
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CONFORMAL TRAINING WITH REDUCED VARIANCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Conformal prediction (CP) is a distribution-free framework for achieving proba-
bilistic guarantees on black-box models. CP is generally applied to a model post-
training. Recent research efforts, on the other hand, have focused on optimizing
CP efficiency during training. We formalize this concept as the problem of con-
formal risk minimization (CRM). In this direction, conformal training (ConfTr)
by Stutz et al. (2022) is a technique that seeks to minimize the expected predic-
tion set size of a model by simulating CP in-between training updates. Despite its
potential, we identify a strong source of sample inefficiency in ConfTr that leads
to overly noisy estimated gradients, introducing training instability and limiting
practical use. To address this challenge, we propose variance-reduced conformal
training (VR-ConfTr), a CRM method that incorporates a novel variance re-
duction technique in the gradient estimation of the ConfTr objective function.
Through extensive experiments on various benchmark datasets, we demonstrate
that VR-ConfTr consistently achieves faster convergence and smaller prediction
sets compared to baselines.

1 INTRODUCTION

Consider a classification task with input (features) X ∈ X and corresponding label Y ∈ Y =
{1, . . . ,K}. In supervised learning, we are interested in approximating the posterior probability
π(y|x) = P (Y = y |X = x) by tuning some θ-parameterized family of predictors πθ(y|x) - for
example, neural network models with a softmax activation at the output layer. Typically, the final
label prediction would be δθ(x) = argmaxy∈Y πθ(y|x), and a common metric for performance
is the accuracy, which measures the proportion of testing samples whose predicted label matches
the true label. While the accuracy is a key performance metric, in safety-critical applications with
a downstream decision maker it is crucial not only to predict accurately but also to quantify the
uncertainty associated with a prediction.

Conformal prediction (CP) is a distribution-free, principled framework that is used to provide for-
mal probabilistic guarantees for black-box models (Vovk et al. (2005); Shafer & Vovk (2008);
Angelopoulos et al. (2023)), with exemplar applications in computer vision (Angelopoulos et al.
(2020)), large language models (Mohri & Hashimoto (2024),Kumar et al. (2023)) and path planning
(Lindemann et al. (2023)). Given a model πθ(y|x), CP enables the construction of set predictors
Cθ : X → 2Y (where 2Y is the power set of Y) such that the true label is contained in the set of
predicted labels with high probability. This can be formalized via the notion of marginal coverage.
Definition 1.1 (Marginal coverage). We say that a set predictor Cθ : X → 2Y satisfies marginal
coverage with miscoverage rate α ∈ (0, 1) if P (Y ∈ Cθ(X)) ≥ 1− α.

Marginal coverage can be readily obtained in CP via a process called calibration, which only re-
quires access to a so-called calibration set of data that is statistically exchangeable with the test
data. However, one of the main challenges in CP is the efficiency of the prediction sets - namely the
size of the sets Cθ(x) - often referred to as length efficiency (Fontana et al., 2023). For instance,
while it is possible to trivially achieve the desired coverage by including the entire label space in
Cθ(x), such an approach results in non-informative and excessively large prediction sets. An effi-
cient Cθ(x) is as small as possible while still maintaining the coverage guarantee.

Various existing approaches, including the works by Romano et al. (2020); Yang & Kuchibhotla
(2024); Bai et al. (2022), address the efficiency challenge by refining the conformal prediction pro-
cedure applied post-training to a black-box model. These methods, though effective, are constrained

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

by the performance of the pre-trained model πθ(y|x) on which they are applied. On the other hand,
recent research efforts (Dheur & Taieb, 2024; Cherian et al., 2024; Einbinder et al., 2022; Stutz et al.,
2022; Bellotti, 2021) have focused on integrating CP directly into the training process. This provides
a way to improve the CP efficiency also in the model optimization phase - when learning the param-
eter of the models - enabling a higher degree of control over the probabilistic guarantees efficiency.
In this work, we formulate this approach as conformal risk minimization (CRM) and we focus on
CRM for length efficiency optimization. We consider a setting similar to Stutz et al. (2022), who
proposed conformal training (ConfTr), an algorithm achieving promising performance in improv-
ing the length-efficiency of the prediction sets constructed post-training.

Despite encouraging preliminary results, ConfTr introduces significant optimization challenges,
particularly due to the use of differentiable approximations of CP sets. Indeed, ConfTr requires
differentiating a loss function obtained simulating CP during training. This, in turn, requires ac-
curately estimating the population quantile of the conformity scores and its gradient, which can be
difficult with the limited data available in each mini-batch. Hence, training can exhibit large fluctu-
ations in the loss and slow convergence, thereby reducing the practical applicability of the method.

In this work, we address these challenges by introducing variance-reduced conformal train-
ing (VR-ConfTr), a novel CRM algorithm leveraging a variance reduction technique for the es-
timation of quantiles’ gradients. Relative to confTr, our proposed VR-ConfTr solution sig-
nificantly stabilizes training - leading to faster convergence, and consistently enhances the length
efficiency of post-training conformal prediction sets when compared against baselines.

1.1 CONTRIBUTIONS

Our contributions can be summarized as follows:

Conformal risk minimization. We formulate conformal risk minimization (CRM) as a framework
for training a parameterized predictor that learns according to CP efficiency metrics.

A “plug-in” algorithm. Focusing on CRM for length efficiency optimization, we provide a novel
analysis for the variance of the ConfTr (Stutz et al., 2022) method, which shows the need for
improved estimators of the quantile gradients. Then, we introduce the pipeline of variance-reduced
conformal training (VR-ConfTr), our proposed algorithm to overcome this challenge, which lever-
ages a “plug-in” step to incorporate improved estimates of quantiles’ gradients in the training.

Novel variance reduction technique. Building on a fundamental result, which characterizes the
gradient of the population quantile as a conditional expectation, we propose a novel estimator for
quantile gradients whose variance is provably reduced with the training batch size. This novel
estimator can be seamlessly integrated into VR-ConfTr. We analyze the bias-variance trade-off of
this novel estimator and establish its precise relationship with the conformity measures associated
to a predictor πθ(y|x).
Empirical validations. We extensively analyze our method on various benchmark and real-world
datasets, including MNIST, FMNIST, KMNIST and OrganAMNIST. Our results demonstrate that
VR-ConfTr consistently and significantly improves the efficiency and stability of conformal train-
ing for length efficiency optimization.

Broad applicability. Our approach and novel variance reduction technique can be integrated into
any CRM method that requires quantile gradient estimation, extending its utility to a large class of
conformal prediction frameworks and learning models.

1.2 RELATED WORK

A large body of research has focused on optimizing length-efficiency in CP. We now review some
recent literature in this area. We first (i) review approaches that apply CP post-training to black-
box models, and then (ii) review the recent efforts in coupling CP and model training, in what we
call conformal risk minimization (CRM) approaches. For (i), recent algorithmic developments ad-
dress improving length efficiency through better conformity score design Romano et al. (2020);
Yang & Kuchibhotla (2024); Amoukou & Brunel (2023); Deutschmann et al. (2024); Luo & Zhou
(2024). From another perspective Kiyani et al. (2024); Bai et al. (2022); Yang & Kuchibhotla (2021);
Colombo & Vovk (2020) focus on designing better calibration procedures. Particularly, Kiyani

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

model
training prediction set

VR-ConfTr pipeline

Bpred

Bcalib

batch

∂L
∂θ

(θ) = h′￼(𝔼[ℓ(θ, X, Y, τ(θ))]) (𝔼 [∂ℓ
∂θ

(θ, X, Y, τ(θ))] + 𝔼 [∂ℓ
∂τ

(θ, X, Y, τ(θ))] ∂τ
∂θ

(θ))

estimate and ̂τ
̂∂τ

∂θ

conformal
calibration

plug-in estimates

conformity scores

gradient estimate

optimizer step

̂∂L
∂θ

X, Y

Eθ(X, Y)

reduced size

quantile estimator

VR estimator

Figure 1: In this figure, we illustrate the VR-ConfTr pipeline and position it with respect to a
typical CP procedure.

et al. (2024) propose an optimization technique for the calibration threshold τ . On the other
hand, Bai et al. (2022); Yang & Kuchibhotla (2021) formulate CP as a constrained optimization
problem, minimizing the average prediction interval width with valid empirical coverage. These ef-
forts do not fall under the CRM framework because they focus on learning low-dimensional hyper-
parameters for pre-trained models as opposed to fully guiding the training of the parameters θ of a
model πθ(y|x).
Conformal risk minimization. There is a growing body of work (Einbinder et al., 2022; Cherian
et al., 2024; Stutz et al., 2022; Bellotti, 2021; Yan et al., 2024) integrating ideas from conformal
prediction in order to directly train a model for improved uncertainty quantification. Cherian et al.
(2024) train a score function, rather than a point predictor, subject to conditional coverage constraints
(Gibbs & Candes (2021)). Einbinder et al. (2022) utilize conformal prediction insights in order to
mitigate overconfidence in multi-class classifiers by minimizing a carefully designed loss function.
Stutz et al. (2022) proposed conformal training (ConfTr), in which length efficiency optimization
is tackled by defining a loss function obtained by simulating conformal prediction during training.
We will extensively describe this approach in the next section. Yan et al. (2024) uses a similar train-
ing pipeline to Stutz et al. (2022) in order to minimize the inefficiency of their proposed conformal
predictor. The early work by Bellotti (2021) considered an approach analogous to ConfTr in that
the authors simulate conformal prediction during training. However, the algorithm provided by Bel-
lotti (2021) treats the quantile-threshold as fixed and not as a function of the model parameters, and
it has been extensively shown by Stutz et al. (2022) that this approach provides inferior performance
with respect to ConfTr.

2 PROBLEM FORMULATION

Let us consider a parameterized model of logits fθ : X → RK and let πθ(x) = softmax(fθ(x))
denote the corresponding predicted probabilities. The objective of a conformal prediction algorithm
is to construct a set predictor Cθ : X → 2Y starting from the model fθ in such a way that Cθ achieves
marginal coverage. One common way to achieve this is via a thresholding (THR) set predictor (Vovk
et al. (2005)), Cθ(x; τ) = {y ∈ Y : Eθ(x, y) ≥ τ} for some well chosen threshold τ and conformity
score Eθ(x, y), which can be any heuristic notion of uncertainty regarding label y upon input x for
the predictor fθ(·). Some choices for the conformity score include (i) the predicted probabilities
Eθ(x, y) = πθ(y|x) = [πθ(x)]y , (ii) the logits Eθ(x, y) = [fθ(x)]y , and (iii) the predicted log-
probabilities Eθ(x, y) = log πθ(y|x). Let us assume that X is an absolutely continuous random
vector. If we knew the marginal distribution for (X,Y), then marginal coverage could be readily
achieved by setting τ = τ(θ) = Qα(Eθ(X,Y)) where Qα denotes the population quantile of some
scalar random variable. Indeed,

P (Y ∈ Cθ(X; τ)) = P (Eθ(X,Y) ≥ τ) ≥ 1− α (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

directly from τ = Qα(Eθ(X,Y)). In practice, however, the marginal distribution of (X,Y) is not
known. Instead, we can estimate τ(θ) = Qα(Eθ(X,Y)) from data that, as long as it satisfies the
principle of exchangeability, can be used to ascertain marginal coverage of Cθ(x; τ).

2.1 CONFORMAL RISK MINIMIZATION

As we outlined in the introduction, recent research efforts have attempted to combine training and
conformal prediction (CP) into one, as opposed to using CP only as a post-training method. Here,
we formalize this by borrowing terminology from statistical supervised learning and by introducing
the problem of conformal risk minimization (CRM). CRM can be understood as a framework for
training a parameterized predictor that learns according to some CP efficiency metric, and can be
formulated as follows:

min
θ∈Θ
{L(θ) := E [ℓ(Cθ(X), Y)]} (CRM)

for some conformal loss ℓ, where Cθ(x) is a conformalized predictor. This problem is closely related
to the conformal risk control explored byAngelopoulos et al. (2022).

2.2 CONFTR (STUTZ ET AL., 2022)

Stutz et al. (2022) introduced conformal training (ConfTr), which we can categorize as a CRM
approach for length efficiency optimization. In particular, ConfTr focuses on reducing inefficiency
of calibrated classifiers, quantified by the target size of predicted sets. This can be understood as the
problem in (CRM) with ℓ(C, y) = max(0, |C| − κ) for some target size κ (intended to discourage
no predictions at all). In this regard, it is worth noting that the earlier work of Sadinle et al. (2019)
was the first to study the closely related problem of least ambiguous set-valued classifiers, which
corresponds to l(C, y) = |C|. An important aspect of the work of Stutz et al. (2022) is that the
authors relaxed the CRM problem with target size conformal loss ℓ(C, y) = max(0, |C| − κ) into
a smooth one in θ, in order to allow gradient-based optimization to be employed. In particular, the
authors relax the prediction set Cθ(x; τ) into the smooth prediction “set” (vector) Cθ(x; τ) ∈ [0, 1]K

with relaxed binary indicator variables, given by

[Cθ(x; τ)]y = σ

(
Eθ(x, y)− τ

T

)
(2)

for y ∈ Y , where σ(·) denotes the sigmoid function and T > 0 a “temperature” hyper-parameter
such that [Cθ(x; τ)]y → 1Eθ(x,y)≥τ as T → 0, with 1A the indicator function for condi-
tion A. Further, the prediction set size |Cθ(x; τ)| is relaxed into the smooth prediction set size∑

y∈Y [Cθ(x; τ)]y = 1T
KCθ(x; τ). With this, the problem solved by Stutz et al. (2022) can be

written as
min
θ∈Θ
{L(θ) = logE

[
Ω
(
Cθ(X; τ(θ)

)]
} (3)

with Ω(C) = max(0,1T
KC − κ). Additionally, the authors explored other terms, such as a config-

urable class-conditional “coverage loss”

L(C, y) =
∑
y′∈Y

[L]yy′
(
(1− [C]y′δyy′ + [C]y′(1− δyy′)

)
,

as well as a possible base loss (such as cross entropy) and regularizer. The log term in (3) is used
for numerical stability reasons for the gradient-based optimizers employed by the authors. Let us
abstract these factors into the problem

min
θ∈Θ
{L(θ) := h(E [ℓ(θ, τ(θ), X, Y)]) +R(θ)} , (ConfTr-risk)

to be solved via a gradient-based method for some monotone transformation h(·), conformal loss
ℓ(·), and regularizer R(·). The underlying assumption, just as in any supervised learning task, is that
the marginal distribution of (X,Y) is unknown but that instead we can collect some i.i.d. training
data D = {(X1, Y1), . . . , (Xn, Yn)}. With this, an issue presents itself in that, unlike a typical
loss function, we cannot evaluate ∂

∂θ [ℓ(θ, τ(θ), Xi, Yi)] from knowledge alone of θ,Xi, Yi, because
τ(θ) = Qα(Eθ(X,Y)) is a function of the distribution of (X,Y) and not a mere transformation.
To resolve this issue, Stutz et al. (2022) propose their ConfTr algorithm, which randomly splits

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

a given batch B into two parts, which they refer to as calibration batch Bcal and prediction batch
Bpred. With this, the authors advocate for employing any smooth (differentiable) quantile estimator
algorithm for τ(θ) using the calibration batch. Then, they propose using this estimator to compute a
sampled approximation of (ConfTr-risk), replacing expectations by sample means constructed using
the prediction batch. Let L̂(θ) denote the end-to-end empirical approximation of L(θ) in terms of the
current parameters θ. Once L̂(θ) is constructed, the authors advocate for a (naive) risk minimization
procedure where ∂L̂

∂θ (θ) is computed and passed to an optimizer of choice.

2.3 VARIANCE ANALYSIS FOR CONFTR

Consider i.i.d. samples {(Xi, Yi)}ni=1 from which we seek to estimate τ(θ) = Qα(Eθ(X,Y))
and let E(1)(θ) ≤ . . . ≤ E(n)(θ) denote the order statistics corresponding to the scalar random
variables Eθ(X1, Y1), . . . , Eθ(Xn, Yn). Unlike the expectation and covariance matrix of a random
vector, there is no universal consensus on an estimator for the population quantile of scalar random
variables. Hyndman & Fan (1996) summarized and unified a significant portion of the various
estimators proposed in the literature at the time. Following the notation of the aforementioned work,
we will consider estimators of the form

τ̂(θ) = γE(j)(θ) + (1− γ)E(j+1)(θ) (4)

for some γ = γ(j, g) ∈ [0, 1] with j = ⌊αn + r⌋ and g = αn + r − j, where r ∈ R is a
hyper-parameter. Other estimators have been proposed since, and even at the time of (Hyndman
& Fan, 1996). However, the majority of statistical packages implement, by default, an estimator
of the form (4). Other approaches have been proposed in the literature, via kernel-based methods,
variational methods, and dispersion-based methods. With this estimator of equation (4), we see that

∂τ̂

∂θ
(θ) = γ

∂E(j)

∂θ
(θ) + (1− γ)

∂E(j+1)

∂θ
(θ). (5)

Note that {E(i)(θ)}ni=1 are differentiable almost surely (see Appendix B.1 for more details). Fur-
ther, if ω(θ) : [n] → [n] denotes the permutation of indices [n] := {1, . . . , n} that correspond
to the order statistics, i.e. E(j)(θ) = Eθ(Xωj(θ), Yωj(θ)) with ω(θ) = (ω1(θ), . . . , ωn(θ)), we
see that ω(θ) is piecewise constant (or approximately so when using a smooth sorting such as
in (Blondel et al., 2020; Cuturi et al., 2019)), and thus ∂ω

∂θ (θ) ≈ 0. By the chain rule, it fol-
lows that ∂E(j)

∂θ (θ) ≈ ∂E
∂θ (θ,Xωj(θ), Yωj(θ)), where E(θ,X, Y) = Eθ(X,Y). Since E(j)(θ) ≈

τ(θ) and E(j+1)(θ) ≈ τ(θ), and noting that the samples (X1, Y1), . . . , (Xn, Yn) are i.i.d., then
(Xωj(θ), Yωj(θ)) and (Xωj+1(θ), Yωj+1(θ)) are approximately independent and approximately dis-
tributed as equal to the distribution of (X,Y) when conditioned on Eθ(X,Y) = τ(θ). Hence,

E
[
∂τ̂

∂θ
(θ)

]
≈ E

[
∂E

∂θ
(θ,X, Y)

∣∣∣Eθ(X,Y) = τ(θ)

]
(6)

cov

(
∂τ̂

∂θ
(θ)

)
≈ (γ2 + (1− γ)2) cov

(
∂E

∂θ
(θ,X, Y)

∣∣∣Eθ(X,Y) = τ(θ)

)
. (7)

Inspecting (7), we can see that the variance of the naive estimator ∂τ̂
∂θ (θ) for ∂τ

∂θ (θ) is approximately
constant when the sample size is moderately large. In particular, the variance is approximatelyO(1),
which is quite sample inefficient as it does not decrease as the sample size increases. On the other
hand, by differentiating the conformal training loss, i.e.

∂

∂θ
[ℓ(θ, τ̂(θ), x, y)] =

∂ℓ

∂θ
(θ, τ̂(θ), x, y) +

∂ℓ

∂τ
(θ, τ̂(θ), x, y)

∂τ̂

∂θ
(θ), (8)

it becomes apparent that poor estimator variance for ∂τ̂
∂θ (θ) will bottleneck sample efficiency in the

estimation of ∂L
∂θ (θ) obtained by replacing τ(θ) in (ConfTr-risk) with τ̂(θ) and using the prediction

batch to approximate the expectations. Note that (8) follows from the chain rule, see Appendix B.2
for more details. In the next section, we present our proposed solution to address this issue.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3 VARIANCE-REDUCED CONFORMAL TRAINING

In order to surpass the shortcoming of ConfTr described in the previous section, let us first note
that the gradient of the conformal risk (ConfTr-risk) can be written as

∂L

∂θ
(θ) = h′(E [ℓ(θ, τ(θ), Z)])

(
E
[
∂ℓ

∂θ
(θ, τ(θ), Z)

]
+ E

[
∂ℓ

∂τ
(θ, τ(θ), Z)

]
∂τ

∂θ
(θ)

)
, (9)

where h′ denotes the derivative of h, Z = (X,Y), and noting that we dropped the regularizer for
simplicity. Additionally, we can exploit the following relationship to further characterize ConfTr
as well as to design a variance-reduced alternative:
Proposition 3.1 (Quantile Sensitivity (Hong, 2009)). Suppose that X is absolutely continuous and
Eθ(x, y) is continuously differentiable in θ and x. Then, for every θ ∈ Θ,

∂τ

∂θ
(θ) = E

[
∂E

∂θ
(θ,X, Y)

∣∣∣Eθ(X,Y) = τ(θ)

]
. (10)

In Appendix A, we provide a rigorous proof for the above proposition, which was carried out inde-
pendently from that of the equivalent result of Hong (2009) (namely, Theorem 2). However, note
that the assumptions in (Hong, 2009) are less restrictive than the ones we use. Further, the author
explores more deeply the connections between τ(θ) and ∂τ

∂θ (θ).

Equipped with the above proposition, we can compare (6) and (10) to see that, despite the poor
sample efficiency of the naive estimator for ∂τ

∂θ (θ), it at least leads to an approximately unbiased
estimator. However, it also becomes intuitively clear that variance reduction can be achieved by
exploiting (10), for example by decoupling the estimation of τ(θ) from ∂τ

∂θ (θ), and generally by not

settling for ∂̂τ
∂θ (θ) :=

∂τ̂
∂θ (θ) as the estimator for ∂τ

∂θ (θ).

3.1 QUANTILE GRADIENT ESTIMATION

We can use Proposition 3.1 to design an algorithm that boosts the estimated quantile gradient. The
idea is as follows: if we denote

η(θ) := E
[
∂E

∂θ
(θ,X, Y)

∣∣A(θ)

]
, Σ(θ) := cov

(
∂E

∂θ
(θ,X, Y)

∣∣A(θ)

)
, (11)

ηε(θ) := E
[
∂E

∂θ
(θ,X, Y)

∣∣Aε(θ)

]
, Σε(θ) := cov

(
∂E

∂θ
(θ,X, Y)

∣∣Aε(θ)

)
, (12)

for ε > 0, where A(θ) := {Eθ(X,Y) = τ(θ)} and Aε(θ) := {|Eθ(X,Y) − τ(θ)| ≤ ε}, then
the terms in (11) and (12) are approximately equal if ε ≈ 0. Subsequently, we can more efficiently
estimate η(θ) = ∂τ

∂θ (θ), compared to the naive estimator η̂(θ) = ∂τ̂
∂θ (θ), by naive sample estimate of

ηε(θ). To this end, we propose the following ε-estimator

η̂(θ) :=
1∑n

i=1 1Âε,i(θ)

n∑
i=1

1Âε,i(θ)

∂E

∂θ
(θ,Xi, Yi), (13)

from i.i.d. copies (X1, Y1), . . . , (Xn, Yn) of (X,Y), where Âε,i(θ) = {|Eθ(Xi, Yi)− τ̂(θ)| ≤ ε}.
Alternative estimators for η(θ) can be constructed. Some examples include:

• Ranking: sort the examples based on the distances {
∣∣Eθ(Xi, Yi)− τ̂(θ)

∣∣}i=1,...,n, choose
the “top” m samples (smallest distances) for some suitably small m, and then set η̂(θ) as
the average of ∂E

∂θ (θ,Xi, Yi) over those samples. Note that this can be seen as an heuristic
to choose ε when using the ε-estimator, and it is the strategy we adopt in our experiments.

• Kernel regression: consider some kernel Kh(t) = 1
hK

(
t
h

)
with h > 0 for which∫ +∞

−∞ tK(t)dt = 0, for instance K(·) = PDF of N (0, 1) or K(t) = σ(t)(1− σ(t)) where
σ(·) denotes the sigmoid function. Then, we can use the (modified) Nadaraya–Watson

estimator η̂(θ) =
∑n

i=1 Kh(Eθ(Xi,Yi)−τ̂(θ)) ∂E
∂θ (θ,Xi,Yi)∑n

i=1 Kh(Eθ(Xi,Yi)−τ̂(θ)) .

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

• Random splitting: split the n examples into m sub-sets of samples, apply some other esti-
mator algorithm for η(θ) on each sub-set, and then set η̂(θ) as the average of the individual
estimates of η(θ).

Other closely related notions that could be adapted for the estimator η̂(θ) and that could lead to
reduced variance include importance sampling and smooth bootstrapping, but more generally, av-
erages can be replaced by carefully constructed weighted sums. Particle filters could be feasible as
a way of more efficiently estimate η(θ) by carrying over the previous estimates as θ is updated. It
is also clear that various of these potential estimators are closely linked. For instance, if the thresh-
old ε > 0 is allowed to be sample-dependent, then the thresholding approach (13) and the ranking
approach can be seen as equivalent by setting ε = inf

{
ε′ > 0 :

∑n
i=1 1Âε′,i(θ)

≥ m
}

.

3.2 PROPOSED ALGORITHM: VR-CONFTR

Suppose that a variance-reduced estimator for ∂τ
∂θ (θ) has been already designed. Then, the new esti-

mate for τ(θ) and ∂τ
∂θ (θ) can be plugged into expression (9) for the gradient of the conformal training

risk function, before the expectations can be approximated by sample means, leading to the plug-in
estimator for ∂L

∂θ (θ). Naturally, the plug-in gradient estimator is then passed through an optimizer
in order to approximately solve (CRM). Our proposed pipeline, which we call variance-reduced
conformal training (VR-ConfTr) algorithm, constitutes our main contribution and proposed solu-
tion to improve the sample inefficiency of ConfTr. The critical step of constructing the plug-in
estimator is summarized in Algorithm 1. Additionally, the entire pipeline is illustrated in Figure 1.

Algorithm 1 Variance-reduced conformal training (VR-ConfTr)

Require:
batch B = {(X1, Y1), . . . , (X2n, Y2n)} of i.i.d. samples from (X,Y),
score function E(θ, x, y) : Θ×X × Y → R,
conformal loss ℓ(θ, x, y, τ) : Θ×X × Y × R→ R,
monotone transformation F : R→ R,
estimator τ̂(·) for τ(θ) = Qα(Eθ(X,Y)),

estimator ∂̂τ
∂θ (·) for ∂τ

∂θ (θ).

Ensure: output an estimate ∂̂L
∂θ of the gradient ∂L

∂θ (θ) of the conformal training risk (ConfTr-risk)
1: partition B into {Bcal, Bpred}, with |Bcal| = |Bpred| = n.
2: τ̂ ← τ̂(Bcal) // estimate τ(θ) using Bcal

3: ∂̂τ
∂θ ←

∂̂τ
∂θ (Bcal) // estimate ∂τ

∂θ (θ) using Bcal

4: ℓ̂← 1
|Bpred|

∑
(x,y)∈Bpred

ℓ(θ, x, y, τ̂)

5: ∂̂ℓ
∂θ ←

1
|Bpred|

∑
(x,y)∈Bpred

∂ℓ
∂θ (θ, x, y, τ̂)

6: ∂̂ℓ
∂τ ←

1
|Bpred|

∑
(x,y)∈Bpred

∂ℓ
∂τ (θ, x, y, τ̂)

7: ∂̂L
∂θ ← h′(ℓ̂)

(
∂̂ℓ
∂θ + ∂̂ℓ

∂τ
∂̂τ
∂θ

)
+ ∂R

∂θ (θ) // “plug-in” gradient estimator

8: return ∂̂L
∂θ

3.3 THEORETICAL RESULTS

We focus our theoretical analysis on the thresholding esimator (13). Note that the m-ranking esti-
mator, which we use in our experiments, is effectively an ε-threshold estimator where the ranking is
a heuristic criterion to choose the threshold ε at each iteration based on the current batch and param-
eter. For simplicity and to avoid having to commit to any particular quantile estimator, we assume
τ̂(θ) = τ(θ) in the analysis. Furthermore, we will assume ε > 0 to be deterministic. Lastly, we will
assume that in the event in which

⋃n
i=1 Âε,i(θ) is empty, the estimator evaluates to η̂(θ) = 0. With

this, we can establish our main theoretical result in the following theorem.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Theorem 3.1 (Variance reduction). Let η̂(θ) be the estimator defined in (13) with τ̂(θ) = τ(θ).
Then, the the bias and variance of the estimator can be characterized as follows:

(i) E [η̂(θ)] = (1− [qε(θ)]
n
)ηε(θ) (bias)

(ii) cov (η̂(θ)) ⪯ 2Σε(θ)

pε(θ)n
+ [qε(θ)]

n
ηε(θ)η

T
ε (θ), (variance)

where pε(θ) = P(Aε,i(θ)) and qε(θ) = 1− pε(θ).

The main takeaway of result (i) is that η̂(θ) is an asymptotically unbiased estimator of ηε(θ), but
not η(θ). However, by definition we also have ηε(θ) ≈ η(θ) for ε ≈ 0. The second result (ii),
instead, shows that variance reduction is obtained by the proposed estimator, when compared to the
naive estimator ∂τ̂

∂θ (θ). Further, for large n, the variance reduction is proportional to pε(θ)n, which
is equal to the (expected) proportion of samples that are ultimately used in the estimator. More
precisely, the variance of the estimator is O

(
1

pε(θ)n

)
as ε→ 0 or n→∞.

A key takeaway of (i) and (ii) is the explicit characterization of the bias-variance trade-off as a
function of the threshold ε > 0 and of the batch size n: for a given batch size n, a larger ε increases
the expected amount of samples used by the estimator, thus reducing its variance. However, larger
ε also increases the bias of the estimator towards the unconditional expectation E

[
∂E
∂θ (θ,X, Y)

]
,

where we make note that ηε(θ)→ η(θ) as ε→ 0.

4 EXPERIMENTS

As a warm-up, we illustrate Theorem 3.1 on a synthetic Gaussian mixture model (GMM) dataset,
depicted in Figure 2. We employ the m-ranking method with top m = αn

log logn samples. This ratio
performs well across a variety of settings. As shown, our estimator (VR-ConfTr) reduces variance
effectively, while the naive one (ConfTr) is sample inefficient.

Figure 2: Sample batch from GMM distribution (left) and corresponding bias and variance for the
quantile gradient estimates (right).

4.1 BENCHMARK DATASETS AND ALGORITHMS

We evaluate the effectiveness of VR-ConfTr against (i) a baseline model trained with standard
cross-entropy loss (we refer to this method simply as Baseline), and (ii) the ConfTr algorithm
proposed by Stutz et al. (2022). We perform experiments across benchmark datasets - MNIST Deng
(2012), Fashion-MNIST Xiao et al. (2017a), Kuzushiji-MNIST Clanuwat et al. (2018) -, and a
healthcare dataset comprising abdominal computed tomography scans, OrganAMNIST Yang et al.
(2021). One of the main performance metrics that we consider is the length-efficiency of the con-
formal prediction sets produced by applying a standard CP procedure to the trained model. Other
relevant metrics are the convergence speed and the variance across multiple runs. For the choice
of the quantile gradient estimator ∂̂τ

∂θ of VR-ConfTr, we use the m-ranking approach presented
in section 3.1. We choose this estimator because it is the more closely related to the one analyzed
in Theorem 3.1. We investigate multiple possibilities for the choice of m, and more details on this

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

tuning can be found in Appendix C. We provide extensive details about the training settings, the
adopted model architectures, hyper-parameters and additional results in Appendix D.
In the next subsection, we present the summary of results obtained from evaluating the model after
training. Given a number of epochs, we train a model over multiple runs. For the obtained model,
we show: (i) the average accuracy and its standard deviation, and (ii), the average length efficiency
and its standard deviation. In section 4.3, to illustrate further the improved training performance of
VR-ConfTr over the original ConfTr algorithm and the variance reduction effect, we show the
trajectories of relevant evaluation metrics - the conformal training loss defined in section 2, and the
length efficiency - for all datasets and methods during training.

4.2 SUMMARY OF EVALUATION RESULTS

Table 1 presents the inefficiency results of the CP procedure applied post-training, and the accuracy
of the trained model for each dataset, with the corresponding standard deviations.

Dataset Algorithm Accuracy (Avg ± Std) Avg Size Std Size

MNIST
Baseline 0.887± 0.004 4.122 (+12%) 0.127
ConfTr Stutz et al. (2022) 0.842± 0.141 3.990 (+8%) 0.730
VR-ConfTr (ours) 0.886± 0.071 3.688 0.350

Fashion-MNIST
Baseline 0.845± 0.002 3.218 (+15%) 0.048
ConfTr Stutz et al. (2022) 0.799± 0.065 3.048 (+9%) 0.201
VR-ConfTr (ours) 0.839± 0.043 2.795 0.154

Kuzushiji-MNIST
Baseline 0.872± 0.046 4.982 (+6%) 0.530
ConfTr Stutz et al. (2022) 0.783± 0.125 4.762 (+2%) 0.226
VR-ConfTr (ours) 0.835± 0.098 4.657 0.680

OrganA-MNIST
Baseline 0.552± 0.017 4.823 (+2%) 0.748
ConfTr Stutz et al. (2022) 0.526± 0.047 6.362 (+33%) 0.857
VR-ConfTr (ours) 0.547± 0.021 4.776 1.178

Table 1: Summary of evaluation results. For VR-ConfTr, we show in percentage the average set
size (Avg Size) improvement against ConfTr by Stutz et al. (2022). The third column presents the
average accuracy and its standard deviation (Accuracy (Avg ± Std)).

The metrics reported in Table 1 are computed as averages over 5-10 training trials depending on
the dataset. The way in which the number of the random training trials varies across the datasets is
discussed in more detail in appendix D. Similarly to the approach followed by Stutz et al. (2022),
we are mostly interested in the effectiveness of the different algorithms on the CP efficiency, and
therefore we do not focus on improving the accuracy by using more advanced model architectures.
To ensure a fair comparison for each dataset, we used the same exact model architecture across the
three different methods (ConfTr, VR-ConfTr and Baseline). Furthermore, the training and
evaluation hyper-parameters are identical across ConfTr and VR-ConfTr. For the CP procedure
applied post-training, we use the standard THR method with α = 0.01. The average set-size for each
method is reported over 10 different splits of the calibration and test data used for the conformal
prediction procedure. The main takeaway from Table 1 is that VR-ConfTr improves over all
considered metrics compared to ConfTr.

In terms of “length-efficiency”, VR-ConfTr is able to consistently achieve smaller prediction set
sizes compared to both ConfTr and Baseline. It is important to note that the focus of our
work is not to tune ConfTr to achieve better performance than Baseline, but rather to show
that regardless of the performance of ConfTr and the hyper-parameters chosen, VR-ConfTr ef-
fectively provide performance improvements and training stability with the same hyper-parameters.
Note that, similar to the results reported by Stutz et al. (2022), the Baseline architecture is some-
times able to achieve slightly higher accuracy than ConfTr and VR-ConfTr. It can be seen that
VR-ConfTr consistently achieves higher accuracy compared to ConfTr. However, we stress that
the objective of conformal training is to reduce the size of the prediction sets while preserving a
similar accuracy as non-conformal training, and not to improve the accuracy.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

4.3 ON THE TRAINING PERFORMANCE OF VR-CONFTR

Here, we focus on the training performance of VR-ConfTr, with special attention to the speed
in minimizing the conformal training loss described in section 2, and in minimizing the CP set
sizes on test data. The results, which we illustrate plotting the evolution of the different metrics
across epochs, validate the beneficial effect of the variance reduction technique and the superior
performance of VR-ConfTr when compared to the competing ConfTr by Stutz et al. (2022).

Figure 3: Training curves for MNIST, Fashion-MNIST, Kuzushiji-MNIST, and OrganAMNIST. For
each dataset, we show the training loss on top and corresponding test CP set sizes at the bottom at
the end of each epoch, evaluated using the THR conformal predictor.

In Figure 3, we show the training performance for four datasets (MNIST, FMNIST, KMNIST and
OrganAMNIST) illustrating two key metrics: (i) the evolution of the conformal training loss de-
fined in section 2 and (ii) the test CP size across epochs. In the four plots on top, we show the
comparison between the train loss evolution obtained using our VR-ConfTr against the one ob-
tained by ConfTr. In the four plots at the bottom, we show the comparison between the test CP
set sizes for VR-ConfTr, ConfTr and Baseline. In all the plots, we see that VR-ConfTr
reaches smaller values of the loss and in significantly fewer epochs as compared to ConfTr. In
the case of MNIST, for example, VR-ConfTr reaches a lower value of the loss in 10 times fewer
epochs as compared to ConfTr. Similarly, for FMNIST VR-ConfTr achieves a smaller size in
one third of epochs compared to ConfTr. For both Kuzushiji-MNIST and OrganA-MNIST, we
notice that not only VR-ConfTr is faster, but it also gets to significantly smaller values of the loss.
For the more challenging OrganA-MNIST dataset, this difference appears even more accentuated,
not only in the training loss but also in the test CP set sizes. Notice that for all the three methods
(VR-ConfTr, ConfTr and Baseline) we performed hyper-parameters tuning. Notably, in the
case of the OrganA-MNIST dataset, we were not able to obtain an improvement with ConfTr in
the final set size with respect to Baseline, which stresses the need for a method with improved
gradient estimation, as the one we propose in this paper. More details on the grid-search over hyper-
parameters and additional experiments for all algorithms can be found in appendix C and D.

5 CONCLUDING REMARKS AND FUTURE DIRECTIONS

We formalized the concept of optimizing CP efficiency during training as the problem of conformal
risk minimization (CRM). We identified a key source of sample inefficiency in the ConfTr method
proposed by Stutz et al. (2022), which is a CRM method for length efficiency optimization. Our
theoretical analysis elucidated the source of sample inefficiency, which lies in the estimation of the
gradient of the population quantile. To address this issue, we introduced a novel technique that
improves the gradient estimation of the population quantile of the conformity scores by provably
reducing its variance. We show that, by incorporating this estimation technique in our proposed
VR-ConfTr algorithm, the training becomes more stable and the post-training conformal predictor
is often more efficient as well. Our work also opens up possibilities for future research in the area
of CRM. Indeed, further methods for quantile gradient estimation could be developed and readily
integrated with our “plug-in” algorithm, for which we can expect improved training performance.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Salim I Amoukou and Nicolas JB Brunel. Adaptive conformal prediction by reweighting noncon-
formity score, 2023.

Anastasios Angelopoulos, Stephen Bates, Jitendra Malik, and Michael I Jordan. Uncertainty sets
for image classifiers using conformal prediction. arXiv preprint arXiv:2009.14193, 2020.

Anastasios N Angelopoulos, Stephen Bates, Adam Fisch, Lihua Lei, and Tal Schuster. Conformal
risk control. arXiv preprint arXiv:2208.02814, 2022.

Anastasios N Angelopoulos, Stephen Bates, et al. Conformal prediction: A gentle introduction.
Foundations and Trends® in Machine Learning, 16(4):494–591, 2023.

Yu Bai, Song Mei, Huan Wang, Yingbo Zhou, and Caiming Xiong. Efficient and differentiable
conformal prediction with general function classes, 2022.

Anthony Bellotti. Optimized conformal classification using gradient descent approximation. arXiv
preprint arXiv:2105.11255, 2021.

Mathieu Blondel, Olivier Teboul, Quentin Berthet, and Josip Djolonga. Fast differentiable sorting
and ranking. In International Conference on Machine Learning, pp. 950–959. PMLR, 2020.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, and Skye Wanderman-Milne. JAX: Autograd and XLA, 2018. URL http:
//github.com/google/jax.

John J Cherian, Isaac Gibbs, and Emmanuel J Candès. Large language model validity via enhanced
conformal prediction methods. arXiv preprint arXiv:2406.09714, 2024.

Takeshi Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, and
David Ha. Deep learning for classical japanese literature. arXiv preprint arXiv:1812.01718,
2018.

Nicolo Colombo and Vladimir Vovk. Training conformal predictors, 2020.

Marco Cuturi, Olivier Teboul, and Jean-Philippe Vert. Differentiable ranking and sorting using
optimal transport. Advances in neural information processing systems, 32, 2019.

Li Deng. The MNIST database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

Nicolas Deutschmann, Mattia Rigotti, and Maria Rodriguez Martinez. Adaptive conformal regres-
sion with split-jackknife+ scores. Transactions on Machine Learning Research, 2024.

Victor Dheur and Souhaib Ben Taieb. Probabilistic calibration by design for neural network regres-
sion. In International Conference on Artificial Intelligence and Statistics, pp. 3133–3141. PMLR,
2024.

Bat-Sheva Einbinder, Yaniv Romano, Matteo Sesia, and Yanfei Zhou. Training uncertainty-aware
classifiers with conformalized deep learning, 2022.

Matteo Fontana, Gianluca Zeni, and Simone Vantini. Conformal prediction: a unified review of
theory and new challenges. Bernoulli, 29(1):1–23, 2023.

Isaac Gibbs and Emmanuel Candes. Adaptive conformal inference under distribution shift. Ad-
vances in Neural Information Processing Systems, 34:1660–1672, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Edwin Herman and Gilbert Strang. Calculus: Volume 3. openstax, 2018.

L Jeff Hong. Estimating quantile sensitivities. Operations research, 57(1):118–130, 2009.

11

http://github.com/google/jax
http://github.com/google/jax

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Rob J. Hyndman and Yanan Fan. Sample Quantiles in Statistical Packages. The American Statisti-
cian, 50(4):361–365, November 1996. ISSN 00031305.

Shayan Kiyani, George Pappas, and Hamed Hassani. Length optimization in conformal prediction.
arXiv preprint arXiv:2406.18814, 2024.

Bhawesh Kumar, Charlie Lu, Gauri Gupta, Anil Palepu, David Bellamy, Ramesh Raskar, and An-
drew Beam. Conformal prediction with large language models for multi-choice question answer-
ing. arXiv preprint arXiv:2305.18404, 2023.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Lars Lindemann, Matthew Cleaveland, Gihyun Shim, and George J Pappas. Safe planning in dy-
namic environments using conformal prediction. IEEE Robotics and Automation Letters, 2023.

Rui Luo and Zhixin Zhou. Weighted aggregation of conformity scores for classification, 2024.

Christopher Mohri and Tatsunori Hashimoto. Language models with conformal factuality guaran-
tees. arXiv preprint arXiv:2402.10978, 2024.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

Yaniv Romano, Matteo Sesia, and Emmanuel Candes. Classification with valid and adaptive cover-
age, 2020.

Mauricio Sadinle, Jing Lei, and Larry Wasserman. Least ambiguous set-valued classifiers with
bounded error levels. Journal of the American Statistical Association, 114(525):223–234, 2019.

Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. Journal of Machine Learning
Research, 9(3), 2008.

David Stutz, Krishnamurthy Dj Dvijotham, Ali Taylan Cemgil, and Arnaud Doucet. Learning opti-
mal conformal classifiers. In International Conference on Learning Representations, 2022.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. Importance of initialization and
momentum in deep learning. In International conference on machine learning, pp. 1139–1147.
PMLR, 2013.

Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic learning in a random world,
volume 29. Springer, 2005.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017a.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017b.

Ge Yan, Yaniv Romano, and Tsui-Wei Weng. Provably robust conformal prediction with improved
efficiency. arXiv preprint arXiv:2404.19651, 2024.

Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Jianlong Zhao, Hongming
Fu, Yanwu Xu, and Pheng-Ann Heng. Medmnist v2: A large-scale lightweight benchmark for 2d
and 3d biomedical image classification. arXiv preprint arXiv:2110.14795, 2021.

Yachong Yang and Arun Kumar Kuchibhotla. Finite-sample efficient conformal prediction. arXiv
preprint arXiv:2104.13871, 2021.

Yachong Yang and Arun Kumar Kuchibhotla. Selection and aggregation of conformal prediction
sets, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A PROOFS

In this appendix, we provide the proofs of all the theoretical results presented in the paper.

A.1 PROOF OF LEMMA 3.1

Let H(s) =

{
1, s ≥ 0

0, s < 0
denote the Heaviside step function, and let Hn(s) = Φ

(
s
σn

)
denote a

smooth approximation, where Φ denotes the cumulative distribution function (CDF) of the standard
Gaussian distribution, and σn > 0 is a sequence such that σn → 0 as n → ∞. Note that Hn(s) →
H(s) pointwise as n→∞, and that each Hn is smooth.

By definition, we have
P [E(θ,X, Y) ≤ τ(θ)] = α. (14)

which we can rewrite as
E
[
H
(
τ(θ)− E(θ,X, Y)

)]
= α. (15)

Since 0 ≤ H(s) ≤ 1 for all s, and Hn(s) → H(s) pointwise, by the Dominated Convergence
Theorem, we have

α = E
[
H
(
τ(θ)− E(θ,X, Y)

)]
= E

[
lim
n→∞

Hn

(
τ(θ)− E(θ,X, Y)

)]
= lim

n→∞
E
[
Hn

(
τ(θ)− E(θ,X, Y)

)]
. (16)

Differentiating both sides with respect to θ, we obtain

0 =
∂

∂θ
lim
n→∞

E [Hn (τ(θ)− E(θ,X, Y))] , (17)

where α is a constant independent of θ. By interchanging the limit and differentiation, this becomes

0 = lim
n→∞

∂

∂θ
E [Hn (τ(θ)− E(θ,X, Y))] . (18)

To justify the interchange, we note that fn(θ) = E [Hn (τ(θ)− E(θ,X, Y))] converges pointwise
to α, a constant. By uniform convergence of fn(θ) and its derivative ∂

∂θ , we can exchange the limit
and differentiation. Using the Leibniz Integral Rule, we interchange differentiation and expectation:

0 = lim
n→∞

E
[
∂

∂θ
Hn (τ(θ)− E(θ,X, Y))

]
. (19)

The interchange is valid because Hn is infinitely differentiable, τ(θ) and E(θ,X, Y) are continu-
ously differentibale with respect to θ, and the derivative ∂

∂θHn(τ(θ) − E(θ,X, Y)) is continuous
in θ and integrable. Finally applying the chain rule to differentiate Hn (τ(θ)− E(θ,X, Y)) with
respect to θ, we get:

0 = lim
n→∞

E
[
H ′

n (τ(θ)− E(θ,X, Y))

(
∂τ

∂θ
(θ)− ∂E

∂θ
(θ,X, Y)

)]
. (20)

Define

δn(s) = H ′
n(s) =

1√
2πσn

e
− s2

2σ2
n ,

γn(θ, x, y) = δn (τ(θ)− E(θ, x, y)) ,

∆(θ, x, y) =
∂τ

∂θ
(θ)− ∂E

∂θ
(θ, x, y).

Now, we can see that

∂

∂θ
E [Hn (τ(θ)− E(θ,X, Y))] = E [γn(θ,X, Y)∆(θ,X, Y)] . (21)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Let an ≍ bn denote asymptotic equivalence, meaning that limn→∞
an

bn
= 1, assuming bn ̸= 0 for

finite n. From equation (20), it follows that

E [γn(θ,X, Y)∆(θ,X, Y)] ≍ 0. (22)

Analyzing the Expectation:

Let εn > 0 be any sequence such that εn = o(σn), meaning εn/σn → 0 as n→∞. Define the set

Aεn(θ) = {ω ∈ Ω : −εn < E(θ,X(ω), Y (ω))− τ(θ) < εn} . (23)

We can decompose the expectation in (22) as

E [γn∆] = P (Aεn(θ))E [γn∆ |Aεn(θ)] + P
(
Ac

εn(θ)
)
E
[
γn∆ |Ac

εn(θ)
]
. (24)

Negligibility of the Second Term: On the complement Ac
εn(θ), the value τ(θ) − E(θ,X, Y) is

either greater than εn or less than −εn. Therefore, for s ≥ εn or s ≤ −εn, δn(s) = H ′
n(s)

becomes very small. Particularly

δn(s) =
1√

2π σn

exp

(
− s2

2σ2
n

)
.

Since εn = o(σn) and σn → 0, it follows that
εn
σn
→ ∞. For |s| ≥ εn, we have: δn(s) ≤

1√
2π σn

exp

(
− ε2n
2σ2

n

)
. from

εn
σn
→∞, it also follows that exp

(
− ε2n
2σ2

n

)
→ 0 and

γn(θ,X, Y) ≤ 1√
2π σn

exp

(
− ε2n
2σ2

n

)
→ 0.

Therefore, (24) becomes

E [γn∆] ≍ P (Aεn(θ))E [γn∆ |Aεn(θ)] . (25)

Plugging in (25) into (22) we get:

E[γn(θ,X, Y)∆(θ,X, Y) |Aεn(θ)] ≍ 0,

By noting that P(Aεn(θ)) > 0 for all n due to continuity of x 7→ E(θ, x, y). We can then rewrite as

E[γn(θ,X, Y), |Aεn(θ)]
∂τ

∂θ
(θ) ≍ E

[
γn(θ,X, Y)

∂E

∂θ
(θ,X, Y) |Aεn(θ)

]
. (26)

When conditioned on Aεn(θ), we have γn(θ,X, Y) ≍ δn(0). Indeed, note that δn(εn) ≤
γn(θ,X, Y) ≤ δn(0), which we can rewrite as δn(εn)

δn(0)
≤ γn(θ,X,Y)

δn(0)
≤ 1. Noting that δn(εn) ≍ 1, it

indeed follows that γn(θ,X, Y) ≍ δn(0). Therefore, (26) can be further simplified to

∂τ

∂θ
(θ) ≍ E

[
∂E

∂θ
(θ,X, Y)

∣∣Aεn(θ)

]
, (27)

which readily leads to

∂τ

∂θ
(θ) = lim

n→∞
E

[
∂E

∂θ
(θ,X, Y)

∣∣Aεn(θ)

]

= lim
ε→0

E

[
∂E

∂θ
(θ,X, Y)

∣∣Aε(θ)

]

= lim
ε→0

E

[
∂E

∂θ
(θ,X, Y)

∣∣ − ε < Eθ(X,Y)− τ(θ) < ε

]

= E

[
∂E

∂θ
(θ,X, Y)

∣∣Eθ(X,Y) = τ(θ)

]
.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.2 PROOF OF THEOREM 3.1

We start with two preliminary results that we will use in the proof.

Some preliminaries. First, we recall a well-known result. Let k ∼ Binomial(n, p) be a random
variable sampled from a Binomial distribution with n trials and with probability p of success. The
following holds:

E
[

1

1 + k

]
=

(1− (1− p)n+1)

(n+ 1)p
. (28)

Note that this follows from the following simple steps:

E
[

1

1 + k

]
=

n∑
k=0

1

1 + k
·
(
n

k

)
pk (1− p)

n−k

=
1

p(n+ 1)

n∑
k=0

(
n+ 1

k + 1

)
pk+1(1− p)n−k

=
1

p(n+ 1)

n+1∑
j=1

(
n+ 1

j

)
pj(1− p)n+1−j

=

(
1− (1− p)n+1

)
p(n+ 1)

.

Next, we state another well-known identity. Let us consider the following recursion:

an+1 = ρ an + b,

where ρ > 0. Simply unrolling the recursion, we can obtain

an = ρna0 + b

(
1− ρn

1− ρ

)
. (29)

Proof of the Theorem.

Before we proceed, let us introduce some notation:

Gi(θ) =
∂E

∂θ
(θ,Xi, Yi),

Aε,i(θ) = {ε ≤ E(θ,Xi, Yi)− τ(θ) ≤ ε},

Rε,n(θ) =

n∑
i=1

χAε,i(θ),

Sϵ,n(θ) = {i ∈ [n] : χAϵ,i(θ) = 1},

(30)

where χAε,i(θ) is an indicator function for the event Aε,i(θ), i.e.,

χAε,i(θ) =

{
1, if |Eθ(Xi, Yi)− τ(θ)| ≤ ε

0, if |Eθ(Xi, Yi)− τ(θ)| > ε
. (31)

We are now ready to analyze the estimator η̂ε,n(θ) for ηε(θ):

η̂ε,n(θ) =

{
1

Rε,n(θ)

∑n
i=1 χAε,i(θ)Gi(θ), if Rε,n(θ) > 0

0 if Rε,n(θ) = 0
, (32)

where ε and n are denoted explicitly to remove ambiguity.

Equipped with the basic results established earlier in this subsection, we can proceed first with prov-
ing assertion (i). Note that, by definition (32), and because {Xi, Yi}ni=1 are sampled independently,
we have

E

[
1

|S|
∑
i∈S

Gi|
⋂
i∈S

Aϵ,i(θ)

]
=

1

|S|
∑
i∈S

E
[
χAϵ,i(θ)Gi(θ)|Aϵ,i(θ)

]
= ηϵ. (33)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Also note that Sϵ,n(θ) = ∅ is equivalent to Rϵ,n(θ) = 0, and that

P (Sϵ,n(θ) = ∅) = P (Rϵ,n(θ) = 0) = qn, (34)

with q = 1− p and p = P (Aϵ,i(θ)). Hence, we can get (i) as follows:

E [η̂ϵ,n(θ)] = qnE [η̂ϵ,n(θ)|Rϵ,n(θ) = 0] + (1− qn)ηϵ, (35)

where we used the fact that
∑

S ̸=∅ P (Sϵ,n(θ) = S) = 1− P (Sϵ,n(θ) = ∅) = 1− qn.

Now, we prove (ii). We start by analyzing E
[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤]:
E
[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤] = ∑
S⊆[n]

P (Sϵ,n(θ) = S)E
[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤|Sϵ,n(θ) = S
]

= P (Sϵ,n(θ) = ∅)E
[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤|Sϵ,n(θ) = Sϵ,n(θ)
]

+
∑
S ̸=∅

P (Sϵ,n(θ) = S)E

(1

|S|
∑
i∈S

Gi(θ)

)(
1

|S|
∑
i∈S

Gi(θ)

)⊤

|
⋂
i∈S

Aϵ,i(θ)


= P (Sϵ,n(θ) = ∅)E

[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤|Rϵ,n(θ) = 0
]

+
∑
S ̸=∅

P (Sϵ,n(θ) = S)
1

|S|2
∑
i∈S

∑
j∈S

E
[
Gi(θ)Gj(θ)

⊤|Aϵ,i(θ), Aϵ,j(θ)
]
.

(36)
Now note that

E
[
Gi(θ)Gj(θ)

⊤|Aϵ,i(θ), Aϵ,j(θ)
]
= δi,jE

[
Gi(θ)Gi(θ)

⊤|Aϵ,i(θ)
]

+ (1− δij)E [Gi(θ)|Aϵ,i(θ)]E
[
Gj(θ)

⊤|Aϵ,j(θ)
]

= E [Gi(θ)|Aϵ,i(θ)]E
[
Gj(θ)

⊤|Aϵ,i(θ)
]

+ δij(E
[
Gi(θ)Gi(θ)

⊤|Aϵ,i(θ)
]

− E [Gi(θ)|Aϵ,i(θ)]E
[
Gi(θ)

⊤|Aϵ,i(θ)
]
)

= ηϵη
⊤
ϵ + δijΣϵ,

(37)

where we used the fact that {Xi, Yi}ni=1 are sampled i.i.d. and the definitions in (30). Now, we can
proceed as follows:

E
[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤] = qnE
[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤|Rϵ,n(θ) = 0
]

+
∑
S ̸=∅

P (Sϵ,n(θ) = S)

|S|
(
|S|ηϵη⊤ϵ +Σϵ

)
= qnE

[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤|Rϵ,n(θ) = 0
]

+ (1− qn)ηϵη
⊤
ϵ + fnΣϵ,

(38)

where we write

fn =
∑
S ̸=∅

P (Sϵ,n(θ) = S)

|S|
. (39)

Now, we will show that

fn ≤
2− p

pn
. (40)

First, let us define the following function

f(k) =

{
0, if k = 0
1
k if k ≥ 1

, (41)

and note that
fn = E [f(|Sϵ,n(θ)|)] = E [f(Rϵ,n(θ))] . (42)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Now note that

fn+1 = E [f(Rϵ,n+1(θ))]

= P (Aϵ,i(θ)
c)E [f(Rϵ,n(θ))] + P (Aϵ,i(θ))E [f(1 +Rϵ,n(θ))]

= qE [f(Rϵ,n(θ))] + pE [f(1 +Rϵ,n(θ))]

= qfn + pE
[

1

1 +Rϵ,n(θ)

]
= qfn +

1− qn+1

n+ 1
,

(43)

where, in the last equation, we used the fact shown in the preliminaries (see (28)):

E
[

1

1 +Rϵ,n(θ)

]
=

1− qn+1

p(n+ 1)
. (44)

Now let an = nfn. We can write

(n+ 1)fn+1 = (n+ 1)

(
qfn +

1− qn

n+ 1

)
, (45)

from which we obtain the following recursion:

an+1 = qnfn + qfn + (1− qn+1)

= qan + qfn + (1− qn+1)

≤ qan + 1 + q,

(46)

where we used the fact that fn ≤ 1 and that 1 − qn ≤ 1. With this recursion, we can now use the
result illustrated in the preliminaries in (29) and get, using q = 1− p,

an ≤ qna0 +
1− qn

1− q
(1 + q) ≤ 2− p

p
. (47)

From the above inequality, we can conclude that

0 ≤ fn =
an
n
≤ 2− p

pn
. (48)

Plugging this last result in (38), we can get

E
[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤] ⪯ qnE
[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤|Rϵ,n(θ) = 0
]
+ (1− qn)ηϵη

⊤
ϵ +

2− p

pn
Σϵ. (49)

We are now in the position to write and bound cov(η̂ϵ,n(θ)):

cov (η̂ϵ,n(θ)) = E
[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤]− [η̂ϵ,n(θ)]
[
η̂ϵ,n(θ)

⊤]
⪯ qnE

[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤|Rϵ,n(θ) = 0
]
+ (1− qn)ηϵη

⊤
ϵ +

2− p

pn
Σϵ

− (qnE [η̂ϵ,n(θ)|Rϵ,n(θ) = 0] + (1− qn)ηϵ)

· (qnE [η̂ϵ,n(θ)|Rϵ,n(θ) = 0] + (1− qn)ηϵ)
⊤

=
2− p

pn
Σϵ + (1− qn)ηϵη

⊤
ϵ − (1− qn)2ηϵη

⊤
ϵ

=
2− p

pn
Σϵ + (1− qn)(1− (1− qn))ηϵη

⊤
ϵ

=
2− p

pn
Σϵ + (1− qn)qnηϵη

⊤
ϵ

⪯ 2− p

pn
Σϵ + qnηϵη

⊤
ϵ ,

(50)

where we used (i), the fact that 1 − qn ≤ 1 and the fact that E [η̂ϵ,n(θ)|Rϵ,n(θ) = 0] = 0, which
follows by (32).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B USEFUL FACTS AND DERIVATIONS

In this appendix, we provide, for completeness, some useful facts and explicit derivations of proper-
ties that we use in the paper. In particular, we show how the ordered statistics E(θ,Xωj(θ), Yωj(θ))
in equation (5) are differentiable almost surely (with probability 1), and we explicitly derive equa-
tion (8) using the generalize chain rule (GCR).

B.1 DIFFERENTIABILITY OF E(θ,Xωj(θ), Yωj(θ)).

We will formally show that the ordered statistics E(j)(θ), with j = 1, ..., n, are differentiable for
any θ with probability 1. We first recall some notation. Let E(1)(θ) ≤ . . . ≤ E(n)(θ) denote the
order statistics corresponding to the scalar random variables E(θ,X1, Y1), . . . , E(θ,Xn, Yn).
Let us also denote by ω(θ) : [n] → [n] the permutation of indices [n] := {1, . . . , n} that cor-
respond to the order statistics, i.e., ω(θ) = (ω1(θ), . . . , ωn(θ)), and (E(1)(θ), . . . E(n)(θ)) =
(E(θ,Xω1(θ), Yω1(θ)), . . . , E(θ,Xωn(θ), Yωn(θ))). Now define the set An as follows:

An = {(E1, ..., En) : Ei = Ej for some i ̸= j}. (51)

Now note that, by definition, the conformity score function E(θ,X, Y) is continuous and differ-
entiable in θ. Now fix some θ̄. Consider the event in which the ordered statistics are such that
E(1)(θ̄) < . . . < E(n)(θ̄), hence

(E(θ̄, Xω1(θ̄), Yω1(θ̄)), . . . , E(θ̄, Xωn(θ̄), Yωn(θ̄))) = (E(1)(θ̄), . . . , E(n)(θ̄)) /∈ An, (52)

which means that ω(θ̄) is the unique ordered statistics permutation for {E(θ,Xi, Yi)}ni=1 and note
that this happens almost surely (with probability 1), because E(θ,X, Y) is a continuous function in
θ and X . The key step is now to note that by continuity of E(θ,Xi, Yi) in θ, there exists δ > 0 such
that, for θ ∈ {θ′ : ∥θ′ − θ̄∥ ≤ δ}, we have ω(θ) = ω(θ̄), which means that, if ∥θ − θ̄∥ ≤ δ,

(E(1)(θ), . . . , E(n)(θ)) = (E(θ,Xω1(θ), Yω1(θ)), . . . , E(θ,Xωn(θ), Yωn(θ)))

= (E(θ,Xω1(θ̄), Yω1(θ̄)), . . . , E(θ,Xωn(θ̄), Yωn(θ̄)))
(53)

At this point, let j ∈ {1, ..., n}, and let us denote E(j)(θ) = E(θ,Xωj(θ), Yωj(θ)) = E(θ, ωj(θ)),
and, for any θ ∈ {θ′ : ∥θ′ − θ̄∥ ≤ δ} the derivative of E(j)(θ) is

∂

∂θ
E(j)(θ) =

∂

∂θ
E(θ, ωj(θ)) =

∂

∂θ
E(θ, ωj(θ̄)) =

∂E

∂θ
(θ, ωj(θ̄)), (54)

which is true because, as we show in (53) above, for θ ∈ {θ′ : ∥θ′ − θ̄∥ ≤ δ}, the function ωj(θ) is
a constant equal to ωj(θ̄). Note that, as we do in the main paper, we here denote by ∂E

∂θ (θ, ωj(θ̄))

the partial derivative with respect to θ. Note that, given that the choice of θ̄ is arbitrary, we have
shown that the function θ 7→ E(θ,Xωj(θ), Yωj(θ)) is indeed differentiable with probability 1 for all
j = 1, . . . , n.
To be absolutely convinced that (53) is true, note that we can show it by continuity of θ 7→
E(θ,X, Y), as follows: let’s fix θ̄ and let us denote again E(j)(θ) = E(θ,Xωj(θ), Yωj(θ)) =

E(θ, ωj(θ)). We want to show that there exists δ > 0 such that ω(θ̄) = ω(θ) for any θ ∈ {θ′ :
∥θ′ − θ̄∥ ≤ δ}. To do so, it is sufficient to show that, for any θ ∈ {θ′ : ∥θ′ − θ̄∥ ≤ δ},

E(θ, ωi+1(θ̄)) > E(θ, ωi(θ̄)), for i = 1, ..., n− 1. (55)

Let us define
ε = min

i=1,...,n−1
{E(θ̄, ωi+1(θ̄))− E(θ̄, ωi(θ̄))}. (56)

From continuity of θ 7→ E(θ,X, Y), there exists δ > 0 such that if θ ∈ {θ′ : ∥θ′ − θ̄∥ ≤ δ}, we
have

|E(θ, ωi(θ̄))− E(θ̄, ωi(θ̄))| <
ϵ

2
. (57)

Note that, from (56) and (57), we have for all i = 1, . . . , n,

E(θ̄, ωi+1(θ̄)) ≥ E(θ̄, ωi(θ̄)) + ϵ, (58)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

and
E(θ, ωi(θ̄)) > E(θ̄, ωi(θ̄))−

ϵ

2
. (59)

Hence, note that, starting from this last inequality, and then using (58)

E(θ, ωi+1(θ̄)) > E(θ̄, ωi+1(θ̄))−
ϵ

2

≥ E(θ̄, ωi(θ̄)) +
ϵ

2
.

(60)

Now, we can use again (57) (continuity) to show that

E(θ̄, ωi(θ̄)) > E(θ, ωi(θ̄))−
ϵ

2
, (61)

and thus observe that, for all i = 1, . . . , n,

E(θ, ωi+1(θ̄)) > E(θ̄, ωi(θ̄)) +
ϵ

2
> E(θ, ωi(θ̄)), (62)

from which we can confirm that, for θ ∈ {θ′ : ∥θ′ − θ̄∥ ≤ δ}, ω(θ) = ω(θ̄), and we can conclude.

B.2 EXPLICIT DERIVATION OF EQUATION (8)

Please note that equation (8) follows from taking the derivative of a function of multiple variables
and the chain rule. This is also called the generalized chain rule in some textbooks (Herman &
Strang, 2018)(see Theorem 4.10). In the paper, when writing

∂

∂θ
ℓ(θ, τ̂(θ), X, Y), (63)

we mean the total derivative of the function θ 7→ l(θ, τ̂(θ), X, Y), evaluated at a dummy θ. On the
other hand, when writing

∂ℓ

∂θ
(θ, τ̂(θ), x, y), (64)

we mean the partial derivative of ℓ(θ, q, x, y) with respect to θ, evaluated at (θ, q, x, y) =
(θ, τ̂(θ), X, Y). The difference is that, in the partial derivative, τ̂(θ) is treated as a constant, whereas
for the total derivative we do not treat τ̂(θ) as a constant. Now, the generalized chain rule (in vector
form) can be written as follows: let u(θ) ∈ Rn and v(θ) ∈ Rm be two differentiable functions of θ,
and f(u, v) a differentiable function of two vector variables u and v. Then

∂

∂θ
f(u(θ), v(θ)) =

(
∂u

∂θ
(θ)

)⊤
∂f

∂u
(u(θ), v(θ)) +

(
∂v

∂θ
(θ)

)⊤
∂f

∂v
(u(θ), v(θ)), (65)

where ∂u
∂θ (θ) is the Jacobian of u(θ), i.e., the matrix with ∂ui

∂θj
(θ) in the i-th row and j-th column

(equivalently, ∂v
∂θ (θ) is the Jacobian of v(θ)). Note that in the case of ℓ(θ, τ̂(θ), x, y), x and y do

not depend on θ so we can focus on ℓ as a function of the two functions u(θ) = θ and v(θ) = τ̂(θ).
Replacing these u(θ) and v(θ) in equation (65), and replacing f(u(θ), v(θ)) with ℓ(θ, τ̂(θ), x, y) we
see that then

∂

∂θ
ℓ(θ, τ̂(θ), x, y) =

∂ℓ

∂θ
(θ, τ̂(θ), x, y) +

∂ℓ

∂τ̂
(θ, τ̂(θ), x, y)

∂τ̂

∂θ
(θ), (66)

which is precisely equation (8) in the main paper, where we used the fact that
(
∂θ
∂θ

)
= Id, where Id

is a d× d identity matrix, with d the dimension of θ.
Given that usually in textbooks the generalized chain rule (GCR) is only shown for scalar multi-
variable functions, we now report the derivation of equation (8) using the scalar GCR as reported and
proved in the statement of Theorem 4.10 in (Herman & Strang, 2018). Hence, we will now provide
the derivation of (8) at a more granular level. Consider a differentiable function ℓ of k variables,
ℓ : Rk → R. Now let f1, ..., fk be differentiable functions, with fi : Rd → R, for i = 1, ..., k and
some d ≥ 1. Then, denoting a vector [t1, ..., td] ∈ Rd and w = ℓ(f1(t1, ..., td), ..., fk(t1, ..., td)) we
have (GCR):

∂w

∂tj
=

k∑
i=1

∂w

∂fi

∂fi
∂tj

. (67)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Now note that in the case of our paper, we have w = ℓ(θ, τ̂(θ), x, y). Note that x and y have no
dependency on parameters in θ and hence their derivatives will be zero. We can then focus on θ and
τ̂(θ). For convenience, note that we can write θ = [θ1, ..., θd]. Now note that the gradient of w is

∂

∂θ
[w] =

[
∂w

∂θ1
, ...,

∂w

∂θd

]⊤
. (68)

Now note that, for some j ∈ {1, ..., d}, using the chain rule (67) above,

∂w

∂θj
=

d∑
i=1

∂w

∂θi

∂θi
∂θj

+
∂ℓ

∂τ̂
(θ, τ̂(θ), x, y)

∂τ̂

∂θj
(θ)

+
∂w

∂x

∂x

∂θj
+

∂w

∂y

∂y

∂θj

=
∂ℓ

∂θj
(θ, τ̂(θ), x, y) +

∂ℓ

∂τ̂
(θ, τ̂(θ), x, y)

∂τ̂

∂θj
(θ),

(69)

where we used the fact that ∂θi
∂θj

= 0 if i ̸= j and ∂θi
∂θi

= 1. We also explicitly used the fact that
∂x
∂θj

= 0 and ∂y
∂θj

= 0 because the samples do not depend on the parameter θ. Stacking together ∂w
∂θj

we can see that we obtain precisely equation (8) of the paper:

∂

∂θ
[w] =

∂

∂θ
[ℓ(θ, τ̂(θ), X, Y)]

=
∂ℓ

∂θ
(θ, τ̂(θ), X, Y) +

∂ℓ

∂τ̂
(θ, τ̂(θ), X, Y)

∂τ̂

∂θ
(θ).

(70)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

C ADDITIONAL EXPERIMENTS

Here, we provide additional experimental results to complement the findings in the main paper.

C.1 ADDITIONAL TRAINING CURVES

We first present additional training curves, specifically the test loss and accuracy per epoch, for each
dataset. These plots highlights the performance throughout the training process, providing further
insights into convergence behavior and generalization performance. It can be seen that the test loss
exhibits a pattern similar to the training loss in 3. In terms of accuracy, VR-ConfTr achieves higher
accuracy than ConfTr.

Figure 4: Training curves for MNIST, Fashion-MNIST, Kuzushiji-MNIST, and OrganAMNIST. For
each dataset, we show the test loss on the first row and tets accuracy on the bottom row at the end of
each epoch.

C.1.1 VARIANCE OF THE GRADIENTS OVER THE COURSE OF TRAINING

In this section, we present visualization of the variance of the estimated quantile gradients during
training for our proposed method Vr-ConfTr, compared to ConfTr in figure 5. We conduct this
experiment on the MNIST dataset, using the m-ranking estimator with Vr-ConfTr, and evaluate
performance across different batch sizes. This analysis aims to empirically substantiate our claim
that Vr-ConfTr reduces variance of the estimated quantile gradients over the epochs, leading to
more stable gradient updates and improved final performance. Furthermore, we demonstrate that
with an appropriate choice of the hyperparameter m for the m-ranking estimator, Vr-ConfTr not
only reduces variance but also shows improvements in terms of the bias of the estimated quantile
gradients during training. In order to compute the variance and bias for the estimated quantile

gradient ∂̂τ
∂θ , we estimate the population quantile τ(θ) and its gradient ∂τ

∂θ at each model update
utilizing the full training, calibration, and test datasets.

C.2 ABLATION STUDY FOR m AND ε

C.2.1 ε-THRESHOLD ESTIMATOR ABLATION STUDY

This study evaluates the bias and variance of the ∂̂τ
∂θ using the ε-threshold estimator with

Vr-ConfTr for the GMM dataset depicted in figure 2. Figure 6 shows how varying ε impacts the

estimator’s performance, highlighting the trade-offs between bias and variance of ∂̂τ
∂θ as ε changes.

C.2.2 m-RANKING ESTIMATOR ABLATION STUDY

We evaluate the bias and variance of ∂̂τ
∂θ using the m-ranking estimator with Vr-ConfTr for the

GMM dataset. Figure 7 shows how varying m impacts the estimator’s performance, highlighting the

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 5: Variance and bias of the estimated quantile gradients during training for ConfTr and
Vr-ConfTr, evaluated on the MNIST dataset across different batch sizes. The left figure shows the
variance of the gradients over epochs. The right panel illustrates the bias of the estimated gradients,
demonstrating that Vr-ConfTr maintains low bias while effectively reducing variance.

Figure 6: Bias and variance for the quantile gradient estimates using the ε-threshold estimator with
Vr-ConfTr on the GMM dataset. The left panel shows the variance, and the right panel shows the
bias for different ε values.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

trade-offs between bias and variance of ∂̂τ
∂θ as m changes. Here m explicitly depends on the desired

miscoverage rate α and the sample size n.

Figure 7: Bias and variance for the quantile gradient estimate using the m-ranking estimator with
Vr-ConfTr on the GMM dataset. The left panel shows the bias, and the right panel shows the
variance for different m values

C.2.3 ON THE CONNECTION BETWEEN ϵ-THRESHOLD AND m-RANKING ESTIMATORS

As mentioned at the end of section 3.1, the m-ranking and the ε-threshold estimator are intimately
related, and are indeed almost the same estimator. We may also say that the m-ranking estimator is
a special case of the ε-threshold estimator in which ε is chosen “adaptively” with respect to batch
and parameter θ via the integer m. To see this, note that, for a calibration batch {Xi, Yi}ni=1 with n
samples, fixing an integer m, the m-ranking estimator can be seen as the ε-threshold estimator with
ε = inf

{
ε′ > 0 :

∑n
i=1 1Âε′,i(θ)

≥ m
}

, where Âε,i(θ) = {|Eθ(Xi, Yi)− τ̂(θ)| ≤ ε} and 1A is the
indicator function for the event A: in words, ε is the smallest value such that m samples’ conformity
scores from the current calibration batch fall within ε-distance from τ̂(θ). We now explain why
the m-ranking strategy is a natural choice as opposed to fixing ε across all iterations. In practice,
when training the models, we noticed that a “good” value of ε varies significantly across iterations.
Note that a good value of the threshold ε not only depends on the specific batch Bcal at a given
iteration, but also on the model parameters θ at that iteration. Hence, hyper-parameter tuning with
the ε-threshold estimator requires some heuristic to adapt the threshold to specific iterations. In this
sense, the m-ranking estimator is a natural heuristic for a batch and parameter-dependent choice
of the threshold ε. We noticed indeed that performing hyper-parameter tuning of the m-ranking
estimator we were able to provide a good value of m to be used across all iterations, which from
the point of view of hyper-parameter tuning is a great advantage.
To empirically illustrate this connection and validate the importance of dynamically tuning the ε-
threshold estimator, figure 8 presents the optimal adaptive tuning of the ε-threshold estimator on
the Fashion-MNIST dataset. This tuning ensures that the ε-threshold estimator achieves comparable
performance to the m-ranking estimator with m = 6, which was used to train the model.

C.3 CLASS-CONDITIONAL COVERAGE AND SET SIZE

We evaluated the trained models in terms of class-conditional coverage and set size, using the same
CP-procedure applied post-training with the standard THR method and α = 0.01. Figure 9 displays
the class-conditional coverage and set sizes for each dataset. The results show the effectiveness of
Vr-ConfTr in achieving reliable class-conditional coverage with smaller class-conditional predic-
tion set sizes. The results are taken as the average over all the training and testing trials to ensure
robustness and reliability.

C.4 TUNING VR-CONFTR : NUMBER OF POINTS FOR GRADIENT ESTIMATION (M)

In VR-ConfTr, the number of points (m) used to compute the gradient estimate plays a crucial role
in the bias-variance trade-off. Consistent with the theory, increasing m (which with the ε-threshold
estimator would translate to increasing the threshold ε) reduces the variance but potentially increases

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 8: Adaptive tuning of the ε-threshold estimator on Fashion-MNIST. The plot shows the
evolution of the threshold ε across training iterations, required to match the m-ranking estimator
with m = 6. The variability in ε underscores the necessity of dynamic adjustment in threshold-
based approaches.

the bias of the gradient estimate. We conduct a grid search over the values [4, 6, 8, 10, 16, 20] for m
and report the results of tuning m for MNIST, and Fashion MNIST, selecting the value of m that
experimentally provides the best trade-off between bias and variance. MNIST Results. As shown
in Fig. 10, we observe a consistent reduction in the variance of gradient estimate as m increases.
However once we pass the optimal threshold the bias increases as can be seen by the higher values
of the training loss as well as decrease in the size of the prediction sets. The figures corresponding
to the loss on the training data per epoch, the loss on the test data per epoch, the accuracy evaluate
on the test data per epoch, as well as the prediction set size evalauted on the test data per epoch.

Fashion-MNIST. Similarly tuning m on Fashion-MNIST shows that a value of m = 6 provides the
best results, as depicted in Fig. 11

C.5 ALTERNATIVE ARCHITECTURE

In this section, we compare the performance of VR-ConfTr on Kushuniji-MNIST using a simpler
linear model architecture. The results indicate that regardless of the model architecture, the trends
observed in terms of convergence speed and prediction set efficiency are consistent across datasets
and architectures. Table 2 shows the average accuracy and set sizes for the two different models
trained on K-MNIST.

Dataset Model Name Accuracy (Avg ± Std) Set Size (Avg ± Std)

K-MNIST (Linear)
Baseline 0.695± 0.007 6.799± 0.117
ConfTr 0.582± 0.047 6.646± 0.226
VR-ConfTr 0.612± 0.033 6.488± 0.148

K-MNIST (MLP)
Baseline 0.872± 0.046 4.982± 0.530
ConfTr 0.783± 0.125 4.762± 0.226
VR-ConfTr 0.835± 0.098 4.657± 0.680

Table 2: Evaluation results of the KMNIST dataset trained with different model architectures.
Columns present average accuracy and set size with their standard deviations (Avg ± Std).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

(a) Fashion-MNIST

(b) MNIST

(c) Kuzushiji-MNIST

(d) OrganA-MNIST

Figure 9: Class-conditional coverage rates and average prediction set sizes for each dataset, averaged
over 10 test trials. For each dataset, the left plot shows the class-conditional coverage rates with the
target coverage level of 1 − α = 0.99 indicated by the horizontal red dashed line. The right plot
shows the class-conditional average prediction set sizes.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 10: Training trajectories for different values of m on MNIST data

Figure 11: Training trajectories for different values of m on Fashion-MNIST data

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

D EXPERIMENTAL DETAILS

In this section we describe the experimental setup, including model architectures, dataset configura-
tions, training protocol, testing procedure, and the corresponding hyper-parameters. The focus of the
experiments is on evaluating the conformal prediction (CP) set sizes and ensuring a fair comparison
between the baseline Conformal Training ConfTr and our proposed VR-ConfTr.

D.1 DATASET CONFIGURATIONS

We consider the benchmark datasets MNIST LeCun et al. (1998), Fashion-MNIST Xiao et al.
(2017b), Kuzushiji-MNIST Clanuwat et al. (2018) and OrganAMNIST Yang et al. (2021).MNIST is
a dataset of handwritten digits with 10 classes, and Fashion-MNIST consists of 10 fashion product
categories. Kuzushiji-MNIST extends the MNIST paradigm by incorporating 10 classes of cursive
Japanese characters. OrganAMNIST, derived from medical images, contains 11 classes of abdomi-
nal organ slices. The training, calibration, and testing splits for each dataset are summarized in Table
3. MNIST and Fashion-MNIST are provided by the torchvision library, while Kuzushiji-MNIST and
OrganAMNIST are available from their respective repositories. For MNIST, Fashion-MNIST, and
Kuzushiji-MNIST, 10% of the training set is reserved as calibration data. For OrganAMNIST, the
validation set is used as the calibration data. During evaluation, we combine the calibration and
test data and perform evaluations over 10 random splits of the combined dataset into calibration/test
partitions. Model parameters are learned exclusively on the training data, while calibration and test
data are used to evaluate the model as a black-box at the end of each epoch. The transformations
applied to the dataset are as follows: for MNIST, Fashion-MNIST, and Kuzushiji-MNIST, images
are normalized to have zero mean and unit variance, using a mean of 0.5 and a standard deviation
of 0.5. For OrganAMNIST, images undergo random horizontal flips, random rotations of up to 15
degrees, and are normalized similarly.

Dataset Classes Image Size Training Set Calibration Set Test Set
MNIST 10 28× 28 55,000 5,000 10,000
Fashion-MNIST 10 28× 28 55,000 5,000 10,000
OrganMNIST 11 28× 28 34,561 6,491 17,778
Kuzushiji-MNIST 10 28× 28 55,000 5,000 10,000

Table 3: Dataset Splits

D.2 MODEL ARCHITECTURES

In our experiments, we implemented all models using JAX Bradbury et al. (2018). We utilize a range
of architectures including linear models, multi-layer perceptrons (MLPs), and modified ResNet ar-
chitectures tailored for specific datasets. For the MNIST dataset, we employ a simple linear model,
which consists of a single dense layer. The input images, reshaped from 28 × 28 into a flattened
vector of size 784, are passed through a fully connected layer mapping the inputs directly to the 10
output classes. This architecture provided a minimalistic baseline for comparison. For Fashion-
MNIST, we use a multi-layer perceptron (MLP), with two hidden layers. We use 64 units per hid-
den layer, with ReLU activations Nair & Hinton (2010) , followed by a dense layer for the 10 output
classes. For Kuzushiji-MNIST, we utilize a similar MLP architecture. The model contains two
hidden layers with 256 and 128 units, respectively. The input data is flattened and passed through
these fully connected layers with ReLU activations. For OrganAMNIST, we used a residual net-
work, inspired by the ResNet architecture from He et al. (2016) , with modifications. The model
consists of an initial convolutional layer followed by four stages of residual blocks, each with two
layers. Each residual block uses 3 × 3 convolutions with ReLU activations. The number of output
channels doubles after each state (64, 128, 256, 512). Global average pooling is applied before the
final fully connected layer, which maps the pooled feature representations to the 11 output classes.
We do not attempt to optimize the model architectures in order to solve the datasets with high ac-
curacy. Instead, we focus on the conformal prediction results, and ensure that the architecture used
across different algorithms are identical for a fair comparison.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

D.3 TRAINING DETAILS

Similar to Stutz et al. (2022), we trained all models using Stochastic Gradient Descent (SGD) with
Nesterov momentum Sutskever et al. (2013). The learning rate follows a multi-step schedule where
the initial learning rate was decreased by a factor of 0.1 after 2/5, 3/5, and 4/5 of the total num-
ber of epochs. The models were trained using cross-entropy-loss for Baseline training, and for
ConfTr and VR-ConfTr based on the size-loss as described by Stutz et al. (2022). During train-
ing, we set the conformal prediction threshold parameter α = 0.01. To ensure statistical robustness,
we conducted multiple randomized training trials for each dataset, using a different random seed
for each trial. Specifically, we performed 10 training trials for MNIST and 5 training trials each
for FMNIST, KMNIST, and OrganAMNIST. During each trial, a unique random seed was used to
initialize the model and optimizer, ensuring that each trial followed a distinct learning trajectory.
The corresponding training trajectories, i.e the training loss, testing loss, accuracy and CP set sizes
evaluated on the test data at the end of every epoch, were averaged over these randomized trials to
provide a smooth and general view of the model’s performance. The key hyper-parameters used for
training are listed in Table 4. These hyper-parameters include size weight which scales the loss term
associated with the size of the CP sets during training, alpha α corresponding to the miscoverage
rate is set to 0.01. batch size for SGD, learning rate for the optimizer, and the number of epochs
for which the model is trained for.

Hyper-parameter MNIST Fashion-
MNIST

Kuzushiji-
MNIST

OrganA-
MNIST

Batch Size 500 500 500 500
Training Epochs 50 150 100 100
Learning Rate 0.05 0.01 0.01 0.01
Optimizer SGD SGD SGD SGD
Temperature 0.5 0.1 0.1 0.5
Target Set Size 1 0 1 1
Regularizer Weight 0.0005 0.0005 0.0005 0.0005
Size Weight 0.01 0.01 0.01 0.1
Alpha (α) 0.01 0.01 0.01 0.01
Num. of Pts for Gradient 6 6 4 4

Table 4: Training and evaluation Hyper-parameters for each dataset.

D.4 EVALUATION DETAILS

The evaluation of our models was conducted in two stages: (1) computing the test accuracy for each
model after training, and (2) evaluating the conformal prediction (CP) set sizes and coverage over
multiple test splits. The goal was to ensure both accuracy and conformal prediction performance are
consistently reported across randomized trials and test splits. Test Accuracy: For each dataset, the
test accuracy of the trained models was evaluated on the test data, and the results were averaged over
the randomized training trials. CP set sizes To compute the average conformal prediction (CP) set
size, we first combine the holdout calibration and test data. We then randomly split this combined
data into calibration and test portions, repeating the process 10 times. For each split, we apply the
CP THR algorithm with α = 0.01 to compute the prediction set sizes on the test portion, and the
results are averaged across the 10 random splits. The cardinality of each split is consistent with the
dataset configurations outlined in Table 3. This procedure is performed for each trained model, and
the final reported results are averaged across both the training trials and testing splits.

D.5 DIFFERENCES FROM CONFTR REPORTS

We report the performance of Conftr with a batch size of 100 for Fashion-MNIST, as originally
reported by Stutz et al. (2022), selected for optimal performance. While a batch size of 500 yields
smaller set sizes, it results in a slight (1%) decrease in accuracy. For completeness, we include
the results for both configurations. Retrieving exact reported set sizes as Stutz et al. (2022):
Our experimental results and trends align with those reported in Stutz et al. (2022). However, the
smaller set sizes for Conftr on MNIST and FMNIST in their paper are likely due to their use

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Model Batch Size Accuracy (Avg ± Std) Set Size (Avg ± Std)

ConfTr 100 0.809± 0.051 3.125± 0.197
ConfTr 500 0.799± 0.065 3.048± 0.201
VR-ConfTr 500 0.839± 0.043 2.795± 0.154

Table 5: Final evaluation results for Fashion-MNIST, showing average accuracy and set size with
their standard deviations (Avg ± Std).

of more advanced/different architectures. Despite this, the overall trends— Conftr outperforming
Baseline, and VR-Conftr outperforming Conftr—remain consistent regardless of the model.
Our focus is on a fair comparison across algorithms by using the same architecture, rather than
reproducing the exact figures or architectures from Stutz et al. (2022).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

E ON THE COMPUTATIONAL COMPLEXITY OF VR-CONFTR .

We will now discuss the computational complexity of VR-ConfTr when compared to ConfTr.
We will argue that the computational complexity of the two algorithms is essentially the same. We
start by breaking down the computational cost of ConfTr and then illustrate the difference with
VR-ConfTr.
Per-step computational complexity of ConfTr. Given a batch and partition B = {Bcal, Bpred},
with |Bcal| = |Bpred| = n, the first step of ConfTr is to compute a sample α quantile τ̂(θ) based
on the calibration batch Bcal = {Xcal

i , Y cal
i }ni=1, which requires the computation of the calibration

batch conformity scores {Eθ(X
cal
i , Y cal

i)}ni=1 and of their α-quantile. At this point, the computation
of the ConfTr gradient is performed computing the gradient of the loss

1

|Bpred|
∑

(x,y)∈Bpred

ℓ(θ, τ̂(θ), x, y). (71)

Note that for each sample (x, y), computing the ConfTr gradient implies computing the following
(equation (8) in the main paper):

∂

∂θ
[ℓ(θ, τ̂(θ), x, y)] =

∂ℓ

∂θ
(θ, τ̂(θ), x, y) +

∂ℓ

∂τ̂
(θ, τ̂(θ), x, y)

∂τ̂

∂θ
(θ). (72)

Note that computing this gradient requires computing (i) the gradients
∂ℓ
∂θ (θ, τ̂(θ), x, y) and ∂ℓ

∂τ (θ, τ̂(θ), x, y) for all samples (x, y) ∈ Bcal, and (ii) the gradient ∂τ̂
∂θ (θ). The

difference in terms of computational complexity between ConfTr and our proposed VR-ConfTr
lies in the computation of estimates of ∂τ

∂θ (θ), which in ConfTr is done via computing the gradient

of τ̂(θ), while in our algorithm is done plugging an improved estimate ∂̂τ
∂θ (θ). We describe the

computational difference between these two approaches in the next paragraph.

Per-step computational complexity of VR-ConfTr. Note that in our proposed algorithm
VR-ConfTr, given a batch B defined as above, we consider the same per-step loss function
of ConfTr of equation (71). However, instead of computing directly the gradient of (71), we

compute separately an estimate ∂̂τ
∂θ (θ) of ∂τ

∂θ (θ) using our novel estimation technique and then

plug this estimate in equation (72) in place of ∂τ̂
∂θ (θ). In the proposed estimator, computing ∂̂τ

∂θ (θ)

equals computing gradients {∂E∂θ (θ, x, y)}(x,y)∈B̄ , where B̄ is the set containing the m samples
whose conformity scores fall within ϵ distance from the sample quantile τ̂(θ), or the m samples
whose conformity scores are the closest to τ̂(θ) in the case of the m-ranking estimator. Note that,
computationally, our algorithm requires computing ∂ℓ

∂θ (θ, τ̂(θ), x, y) and ∂ℓ
∂τ (θ, τ̂(θ), x, y), which

is the same as ConfTr, while we do not need to compute the gradient ∂τ̂
∂θ (θ). Instead, we replace

the computation of the gradient of τ̂(θ) with the computation of an average of m gradients of

conformity scores. Note that, while the computational complexity of our estimate ∂̂τ
∂θ (θ) is clear and

it is m times the complexity of computing ∂E
∂θ (θ, x, y), the computational complexity of computing

∂τ̂
∂θ (θ) depends on the specific technique adopted to compute the gradient of a sample quantile. The
most basic version is the one we discuss in equation (5) in the main paper, which would involve the
computation and average of the gradients of two conformity scores. However, note that in practice
the authors of ConfTr declare that they use smooth sorting to compute the sample quantile τ̂(θ) -
and this is consistent with what we observe in their publicly released code. Crucially, differentiating
a sample quantile obtained via smooth sorting potentially involves the computation of the gradients
of all the samples in the batch Bcal, because smooth sorting - as implemented byStutz et al. (2022)
- creates functional dependencies between the conformity scores of all samples in the calibration
batch. In conclusion, the main computational difference between ConfTr and VR-ConfTr is in
the computation of the estimate of ∂τ

∂θ (θ), which for both of the techniques boils down to computing
and averaging a certain set of conformity scores. This is why we can safely conclude that the
computational complexity of the two algorithms is essentially the same.

30

	Introduction
	Contributions
	Related Work

	Problem Formulation
	Conformal Risk Minimization
	ConfTr (Stutz et al., 2022)
	Variance Analysis for ConfTr

	Variance-Reduced Conformal Training
	Quantile Gradient Estimation
	Proposed Algorithm: VR-confTr
	Theoretical Results

	Experiments
	Benchmark Datasets and Algorithms
	Summary of Evaluation Results
	On the Training Performance of VR-ConfTr

	Concluding Remarks and Future Directions
	Proofs
	Proof of Lemma 3.1
	Proof of Theorem 3.1

	Useful Facts and Derivations
	Differentiability of E(, Xj(), Yj()).
	Explicit derivation of equation (8)

	Additional experiments
	Additional Training Curves
	Variance of the gradients over the course of training

	Ablation study for m and
	-threshold estimator ablation study
	m-ranking estimator ablation study
	On the connection between -threshold and m-ranking estimators

	Class-conditional coverage and set size
	Tuning VR-ConfTr: Number of points for Gradient Estimation (m)
	Alternative Architecture

	Experimental Details
	Dataset Configurations
	Model Architectures
	Training Details
	Evaluation Details
	Differences from ConfTr reports

	On the computational complexity of VR-ConfTr.

