training paradigm.

4.2 JOINT DISTRIBUTION AND CORRELATION STRUCTURE

Joint distribution and correlation structure improvements via synthetic data refinement with MAPS
are equally impressive.

Table 2: Joint distribution similarity and correlation structure preservation. WD = Wasserstein
Distance (joint numerical distributions), JSD = Joint Jensen-Shannon Distance (joint categorical
distributions), NFN = Normalized Frobenius Norm (correlation structure differences). Lower values
indicate better fidelity.

TCGA-metadata
TVAE CTGAN TabDDPM DGD

Metric Raw Refined Raw Refined Raw Refined Raw Refined

WD |  0.0145+00004 0.0056+0.0002 0.013040.0003 0.00732t0.0003 0.1099+0.0048 0.0089+0.0005 0.029140.0007 0.01020.0002
JSD | 0.7909+00041  0.5562+00020 0.8278+00034 0.5736+0.0028 0.8239+00020 0.5434+00018  0.7888+0.0045  0.5961+0.0040
NFN | 0.0770400014 0.0348+0.0011  0.0749400006 0.0376+0.0020 0.092740.0019 0.0245+0.0013 0.13304-0.0005  0.0421+0.0009

GOSSIS-1-eICU-cardiovascular
TVAE CTGAN TabDDPM DGD

Metric Raw Refined Raw Refined Raw Refined Raw Refined

WD |  0.0993400024 0.0921+00003 0.1221400014 0.1004=+0.0007 1.3132400392  0.2418+0.0122  0.31594-0.0061  0.154040.0022
JSD | 0.7547400013  0.4187+00014 0.7902+00022  0.4503+0.0010 0.7241+00013  0.3633=+00009 0.6192+00016  0.4197+0.0014
NFN | 0.0546=+00005 0.0364+0.0012 0.0523400004 0.0399+00003 0.1190+0.0011  0.0342+0.0004 0.0686+0.0004  0.0527+0.0004
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Figure 3: Correlation structure difference analysis. The figure shows 4x4 subplots where columns
represent generative models. Rows 1-2 show TCGA-metadata correlation matrix differences (real
vs. raw synthetic, real vs. refined synthetic), and rows 3-4 show GOSSIS-1-eICU-cardiovascular
differences. Darker colors indicate larger differences from the real data correlation structure.
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Table[2]shows significant improvements across all joint distribution metrics. The Joint Jensen-Shannon
Distance is substantially reduced for all model-dataset pairs: on TCGA-metadata, improvements
range from 24.4% (DGD: 0.7888—0.5961) to 34.0% (TabDDPM: 0.8239—0.5434). On GOSSIS-
1-eICU-cardiovascular, even larger gains are observed: TVAE 44.5% (0.7547—0.4187), CTGAN
43.0% (0.7902—0.4503), TabDDPM 49.8% (0.7241—0.3633), and DGD 32.2% (0.6192—0.4197).
Correlation structure preservation, measured by normalized Frobenius norm, also improves univer-
sally, with reductions from 23.2% to 73.6%. Figure [3]illustrates these reductions, showing MAPS
refinement aligns synthetic data correlations much closer to real patterns. On TCGA-metadata,
raw synthetic data fail to capture the correlation between other_dx and prior_diagnosis,
while refined data achieves near-perfect preservation. On GOSSIS-eICU-cardiovascular, correlations
between elective_surgery and dx_class are weak in raw data but considerably improved
after refinement.

4.3 UTILITY ENHANCEMENT RESULTS

The utility improvements observed across clustering and classification tasks directly address one of
the most critical concerns for practitioners (Qian et al., 2024; Yoon et al.| [2023)). Figure@ demon-
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Figure 4: Downstream task performance comparison. The figure shows performance improvements
after MAPS refinement across multiple tasks and metrics. Circles represent raw synthetic data
performance, stars represent refined synthetic data performance, and the black horizontal line indicates
the oracle performance (train on real data, test on real data). The upper and lower panels show results
for TCGA-metadata and GOSSIS-1-eICU-cardiovascular datasets, respectively.

strates MAPS’s ability to rescue low utility synthetic data—particularly TabDDPM’s transformation
from near-zero clustering performance (ARI: 0.0022) to strong clustering agreement (ARI: 0.7384)
on TCGA-metadata. Classification task improvements are equally significant, with F1 scores improv-
ing from ranges of 0.0866-0.2400 to 0.3043-0.3848 on TCGA-metadata and from 0.1287-0.2085
to 0.2104-0.2497 on GOSSIS-1-eICU-cardiovascular across different model-dataset combinations.
Uncertainty quantification (UQ) via split conformal prediction reveals critical quality differences be-
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tween synthetic and real data, emphasizing the need for assessing UQ capability alongside traditional
utility metrics to ensure robust Al systems. Table 3] shows that raw synthetic data often produces
unusable uncertainty estimates: on TCGA-metadata, CTGAN, TabDDPM, and DGD achieve full
coverage (100%, meaning all true labels fall within their prediction sets) but must include all 33
cancer types in prediction sets to do so, exceeding the required 95% target coverage and rendering
the predictions uninformative, while TVAE provides imperfect coverage (89%) despite also using
impractically large sets (17.2216). MAPS refinement brings coverage closer to target (0.9072-0.9626)
while dramatically reducing set sizes to be 2.2-4.4 times smaller compared to raw synthetic data.
On GOSSIS-1-eICU-cardiovascular, we observe coverage-set size tradeoffs, though DGD demon-
strates simultaneous improvements in both coverage and average prediction set size. These results
underscore that synthetic data evaluation should extend beyond prediction accuracy to encompass
uncertainty quantification, as MAPS enhances both prediction performance and UQ reliability.

Table 3: Uncertainty quantification analysis using split conformal prediction with inverse probability
score function (o = 0.05, target coverage = 0.95) across synthetic data types.

TCGA-metadata

TVAE CTGAN TabDDPM DGD Oracle
Metric Raw Refined Raw Refined Raw Refined Raw Refined Real
Coverage 0.8897+0.0037  0.9072=00051  1.0000+0.0000  0.9243=+0.0098 1.0000=£0.0000  0.9626+0.0143 1.0000t0.0000  0.9269+0.0060  0.9600=40.0043

Avg. Set Size  17.2216+0.1972 7.7150+00883  33.0000-0.0000  10.4542+1.1060  33.0000+00000 13.7615+17176  33.0000400000  7.5504406235  5.591540.5476

GOSSIS-1-eICU-cardiovascular

TVAE CTGAN TabDDPM DGD Oracle
Metric Raw Refined Raw Refined Raw Refined Raw Refined Real
Coverage 0.9490+00026 09382400031 09287400021  0.8695+00016  0.9498+0.0013  0.9030400022  0.9858-+00009  0.9697+0.0092  0.953630.0014

Avg. Set Size  10.6940+00391  7.1003%0.0728 10.5236+0.0698 5.3499-+0.0268 8.9492+00819 4.9708+00227 14.4019%0.0534  8.0976+0.9079  5.0465+0.0191
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Figure 5: Feature importance correlation analysis. The figure shows the correlation between feature
importance rankings derived from models trained on real data versus those trained on synthetic data.
Higher correlations indicate better preservation of model interpretability. The first row presents
results on TCGA-metadata, and the second row presents results on GOSSIS-1-eICU-cardiovascular.

The feature importance correlation metric measures how well synthetic data preserves the inter-
pretability aspects crucial for healthcare applications. Figure 5] shows that all models demonstrate
substantial improvements, with feature importance correlations improving from the 0.71-0.84 range
to0 0.92-0.99 range for TCGA-metadata, while for GOSSIS-eICU-Cardiovascular dataset, correlations
advance from 0.75-0.78 to 0.82-0.92. This indicates that MAPS refined data not only performs better
quantitatively but also maintains the feature relationships that clinicians rely on for model interpre-
tation. For instance, examining the feature with the highest importance rank—tumor_stage for
TCGA-metadata and d1_arterial_po2_diff for GOSSIS-eICU-cardiovascular—we observe
significant improvements across all models. The arrows demonstrate the progression from raw to
refined synthetic data: for TCGA-metadata, the feature importance increases notably from 0.07 to
0.12 after MAPS refinement, approaching the real data value of 0.14. Similarly, for the GOSSIS-
elCU-cardiovascular dataset, the importance value is elevated from 0.03 to 0.04, moving closer to the
real data’s 0.05.
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4.4 PRIVACY PROTECTION ANALYSIS

Table [4|demonstrates that MAPS maintains decent privacy protections while improving data quality.
First, the O-identifiability filtering in Stage 1 significantly reduces re-identifiability risk in the refined
datasets, reducing the identifiability score from an average of 33.62% in raw synthetic datasets (where
over one-third of real samples were partnered most closely with synthetic samples) to exactly 0%
across all models and datasets. However, membership inference attack (MIA)(EI Emam et al.|[2022)
resistance tests reveal a more nuanced picture. While most results show maintained or improved
privacy protection, some exceptions warrant discussion: TabDDPM and DGD show increased
MIA recall on TCGA-metadata (from 0.1056 to 0.2159 and 0.0781 to 0.1679 respectively), though
reasonable precision values indicate more false positives rather than systematic vulnerabilities. The
DOMIAS attack(Van Breugel et al.,2023)) results show stable performance near 0.5 (random guessing)
across all combinations, indicating MAPS does not introduce density-based privacy vulnerabilities.
The overall pattern suggests MAPS’s 0-identifiability guarantee provides robust privacy protection,
with observed MIA variations likely reflecting the inherent privacy-fidelity tradeoff. For use cases
particularly sensitive to membership inference, practitioners may need additional adjustments beyond
MAPS, though the modular framework allows tailoring filtering thresholds and evaluation metrics to
specific project objectives.

Table 4: Privacy assessment via multiple evaluation metrics. For privacy metrics (Distance-based,
MIAs), lower values indicate better privacy protection. IS denotes Identifiability Score measuring
re-identification risk. Standard MIA tests basic membership inference, while DOMIAS targets
density-based vulnerabilities.

TCGA-metadata

TVAE CTGAN TabDDPM DGD
Metric Type Metric Raw Refined Raw Refined Raw Refined Raw Refined
Distance-based IS 0.4033400036  0.0000+00000 0.433100027  0.0000400000  0.4465+0.0026  0.0000400000  0.3595400040  0.0000-t0.0000
F1 0.3352400005  0.3370+00004  0.3368=0.0004 0.3370400002  0.4084-t0.0012  0.4555400036  0.3906+00019  0.4391-t0.0042
Standard MIA  Precision  0.4758+00513  0.4908400246  0.6196=£0.0491  0.5904400472  0.5046+0.0048  0.4983+00072 0.4887+00121  0.5048-0.0106
Recall 0.0022400005  0.0042+00005  0.0036=£0.0004  0.0038400002  0.1056-0.0026  0.2159400053  0.0781%0.0015  0.1679-t0.0046

DOMIAS Accuracy  0.4945+00011  0.4981400007  0.4973+00012  0.4964F00011  0.4997+00012  0.4976+00010  0.4975+00007  0.50040.0008
AUCROC  0.4934+00022  0.4983%00016  0.4978+00014  0.4946+00011  0.4989+00009 0.4975100004  0.4946-+00023  0.4987+0.0014

GOSSIS-1-eICU-cardiovascular

TVAE CTGAN TabDDPM DGD
Metric Type Metric Raw Refined Raw Refined Raw Refined Raw Refined
Distance-based IS 0.4007400018  0.0000+00000  0.2038=+0.0011  0.0000400000  0.3429+0.0037  0.0000+00000  0.099400013  0.0000-t0.0000
F1 0.3334400001  0.3335+00001  0.3343+00002  0.3340400002  0.3519+0.0005s  0.3974=400013  0.3369400005  0.3369-t0.0005
Standard MIA ~ Precision ~ 0.2000+0.1458  0.4283400s11  0.5797+00716  0.5318400570  0.4902+00102  0.5147=400050 0.5560400473  0.5346-£0.0273
Recall 0.0001£00000  0.0002+0.0001  0.0010£0.0002  0.0008%00001  0.0223:0.0004  0.084940.0016  0.003820.0004  0.0040=£0.0005

Accuracy  0.4990-+0.0009  0.4996+0000s  0.4999400007  0.4999+40.0003 0.4989+0.0003 0.499510.0004 0.499140.0005  0.4994-+0.0006

DOMIAS AUCROC  0.4984+00005  0.4990400003  0.4994-+00004  0.4992400002  0.4971+00001  0.4991400002  0.5008-+0.0001  0.500240.0003

5 CONCLUSION

We present MAPS, a model-agnostic framework for post-hoc synthetic data refinement that provides
formal O-identifiability guarantees while improving data quality through importance weighting and
resampling, with comprehensive evaluation demonstrating consistent improvements in fidelity, utility,
and privacy protection across healthcare datasets and multiple generative models.

MAPS’s modular design combines sample-level and set-level refinement steps in a unique hierarchical
approach, enabling practitioners to customize components according to their requirements. For
instance, users can substitute alternative distance measures in Stage 1 to distance to closest record
(DCR) (Zhao et al.} 2021} or nearest neighbor distance ratio (NNDR) (Zhao et al.,|2021) and different
classification architectures in Stage 2, and adjust privacy controls from conservative 0-identifiability to
alternative e-identifiability levels. This flexibility addresses diverse needs across domains with varying
privacy requirements and quality standards. However, it is important to note that while high-quality
synthetic data offers greater utility for many applications, it also requires greater responsibility in
deployment regardless of privacy guarantees, and a risk assessment should always be conducted that
considers the targeted use case for the synthetic dataset (Bartell et al.||2024;|Qian et al., |2024; |Schmidt;
et al., [2024). Future work could explore broader applicability to privacy-first generative models such
as DP-GAN, PATE-GAN, and ADS-GAN, and extend the framework to handle time-series synthetic
data.
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ETHICS STATEMENT

This research adheres to the ICLR Code of Ethics. Our work focuses on improving synthetic data
quality while strengthening privacy protections, contributing positively to privacy-preserving machine
learning. We use publicly available healthcare datasets (TCGA-metadata and GOSSIS-1-eICU-
cardiovascular) that have been previously released for research purposes with appropriate ethical
approvals. Our MAPS framework enforces 0-identifiability guarantees to minimize re-identification
risks, and we conduct comprehensive privacy evaluations including membership inference attack
resistance. We acknowledge that even when synthetic data are both high-quality and privacy-
preserving, their deployment still requires responsibility. We emphasize throughout the paper that
practitioners should conduct risk assessments considering their specific use cases. The synthetic
data generation techniques presented should only be applied in contexts where appropriate ethical
oversight and data governance frameworks are in place. We have made our implementation publicly
available to promote transparency and enable further research in privacy-preserving synthetic data
generation.

REPRODUCIBILITY STATEMENT

We have made great efforts to ensure the reproducibility of our results. Complete implementation
details are provided in Appendix [B] including hyperparameter settings, model configurations, and
training procedures for all generative models and the MAPS framework. The full algorithm is detailed
in Appendix [A] and comprehensive evaluation methodologies are described in Appendix [C] Data
preprocessing steps are specified in Appendix [B.I] The source code for our MAPS framework,
experimental setup, and evaluation scripts is available at the anonymous repository https://
anonymous . 4open.science/r/MAPS-EBF 8. All experiments use publicly available datasets
with clearly documented preprocessing procedures. Statistical significance testing methods and
experimental protocols are detailed in the appendix. The modular design of MAPS allows researchers
to easily adapt individual components and reproduce results across different generative models and
datasets.

REFERENCES

Anastasios N Angelopoulos, Rina Foygel Barber, and Stephen Bates. Theoretical foundations of conformal
prediction. arXiv preprint arXiv:2411.11824, 2024.

Jennifer A Bartell, Sander Boisen Valentin, Anders Krogh, Henning Langberg, and Martin Bggsted. A primer
on synthetic health data. arXiv preprint arXiv:2401.17653, 2024.

Brian Belgodere, Pierre Dognin, Adam Ivankay, Igor Melnyk, Youssef Mroueh, Aleksandra Mojsilovic, Jiri
Navratil, Apoorva Nitsure, Inkit Padhi, Mattia Rigotti, et al. Auditing and generating synthetic data with
controllable trust trade-offs. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2024.

Khaled El Emam, Lucy Mosquera, and Xi Fang. Validating a membership disclosure metric for synthetic health
data. JAMIA open, 5(4):00ac083, 2022.

Jean Feydy, Thibault Séjourné, Francois-Xavier Vialard, Shun-ichi Amari, Alain Trouve, and Gabriel Peyré.
Interpolating between optimal transport and mmd using sinkhorn divergences. In The 22nd International
Conference on Artificial Intelligence and Statistics, pp. 2681-2690, 2019.

Aditya Grover, Jiaming Song, Ashish Kapoor, Kenneth Tran, Alekh Agarwal, Eric J Horvitz, and Stefano Ermon.
Bias correction of learned generative models using likelihood-free importance weighting. Advances in neural
information processing systems, 32, 2019.

Daniel Jarrett, Bogdan Cebere, Tennison Liu, Alicia Curth, and Mihaela van der Schaar. Hyperimpute:
Generalized iterative imputation with automatic model selection. 2022. doi: 10.48550/ARXIV.2206.07769.
URLhttps://arxiv.org/abs/2206.077609.

James Jordon, Jinsung Yoon, and Mihaela Van Der Schaar. Pate-gan: Generating synthetic data with differential
privacy guarantees. In International conference on learning representations, 2018.

Bayrem Kaabachi, Jérémie Despraz, Thierry Meurers, Karen Otte, Mehmed Halilovic, Bogdan Kulynych, Fabian
Prasser, and Jean Louis Raisaro. A scoping review of privacy and utility metrics in medical synthetic data.
NPJ digital medicine, 8(1):60, 2025.

10


https://anonymous.4open.science/r/MAPS-EBF8
https://anonymous.4open.science/r/MAPS-EBF8
https://arxiv.org/abs/2206.07769

Under review as a conference paper at ICLR 2026

Akim Kotelnikov, Dmitry Baranchuk, Ivan Rubachev, and Artem Babenko. Tabddpm: Modelling tabular data
with diffusion models. In International Conference on Machine Learning, pp. 17564-17579. PMLR, 2023.

Anton D. Lautrup, Tobias Hyrup, Arthur Zimek, and Peter Schneider-Kamp. Syntheval: a framework for detailed
utility and privacy evaluation of tabular synthetic data. Data Mining and Knowledge Discovery, 39(1), 2024.
doi: 10.1007/s10618-024-01081-4.

Debalina Padariya, Isabel Wagner, Aboozar Taherkhani, and Eerke Boiten. Privacy-preserving generative models:
A comprehensive survey. arXiv preprint arXiv:2502.03668, 2025.

Zhaozhi Qian, Bogdan-Constantin Cebere, and Mihaela van der Schaar. Synthcity: facilitating innovative use
cases of synthetic data in different data modalities. arXiv preprint arXiv:2301.07573, 2023.

Zhaozhi Qian, Thomas Callender, Bogdan Cebere, Sam M Janes, Neal Navani, and Mihaela van der Schaar.
Synthetic data for privacy-preserving clinical risk prediction. Scientific Reports, 14(1):25676, 2024.

J Raffa, A Johnson, T Pollard, and B Omar. Gossis-1-eicu, the eicu-crd subset of the global open source severity
of illness score (gossis-1) dataset (version 1.0. 0), 2022.

Jelena Schmidt, Nienke M Schutte, Stefan Buttigieg, David Novillo-Ortiz, Eric Sutherland, Michael Anderson,
Bart de Witte, Michael Peolsson, Brigid Unim, Milena Pavlova, et al. Mapping the regulatory landscape for
artificial intelligence in health within the european union. npj Digital Medicine, 7(1):229, 2024.

Viktoria Schuster and Anders Krogh. The deep generative decoder: Map estimation of representations improves
modelling of single-cell rna data. Bioinformatics, 39(9):btad497, 2023.

Allan Tucker, Zhenchen Wang, Ylenia Rotalinti, and Puja Myles. Generating high-fidelity synthetic patient data
for assessing machine learning healthcare software. NPJ digital medicine, 3(1):147, 2020.

Boris Van Breugel, Hao Sun, Zhaozhi Qian, and Mihaela van der Schaar. Membership inference attacks against
synthetic data through overfitting detection. arXiv preprint arXiv:2302.12580, 2023.

Boris van Breugel, Tennison Liu, Dino Oglic, and Mihaela van der Schaar. Synthetic data in biomedicine via
generative artificial intelligence. Nature Reviews Bioengineering, 2(12):991-1004, 2024.

Liyang Xie, Kaixiang Lin, Shu Wang, Fei Wang, and Jiayu Zhou. Differentially private generative adversarial
network. arXiv preprint arXiv:1802.06739, 2018.

Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Modeling tabular data using
conditional gan. Advances in neural information processing systems, 32, 2019.

Chao Yan, Yao Yan, Zhiyu Wan, Ziqi Zhang, Larsson Omberg, Justin Guinney, Sean D Mooney, and Bradley A
Malin. A multifaceted benchmarking of synthetic electronic health record generation models. Nature
communications, 13(1):7609, 2022.

Jinsung Yoon, Lydia N Drumright, and Mihaela Van Der Schaar. Anonymization through data synthesis
using generative adversarial networks (ads-gan). IEEE journal of biomedical and health informatics, 24(8):
2378-2388, 2020.

Jinsung Yoon, Michel Mizrahi, Nahid Farhady Ghalaty, Thomas Jarvinen, Ashwin S Ravi, Peter Brune, Fanyu
Kong, Dave Anderson, George Lee, Arie Meir, et al. Ehr-safe: generating high-fidelity and privacy-preserving
synthetic electronic health records. NPJ digital medicine, 6(1):141, 2023.

Zilong Zhao, Aditya Kunar, Robert Birke, and Lydia Y Chen. Ctab-gan: Effective table data synthesizing. In
Asian conference on machine learning, pp. 97-112. PMLR, 2021.

11



Under review as a conference paper at ICLR 2026

Appendix

A MAPS ALGORITHM

Algorithm 1 MAPS: Model Agnostic Post-hoc Synthetic Data Refinement

Require: Real dataset D = {x;} Y, Synthetic dataset D = {7}

Ensure: Refined synthetic dataset D with |D| =
1: // Stage 1: 0-Identifiability Guarantee
Compute feature weights w based on data characteristics
for each real sample z; € D do
i <= MiN, P\ (o} [|W - (z; — x;)|| {Distinctness threshold}
end for
Dyittered < () {Initialize filtered synthetic dataset}

for each synthetic sample ; € D do
is_safe + True
9.  for each real sample x; € D do

j=1, Target size N

10: ifHW (.Z‘i —i‘J)H < r; then

11: is_safe < False {Too close to real sample}
12: break

13: end if

14:  end for

15:  ifis_safe then

16: Dfiltered A\ Dfiltered U {j‘]}

17:  endif

18: end for

19: // Stage 2: Fidelity Enhancement via Importance Weighting

20: Randomly Sample Dfiltered_train C Dfiltered with |Dfiltered_train| =N
21: Dremaining — Dfiltered \Dfilteredjrain {Samples for SIR}

22: Create training set: Xyrqin = D U Dyitered_train

23: Create labels: y; = 1 for x; € D, y; = 0 for £; € Driitered_train

24: Train binary classifier ¢4 on (Xirgin, ¥)

25:
26: for each £; € Dremaining do

27: pj c¢(xj) {Probablllty of being real }

RS {Importance weight}

29: end for

30: // Stage 3: Sampling- Importance -Resampling (SIR)

31: Wtotal < Z:E i €EDremaining ’LU]

32: for each z; € Dwmm-m-ng do

330 pitt W;/Wiotar {Normalized sampling probability }
34: end for

35: D+ ()

36: forn =1to N do

37:  Sample index j from D, crmqining With probabilities {p}w””}
38: D+ DuU{z;}

39: end for _

40: return D

B IMPLEMENTATION DETAILS

B.1 DATA PREPROCESSING

For TCGA-metadata, we selected 21 variables with missing value percentages below 50%, and
remaining missing values are subsequently imputed using the ICE imputer from the HyperImpute
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library (Jarrett et al.| 2022)) before generative model training. For GOSSIS-1-eICU-cardiovascular,
we utilize the preprocessed gossis—-1-eicu-only-model-ready.csv.qgz file (Raffaet al.,
2022)), which contains no missing values.

B.2 MODEL TRAINING

All generative models except DGD are implemented using the Synthcity library (Qian et al.,|2023)
with default hyperparameters. TabDDPM is configured with 10,000 training iterations, while DGD is
trained with a learning rate of le-2, 50 latent dimensions, and 50 components. For TCGA-metadata,
DGD uses 2000 epochs; for GOSSIS-1-eICU-cardiovascular, this is reduced to 1000 epochs. All
experiments employ a 60:40 train-test split.

B.3 FIDELITY CLASSIFIER TRAINING

The fidelity classifier employs a 2-layer MLP architecture with hidden layer sizes adapted to dataset
characteristics: 240x120 for TCGA-metadata and 480x240 for GOSSIS-1-eICU-cardiovascular.
During training, we use balanced sampling (N real samples, N synthetic samples) to ensure 7y /7 = 1
in Equation (5). The training data is split 80:20 for training and evaluation. For data preprocessing
prior to training, the classifier uses min-max normalization for numerical variables and integer
encoding for categorical variables. Training employs the Adam optimizer with learning rate 0.001,
batch size 64, and early stopping with patience of 10 epochs to prevent overfitting.

B.4 IMPORTANCE WEIGHTS POST-PROCESSING

The output of the fidelity classifier provides our importance weights, which are subsequently normal-
ized and used for probability-proportional sampling. However, raw importance weights often exhibit
significant skewness, where the majority of synthetic samples receive very small weights while a
few samples obtain disproportionately large weights. This distribution can lead to problematic over-
sampling of only a handful of synthetic samples, thereby failing to capture the holistic distributional
properties of the real data and potentially increasing sampling variance.

To address this issue, we employ a flattening transformation as suggested by (Grover et al.,[2019).
The flattening process applies a power transformation to the raw importance weights:

wﬂaltened(-x) = wqﬁ (x)a ®)

where W, () represents the original importance weight estimated by the fidelity classifier, and « is a
flattening parameter that controls the degree of variance reduction. When o = 1, the weights remain
unchanged, while smaller values of « increasingly flatten the weight distribution by compressing the
range between high and low weights, conversely, larger values of o amplify the differences between
weights.

This transformation serves multiple purposes: (1) it tunes the variance of importance weights,
leading to more controllable sampling behavior; (2) it prevents extreme weights from dominating the
resampling process; and (3) it ensures broader coverage of the synthetic data space while maintaining
the relative preference for higher-fidelity samples. The flattening parameter o provides a tunable
trade-off between importance weighting effectiveness and sampling diversity.

In our implementation, we employ dataset-specific flattening parameters determined empirically:
a = 1.4 for all generative models on the TCGA-metadata dataset, and o = 0.8 for all models on the
GOSSIS-1-elCU-cardiovascular dataset.

C EVALUATION DETAILS

To comprehensively assess the effectiveness of MAPS across multiple dimensions of synthetic data
quality, we employ a multi-faceted evaluation framework that systematically measures improvements
in distributional fidelity, downstream task utility, and privacy protection. Our evaluation protocol is
designed to capture both marginal and joint distributional properties while ensuring that improvements
translate to practical utility in real-world applications. The evaluation framework encompasses three
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primary dimensions: (1) fidelity metrics that quantify how well synthetic data approximates the
statistical properties of real data, (2) utility metrics that assess performance on downstream tasks using
arigorous "train-on-synthetic, test-on-real" protocol, and (3) privacy metrics that ensure refinement
does not compromise data privacy protections.

C.1 FIDELITY EVALUATION METRICS

Fidelity evaluation forms the cornerstone of our assessment framework, as it directly measures
whether MAPS successfully improves the statistical alignment between synthetic and real data.
We employ a comprehensive suite of distributional similarity metrics that capture both marginal
and joint distributional properties across mixed-type tabular data. The selection of these metrics
follows established practices in synthetic data evaluation literature (Qian et al.,|2023}; |[Lautrup et al.,
2024; Kotelnikov et al.| [2023)), ensuring comprehensive coverage of distributional aspects critical
for tabular synthetic data quality assessment. This multi-metric approach ensures robust evaluation
across different aspects of distributional fidelity, from univariate marginals to complex multivariate
relationships.

C.1.1 QUANTIFYING THE MARGINAL DISTRIBUTION SIMILARITY

We employ 6 complementary metrics to assess marginal distribution similarity, each targeting specific
aspects of distributional alignment:

Kolmogorov-Smirnov Test Statistic: This non-parametric test measures the maximum absolute
difference between cumulative distribution functions of real and synthetic data. Applied exclusively to
numerical variables, it ranges from 0 to 1, where higher values indicate better distributional alignment
(we report 1 - KS statistic for interpretability).

Chi-square Test: This statistical test evaluates the independence hypothesis between real and
synthetic categorical distributions through contingency table analysis. Applied to categorical variables,
p-values range from O to 1, where higher p-values mean weaker evidence against the null hypothesis
of distributional equality. When p-values are high, we fail to reject the null hypothesis, suggesting
insufficient evidence to conclude that the distributions differ significantly.

Jensen-Shannon Distance: This symmetric divergence measure quantifies the similarity between
two probability distributions as the square root of Jensen-Shannon divergence. Applied to categorical
variables, it ranges from O to 1, where lower values indicate better similarity.

Total Variation Distance: This metric computes half of the L1 distance between two probability
mass functions, representing the overall difference in probability assignments. Applied to categorical
variables, it ranges from 0 to 1, where lower values indicate better similarity.

Hellinger Distance: This metric measures the similarity between probability distributions based
on the Euclidean distance between their square-rooted probability vectors. Applied to categorical
variables, it ranges from 0 to 1, where lower values indicate better similarity.

Inverse KL Divergence: This metric transforms the Kullback-Leibler divergence using the formula
1/(1 + KL(P||Q)) to provide a bounded similarity measure. Applied to categorical variables, it
ranges from O to 1, where higher values indicate better similarity.

These 6 metrics collectively provide a comprehensive assessment of marginal distribution similarity
by capturing different aspects of distributional alignment across both numerical and categorical
variables, ensuring robust evaluation of synthetic data fidelity at the univariate level.

C.1.2 QUANTIFYING THE JOINT DISTRIBUTION SIMILARITY

For joint distribution assessment, we employ two specialized metrics that capture multivariate
relationships:

Wasserstein Distance (WD): This optimal transport-based metric measures the minimum cost
of transforming one distribution into another in the joint numerical feature space. Applied to all
numerical variables simultaneously using the Sinkhorn algorithm for computational efficiency, it
ranges from O to infinity, where lower values indicate better similarity. The implementation is
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provided by the GeomLoss package (Feydy et al.l|2019) for efficient computation of optimal transport
distances.

Joint Jensen-Shannon Distance (JSD): This metric extends Jensen-Shannon divergence to joint
categorical distributions by computing divergence over the Cartesian product of all categorical
variable combinations. Applied to all categorical variables simultaneously, it ranges from O to 1,
where lower values indicate better similarity.

These two joint distribution metrics complement the marginal assessments by capturing multivariate
dependencies and interaction patterns that are crucial for downstream task performance, providing a
complete picture of distributional fidelity across the feature space.

C.2 MIXED-TYPE CORRELATION MATRIX

We compute correlation matrices using Spearman correlation coefficients for numerical-numerical re-
lationships, Cramér’s V for categorical-categorical associations, and correlation ratios for categorical-
numerical relationships. The association matrix is not symmetrical due to the asymmetry of correlation
ratios.

Normalized Frobenius Norm (NFN): This metric quantifies the difference between correlation
structures by computing the Frobenius norm of the difference between real and synthetic correlation
matrices, normalized by the square root of the total number of matrix elements. It ranges from O to
infinity, where lower values indicate better correlation structure preservation.

C.3 UTILITY EVALUATION PROTOCOL

Our utility evaluation employs a rigorous "train-on-synthetic, test-on-real" protocol that directly
assesses whether synthetic data can replace real data for downstream applications. This evaluation
strategy reflects real-world usage scenarios where synthetic data would be used for model development
before deployment on real data.

For clustering evaluation, we use K-means with k=5 clusters (determined by elbow analysis) on
numerical variables only. The evaluation protocol splits real data 80:20, with clustering models
trained on synthetic data and evaluated on the real test set using Adjusted Rand Index (ARI) and
Adjusted Mutual Information (AMI) metrics against true class labels. These metrics range from 0
to 1 (with ARI potentially negative for very poor clusterings), where higher values indicate better
clustering agreement with ground truth labels.

Classification tasks employ Random Forest with 100 estimators, using the same train-test split
strategy. For TCGA-metadata, the target variable is cancer_types while for GOSSIS-1-eICU-
cardiovascular, the target variable is dx_class. We evaluate performance using accuracy, F1-score
(macro-averaged), and ROC-AUC metrics, all ranging from O to 1 with higher values indicating better
performance.

Building on the classification tasks, we evaluate uncertainty quantification capabilities through split
conformal prediction (Angelopoulos et al.,[2024)), a variant of conformal prediction that uses a separate
calibration set, following a “train-on-synthetic, calibrate-on-synthetic, test-on-real” protocol. We train
classifiers on synthetic training data, then use a synthetic calibration set to compute non-conformity
scores using the inverse probability score function:

s(z,y) =1 = fo()[y] ©

where f,(x)[y] is the predicted probability for true class y. For miscoverage level o = 0.05 (target
coverage 95%), we construct prediction sets:

C(xtest) - {C 11— f(]ﬁ(xtest)[c] S ‘j} (10)
where ¢ is the empirical (1 — «)-quantile of calibration scores. We assess performance using

coverage (fraction of test samples where true labels are in prediction sets) and average set size
(efficiency measure), comparing against oracle performance where both training and calibration use
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real data. This evaluation directly addresses whether synthetic data can provide reliable uncertainty
quantification for real-world deployment, which is critical for high-stakes applications like healthcare.

Feature importance correlation measures Spearman correlation between importance rankings de-
rived from models trained on real data versus synthetic data, providing insight into interpretability
preservation. This metric ranges from -1 to 1, where values closer to 1 indicate better preservation of
feature relationships crucial for model interpretation. We included this metric because maintaining
interpretable feature relationships is critical for applications in sensitive domains like healthcare,
where practitioners require consistent and explainable model behavior.

C.4 PRIVACY EVALUATION PROTOCOL

Privacy assessment employs multiple approaches to ensure comprehensive evaluation of data protec-
tion guarantees. We evaluate both formal identifiability guarantees through identifiability measures
and empirical privacy resistance through attack-based assessments.

Identifiability Score (IS): This metric directly measures the proportion of real samples that can be
identified through synthetic data, computed as the fraction of real samples whose nearest synthetic
neighbor is closer than their nearest real neighbor. Values range from O to 1, where 0 indicates perfect
0-identifiability (no real samples pair with a synthetic sample more closely than they pair with a real
sample), a value of 1 indicates maximum identifiability risk, where every real sample has a synthetic
counterpart that is closer to it than its nearest real neighbor. The IS implementation is provided by
the Synthcity library (Qian et al., 2023).

Membership Inference Attack (MIA) Resistance: We evaluate resistance to standard membership
inference attacks using precision, recall, and F1-score metrics, where lower values indicate better
privacy protection. These attacks attempt to determine whether specific samples were included in the
training data used to generate synthetic samples. The standard MIA implementation is provided by the
SynthEval package (Lautrup et al.,2024)), with evaluation conducted using stratified cross-validation
with 5 folds to ensure robust privacy assessment across different data splits.

DOMIAS Attack Resistance: We assess resistance to Density-based Membership Inference Attacks
through accuracy and AUC-ROC metrics, where values closer to 0.5 (random guessing) indicate
better privacy protection. This specialized attack targets density-based vulnerabilities. The DOMIAS
attack implementation is provided by the Synthcity package (Qian et al., 2023).

D PCA pPLOTS

The PCA visualizations in Figures [f] and[7demonstrate how MAPS refinement brings the synthetic
data distribution closer to the real data distribution in the principal component space, providing visual
confirmation of the quantitative improvements observed in our fidelity metrics.

E STATISTICAL SIGNIFICANCE ANALYSIS

Statistical significance testing was performed using paired t-tests across 5 experimental runs. The
paired t-test is appropriate for our experimental design as it compares performance between raw and
refined synthetic data on the same underlying generative models and datasets.

For each metric, we computed the mean improvement, standard deviation, and p-values across
independent experimental runs. Results with p < 0.05 are considered statistically significant.

F DETAILED UTILITY RESULTS
Table 5| shows the detailed numerical utility results corresponding to Figure
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Figure 6: PCA visualization of TCGA-metadata dataset showing the distribution of real data, raw
synthetic data, and refined synthetic data in the first two principal components.
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Figure 7: PCA visualization of GOSSIS-1-eICU-cardiovascular dataset showing the distribution of
real data, raw synthetic data, and refined synthetic data in the first two principal components.
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Table 5: Comprehensive downstream task performance analysis. Results demonstrate MAPS ef-
fectiveness across clustering, classification, and feature importance preservation tasks using the
"train-on-synthetic, test-on-real" evaluation protocol. The Oracle column represents the upper-bound
performance achieved by training and testing on real data, serving as the ground truth benchmark for
these tasks. * Indicates insufficient data for significance testing.

TCGA-metadata

TVAE CTGAN TabDDPM DGD Oracle
Task Metric Raw Refined Raw Refined Raw Refined Raw Refined Real
K-Means ARI 0.7458%0.1759  0.8921400082  0.6069+00163  0.8706+00107  0.0022:£0.0006  0.7384+00127  0.7965+0.0052  0.6950=£0.0181 1.0000
AMI 0.7654%0.1011  0.8740400057  0.5815+0.0071  0.8543%00070  0.00200.0004  0.6923+00120  0.7224=00075  0.6465-+0.0222 1.0000
Accuracy 0.2780400160  0.5398+00157  0.2192+00058  0.4807+0.0083  0.1742400136  0.4775+0.0074  0.3749+00040  0.5173+00167  0.6589+0.0079
Classification F1 Score 0.1647400101  0.384840023¢  0.1152+00044  0.3043200040  0.0866-00145  0.3372x00195  0.240040.0003  0.3707+00189  0.557640.0081
ROC-AUC 0.7664%0.0010%  0.8914400077  0.7022+00034  0.8547+000s0  0.6272400114  0.8804300035 0.8234+00083  0.9082=+00037  0.95903-0.0027
Feat. Imp. Corr.  0.7393%0.0035  0.9168=+0.0037  0.706740.0062  0.919940.0053  0.8429+00030 0.9854+00012  0.8268+0.0037  0.985030.0017 1.0000
GOSSIS-1-eICU-cardiovascular
TVAE CTGAN TabDDPM DGD Oracle
Task Metric Raw Refined Raw Refined Raw Refined Raw Refined Real
K-Mean. ARI 0.5257+00572  0.5810400977  0.4345400015  0.5476+00192  0.0000+00000  0.3075400043  0.2569+00079  0.4287+0.0055 1.0000
-vieans AMI 0.5380+00261  0.5923400692  0.5272+0.0031  0.5848=00156  0.0000400000  0.3879-+0.0038  0.3236+00068  0.547240.0116 1.0000
Accuracy 0.37454+00063  0.5008+0.0031  0.3763+0.0042  0.4545+00035 0.3574400073  0.4726F00039  0.4476+00086  0.4593+00107  0.592240.0023
Classification F1 Score 0.1867+00043  0.2497400016  0.1812-0.0067  0.2144£00019  0.1287400043  0.2104=+0.0022  0.2085+000s0  0.24664-0.0041  0.3234-£0.0020
ROC-AUC 0.7895+000s8  0.8329400022  0.7450+0.0027%  0.7867+0.0033  0.7722400042  0.7837+0.0057 0.8308+0.0020  0.87110.0051  0.9099-t0.0021
Feat. Imp. Corr.  0.7821%0.0020 0.9197+0.0018  0.7492=+0.0045  0.8511%00058 0.7597100087 0.8863+0.0074 0.7497+0.0049  0.8239=+0.0043 1.0000

G MORTALITY PREDICTION

To complement the multi-class prediction results presented in the main paper, we evaluate MAPS
on mortality prediction, a critical task in clinical research and patient care. While the main results
demonstrate MAPS effectiveness on the more challenging multi-class problem, these mortality
prediction results confirm that the framework also provides consistent improvements on this important
binary classification task, further validating its broad utility enhancement across different tasks. See
below Table [6] for detailed results.

Table 6: Mortality prediction performance on TCGA-metadata and GOSSIS-1-eICU-
cardiovascular. The Oracle column represents the upper-bound performance achieved by training
and testing on real data, serving as the ground truth benchmark for these tasks.

TCGA-metadata
TVAE CTGAN TabDDPM DGD Oracle
Task Metric Raw Refined Raw Refined Raw Refined Raw Refined Real
Accuracy 0.8293+0.0061  0.8307400046  0.8245+00023  0.8308+0.0062 0.8346+0.0068 0.8370F00041  0.8010+00039  0.8184+0.0032  0.856330.0028
Mortality Prediction F1 Score 0.787140.0009  0.7939%00060  0.7933%00031  0.7937+000s8  0.800310.0004  0.8035%00057  0.7364=00095  0.7772+0.00s8  0.827330.0029
Y ROC-AUC 0.8847+0004s  0.8853%00043  0.8716=0.0062  0.8790+00081  0.8875+0.0075 0.8889+00044  0.8625400075  0.8730+0.0045  0.9103+0.0034
Feat. Imp. Corr.  0.9662+0.0041  0.9694300031  0.9546F00083  0.9678+00072  0.9822+0.0091  0.9885%00105 0.4319400322  0.9617=+0.0056 1.0000

GOSSIS-1-eICU-cardiovascular

TVAE CTGAN TabDDPM DGD Oracle
Task Metric Raw Refined Raw Refined Raw Refined Raw Refined Real
Accuracy 0.9361+00017  0.9394+00011  0.9350+00021  0.9363+0.0019  0.9366+0.0007  0.9393+00010  0.9285+00017  0.9371+0.0010  0.9405+0.0010
Mortality Prediction  FLScore 0.7191z00132 07550200067  0.727000144  0.7422x00082  0.7212400068  0.7617+00056  0.6207+00176  0.7236300049  0.753300073
iy et ROC-AUC 0.9048+0.0047 09096100052 0.9016400036  0.9027+0.005s  0.9150+000s5  0.9167200045  0.8965+00063  0.9112+0.0053  0.9172400038
Feat. Imp. Corr.  0.9062+00175  0.9662+00093  0.8749+00155  0.9182+00208  0.5222400865  0.9662+00145  0.8657+00158  0.956330.0096 1.0000

H LARGE LANGUAGE MODEL USAGE STATEMENT

In accordance with ICLR 2026 submission guidelines, we disclose the use of Large Language
Models in the preparation of this manuscript. We utilized Claude Sonnet 4 (Anthropic) exclusively
for writing assistance and language polishing purposes. Specifically, the model was employed to
improve sentence structure, enhance clarity, and correct grammar. All technical content, methodology,
experimental design, results, and scientific contributions remain entirely our own work.
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