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ABSTRACT

Conformal prediction (CP) is a distribution-free framework for achieving proba-
bilistic guarantees on black-box models. CP is generally applied to a model post-
training. Recent research efforts, on the other hand, have focused on optimizing
CP efficiency during training. We formalize this concept as the problem of con-
formal risk minimization (CRM). In this direction, conformal training (ConfTr)
by Stutz et al. (2022) is a technique that seeks to minimize the expected predic-
tion set size of a model by simulating CP in-between training updates. Despite its
potential, we identify a strong source of sample inefficiency in ConfTr that leads
to overly noisy estimated gradients, introducing training instability and limiting
practical use. To address this challenge, we propose variance-reduced conformal
training (VR-ConfTr), a CRM method that incorporates a novel variance re-
duction technique in the gradient estimation of the ConfTr objective function.
Through extensive experiments on various benchmark datasets, we demonstrate
that VR-ConfTr consistently achieves faster convergence and smaller prediction
sets compared to baselines.

1 INTRODUCTION

Consider a classification task with input (features) X ∈ X and corresponding label Y ∈ Y =
{1, . . . ,K}. In supervised learning, we are interested in approximating the posterior probability
π(y|x) = P (Y = y |X = x) by tuning some θ-parameterized family of predictors πθ(y|x) - for
example, neural network models with a softmax activation at the output layer. Typically, the final
label prediction would be δθ(x) = argmaxy∈Y πθ(y|x), and a common metric for performance
is the accuracy, which measures the proportion of testing samples whose predicted label matches
the true label. While the accuracy is a key performance metric, in safety-critical applications with
a downstream decision maker it is crucial not only to predict accurately but also to quantify the
uncertainty associated with a prediction.

Conformal prediction (CP) is a distribution-free, principled framework that is used to provide for-
mal probabilistic guarantees for black-box models (Vovk et al. (2005); Shafer & Vovk (2008);
Angelopoulos et al. (2023)), with exemplar applications in computer vision (Angelopoulos et al.
(2020)), large language models (Mohri & Hashimoto (2024),Kumar et al. (2023)) and path planning
(Lindemann et al. (2023)). Given a model πθ(y|x), CP enables the construction of set predictors
Cθ : X → 2Y (where 2Y is the power set of Y) such that the true label is contained in the set of
predicted labels with high probability. This can be formalized via the notion of marginal coverage.
Definition 1.1 (Marginal coverage). We say that a set predictor Cθ : X → 2Y satisfies marginal
coverage with miscoverage rate α ∈ (0, 1) if P (Y ∈ Cθ(X)) ≥ 1− α.

Marginal coverage can be readily obtained in CP via a process called calibration, which only re-
quires access to a so-called calibration set of data that is statistically exchangeable with the test
data. However, one of the main challenges in CP is the efficiency of the prediction sets - namely the
size of the sets Cθ(x) - often referred to as length efficiency (Fontana et al., 2023). For instance,
while it is possible to trivially achieve the desired coverage by including the entire label space in
Cθ(x), such an approach results in non-informative and excessively large prediction sets. An effi-
cient Cθ(x) is as small as possible while still maintaining the coverage guarantee.

Various existing approaches, including the works by Romano et al. (2020); Yang & Kuchibhotla
(2024); Bai et al. (2022), address the efficiency challenge by refining the conformal prediction pro-
cedure applied post-training to a black-box model. These methods, though effective, are constrained
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by the performance of the pre-trained model πθ(y|x) on which they are applied. On the other hand,
recent research efforts (Dheur & Taieb, 2024; Cherian et al., 2024; Einbinder et al., 2022; Stutz et al.,
2022; Bellotti, 2021) have focused on integrating CP directly into the training process. This provides
a way to improve the CP efficiency also in the model optimization phase - when learning the param-
eter of the models - enabling a higher degree of control over the probabilistic guarantees efficiency.
In this work, we formulate this approach as conformal risk minimization (CRM) and we focus on
CRM for length efficiency optimization. We consider a setting similar to Stutz et al. (2022), who
proposed conformal training (ConfTr), an algorithm achieving promising performance in improv-
ing the length-efficiency of the prediction sets constructed post-training.

Despite encouraging preliminary results, ConfTr introduces significant optimization challenges,
particularly due to the use of differentiable approximations of CP sets. Indeed, ConfTr requires
differentiating a loss function obtained simulating CP during training. This, in turn, requires ac-
curately estimating the population quantile of the conformity scores and its gradient, which can be
difficult with the limited data available in each mini-batch. Hence, training can exhibit large fluctu-
ations in the loss and slow convergence, thereby reducing the practical applicability of the method.

In this work, we address these challenges by introducing variance-reduced conformal train-
ing (VR-ConfTr), a novel CRM algorithm leveraging a variance reduction technique for the es-
timation of quantiles’ gradients. Relative to confTr, our proposed VR-ConfTr solution sig-
nificantly stabilizes training - leading to faster convergence, and consistently enhances the length
efficiency of post-training conformal prediction sets when compared against baselines.

1.1 CONTRIBUTIONS

Our contributions can be summarized as follows:

Conformal risk minimization. We formulate conformal risk minimization (CRM) as a framework
for training a parameterized predictor that learns according to CP efficiency metrics.

A “plug-in” algorithm. Focusing on CRM for length efficiency optimization, we provide a novel
analysis for the variance of the ConfTr (Stutz et al., 2022) method, which shows the need for
improved estimators of the quantile gradients. Then, we introduce the pipeline of variance-reduced
conformal training (VR-ConfTr), our proposed algorithm to overcome this challenge, which lever-
ages a “plug-in” step to incorporate improved estimates of quantiles’ gradients in the training.

Novel variance reduction technique. Building on a fundamental result, which characterizes the
gradient of the population quantile as a conditional expectation, we propose a novel estimator for
quantile gradients whose variance is provably reduced with the training batch size. This novel
estimator can be seamlessly integrated into VR-ConfTr. We analyze the bias-variance trade-off of
this novel estimator and establish its precise relationship with the conformity measures associated
to a predictor πθ(y|x).
Empirical validations. We extensively analyze our method on various benchmark and real-world
datasets, including MNIST, FMNIST, KMNIST and OrganAMNIST. Our results demonstrate that
VR-ConfTr consistently and significantly improves the efficiency and stability of conformal train-
ing for length efficiency optimization.

Broad applicability. Our approach and novel variance reduction technique can be integrated into
any CRM method that requires quantile gradient estimation, extending its utility to a large class of
conformal prediction frameworks and learning models.

1.2 RELATED WORK

A large body of research has focused on optimizing length-efficiency in CP. We now review some
recent literature in this area. We first (i) review approaches that apply CP post-training to black-
box models, and then (ii) review the recent efforts in coupling CP and model training, in what we
call conformal risk minimization (CRM) approaches. For (i), recent algorithmic developments ad-
dress improving length efficiency through better conformity score design Romano et al. (2020);
Yang & Kuchibhotla (2024); Amoukou & Brunel (2023); Deutschmann et al. (2024); Luo & Zhou
(2024). From another perspective Kiyani et al. (2024); Bai et al. (2022); Yang & Kuchibhotla (2021);
Colombo & Vovk (2020) focus on designing better calibration procedures. Particularly, Kiyani
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Figure 1: In this figure, we illustrate the VR-ConfTr pipeline and position it with respect to a
typical CP procedure.

et al. (2024) propose an optimization technique for the calibration threshold τ . On the other
hand, Bai et al. (2022); Yang & Kuchibhotla (2021) formulate CP as a constrained optimization
problem, minimizing the average prediction interval width with valid empirical coverage. These ef-
forts do not fall under the CRM framework because they focus on learning low-dimensional hyper-
parameters for pre-trained models as opposed to fully guiding the training of the parameters θ of a
model πθ(y|x).
Conformal risk minimization. There is a growing body of work (Einbinder et al., 2022; Cherian
et al., 2024; Stutz et al., 2022; Bellotti, 2021; Yan et al., 2024) integrating ideas from conformal
prediction in order to directly train a model for improved uncertainty quantification. Cherian et al.
(2024) train a score function, rather than a point predictor, subject to conditional coverage constraints
(Gibbs & Candes (2021)). Einbinder et al. (2022) utilize conformal prediction insights in order to
mitigate overconfidence in multi-class classifiers by minimizing a carefully designed loss function.
Stutz et al. (2022) proposed conformal training (ConfTr), in which length efficiency optimization
is tackled by defining a loss function obtained by simulating conformal prediction during training.
We will extensively describe this approach in the next section. Yan et al. (2024) uses a similar train-
ing pipeline to Stutz et al. (2022) in order to minimize the inefficiency of their proposed conformal
predictor. The early work by Bellotti (2021) considered an approach analogous to ConfTr in that
the authors simulate conformal prediction during training. However, the algorithm provided by Bel-
lotti (2021) treats the quantile-threshold as fixed and not as a function of the model parameters, and
it has been extensively shown by Stutz et al. (2022) that this approach provides inferior performance
with respect to ConfTr.

2 PROBLEM FORMULATION

Let us consider a parameterized model of logits fθ : X → RK and let πθ(x) = softmax(fθ(x))
denote the corresponding predicted probabilities. The objective of a conformal prediction algorithm
is to construct a set predictor Cθ : X → 2Y starting from the model fθ in such a way that Cθ achieves
marginal coverage. One common way to achieve this is via a thresholding (THR) set predictor (Vovk
et al. (2005)), Cθ(x; τ) = {y ∈ Y : Eθ(x, y) ≥ τ} for some well chosen threshold τ and conformity
score Eθ(x, y), which can be any heuristic notion of uncertainty regarding label y upon input x for
the predictor fθ(·). Some choices for the conformity score include (i) the predicted probabilities
Eθ(x, y) = πθ(y|x) = [πθ(x)]y , (ii) the logits Eθ(x, y) = [fθ(x)]y , and (iii) the predicted log-
probabilities Eθ(x, y) = log πθ(y|x). Let us assume that X is an absolutely continuous random
vector. If we knew the marginal distribution for (X,Y ), then marginal coverage could be readily
achieved by setting τ = τ(θ) = Qα(Eθ(X,Y )) where Qα denotes the population quantile of some
scalar random variable. Indeed,

P (Y ∈ Cθ(X; τ)) = P (Eθ(X,Y ) ≥ τ) ≥ 1− α (1)

3
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directly from τ = Qα(Eθ(X,Y )). In practice, however, the marginal distribution of (X,Y ) is not
known. Instead, we can estimate τ(θ) = Qα(Eθ(X,Y )) from data that, as long as it satisfies the
principle of exchangeability, can be used to ascertain marginal coverage of Cθ(x; τ).

2.1 CONFORMAL RISK MINIMIZATION

As we outlined in the introduction, recent research efforts have attempted to combine training and
conformal prediction (CP) into one, as opposed to using CP only as a post-training method. Here,
we formalize this by borrowing terminology from statistical supervised learning and by introducing
the problem of conformal risk minimization (CRM). CRM can be understood as a framework for
training a parameterized predictor that learns according to some CP efficiency metric, and can be
formulated as follows:

min
θ∈Θ
{L(θ) := E [ℓ(Cθ(X), Y )]} (CRM)

for some conformal loss ℓ, where Cθ(x) is a conformalized predictor. This problem is closely related
to the conformal risk control explored byAngelopoulos et al. (2022).

2.2 CONFTR (STUTZ ET AL., 2022)

Stutz et al. (2022) introduced conformal training (ConfTr), which we can categorize as a CRM
approach for length efficiency optimization. In particular, ConfTr focuses on reducing inefficiency
of calibrated classifiers, quantified by the target size of predicted sets. This can be understood as the
problem in (CRM) with ℓ(C, y) = max(0, |C| − κ) for some target size κ (intended to discourage
no predictions at all). In this regard, it is worth noting that the earlier work of Sadinle et al. (2019)
was the first to study the closely related problem of least ambiguous set-valued classifiers, which
corresponds to l(C, y) = |C|. An important aspect of the work of Stutz et al. (2022) is that the
authors relaxed the CRM problem with target size conformal loss ℓ(C, y) = max(0, |C| − κ) into
a smooth one in θ, in order to allow gradient-based optimization to be employed. In particular, the
authors relax the prediction set Cθ(x; τ) into the smooth prediction “set” (vector) Cθ(x; τ) ∈ [0, 1]K

with relaxed binary indicator variables, given by

[Cθ(x; τ)]y = σ

(
Eθ(x, y)− τ

T

)
(2)

for y ∈ Y , where σ(·) denotes the sigmoid function and T > 0 a “temperature” hyper-parameter
such that [Cθ(x; τ)]y → 1Eθ(x,y)≥τ as T → 0, with 1A the indicator function for condi-
tion A. Further, the prediction set size |Cθ(x; τ)| is relaxed into the smooth prediction set size∑

y∈Y [Cθ(x; τ)]y = 1T
KCθ(x; τ). With this, the problem solved by Stutz et al. (2022) can be

written as
min
θ∈Θ
{L(θ) = logE

[
Ω
(
Cθ(X; τ(θ)

)]
} (3)

with Ω(C) = max(0,1T
KC − κ). Additionally, the authors explored other terms, such as a config-

urable class-conditional “coverage loss”

L(C, y) =
∑
y′∈Y

[L]yy′
(
(1− [C]y′δyy′ + [C]y′(1− δyy′)

)
,

as well as a possible base loss (such as cross entropy) and regularizer. The log term in (3) is used
for numerical stability reasons for the gradient-based optimizers employed by the authors. Let us
abstract these factors into the problem

min
θ∈Θ
{L(θ) := h(E [ℓ(θ, τ(θ), X, Y )]) +R(θ)} , (ConfTr-risk)

to be solved via a gradient-based method for some monotone transformation h(·), conformal loss
ℓ(·), and regularizer R(·). The underlying assumption, just as in any supervised learning task, is that
the marginal distribution of (X,Y ) is unknown but that instead we can collect some i.i.d. training
data D = {(X1, Y1), . . . , (Xn, Yn)}. With this, an issue presents itself in that, unlike a typical
loss function, we cannot evaluate ∂

∂θ [ℓ(θ, τ(θ), Xi, Yi)] from knowledge alone of θ,Xi, Yi, because
τ(θ) = Qα(Eθ(X,Y )) is a function of the distribution of (X,Y ) and not a mere transformation.
To resolve this issue, Stutz et al. (2022) propose their ConfTr algorithm, which randomly splits
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a given batch B into two parts, which they refer to as calibration batch Bcal and prediction batch
Bpred. With this, the authors advocate for employing any smooth (differentiable) quantile estimator
algorithm for τ(θ) using the calibration batch. Then, they propose using this estimator to compute a
sampled approximation of (ConfTr-risk), replacing expectations by sample means constructed using
the prediction batch. Let L̂(θ) denote the end-to-end empirical approximation of L(θ) in terms of the
current parameters θ. Once L̂(θ) is constructed, the authors advocate for a (naive) risk minimization
procedure where ∂L̂

∂θ (θ) is computed and passed to an optimizer of choice.

2.3 VARIANCE ANALYSIS FOR CONFTR

Consider i.i.d. samples {(Xi, Yi)}ni=1 from which we seek to estimate τ(θ) = Qα(Eθ(X,Y ))
and let E(1)(θ) ≤ . . . ≤ E(n)(θ) denote the order statistics corresponding to the scalar random
variables Eθ(X1, Y1), . . . , Eθ(Xn, Yn). Unlike the expectation and covariance matrix of a random
vector, there is no universal consensus on an estimator for the population quantile of scalar random
variables. Hyndman & Fan (1996) summarized and unified a significant portion of the various
estimators proposed in the literature at the time. Following the notation of the aforementioned work,
we will consider estimators of the form

τ̂(θ) = γE(j)(θ) + (1− γ)E(j+1)(θ) (4)

for some γ = γ(j, g) ∈ [0, 1] with j = ⌊αn + r⌋ and g = αn + r − j, where r ∈ R is a
hyper-parameter. Other estimators have been proposed since, and even at the time of (Hyndman
& Fan, 1996). However, the majority of statistical packages implement, by default, an estimator
of the form (4). Other approaches have been proposed in the literature, via kernel-based methods,
variational methods, and dispersion-based methods. With this estimator of equation (4), we see that

∂τ̂

∂θ
(θ) = γ

∂E(j)

∂θ
(θ) + (1− γ)

∂E(j+1)

∂θ
(θ). (5)

Note that {E(i)(θ)}ni=1 are differentiable almost surely (see Appendix B.1 for more details). Fur-
ther, if ω(θ) : [n] → [n] denotes the permutation of indices [n] := {1, . . . , n} that correspond
to the order statistics, i.e. E(j)(θ) = Eθ(Xωj(θ), Yωj(θ)) with ω(θ) = (ω1(θ), . . . , ωn(θ)), we
see that ω(θ) is piecewise constant (or approximately so when using a smooth sorting such as
in (Blondel et al., 2020; Cuturi et al., 2019)), and thus ∂ω

∂θ (θ) ≈ 0. By the chain rule, it fol-
lows that ∂E(j)

∂θ (θ) ≈ ∂E
∂θ (θ,Xωj(θ), Yωj(θ)), where E(θ,X, Y ) = Eθ(X,Y ). Since E(j)(θ) ≈

τ(θ) and E(j+1)(θ) ≈ τ(θ), and noting that the samples (X1, Y1), . . . , (Xn, Yn) are i.i.d., then
(Xωj(θ), Yωj(θ)) and (Xωj+1(θ), Yωj+1(θ)) are approximately independent and approximately dis-
tributed as equal to the distribution of (X,Y ) when conditioned on Eθ(X,Y ) = τ(θ). Hence,

E
[
∂τ̂

∂θ
(θ)

]
≈ E

[
∂E

∂θ
(θ,X, Y )

∣∣∣Eθ(X,Y ) = τ(θ)

]
(6)

cov

(
∂τ̂

∂θ
(θ)

)
≈ (γ2 + (1− γ)2) cov

(
∂E

∂θ
(θ,X, Y )

∣∣∣Eθ(X,Y ) = τ(θ)

)
. (7)

Inspecting (7), we can see that the variance of the naive estimator ∂τ̂
∂θ (θ) for ∂τ

∂θ (θ) is approximately
constant when the sample size is moderately large. In particular, the variance is approximatelyO(1),
which is quite sample inefficient as it does not decrease as the sample size increases. On the other
hand, by differentiating the conformal training loss, i.e.

∂

∂θ
[ℓ(θ, τ̂(θ), x, y)] =

∂ℓ

∂θ
(θ, τ̂(θ), x, y) +

∂ℓ

∂τ
(θ, τ̂(θ), x, y)

∂τ̂

∂θ
(θ), (8)

it becomes apparent that poor estimator variance for ∂τ̂
∂θ (θ) will bottleneck sample efficiency in the

estimation of ∂L
∂θ (θ) obtained by replacing τ(θ) in (ConfTr-risk) with τ̂(θ) and using the prediction

batch to approximate the expectations. Note that (8) follows from the chain rule, see Appendix B.2
for more details. In the next section, we present our proposed solution to address this issue.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3 VARIANCE-REDUCED CONFORMAL TRAINING

In order to surpass the shortcoming of ConfTr described in the previous section, let us first note
that the gradient of the conformal risk (ConfTr-risk) can be written as

∂L

∂θ
(θ) = h′(E [ℓ(θ, τ(θ), Z)])

(
E
[
∂ℓ

∂θ
(θ, τ(θ), Z)

]
+ E

[
∂ℓ

∂τ
(θ, τ(θ), Z)

]
∂τ

∂θ
(θ)

)
, (9)

where h′ denotes the derivative of h, Z = (X,Y ), and noting that we dropped the regularizer for
simplicity. Additionally, we can exploit the following relationship to further characterize ConfTr
as well as to design a variance-reduced alternative:
Proposition 3.1 (Quantile Sensitivity (Hong, 2009)). Suppose that X is absolutely continuous and
Eθ(x, y) is continuously differentiable in θ and x. Then, for every θ ∈ Θ,

∂τ

∂θ
(θ) = E

[
∂E

∂θ
(θ,X, Y )

∣∣∣Eθ(X,Y ) = τ(θ)

]
. (10)

In Appendix A, we provide a rigorous proof for the above proposition, which was carried out inde-
pendently from that of the equivalent result of Hong (2009) (namely, Theorem 2). However, note
that the assumptions in (Hong, 2009) are less restrictive than the ones we use. Further, the author
explores more deeply the connections between τ(θ) and ∂τ

∂θ (θ).

Equipped with the above proposition, we can compare (6) and (10) to see that, despite the poor
sample efficiency of the naive estimator for ∂τ

∂θ (θ), it at least leads to an approximately unbiased
estimator. However, it also becomes intuitively clear that variance reduction can be achieved by
exploiting (10), for example by decoupling the estimation of τ(θ) from ∂τ

∂θ (θ), and generally by not

settling for ∂̂τ
∂θ (θ) :=

∂τ̂
∂θ (θ) as the estimator for ∂τ

∂θ (θ).

3.1 QUANTILE GRADIENT ESTIMATION

We can use Proposition 3.1 to design an algorithm that boosts the estimated quantile gradient. The
idea is as follows: if we denote

η(θ) := E
[
∂E

∂θ
(θ,X, Y )

∣∣A(θ)

]
, Σ(θ) := cov

(
∂E

∂θ
(θ,X, Y )

∣∣A(θ)

)
, (11)

ηε(θ) := E
[
∂E

∂θ
(θ,X, Y )

∣∣Aε(θ)

]
, Σε(θ) := cov

(
∂E

∂θ
(θ,X, Y )

∣∣Aε(θ)

)
, (12)

for ε > 0, where A(θ) := {Eθ(X,Y ) = τ(θ)} and Aε(θ) := {|Eθ(X,Y ) − τ(θ)| ≤ ε}, then
the terms in (11) and (12) are approximately equal if ε ≈ 0. Subsequently, we can more efficiently
estimate η(θ) = ∂τ

∂θ (θ), compared to the naive estimator η̂(θ) = ∂τ̂
∂θ (θ), by naive sample estimate of

ηε(θ). To this end, we propose the following ε-estimator

η̂(θ) :=
1∑n

i=1 1Âε,i(θ)

n∑
i=1

1Âε,i(θ)

∂E

∂θ
(θ,Xi, Yi), (13)

from i.i.d. copies (X1, Y1), . . . , (Xn, Yn) of (X,Y ), where Âε,i(θ) = {|Eθ(Xi, Yi)− τ̂(θ)| ≤ ε}.
Alternative estimators for η(θ) can be constructed. Some examples include:

• Ranking: sort the examples based on the distances {
∣∣Eθ(Xi, Yi)− τ̂(θ)

∣∣}i=1,...,n, choose
the “top” m samples (smallest distances) for some suitably small m, and then set η̂(θ) as
the average of ∂E

∂θ (θ,Xi, Yi) over those samples. Note that this can be seen as an heuristic
to choose ε when using the ε-estimator, and it is the strategy we adopt in our experiments.

• Kernel regression: consider some kernel Kh(t) = 1
hK

(
t
h

)
with h > 0 for which∫ +∞

−∞ tK(t)dt = 0, for instance K(·) = PDF of N (0, 1) or K(t) = σ(t)(1− σ(t)) where
σ(·) denotes the sigmoid function. Then, we can use the (modified) Nadaraya–Watson

estimator η̂(θ) =
∑n

i=1 Kh(Eθ(Xi,Yi)−τ̂(θ)) ∂E
∂θ (θ,Xi,Yi)∑n

i=1 Kh(Eθ(Xi,Yi)−τ̂(θ)) .
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• Random splitting: split the n examples into m sub-sets of samples, apply some other esti-
mator algorithm for η(θ) on each sub-set, and then set η̂(θ) as the average of the individual
estimates of η(θ).

Other closely related notions that could be adapted for the estimator η̂(θ) and that could lead to
reduced variance include importance sampling and smooth bootstrapping, but more generally, av-
erages can be replaced by carefully constructed weighted sums. Particle filters could be feasible as
a way of more efficiently estimate η(θ) by carrying over the previous estimates as θ is updated. It
is also clear that various of these potential estimators are closely linked. For instance, if the thresh-
old ε > 0 is allowed to be sample-dependent, then the thresholding approach (13) and the ranking
approach can be seen as equivalent by setting ε = inf

{
ε′ > 0 :

∑n
i=1 1Âε′,i(θ)

≥ m
}

.

3.2 PROPOSED ALGORITHM: VR-CONFTR

Suppose that a variance-reduced estimator for ∂τ
∂θ (θ) has been already designed. Then, the new esti-

mate for τ(θ) and ∂τ
∂θ (θ) can be plugged into expression (9) for the gradient of the conformal training

risk function, before the expectations can be approximated by sample means, leading to the plug-in
estimator for ∂L

∂θ (θ). Naturally, the plug-in gradient estimator is then passed through an optimizer
in order to approximately solve (CRM). Our proposed pipeline, which we call variance-reduced
conformal training (VR-ConfTr) algorithm, constitutes our main contribution and proposed solu-
tion to improve the sample inefficiency of ConfTr. The critical step of constructing the plug-in
estimator is summarized in Algorithm 1. Additionally, the entire pipeline is illustrated in Figure 1.

Algorithm 1 Variance-reduced conformal training (VR-ConfTr)

Require:
batch B = {(X1, Y1), . . . , (X2n, Y2n)} of i.i.d. samples from (X,Y ),
score function E(θ, x, y) : Θ×X × Y → R,
conformal loss ℓ(θ, x, y, τ) : Θ×X × Y × R→ R,
monotone transformation F : R→ R,
estimator τ̂(·) for τ(θ) = Qα(Eθ(X,Y )),

estimator ∂̂τ
∂θ (·) for ∂τ

∂θ (θ).

Ensure: output an estimate ∂̂L
∂θ of the gradient ∂L

∂θ (θ) of the conformal training risk (ConfTr-risk)
1: partition B into {Bcal, Bpred}, with |Bcal| = |Bpred| = n.
2: τ̂ ← τ̂(Bcal) // estimate τ(θ) using Bcal

3: ∂̂τ
∂θ ←

∂̂τ
∂θ (Bcal) // estimate ∂τ

∂θ (θ) using Bcal

4: ℓ̂← 1
|Bpred|

∑
(x,y)∈Bpred

ℓ(θ, x, y, τ̂)

5: ∂̂ℓ
∂θ ←

1
|Bpred|

∑
(x,y)∈Bpred

∂ℓ
∂θ (θ, x, y, τ̂)

6: ∂̂ℓ
∂τ ←

1
|Bpred|

∑
(x,y)∈Bpred

∂ℓ
∂τ (θ, x, y, τ̂)

7: ∂̂L
∂θ ← h′(ℓ̂)

(
∂̂ℓ
∂θ + ∂̂ℓ

∂τ
∂̂τ
∂θ

)
+ ∂R

∂θ (θ) // “plug-in” gradient estimator

8: return ∂̂L
∂θ

3.3 THEORETICAL RESULTS

We focus our theoretical analysis on the thresholding esimator (13). Note that the m-ranking esti-
mator, which we use in our experiments, is effectively an ε-threshold estimator where the ranking is
a heuristic criterion to choose the threshold ε at each iteration based on the current batch and param-
eter. For simplicity and to avoid having to commit to any particular quantile estimator, we assume
τ̂(θ) = τ(θ) in the analysis. Furthermore, we will assume ε > 0 to be deterministic. Lastly, we will
assume that in the event in which

⋃n
i=1 Âε,i(θ) is empty, the estimator evaluates to η̂(θ) = 0. With

this, we can establish our main theoretical result in the following theorem.

7
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Theorem 3.1 (Variance reduction). Let η̂(θ) be the estimator defined in (13) with τ̂(θ) = τ(θ).
Then, the the bias and variance of the estimator can be characterized as follows:

(i) E [η̂(θ)] = (1− [qε(θ)]
n
)ηε(θ) (bias)

(ii) cov (η̂(θ)) ⪯ 2Σε(θ)

pε(θ)n
+ [qε(θ)]

n
ηε(θ)η

T
ε (θ), (variance)

where pε(θ) = P(Aε,i(θ)) and qε(θ) = 1− pε(θ).

The main takeaway of result (i) is that η̂(θ) is an asymptotically unbiased estimator of ηε(θ), but
not η(θ). However, by definition we also have ηε(θ) ≈ η(θ) for ε ≈ 0. The second result (ii),
instead, shows that variance reduction is obtained by the proposed estimator, when compared to the
naive estimator ∂τ̂

∂θ (θ). Further, for large n, the variance reduction is proportional to pε(θ)n, which
is equal to the (expected) proportion of samples that are ultimately used in the estimator. More
precisely, the variance of the estimator is O

(
1

pε(θ)n

)
as ε→ 0 or n→∞.

A key takeaway of (i) and (ii) is the explicit characterization of the bias-variance trade-off as a
function of the threshold ε > 0 and of the batch size n: for a given batch size n, a larger ε increases
the expected amount of samples used by the estimator, thus reducing its variance. However, larger
ε also increases the bias of the estimator towards the unconditional expectation E

[
∂E
∂θ (θ,X, Y )

]
,

where we make note that ηε(θ)→ η(θ) as ε→ 0.

4 EXPERIMENTS

As a warm-up, we illustrate Theorem 3.1 on a synthetic Gaussian mixture model (GMM) dataset,
depicted in Figure 2. We employ the m-ranking method with top m = αn

log logn samples. This ratio
performs well across a variety of settings. As shown, our estimator (VR-ConfTr) reduces variance
effectively, while the naive one (ConfTr) is sample inefficient.

Figure 2: Sample batch from GMM distribution (left) and corresponding bias and variance for the
quantile gradient estimates (right).

4.1 BENCHMARK DATASETS AND ALGORITHMS

We evaluate the effectiveness of VR-ConfTr against (i) a baseline model trained with standard
cross-entropy loss (we refer to this method simply as Baseline), and (ii) the ConfTr algorithm
proposed by Stutz et al. (2022). We perform experiments across benchmark datasets - MNIST Deng
(2012), Fashion-MNIST Xiao et al. (2017a), Kuzushiji-MNIST Clanuwat et al. (2018) -, and a
healthcare dataset comprising abdominal computed tomography scans, OrganAMNIST Yang et al.
(2021). One of the main performance metrics that we consider is the length-efficiency of the con-
formal prediction sets produced by applying a standard CP procedure to the trained model. Other
relevant metrics are the convergence speed and the variance across multiple runs. For the choice
of the quantile gradient estimator ∂̂τ

∂θ of VR-ConfTr, we use the m-ranking approach presented
in section 3.1. We choose this estimator because it is the more closely related to the one analyzed
in Theorem 3.1. We investigate multiple possibilities for the choice of m, and more details on this

8
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tuning can be found in Appendix C. We provide extensive details about the training settings, the
adopted model architectures, hyper-parameters and additional results in Appendix D.
In the next subsection, we present the summary of results obtained from evaluating the model after
training. Given a number of epochs, we train a model over multiple runs. For the obtained model,
we show: (i) the average accuracy and its standard deviation, and (ii), the average length efficiency
and its standard deviation. In section 4.3, to illustrate further the improved training performance of
VR-ConfTr over the original ConfTr algorithm and the variance reduction effect, we show the
trajectories of relevant evaluation metrics - the conformal training loss defined in section 2, and the
length efficiency - for all datasets and methods during training.

4.2 SUMMARY OF EVALUATION RESULTS

Table 1 presents the inefficiency results of the CP procedure applied post-training, and the accuracy
of the trained model for each dataset, with the corresponding standard deviations.

Dataset Algorithm Accuracy (Avg ± Std) Avg Size Std Size

MNIST
Baseline 0.887± 0.004 4.122 (+12%) 0.127
ConfTr Stutz et al. (2022) 0.842± 0.141 3.990 (+8%) 0.730
VR-ConfTr (ours) 0.886± 0.071 3.688 0.350

Fashion-MNIST
Baseline 0.845± 0.002 3.218 (+15%) 0.048
ConfTr Stutz et al. (2022) 0.799± 0.065 3.048 (+9%) 0.201
VR-ConfTr (ours) 0.839± 0.043 2.795 0.154

Kuzushiji-MNIST
Baseline 0.872± 0.046 4.982 (+6%) 0.530
ConfTr Stutz et al. (2022) 0.783± 0.125 4.762 (+2%) 0.226
VR-ConfTr (ours) 0.835± 0.098 4.657 0.680

OrganA-MNIST
Baseline 0.552± 0.017 4.823 (+2%) 0.748
ConfTr Stutz et al. (2022) 0.526± 0.047 6.362 (+33%) 0.857
VR-ConfTr (ours) 0.547± 0.021 4.776 1.178

Table 1: Summary of evaluation results. For VR-ConfTr, we show in percentage the average set
size (Avg Size) improvement against ConfTr by Stutz et al. (2022). The third column presents the
average accuracy and its standard deviation (Accuracy (Avg ± Std)).

The metrics reported in Table 1 are computed as averages over 5-10 training trials depending on
the dataset. The way in which the number of the random training trials varies across the datasets is
discussed in more detail in appendix D. Similarly to the approach followed by Stutz et al. (2022),
we are mostly interested in the effectiveness of the different algorithms on the CP efficiency, and
therefore we do not focus on improving the accuracy by using more advanced model architectures.
To ensure a fair comparison for each dataset, we used the same exact model architecture across the
three different methods (ConfTr, VR-ConfTr and Baseline). Furthermore, the training and
evaluation hyper-parameters are identical across ConfTr and VR-ConfTr. For the CP procedure
applied post-training, we use the standard THR method with α = 0.01. The average set-size for each
method is reported over 10 different splits of the calibration and test data used for the conformal
prediction procedure. The main takeaway from Table 1 is that VR-ConfTr improves over all
considered metrics compared to ConfTr.

In terms of “length-efficiency”, VR-ConfTr is able to consistently achieve smaller prediction set
sizes compared to both ConfTr and Baseline. It is important to note that the focus of our
work is not to tune ConfTr to achieve better performance than Baseline, but rather to show
that regardless of the performance of ConfTr and the hyper-parameters chosen, VR-ConfTr ef-
fectively provide performance improvements and training stability with the same hyper-parameters.
Note that, similar to the results reported by Stutz et al. (2022), the Baseline architecture is some-
times able to achieve slightly higher accuracy than ConfTr and VR-ConfTr. It can be seen that
VR-ConfTr consistently achieves higher accuracy compared to ConfTr. However, we stress that
the objective of conformal training is to reduce the size of the prediction sets while preserving a
similar accuracy as non-conformal training, and not to improve the accuracy.

9
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4.3 ON THE TRAINING PERFORMANCE OF VR-CONFTR

Here, we focus on the training performance of VR-ConfTr, with special attention to the speed
in minimizing the conformal training loss described in section 2, and in minimizing the CP set
sizes on test data. The results, which we illustrate plotting the evolution of the different metrics
across epochs, validate the beneficial effect of the variance reduction technique and the superior
performance of VR-ConfTr when compared to the competing ConfTr by Stutz et al. (2022).

Figure 3: Training curves for MNIST, Fashion-MNIST, Kuzushiji-MNIST, and OrganAMNIST. For
each dataset, we show the training loss on top and corresponding test CP set sizes at the bottom at
the end of each epoch, evaluated using the THR conformal predictor.

In Figure 3, we show the training performance for four datasets (MNIST, FMNIST, KMNIST and
OrganAMNIST) illustrating two key metrics: (i) the evolution of the conformal training loss de-
fined in section 2 and (ii) the test CP size across epochs. In the four plots on top, we show the
comparison between the train loss evolution obtained using our VR-ConfTr against the one ob-
tained by ConfTr. In the four plots at the bottom, we show the comparison between the test CP
set sizes for VR-ConfTr, ConfTr and Baseline. In all the plots, we see that VR-ConfTr
reaches smaller values of the loss and in significantly fewer epochs as compared to ConfTr. In
the case of MNIST, for example, VR-ConfTr reaches a lower value of the loss in 10 times fewer
epochs as compared to ConfTr. Similarly, for FMNIST VR-ConfTr achieves a smaller size in
one third of epochs compared to ConfTr. For both Kuzushiji-MNIST and OrganA-MNIST, we
notice that not only VR-ConfTr is faster, but it also gets to significantly smaller values of the loss.
For the more challenging OrganA-MNIST dataset, this difference appears even more accentuated,
not only in the training loss but also in the test CP set sizes. Notice that for all the three methods
(VR-ConfTr, ConfTr and Baseline) we performed hyper-parameters tuning. Notably, in the
case of the OrganA-MNIST dataset, we were not able to obtain an improvement with ConfTr in
the final set size with respect to Baseline, which stresses the need for a method with improved
gradient estimation, as the one we propose in this paper. More details on the grid-search over hyper-
parameters and additional experiments for all algorithms can be found in appendix C and D.

5 CONCLUDING REMARKS AND FUTURE DIRECTIONS

We formalized the concept of optimizing CP efficiency during training as the problem of conformal
risk minimization (CRM). We identified a key source of sample inefficiency in the ConfTr method
proposed by Stutz et al. (2022), which is a CRM method for length efficiency optimization. Our
theoretical analysis elucidated the source of sample inefficiency, which lies in the estimation of the
gradient of the population quantile. To address this issue, we introduced a novel technique that
improves the gradient estimation of the population quantile of the conformity scores by provably
reducing its variance. We show that, by incorporating this estimation technique in our proposed
VR-ConfTr algorithm, the training becomes more stable and the post-training conformal predictor
is often more efficient as well. Our work also opens up possibilities for future research in the area
of CRM. Indeed, further methods for quantile gradient estimation could be developed and readily
integrated with our “plug-in” algorithm, for which we can expect improved training performance.

10
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A PROOFS

In this appendix, we provide the proofs of all the theoretical results presented in the paper.

A.1 PROOF OF LEMMA 3.1

Let H(s) =

{
1, s ≥ 0

0, s < 0
denote the Heaviside step function, and let Hn(s) = Φ

(
s
σn

)
denote a

smooth approximation, where Φ denotes the cumulative distribution function (CDF) of the standard
Gaussian distribution, and σn > 0 is a sequence such that σn → 0 as n → ∞. Note that Hn(s) →
H(s) pointwise as n→∞, and that each Hn is smooth.

By definition, we have
P [E(θ,X, Y ) ≤ τ(θ)] = α. (14)

which we can rewrite as
E
[
H
(
τ(θ)− E(θ,X, Y )

)]
= α. (15)

Since 0 ≤ H(s) ≤ 1 for all s, and Hn(s) → H(s) pointwise, by the Dominated Convergence
Theorem, we have

α = E
[
H
(
τ(θ)− E(θ,X, Y )

)]
= E

[
lim
n→∞

Hn

(
τ(θ)− E(θ,X, Y )

)]
= lim

n→∞
E
[
Hn

(
τ(θ)− E(θ,X, Y )

)]
. (16)

Differentiating both sides with respect to θ, we obtain

0 =
∂

∂θ
lim
n→∞

E [Hn (τ(θ)− E(θ,X, Y ))] , (17)

where α is a constant independent of θ. By interchanging the limit and differentiation, this becomes

0 = lim
n→∞

∂

∂θ
E [Hn (τ(θ)− E(θ,X, Y ))] . (18)

To justify the interchange, we note that fn(θ) = E [Hn (τ(θ)− E(θ,X, Y ))] converges pointwise
to α, a constant. By uniform convergence of fn(θ) and its derivative ∂

∂θ , we can exchange the limit
and differentiation. Using the Leibniz Integral Rule, we interchange differentiation and expectation:

0 = lim
n→∞

E
[
∂

∂θ
Hn (τ(θ)− E(θ,X, Y ))

]
. (19)

The interchange is valid because Hn is infinitely differentiable, τ(θ) and E(θ,X, Y ) are continu-
ously differentibale with respect to θ, and the derivative ∂

∂θHn(τ(θ) − E(θ,X, Y )) is continuous
in θ and integrable. Finally applying the chain rule to differentiate Hn (τ(θ)− E(θ,X, Y )) with
respect to θ, we get:

0 = lim
n→∞

E
[
H ′

n (τ(θ)− E(θ,X, Y ))

(
∂τ

∂θ
(θ)− ∂E

∂θ
(θ,X, Y )

)]
. (20)

Define

δn(s) = H ′
n(s) =

1√
2πσn

e
− s2

2σ2
n ,

γn(θ, x, y) = δn (τ(θ)− E(θ, x, y)) ,

∆(θ, x, y) =
∂τ

∂θ
(θ)− ∂E

∂θ
(θ, x, y).

Now, we can see that

∂

∂θ
E [Hn (τ(θ)− E(θ,X, Y ))] = E [γn(θ,X, Y )∆(θ,X, Y )] . (21)

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Let an ≍ bn denote asymptotic equivalence, meaning that limn→∞
an

bn
= 1, assuming bn ̸= 0 for

finite n. From equation (20), it follows that

E [γn(θ,X, Y )∆(θ,X, Y )] ≍ 0. (22)

Analyzing the Expectation:

Let εn > 0 be any sequence such that εn = o(σn), meaning εn/σn → 0 as n→∞. Define the set

Aεn(θ) = {ω ∈ Ω : −εn < E(θ,X(ω), Y (ω))− τ(θ) < εn} . (23)

We can decompose the expectation in (22) as

E [γn∆] = P (Aεn(θ))E [γn∆ |Aεn(θ)] + P
(
Ac

εn(θ)
)
E
[
γn∆ |Ac

εn(θ)
]
. (24)

Negligibility of the Second Term: On the complement Ac
εn(θ), the value τ(θ) − E(θ,X, Y ) is

either greater than εn or less than −εn. Therefore, for s ≥ εn or s ≤ −εn, δn(s) = H ′
n(s)

becomes very small. Particularly

δn(s) =
1√

2π σn

exp

(
− s2

2σ2
n

)
.

Since εn = o(σn) and σn → 0, it follows that
εn
σn
→ ∞. For |s| ≥ εn, we have: δn(s) ≤

1√
2π σn

exp

(
− ε2n
2σ2

n

)
. from

εn
σn
→∞, it also follows that exp

(
− ε2n
2σ2

n

)
→ 0 and

γn(θ,X, Y ) ≤ 1√
2π σn

exp

(
− ε2n
2σ2

n

)
→ 0.

Therefore, (24) becomes

E [γn∆] ≍ P (Aεn(θ))E [γn∆ |Aεn(θ)] . (25)

Plugging in (25) into (22) we get:

E[γn(θ,X, Y )∆(θ,X, Y ) |Aεn(θ)] ≍ 0,

By noting that P(Aεn(θ)) > 0 for all n due to continuity of x 7→ E(θ, x, y). We can then rewrite as

E[γn(θ,X, Y ), |Aεn(θ)]
∂τ

∂θ
(θ) ≍ E

[
γn(θ,X, Y )

∂E

∂θ
(θ,X, Y ) |Aεn(θ)

]
. (26)

When conditioned on Aεn(θ), we have γn(θ,X, Y ) ≍ δn(0). Indeed, note that δn(εn) ≤
γn(θ,X, Y ) ≤ δn(0), which we can rewrite as δn(εn)

δn(0)
≤ γn(θ,X,Y )

δn(0)
≤ 1. Noting that δn(εn) ≍ 1, it

indeed follows that γn(θ,X, Y ) ≍ δn(0). Therefore, (26) can be further simplified to

∂τ

∂θ
(θ) ≍ E

[
∂E

∂θ
(θ,X, Y )

∣∣Aεn(θ)

]
, (27)

which readily leads to

∂τ

∂θ
(θ) = lim

n→∞
E

[
∂E

∂θ
(θ,X, Y )

∣∣Aεn(θ)

]

= lim
ε→0

E

[
∂E

∂θ
(θ,X, Y )

∣∣Aε(θ)

]

= lim
ε→0

E

[
∂E

∂θ
(θ,X, Y )

∣∣ − ε < Eθ(X,Y )− τ(θ) < ε

]

= E

[
∂E

∂θ
(θ,X, Y )

∣∣Eθ(X,Y ) = τ(θ)

]
.
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A.2 PROOF OF THEOREM 3.1

We start with two preliminary results that we will use in the proof.

Some preliminaries. First, we recall a well-known result. Let k ∼ Binomial(n, p) be a random
variable sampled from a Binomial distribution with n trials and with probability p of success. The
following holds:

E
[

1

1 + k

]
=

(1− (1− p)n+1)

(n+ 1)p
. (28)

Note that this follows from the following simple steps:

E
[

1

1 + k

]
=

n∑
k=0

1

1 + k
·
(
n

k

)
pk (1− p)

n−k

=
1

p(n+ 1)

n∑
k=0

(
n+ 1

k + 1

)
pk+1(1− p)n−k

=
1

p(n+ 1)

n+1∑
j=1

(
n+ 1

j

)
pj(1− p)n+1−j

=

(
1− (1− p)n+1

)
p(n+ 1)

.

Next, we state another well-known identity. Let us consider the following recursion:

an+1 = ρ an + b,

where ρ > 0. Simply unrolling the recursion, we can obtain

an = ρna0 + b

(
1− ρn

1− ρ

)
. (29)

Proof of the Theorem.

Before we proceed, let us introduce some notation:

Gi(θ) =
∂E

∂θ
(θ,Xi, Yi),

Aε,i(θ) = {ε ≤ E(θ,Xi, Yi)− τ(θ) ≤ ε},

Rε,n(θ) =

n∑
i=1

χAε,i(θ),

Sϵ,n(θ) = {i ∈ [n] : χAϵ,i(θ) = 1},

(30)

where χAε,i(θ) is an indicator function for the event Aε,i(θ), i.e.,

χAε,i(θ) =

{
1, if |Eθ(Xi, Yi)− τ(θ)| ≤ ε

0, if |Eθ(Xi, Yi)− τ(θ)| > ε
. (31)

We are now ready to analyze the estimator η̂ε,n(θ) for ηε(θ):

η̂ε,n(θ) =

{
1

Rε,n(θ)

∑n
i=1 χAε,i(θ)Gi(θ), if Rε,n(θ) > 0

0 if Rε,n(θ) = 0
, (32)

where ε and n are denoted explicitly to remove ambiguity.

Equipped with the basic results established earlier in this subsection, we can proceed first with prov-
ing assertion (i). Note that, by definition (32), and because {Xi, Yi}ni=1 are sampled independently,
we have

E

[
1

|S|
∑
i∈S

Gi|
⋂
i∈S

Aϵ,i(θ)

]
=

1

|S|
∑
i∈S

E
[
χAϵ,i(θ)Gi(θ)|Aϵ,i(θ)

]
= ηϵ. (33)
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Also note that Sϵ,n(θ) = ∅ is equivalent to Rϵ,n(θ) = 0, and that

P (Sϵ,n(θ) = ∅) = P (Rϵ,n(θ) = 0) = qn, (34)

with q = 1− p and p = P (Aϵ,i(θ)). Hence, we can get (i) as follows:

E [η̂ϵ,n(θ)] = qnE [η̂ϵ,n(θ)|Rϵ,n(θ) = 0] + (1− qn)ηϵ, (35)

where we used the fact that
∑

S ̸=∅ P (Sϵ,n(θ) = S) = 1− P (Sϵ,n(θ) = ∅) = 1− qn.

Now, we prove (ii). We start by analyzing E
[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤]:
E
[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤] = ∑
S⊆[n]

P (Sϵ,n(θ) = S)E
[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤|Sϵ,n(θ) = S
]

= P (Sϵ,n(θ) = ∅)E
[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤|Sϵ,n(θ) = Sϵ,n(θ)
]

+
∑
S ̸=∅

P (Sϵ,n(θ) = S)E

( 1

|S|
∑
i∈S

Gi(θ)

)(
1

|S|
∑
i∈S

Gi(θ)

)⊤

|
⋂
i∈S

Aϵ,i(θ)


= P (Sϵ,n(θ) = ∅)E

[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤|Rϵ,n(θ) = 0
]

+
∑
S ̸=∅

P (Sϵ,n(θ) = S)
1

|S|2
∑
i∈S

∑
j∈S

E
[
Gi(θ)Gj(θ)

⊤|Aϵ,i(θ), Aϵ,j(θ)
]
.

(36)
Now note that

E
[
Gi(θ)Gj(θ)

⊤|Aϵ,i(θ), Aϵ,j(θ)
]
= δi,jE

[
Gi(θ)Gi(θ)

⊤|Aϵ,i(θ)
]

+ (1− δij)E [Gi(θ)|Aϵ,i(θ)]E
[
Gj(θ)

⊤|Aϵ,j(θ)
]

= E [Gi(θ)|Aϵ,i(θ)]E
[
Gj(θ)

⊤|Aϵ,i(θ)
]

+ δij(E
[
Gi(θ)Gi(θ)

⊤|Aϵ,i(θ)
]

− E [Gi(θ)|Aϵ,i(θ)]E
[
Gi(θ)

⊤|Aϵ,i(θ)
]
)

= ηϵη
⊤
ϵ + δijΣϵ,

(37)

where we used the fact that {Xi, Yi}ni=1 are sampled i.i.d. and the definitions in (30). Now, we can
proceed as follows:

E
[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤] = qnE
[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤|Rϵ,n(θ) = 0
]

+
∑
S ̸=∅

P (Sϵ,n(θ) = S)

|S|
(
|S|ηϵη⊤ϵ +Σϵ

)
= qnE

[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤|Rϵ,n(θ) = 0
]

+ (1− qn)ηϵη
⊤
ϵ + fnΣϵ,

(38)

where we write

fn =
∑
S ̸=∅

P (Sϵ,n(θ) = S)

|S|
. (39)

Now, we will show that

fn ≤
2− p

pn
. (40)

First, let us define the following function

f(k) =

{
0, if k = 0
1
k if k ≥ 1

, (41)

and note that
fn = E [f(|Sϵ,n(θ)|)] = E [f(Rϵ,n(θ))] . (42)
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Now note that

fn+1 = E [f(Rϵ,n+1(θ))]

= P (Aϵ,i(θ)
c)E [f(Rϵ,n(θ))] + P (Aϵ,i(θ))E [f(1 +Rϵ,n(θ))]

= qE [f(Rϵ,n(θ))] + pE [f(1 +Rϵ,n(θ))]

= qfn + pE
[

1

1 +Rϵ,n(θ)

]
= qfn +

1− qn+1

n+ 1
,

(43)

where, in the last equation, we used the fact shown in the preliminaries (see (28)):

E
[

1

1 +Rϵ,n(θ)

]
=

1− qn+1

p(n+ 1)
. (44)

Now let an = nfn. We can write

(n+ 1)fn+1 = (n+ 1)

(
qfn +

1− qn

n+ 1

)
, (45)

from which we obtain the following recursion:

an+1 = qnfn + qfn + (1− qn+1)

= qan + qfn + (1− qn+1)

≤ qan + 1 + q,

(46)

where we used the fact that fn ≤ 1 and that 1 − qn ≤ 1. With this recursion, we can now use the
result illustrated in the preliminaries in (29) and get, using q = 1− p,

an ≤ qna0 +
1− qn

1− q
(1 + q) ≤ 2− p

p
. (47)

From the above inequality, we can conclude that

0 ≤ fn =
an
n
≤ 2− p

pn
. (48)

Plugging this last result in (38), we can get

E
[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤] ⪯ qnE
[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤|Rϵ,n(θ) = 0
]
+ (1− qn)ηϵη

⊤
ϵ +

2− p

pn
Σϵ. (49)

We are now in the position to write and bound cov(η̂ϵ,n(θ)):

cov (η̂ϵ,n(θ)) = E
[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤]− [η̂ϵ,n(θ)]
[
η̂ϵ,n(θ)

⊤]
⪯ qnE

[
η̂ϵ,n(θ)η̂ϵ,n(θ)

⊤|Rϵ,n(θ) = 0
]
+ (1− qn)ηϵη

⊤
ϵ +

2− p

pn
Σϵ

− (qnE [η̂ϵ,n(θ)|Rϵ,n(θ) = 0] + (1− qn)ηϵ)

· (qnE [η̂ϵ,n(θ)|Rϵ,n(θ) = 0] + (1− qn)ηϵ)
⊤

=
2− p

pn
Σϵ + (1− qn)ηϵη

⊤
ϵ − (1− qn)2ηϵη

⊤
ϵ

=
2− p

pn
Σϵ + (1− qn)(1− (1− qn))ηϵη

⊤
ϵ

=
2− p

pn
Σϵ + (1− qn)qnηϵη

⊤
ϵ

⪯ 2− p

pn
Σϵ + qnηϵη

⊤
ϵ ,

(50)

where we used (i), the fact that 1 − qn ≤ 1 and the fact that E [η̂ϵ,n(θ)|Rϵ,n(θ) = 0] = 0, which
follows by (32).
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B USEFUL FACTS AND DERIVATIONS

In this appendix, we provide, for completeness, some useful facts and explicit derivations of proper-
ties that we use in the paper. In particular, we show how the ordered statistics E(θ,Xωj(θ), Yωj(θ))
in equation (5) are differentiable almost surely (with probability 1), and we explicitly derive equa-
tion (8) using the generalize chain rule (GCR).

B.1 DIFFERENTIABILITY OF E(θ,Xωj(θ), Yωj(θ)).

We will formally show that the ordered statistics E(j)(θ), with j = 1, ..., n, are differentiable for
any θ with probability 1. We first recall some notation. Let E(1)(θ) ≤ . . . ≤ E(n)(θ) denote the
order statistics corresponding to the scalar random variables E(θ,X1, Y1), . . . , E(θ,Xn, Yn).
Let us also denote by ω(θ) : [n] → [n] the permutation of indices [n] := {1, . . . , n} that cor-
respond to the order statistics, i.e., ω(θ) = (ω1(θ), . . . , ωn(θ)), and (E(1)(θ), . . . E(n)(θ)) =
(E(θ,Xω1(θ), Yω1(θ)), . . . , E(θ,Xωn(θ), Yωn(θ))). Now define the set An as follows:

An = {(E1, ..., En) : Ei = Ej for some i ̸= j}. (51)

Now note that, by definition, the conformity score function E(θ,X, Y ) is continuous and differ-
entiable in θ. Now fix some θ̄. Consider the event in which the ordered statistics are such that
E(1)(θ̄) < . . . < E(n)(θ̄), hence

(E(θ̄, Xω1(θ̄), Yω1(θ̄)), . . . , E(θ̄, Xωn(θ̄), Yωn(θ̄))) = (E(1)(θ̄), . . . , E(n)(θ̄)) /∈ An, (52)

which means that ω(θ̄) is the unique ordered statistics permutation for {E(θ,Xi, Yi)}ni=1 and note
that this happens almost surely (with probability 1), because E(θ,X, Y ) is a continuous function in
θ and X . The key step is now to note that by continuity of E(θ,Xi, Yi) in θ, there exists δ > 0 such
that, for θ ∈ {θ′ : ∥θ′ − θ̄∥ ≤ δ}, we have ω(θ) = ω(θ̄), which means that, if ∥θ − θ̄∥ ≤ δ,

(E(1)(θ), . . . , E(n)(θ)) = (E(θ,Xω1(θ), Yω1(θ)), . . . , E(θ,Xωn(θ), Yωn(θ)))

= (E(θ,Xω1(θ̄), Yω1(θ̄)), . . . , E(θ,Xωn(θ̄), Yωn(θ̄)))
(53)

At this point, let j ∈ {1, ..., n}, and let us denote E(j)(θ) = E(θ,Xωj(θ), Yωj(θ)) = E(θ, ωj(θ)),
and, for any θ ∈ {θ′ : ∥θ′ − θ̄∥ ≤ δ} the derivative of E(j)(θ) is

∂

∂θ
E(j)(θ) =

∂

∂θ
E(θ, ωj(θ)) =

∂

∂θ
E(θ, ωj(θ̄)) =

∂E

∂θ
(θ, ωj(θ̄)), (54)

which is true because, as we show in (53) above, for θ ∈ {θ′ : ∥θ′ − θ̄∥ ≤ δ}, the function ωj(θ) is
a constant equal to ωj(θ̄). Note that, as we do in the main paper, we here denote by ∂E

∂θ (θ, ωj(θ̄))

the partial derivative with respect to θ. Note that, given that the choice of θ̄ is arbitrary, we have
shown that the function θ 7→ E(θ,Xωj(θ), Yωj(θ)) is indeed differentiable with probability 1 for all
j = 1, . . . , n.
To be absolutely convinced that (53) is true, note that we can show it by continuity of θ 7→
E(θ,X, Y ), as follows: let’s fix θ̄ and let us denote again E(j)(θ) = E(θ,Xωj(θ), Yωj(θ)) =

E(θ, ωj(θ)). We want to show that there exists δ > 0 such that ω(θ̄) = ω(θ) for any θ ∈ {θ′ :
∥θ′ − θ̄∥ ≤ δ}. To do so, it is sufficient to show that, for any θ ∈ {θ′ : ∥θ′ − θ̄∥ ≤ δ},

E(θ, ωi+1(θ̄)) > E(θ, ωi(θ̄)), for i = 1, ..., n− 1. (55)

Let us define
ε = min

i=1,...,n−1
{E(θ̄, ωi+1(θ̄))− E(θ̄, ωi(θ̄))}. (56)

From continuity of θ 7→ E(θ,X, Y ), there exists δ > 0 such that if θ ∈ {θ′ : ∥θ′ − θ̄∥ ≤ δ}, we
have

|E(θ, ωi(θ̄))− E(θ̄, ωi(θ̄))| <
ϵ

2
. (57)

Note that, from (56) and (57), we have for all i = 1, . . . , n,

E(θ̄, ωi+1(θ̄)) ≥ E(θ̄, ωi(θ̄)) + ϵ, (58)
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and
E(θ, ωi(θ̄)) > E(θ̄, ωi(θ̄))−

ϵ

2
. (59)

Hence, note that, starting from this last inequality, and then using (58)

E(θ, ωi+1(θ̄)) > E(θ̄, ωi+1(θ̄))−
ϵ

2

≥ E(θ̄, ωi(θ̄)) +
ϵ

2
.

(60)

Now, we can use again (57) (continuity) to show that

E(θ̄, ωi(θ̄)) > E(θ, ωi(θ̄))−
ϵ

2
, (61)

and thus observe that, for all i = 1, . . . , n,

E(θ, ωi+1(θ̄)) > E(θ̄, ωi(θ̄)) +
ϵ

2
> E(θ, ωi(θ̄)), (62)

from which we can confirm that, for θ ∈ {θ′ : ∥θ′ − θ̄∥ ≤ δ}, ω(θ) = ω(θ̄), and we can conclude.

B.2 EXPLICIT DERIVATION OF EQUATION (8)

Please note that equation (8) follows from taking the derivative of a function of multiple variables
and the chain rule. This is also called the generalized chain rule in some textbooks (Herman &
Strang, 2018)(see Theorem 4.10). In the paper, when writing

∂

∂θ
ℓ(θ, τ̂(θ), X, Y ), (63)

we mean the total derivative of the function θ 7→ l(θ, τ̂(θ), X, Y ), evaluated at a dummy θ. On the
other hand, when writing

∂ℓ

∂θ
(θ, τ̂(θ), x, y), (64)

we mean the partial derivative of ℓ(θ, q, x, y) with respect to θ, evaluated at (θ, q, x, y) =
(θ, τ̂(θ), X, Y ). The difference is that, in the partial derivative, τ̂(θ) is treated as a constant, whereas
for the total derivative we do not treat τ̂(θ) as a constant. Now, the generalized chain rule (in vector
form) can be written as follows: let u(θ) ∈ Rn and v(θ) ∈ Rm be two differentiable functions of θ,
and f(u, v) a differentiable function of two vector variables u and v. Then

∂

∂θ
f(u(θ), v(θ)) =

(
∂u

∂θ
(θ)

)⊤
∂f

∂u
(u(θ), v(θ)) +

(
∂v

∂θ
(θ)

)⊤
∂f

∂v
(u(θ), v(θ)), (65)

where ∂u
∂θ (θ) is the Jacobian of u(θ), i.e., the matrix with ∂ui

∂θj
(θ) in the i-th row and j-th column

(equivalently, ∂v
∂θ (θ) is the Jacobian of v(θ)). Note that in the case of ℓ(θ, τ̂(θ), x, y), x and y do

not depend on θ so we can focus on ℓ as a function of the two functions u(θ) = θ and v(θ) = τ̂(θ).
Replacing these u(θ) and v(θ) in equation (65), and replacing f(u(θ), v(θ)) with ℓ(θ, τ̂(θ), x, y) we
see that then

∂

∂θ
ℓ(θ, τ̂(θ), x, y) =

∂ℓ

∂θ
(θ, τ̂(θ), x, y) +

∂ℓ

∂τ̂
(θ, τ̂(θ), x, y)

∂τ̂

∂θ
(θ), (66)

which is precisely equation (8) in the main paper, where we used the fact that
(
∂θ
∂θ

)
= Id, where Id

is a d× d identity matrix, with d the dimension of θ.
Given that usually in textbooks the generalized chain rule (GCR) is only shown for scalar multi-
variable functions, we now report the derivation of equation (8) using the scalar GCR as reported and
proved in the statement of Theorem 4.10 in (Herman & Strang, 2018). Hence, we will now provide
the derivation of (8) at a more granular level. Consider a differentiable function ℓ of k variables,
ℓ : Rk → R. Now let f1, ..., fk be differentiable functions, with fi : Rd → R, for i = 1, ..., k and
some d ≥ 1. Then, denoting a vector [t1, ..., td] ∈ Rd and w = ℓ(f1(t1, ..., td), ..., fk(t1, ..., td)) we
have (GCR):

∂w

∂tj
=

k∑
i=1

∂w

∂fi

∂fi
∂tj

. (67)
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Now note that in the case of our paper, we have w = ℓ(θ, τ̂(θ), x, y). Note that x and y have no
dependency on parameters in θ and hence their derivatives will be zero. We can then focus on θ and
τ̂(θ). For convenience, note that we can write θ = [θ1, ..., θd]. Now note that the gradient of w is

∂

∂θ
[w] =

[
∂w

∂θ1
, ...,

∂w

∂θd

]⊤
. (68)

Now note that, for some j ∈ {1, ..., d}, using the chain rule (67) above,

∂w

∂θj
=

d∑
i=1

∂w

∂θi

∂θi
∂θj

+
∂ℓ

∂τ̂
(θ, τ̂(θ), x, y)

∂τ̂

∂θj
(θ)

+
∂w

∂x

∂x

∂θj
+

∂w

∂y

∂y

∂θj

=
∂ℓ

∂θj
(θ, τ̂(θ), x, y) +

∂ℓ

∂τ̂
(θ, τ̂(θ), x, y)

∂τ̂

∂θj
(θ),

(69)

where we used the fact that ∂θi
∂θj

= 0 if i ̸= j and ∂θi
∂θi

= 1. We also explicitly used the fact that
∂x
∂θj

= 0 and ∂y
∂θj

= 0 because the samples do not depend on the parameter θ. Stacking together ∂w
∂θj

we can see that we obtain precisely equation (8) of the paper:

∂

∂θ
[w] =

∂

∂θ
[ℓ(θ, τ̂(θ), X, Y )]

=
∂ℓ

∂θ
(θ, τ̂(θ), X, Y ) +

∂ℓ

∂τ̂
(θ, τ̂(θ), X, Y )

∂τ̂

∂θ
(θ).

(70)
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C ADDITIONAL EXPERIMENTS

Here, we provide additional experimental results to complement the findings in the main paper.

C.1 ADDITIONAL TRAINING CURVES

We first present additional training curves, specifically the test loss and accuracy per epoch, for each
dataset. These plots highlights the performance throughout the training process, providing further
insights into convergence behavior and generalization performance. It can be seen that the test loss
exhibits a pattern similar to the training loss in 3. In terms of accuracy, VR-ConfTr achieves higher
accuracy than ConfTr.

Figure 4: Training curves for MNIST, Fashion-MNIST, Kuzushiji-MNIST, and OrganAMNIST. For
each dataset, we show the test loss on the first row and tets accuracy on the bottom row at the end of
each epoch.

C.1.1 VARIANCE OF THE GRADIENTS OVER THE COURSE OF TRAINING

In this section, we present visualization of the variance of the estimated quantile gradients during
training for our proposed method Vr-ConfTr, compared to ConfTr in figure 5. We conduct this
experiment on the MNIST dataset, using the m-ranking estimator with Vr-ConfTr, and evaluate
performance across different batch sizes. This analysis aims to empirically substantiate our claim
that Vr-ConfTr reduces variance of the estimated quantile gradients over the epochs, leading to
more stable gradient updates and improved final performance. Furthermore, we demonstrate that
with an appropriate choice of the hyperparameter m for the m-ranking estimator, Vr-ConfTr not
only reduces variance but also shows improvements in terms of the bias of the estimated quantile
gradients during training. In order to compute the variance and bias for the estimated quantile

gradient ∂̂τ
∂θ , we estimate the population quantile τ(θ) and its gradient ∂τ

∂θ at each model update
utilizing the full training, calibration, and test datasets.

C.2 ABLATION STUDY FOR m AND ε

C.2.1 ε-THRESHOLD ESTIMATOR ABLATION STUDY

This study evaluates the bias and variance of the ∂̂τ
∂θ using the ε-threshold estimator with

Vr-ConfTr for the GMM dataset depicted in figure 2. Figure 6 shows how varying ε impacts the

estimator’s performance, highlighting the trade-offs between bias and variance of ∂̂τ
∂θ as ε changes.

C.2.2 m-RANKING ESTIMATOR ABLATION STUDY

We evaluate the bias and variance of ∂̂τ
∂θ using the m-ranking estimator with Vr-ConfTr for the

GMM dataset. Figure 7 shows how varying m impacts the estimator’s performance, highlighting the
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Figure 5: Variance and bias of the estimated quantile gradients during training for ConfTr and
Vr-ConfTr, evaluated on the MNIST dataset across different batch sizes. The left figure shows the
variance of the gradients over epochs. The right panel illustrates the bias of the estimated gradients,
demonstrating that Vr-ConfTr maintains low bias while effectively reducing variance.

Figure 6: Bias and variance for the quantile gradient estimates using the ε-threshold estimator with
Vr-ConfTr on the GMM dataset. The left panel shows the variance, and the right panel shows the
bias for different ε values.
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trade-offs between bias and variance of ∂̂τ
∂θ as m changes. Here m explicitly depends on the desired

miscoverage rate α and the sample size n.

Figure 7: Bias and variance for the quantile gradient estimate using the m-ranking estimator with
Vr-ConfTr on the GMM dataset. The left panel shows the bias, and the right panel shows the
variance for different m values

C.2.3 ON THE CONNECTION BETWEEN ϵ-THRESHOLD AND m-RANKING ESTIMATORS

As mentioned at the end of section 3.1, the m-ranking and the ε-threshold estimator are intimately
related, and are indeed almost the same estimator. We may also say that the m-ranking estimator is
a special case of the ε-threshold estimator in which ε is chosen “adaptively” with respect to batch
and parameter θ via the integer m. To see this, note that, for a calibration batch {Xi, Yi}ni=1 with n
samples, fixing an integer m, the m-ranking estimator can be seen as the ε-threshold estimator with
ε = inf

{
ε′ > 0 :

∑n
i=1 1Âε′,i(θ)

≥ m
}

, where Âε,i(θ) = {|Eθ(Xi, Yi)− τ̂(θ)| ≤ ε} and 1A is the
indicator function for the event A: in words, ε is the smallest value such that m samples’ conformity
scores from the current calibration batch fall within ε-distance from τ̂(θ). We now explain why
the m-ranking strategy is a natural choice as opposed to fixing ε across all iterations. In practice,
when training the models, we noticed that a “good” value of ε varies significantly across iterations.
Note that a good value of the threshold ε not only depends on the specific batch Bcal at a given
iteration, but also on the model parameters θ at that iteration. Hence, hyper-parameter tuning with
the ε-threshold estimator requires some heuristic to adapt the threshold to specific iterations. In this
sense, the m-ranking estimator is a natural heuristic for a batch and parameter-dependent choice
of the threshold ε. We noticed indeed that performing hyper-parameter tuning of the m-ranking
estimator we were able to provide a good value of m to be used across all iterations, which from
the point of view of hyper-parameter tuning is a great advantage.
To empirically illustrate this connection and validate the importance of dynamically tuning the ε-
threshold estimator, figure 8 presents the optimal adaptive tuning of the ε-threshold estimator on
the Fashion-MNIST dataset. This tuning ensures that the ε-threshold estimator achieves comparable
performance to the m-ranking estimator with m = 6, which was used to train the model.

C.3 CLASS-CONDITIONAL COVERAGE AND SET SIZE

We evaluated the trained models in terms of class-conditional coverage and set size, using the same
CP-procedure applied post-training with the standard THR method and α = 0.01. Figure 9 displays
the class-conditional coverage and set sizes for each dataset. The results show the effectiveness of
Vr-ConfTr in achieving reliable class-conditional coverage with smaller class-conditional predic-
tion set sizes. The results are taken as the average over all the training and testing trials to ensure
robustness and reliability.

C.4 TUNING VR-CONFTR : NUMBER OF POINTS FOR GRADIENT ESTIMATION (M)

In VR-ConfTr, the number of points (m) used to compute the gradient estimate plays a crucial role
in the bias-variance trade-off. Consistent with the theory, increasing m (which with the ε-threshold
estimator would translate to increasing the threshold ε) reduces the variance but potentially increases

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 8: Adaptive tuning of the ε-threshold estimator on Fashion-MNIST. The plot shows the
evolution of the threshold ε across training iterations, required to match the m-ranking estimator
with m = 6. The variability in ε underscores the necessity of dynamic adjustment in threshold-
based approaches.

the bias of the gradient estimate. We conduct a grid search over the values [4, 6, 8, 10, 16, 20] for m
and report the results of tuning m for MNIST, and Fashion MNIST, selecting the value of m that
experimentally provides the best trade-off between bias and variance. MNIST Results. As shown
in Fig. 10, we observe a consistent reduction in the variance of gradient estimate as m increases.
However once we pass the optimal threshold the bias increases as can be seen by the higher values
of the training loss as well as decrease in the size of the prediction sets. The figures corresponding
to the loss on the training data per epoch, the loss on the test data per epoch, the accuracy evaluate
on the test data per epoch, as well as the prediction set size evalauted on the test data per epoch.

Fashion-MNIST. Similarly tuning m on Fashion-MNIST shows that a value of m = 6 provides the
best results, as depicted in Fig. 11

C.5 ALTERNATIVE ARCHITECTURE

In this section, we compare the performance of VR-ConfTr on Kushuniji-MNIST using a simpler
linear model architecture. The results indicate that regardless of the model architecture, the trends
observed in terms of convergence speed and prediction set efficiency are consistent across datasets
and architectures. Table 2 shows the average accuracy and set sizes for the two different models
trained on K-MNIST.

Dataset Model Name Accuracy (Avg ± Std) Set Size (Avg ± Std)

K-MNIST (Linear)
Baseline 0.695± 0.007 6.799± 0.117
ConfTr 0.582± 0.047 6.646± 0.226
VR-ConfTr 0.612± 0.033 6.488± 0.148

K-MNIST (MLP)
Baseline 0.872± 0.046 4.982± 0.530
ConfTr 0.783± 0.125 4.762± 0.226
VR-ConfTr 0.835± 0.098 4.657± 0.680

Table 2: Evaluation results of the KMNIST dataset trained with different model architectures.
Columns present average accuracy and set size with their standard deviations (Avg ± Std).

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

(a) Fashion-MNIST

(b) MNIST

(c) Kuzushiji-MNIST

(d) OrganA-MNIST

Figure 9: Class-conditional coverage rates and average prediction set sizes for each dataset, averaged
over 10 test trials. For each dataset, the left plot shows the class-conditional coverage rates with the
target coverage level of 1 − α = 0.99 indicated by the horizontal red dashed line. The right plot
shows the class-conditional average prediction set sizes.
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Figure 10: Training trajectories for different values of m on MNIST data

Figure 11: Training trajectories for different values of m on Fashion-MNIST data
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D EXPERIMENTAL DETAILS

In this section we describe the experimental setup, including model architectures, dataset configura-
tions, training protocol, testing procedure, and the corresponding hyper-parameters. The focus of the
experiments is on evaluating the conformal prediction (CP) set sizes and ensuring a fair comparison
between the baseline Conformal Training ConfTr and our proposed VR-ConfTr.

D.1 DATASET CONFIGURATIONS

We consider the benchmark datasets MNIST LeCun et al. (1998), Fashion-MNIST Xiao et al.
(2017b), Kuzushiji-MNIST Clanuwat et al. (2018) and OrganAMNIST Yang et al. (2021).MNIST is
a dataset of handwritten digits with 10 classes, and Fashion-MNIST consists of 10 fashion product
categories. Kuzushiji-MNIST extends the MNIST paradigm by incorporating 10 classes of cursive
Japanese characters. OrganAMNIST, derived from medical images, contains 11 classes of abdomi-
nal organ slices. The training, calibration, and testing splits for each dataset are summarized in Table
3. MNIST and Fashion-MNIST are provided by the torchvision library, while Kuzushiji-MNIST and
OrganAMNIST are available from their respective repositories. For MNIST, Fashion-MNIST, and
Kuzushiji-MNIST, 10% of the training set is reserved as calibration data. For OrganAMNIST, the
validation set is used as the calibration data. During evaluation, we combine the calibration and
test data and perform evaluations over 10 random splits of the combined dataset into calibration/test
partitions. Model parameters are learned exclusively on the training data, while calibration and test
data are used to evaluate the model as a black-box at the end of each epoch. The transformations
applied to the dataset are as follows: for MNIST, Fashion-MNIST, and Kuzushiji-MNIST, images
are normalized to have zero mean and unit variance, using a mean of 0.5 and a standard deviation
of 0.5. For OrganAMNIST, images undergo random horizontal flips, random rotations of up to 15
degrees, and are normalized similarly.

Dataset Classes Image Size Training Set Calibration Set Test Set
MNIST 10 28× 28 55,000 5,000 10,000
Fashion-MNIST 10 28× 28 55,000 5,000 10,000
OrganMNIST 11 28× 28 34,561 6,491 17,778
Kuzushiji-MNIST 10 28× 28 55,000 5,000 10,000

Table 3: Dataset Splits

D.2 MODEL ARCHITECTURES

In our experiments, we implemented all models using JAX Bradbury et al. (2018). We utilize a range
of architectures including linear models, multi-layer perceptrons (MLPs), and modified ResNet ar-
chitectures tailored for specific datasets. For the MNIST dataset, we employ a simple linear model,
which consists of a single dense layer. The input images, reshaped from 28 × 28 into a flattened
vector of size 784, are passed through a fully connected layer mapping the inputs directly to the 10
output classes. This architecture provided a minimalistic baseline for comparison. For Fashion-
MNIST, we use a multi-layer perceptron (MLP), with two hidden layers. We use 64 units per hid-
den layer, with ReLU activations Nair & Hinton (2010) , followed by a dense layer for the 10 output
classes. For Kuzushiji-MNIST, we utilize a similar MLP architecture. The model contains two
hidden layers with 256 and 128 units, respectively. The input data is flattened and passed through
these fully connected layers with ReLU activations. For OrganAMNIST, we used a residual net-
work, inspired by the ResNet architecture from He et al. (2016) , with modifications. The model
consists of an initial convolutional layer followed by four stages of residual blocks, each with two
layers. Each residual block uses 3 × 3 convolutions with ReLU activations. The number of output
channels doubles after each state (64, 128, 256, 512). Global average pooling is applied before the
final fully connected layer, which maps the pooled feature representations to the 11 output classes.
We do not attempt to optimize the model architectures in order to solve the datasets with high ac-
curacy. Instead, we focus on the conformal prediction results, and ensure that the architecture used
across different algorithms are identical for a fair comparison.
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D.3 TRAINING DETAILS

Similar to Stutz et al. (2022), we trained all models using Stochastic Gradient Descent (SGD) with
Nesterov momentum Sutskever et al. (2013). The learning rate follows a multi-step schedule where
the initial learning rate was decreased by a factor of 0.1 after 2/5, 3/5, and 4/5 of the total num-
ber of epochs. The models were trained using cross-entropy-loss for Baseline training, and for
ConfTr and VR-ConfTr based on the size-loss as described by Stutz et al. (2022). During train-
ing, we set the conformal prediction threshold parameter α = 0.01. To ensure statistical robustness,
we conducted multiple randomized training trials for each dataset, using a different random seed
for each trial. Specifically, we performed 10 training trials for MNIST and 5 training trials each
for FMNIST, KMNIST, and OrganAMNIST. During each trial, a unique random seed was used to
initialize the model and optimizer, ensuring that each trial followed a distinct learning trajectory.
The corresponding training trajectories, i.e the training loss, testing loss, accuracy and CP set sizes
evaluated on the test data at the end of every epoch, were averaged over these randomized trials to
provide a smooth and general view of the model’s performance. The key hyper-parameters used for
training are listed in Table 4. These hyper-parameters include size weight which scales the loss term
associated with the size of the CP sets during training, alpha α corresponding to the miscoverage
rate is set to 0.01. batch size for SGD, learning rate for the optimizer, and the number of epochs
for which the model is trained for.

Hyper-parameter MNIST Fashion-
MNIST

Kuzushiji-
MNIST

OrganA-
MNIST

Batch Size 500 500 500 500
Training Epochs 50 150 100 100
Learning Rate 0.05 0.01 0.01 0.01
Optimizer SGD SGD SGD SGD
Temperature 0.5 0.1 0.1 0.5
Target Set Size 1 0 1 1
Regularizer Weight 0.0005 0.0005 0.0005 0.0005
Size Weight 0.01 0.01 0.01 0.1
Alpha (α) 0.01 0.01 0.01 0.01
Num. of Pts for Gradient 6 6 4 4

Table 4: Training and evaluation Hyper-parameters for each dataset.

D.4 EVALUATION DETAILS

The evaluation of our models was conducted in two stages: (1) computing the test accuracy for each
model after training, and (2) evaluating the conformal prediction (CP) set sizes and coverage over
multiple test splits. The goal was to ensure both accuracy and conformal prediction performance are
consistently reported across randomized trials and test splits. Test Accuracy: For each dataset, the
test accuracy of the trained models was evaluated on the test data, and the results were averaged over
the randomized training trials. CP set sizes To compute the average conformal prediction (CP) set
size, we first combine the holdout calibration and test data. We then randomly split this combined
data into calibration and test portions, repeating the process 10 times. For each split, we apply the
CP THR algorithm with α = 0.01 to compute the prediction set sizes on the test portion, and the
results are averaged across the 10 random splits. The cardinality of each split is consistent with the
dataset configurations outlined in Table 3. This procedure is performed for each trained model, and
the final reported results are averaged across both the training trials and testing splits.

D.5 DIFFERENCES FROM CONFTR REPORTS

We report the performance of Conftr with a batch size of 100 for Fashion-MNIST, as originally
reported by Stutz et al. (2022), selected for optimal performance. While a batch size of 500 yields
smaller set sizes, it results in a slight ( 1%) decrease in accuracy. For completeness, we include
the results for both configurations. Retrieving exact reported set sizes as Stutz et al. (2022):
Our experimental results and trends align with those reported in Stutz et al. (2022). However, the
smaller set sizes for Conftr on MNIST and FMNIST in their paper are likely due to their use
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Model Batch Size Accuracy (Avg ± Std) Set Size (Avg ± Std)

ConfTr 100 0.809± 0.051 3.125± 0.197
ConfTr 500 0.799± 0.065 3.048± 0.201
VR-ConfTr 500 0.839± 0.043 2.795± 0.154

Table 5: Final evaluation results for Fashion-MNIST, showing average accuracy and set size with
their standard deviations (Avg ± Std).

of more advanced/different architectures. Despite this, the overall trends— Conftr outperforming
Baseline, and VR-Conftr outperforming Conftr—remain consistent regardless of the model.
Our focus is on a fair comparison across algorithms by using the same architecture, rather than
reproducing the exact figures or architectures from Stutz et al. (2022).
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E ON THE COMPUTATIONAL COMPLEXITY OF VR-CONFTR .

We will now discuss the computational complexity of VR-ConfTr when compared to ConfTr.
We will argue that the computational complexity of the two algorithms is essentially the same. We
start by breaking down the computational cost of ConfTr and then illustrate the difference with
VR-ConfTr.
Per-step computational complexity of ConfTr. Given a batch and partition B = {Bcal, Bpred},
with |Bcal| = |Bpred| = n, the first step of ConfTr is to compute a sample α quantile τ̂(θ) based
on the calibration batch Bcal = {Xcal

i , Y cal
i }ni=1, which requires the computation of the calibration

batch conformity scores {Eθ(X
cal
i , Y cal

i )}ni=1 and of their α-quantile. At this point, the computation
of the ConfTr gradient is performed computing the gradient of the loss

1

|Bpred|
∑

(x,y)∈Bpred

ℓ(θ, τ̂(θ), x, y). (71)

Note that for each sample (x, y), computing the ConfTr gradient implies computing the following
(equation (8) in the main paper):

∂

∂θ
[ℓ(θ, τ̂(θ), x, y)] =

∂ℓ

∂θ
(θ, τ̂(θ), x, y) +

∂ℓ

∂τ̂
(θ, τ̂(θ), x, y)

∂τ̂

∂θ
(θ). (72)

Note that computing this gradient requires computing (i) the gradients
∂ℓ
∂θ (θ, τ̂(θ), x, y) and ∂ℓ

∂τ (θ, τ̂(θ), x, y) for all samples (x, y) ∈ Bcal, and (ii) the gradient ∂τ̂
∂θ (θ). The

difference in terms of computational complexity between ConfTr and our proposed VR-ConfTr
lies in the computation of estimates of ∂τ

∂θ (θ), which in ConfTr is done via computing the gradient

of τ̂(θ), while in our algorithm is done plugging an improved estimate ∂̂τ
∂θ (θ). We describe the

computational difference between these two approaches in the next paragraph.

Per-step computational complexity of VR-ConfTr. Note that in our proposed algorithm
VR-ConfTr, given a batch B defined as above, we consider the same per-step loss function
of ConfTr of equation (71). However, instead of computing directly the gradient of (71), we

compute separately an estimate ∂̂τ
∂θ (θ) of ∂τ

∂θ (θ) using our novel estimation technique and then

plug this estimate in equation (72) in place of ∂τ̂
∂θ (θ). In the proposed estimator, computing ∂̂τ

∂θ (θ)

equals computing gradients {∂E∂θ (θ, x, y)}(x,y)∈B̄ , where B̄ is the set containing the m samples
whose conformity scores fall within ϵ distance from the sample quantile τ̂(θ), or the m samples
whose conformity scores are the closest to τ̂(θ) in the case of the m-ranking estimator. Note that,
computationally, our algorithm requires computing ∂ℓ

∂θ (θ, τ̂(θ), x, y) and ∂ℓ
∂τ (θ, τ̂(θ), x, y), which

is the same as ConfTr, while we do not need to compute the gradient ∂τ̂
∂θ (θ). Instead, we replace

the computation of the gradient of τ̂(θ) with the computation of an average of m gradients of

conformity scores. Note that, while the computational complexity of our estimate ∂̂τ
∂θ (θ) is clear and

it is m times the complexity of computing ∂E
∂θ (θ, x, y), the computational complexity of computing

∂τ̂
∂θ (θ) depends on the specific technique adopted to compute the gradient of a sample quantile. The
most basic version is the one we discuss in equation (5) in the main paper, which would involve the
computation and average of the gradients of two conformity scores. However, note that in practice
the authors of ConfTr declare that they use smooth sorting to compute the sample quantile τ̂(θ) -
and this is consistent with what we observe in their publicly released code. Crucially, differentiating
a sample quantile obtained via smooth sorting potentially involves the computation of the gradients
of all the samples in the batch Bcal, because smooth sorting - as implemented byStutz et al. (2022)
- creates functional dependencies between the conformity scores of all samples in the calibration
batch. In conclusion, the main computational difference between ConfTr and VR-ConfTr is in
the computation of the estimate of ∂τ

∂θ (θ), which for both of the techniques boils down to computing
and averaging a certain set of conformity scores. This is why we can safely conclude that the
computational complexity of the two algorithms is essentially the same.
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