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ABSTRACT

Vision-language models (VLMs) are widely assumed to exhibit in-context learning
(ICL), a property similar to that of their language-only counterparts. While recent
work suggests VLMs can perform multimodal ICL (MM-ICL), studies show they
often rely on shallow heuristics such as copying or majority voting, rather than
true task understanding. We revisit this assumption by evaluating VLMs under
distribution shifts, where support examples come from a dataset different from the
query. Surprisingly, performance often degrades with more demonstrations, and
models tend to copy answers rather than learn from them. To investigate further,
we propose a new MM-ICL with reasoning pipeline that augments each demonstra-
tion with a generated rationale alongside the answer. We conduct extensive and
comprehensive experiments on both perception- and reasoning-required datasets
with open-source VLMs ranging from 3B to 72B and proprietary models such as
Gemini 2.0 and 2.5. We conduct controlled studies varying shot count, retrieval
method, rationale quality, and distribution. Our results show limited performance
sensitivity across these factors, indicating that current VLMs fail to effectively
utilize demonstration-level information and thus do not inherit the strong few-shot
abilities of large language models (LLMs). We further conduct a mechanistic anal-
ysis showing that VLMs exhibit weak prefix matching and lack induction-head-like
behavior, which potentially explains the failure of MM-ICL.

1 INTRODUCTION

Vision-language models (VLMs), inspired by the success of large language models (LLMs), are
widely believed to exhibit the ability of in-context learning (ICL), i.e., learning from a few examples
provided in the prompt without any parameter updates. This capability has been well-documented in
LLMs (Brown et al., 2020; Wei et al., 2022; Dong et al., 2022; Khattab et al., 2023; Zhou et al., 2023;
Ge et al., 2025), and recent work suggests that VLMs may inherit similar behavior through large-scale
multimodal pretraining (Zong et al., 2024) and are capable of performing multimodal in-context
learning (MM-ICL) (Qin et al., 2024; Baldassini et al., 2024; Awadalla et al., 2023; Bai et al., 2023).
However, several studies (Baldassini et al., 2024; Qin et al., 2024; Chen et al., 2024b) question
whether current VLMs are truly learning from demonstrations. Instead, they find that VLMs often
rely on shallow heuristics such as copying recent similar responses or defaulting to majority-vote
patterns over the demonstrations-rather than acquiring a deeper understanding of the task.

To further probe this issue, we begin by testing under distribution shift, where support and query
examples originate from different datasets. Counterintuitively, we observe that model performance
often plateaus or even degrades as the number of shots increases, despite being given more demon-
strations. This contrasts with the in-distribution case, where performance reliably improves with
more demonstrations. We also find failure cases where the model simply copies answers from the
demonstrations, rather than learning from them. These observations raise a central question: do
VLMs truly learn from in-context demonstrations, or are they just matching superficial patterns?

To explore this question, we propose to evaluate whether VLMs can move beyond surface-level
pattern matching and truly learn from in-context demonstrations in a new setting. Rather than
providing only final answers, we enrich each demonstration with a detailed reasoning process (Jiang
et al., 2025; Wang et al., 2025b; Lu et al., 2024; Hao et al., 2025; Gao et al., 2024; Yang et al.,
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2024; Stefanik and Kadl&ik, 2023), i.e., explicit step-by-step rationales that make the task-solving
strategy clear. By increasing the informational content of each example, we aim to give models a
stronger learning signal and a better chance to internalize the methodology behind the task, rather
than relying on shallow cues. To achieve this, we leverage the capabilities of VLM Reasoners (Shen
et al., 2025; Xu et al., 2024a; Wang et al., 2025a), which inherently generate rationales and answers
simultaneously, to assess whether access to intermediate reasoning steps helps models generalize
more effectively from demonstrations. Our contributions are as follows:

(1) To the best of our knowledge, this paper is the first to study the MM-ICL of VLMs from the lens of
reasoning. Using information-enhanced demonstrations with reasoning components, we benchmark
the MM-ICL capability of modern VLMs and reach conclusions with more solid evidence.

(2) To fairly evaluate MM-ICL for VLM reasoners, we introduce a new MM-ICL with Reasoning
pipeline that resolves a key format mismatch in prior work: instead of supplying only answers in
demonstrations while expecting rationale-plus-answer outputs, we provide demonstrations with both
a Pseudo Reasoning (a generated rationale) and an answer. This consistent support-query format
improves performance across models and datasets over inconsistent ones.

(3) We conduct extensive controlled studies by varying shot count, retrieval method, rationale
quality, and distribution. Our analysis reveals that MM-ICL are largely insensitive to these factors,
showing limited performance variation across different configurations. We reveal a counterintuitive
failure mode showing that current VLMs do not effectively leverage demonstration-level information,
challenging the belief that they inherit few-shot learning abilities from LLMs.

(4) We provide an attention-level perspective, showing that VLMs demonstrate weak prefix matching
and no clear induction-head-like behavior, potentially explaining their limited MM-ICL performance.

2 RELATED WORKS

Multimodal In-Context Learning Large VLMs have the emerging ability to answer an unseen
question or perform a new task without additional training, a capability known as zero-shot learning.
Moreover, researchers have found that these models can often achieve better performance when
multiple demonstrations of solutions to similar tasks are presented to the model before querying the
question (Brown et al., 2020). LLMs have shown strong ICL abilities—learning from demonstrations
without parameter updates (Brown et al., 2020; Wei et al., 2022; Dong et al., 2022). VLMs, built
on LLMs and pretrained on large-scale multimodal data, are believed to inherit similar capabilities.
Recent benchmarks (Zong et al., 2024) and follow-up studies (Qin et al., 2024; Xu et al., 2024b)
have evaluated MM-ICL across tasks and analyzed factors such as retrieval, prompt design, and
modality contributions. However, these efforts assume that VLMs are capable of MM-ICL, without
first establishing whether models actually understand and learn from demonstrations. This motivates
a deeper investigation into what VLMs learn in the MM-ICL setting.

Vision-Language Reasoning Models To enhance reasoning in VLMs, recent work has focused
on post-training techniques and curated datasets. Reinforcement learning (RL)-based approaches,
such as Group Relative Policy Optimization (GRPO), have been applied to improve performance
across tasks like referring expression comprehension and open-vocabulary detection (Shen et al.,
2025; Wang et al., 2025a). In parallel, non-RL strategies—such as preference optimization (Wang
et al., 2024)—have shown success in reducing hallucination and improving multi-step reasoning.
Additionally, structured reasoning datasets like LLaVA-CoT (Xu et al., 2024a) offer a complementary
path by enabling fine-tuning with explicit reasoning supervision. Together, these advances reflect
growing interest in building VLMs that can reason more reliably and systematically.

3 RETHINKING THE SUCCESS OF MULTIMODAL IN-CONTEXT LEARNING
3.1 A CLASSIFICATION OF MM-ICL TASKS

The tasks used for MM-ICL capability benchmarking can be roughly categorized into two categories,
depending on whether the problem is well-defined without demonstrations.

Case I: well-defined tasks without demos: Visual Question Answering (based on common sense or
factual knowledge), Image Captioning, etc. Tasks with solutions uniquely determined by the query.
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Figure 1: Left: Performance difference between ID and OOD using random retriever. Middle:
Performance of different retrieval methods on OK-VQA. ID: OK-VQA as support set. OOD:
TextVQA as support set. We include the unimodal retriever to highlight that the multimodal retriever
achieves the best performance in the ID setting, consistent with Qin et al. (2024). Right: Wrong
answer format directly increases error rate.

Case II: ill-defined tasks without demos: Operator Induction, Open-Ended Object Recognition
(with synthetic category), etc. Tasks are well-defined only when demonstrations of successfully
solved cases are presented (Zong et al., 2024).

Case I Task: Case II Task:

Visual Question Answering

We present examples of Case I/II tasks in Fig. 2.
While both cases have been studied in the MM-
ICL literature, it is less clear how to quantify
whether the model succeeds in learning from .
the demonstration examples for tasks of Case mage Gaptoning
I. Many essential tasks of great practical utility
related to perception or reasoning fall in Case
I. These tasks have instructions that are clear

to understand and follow even when no demon- ___ .
stration is provided, and thus are tractable for Figure 2: Examples from Case I/II tasks. Case II

VLMs to solve in a zero-shot setting to some tasks are ill-defined if no demos are given.
degree. Therefore, it’s natural to raise the question: can ICL #ruly enhance a model’s capability
to solve these tasks as a type of inference-time scaling technique? To answer this question, we
investigate how to benchmark and determine fairly VLMs’ ability to learn from demonstrations in a
multimodal scenario, as a primary focus of this work.

Object Recognition with Synthetic Category
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Caption:
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3.2 A CLOSER LOOK AT A PERFORMANCE GAP

To understand whether VLMs can learn from demonstrations, we begin by exposing them to a more
realistic setting, where the demonstration data originates from a different dataset with a distinct
distribution from that of the queries (Mosbach et al., 2023). Note that this setting closely reflects
the real-world user case of ICL, as it’s often unrealistic to provide highly relevant demonstrations
with ground-truth answers to aid the learning process for entirely new, unseen questions. We denote
this setting as Qut-of-Distribution (OOD), in contrast to the In-Distribution (ID) setting where
we select demonstrations from the training split of the query dataset. We still enforce that the OOD
support set shares the same task type as query data to ensure the evaluation is reasonable.

The primary motivation behind this experiment design is to evaluate whether the model ¢ruly under-
stands how to perform the target tasks better by mastering the methodology behind them, or it only
gains a superficial understanding through memorizing information presented in the demonstrations.
To make an analogy, this setting provides the student (VLM) with a test paper (query data) that
contains problems not merely variants of the questions (OOD support set) it has seen, but can still be
solved using similar methods (same task type).

We consider the task of Visual Question Answering (VQA), a classic problem that falls under Case
I discussed above. We use TextVQA (Singh et al., 2019) and OK-VQA (Reichman et al., 2023)
and evaluate the performance of OpenFlamingo (Awadalla et al., 2023) and IDEFICS2 (Laurengon
et al., 2024). These datasets and models are popular choices for studying MM-ICL in the literature
(Baldassini et al., 2024; Qin et al., 2024). Each model will be asked to answer the question in a
short response with 1-2 words using the instruction prompt "Answer the question using
a single word or phrase." whenever necessary. The accuracy of the response is computed
through exactly matching it to the provided answer candidates. The results are presented in Fig. 1.

We notice an intriguing performance difference between ID and OOD settings (Fig. 1 Left) with the
increase number of shots. We observe that the accuracy of OpenFlamingo monotonically increases
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as the number of shots grows, while such trends are rarely observed in the OOD setting. In the OOD
settings, there is a minimal or no increase in accuracy with more demonstrations. This is rather
counterintuitive since the model was offered with strictly more correct information (though some of
it was less relevant due to OOD); thus, the model should not perform worse than in the zero-shot
setting. Additionally, as shown in Fig. 1 (Middle), retrieval-based methods consistently outperform
random selection in the ID setting, while the opposite holds in the OOD setting. These observations
suggest that the hidden factor that drives the performance gap between ID and OOD cases is not
directly relevant to the model’s capability to solve such tasks.

One possible factor behind this phenomenon is the response format. When presented with ID
demonstrations, the query and support examples share a similar format, making it easier for the model
to pick up and follow the expected answer style. However, when presented with numerous OOD
examples in distinct formats, the model struggles to generalize the formatting instructions, leading to
degraded performance. An example of such an error is presented in Fig. 1 (Right), where a correct
answer from OpenFlamingo is deemed as wrong due to a mismatch of answer formats (two words
instead of one). A similar conclusion is also mentioned in Zong et al. (2024), where an LLM is used
to judge whether a response semantically aligns with the ground-truth answer, instead of relying on
an exact-matching function. Compared to exact-matching, LLM judges are less sensitive to answer
formats and therefore are more robust for accuracy evaluation. Using LLM judges would drastically
reduce the performance gain margin over zero-shot results, supporting our observation that the VLMs
like OpenFlamingo might not learn anything more than formatting from the demonstrations.

We also present examples 0-shot: Passenger x
of success and failure of
MM-ICL n Flg 3 In the R . %) 2-shot (Demo1& Demo2): Bikes v/
presented cases, When the J me 4-shot (include Demo2): Bikes '
query is spuriously COITE-  Q:What is the rack on the  Q: What does the bus carry  Q: What are those baxes 8-Shot (include Demo2): Bikes v
. . . bus used for? n te f it? used for?
lated with image-question  a'Ground fruthy sike A (Ground truth): Passenger A (ground fruthl; Luggage
pairs in demonstrations, the
model latches onto the su-
perficial similarity and di-
rectly copies the support an- : -
swer. In contrast, When o wnat kind of sign s thiss  Q: What kind of sign is this? Q: What kind of train is
. . . A (ground truth): Political A (ground truth): Street in this photo?
an irrelevant example is in- A (ground truth): Freight
cluded, it disrupts this su- Figure 3: Success and failure of MM-ICL with IDEFICS2.
perficial pattern matching, preventing the model from copying and exposing its inability to truly

"learn from" relevant demonstrations to answer the query.
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1-shot (Demo2): Bikes V'

0-shot: Street sign x
1-shot (Demol): Street sign x

2-shot (w/o Demo2): Street sign x
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1-shot (Demo2): Political v/

4 MM-ICL WITH REASONING FOR VISION-LANGUAGE MODELS

While the results presented in Sec. 3.2 are surprising, these experiments would not be enough to claim
anything about whether large VLMs have the true ICL capability for Case I tasks for the following
reasons. First, despite being widely selected as benchmarks for MM-ICL tasks due to their decent
performance, OpenFlamingo and IDEFICIS2 no longer represent the state-of-the-art VLM, thus it
would be biased to draw any conclusions just based on their evaluation performances. Furthermore,
except for the question-answer pair, very limited information is provided during the ICL stage, which
potentially prevents VLMs from extracting deeper, more meaningful information beyond the answer
format and further restricts the performance gain from an increased number of shots.

To address these issues, we propose to benchmark the MM-ICL ability of modern VLMs in a new
setting, where we provide the model with information-enriched demonstrations to maximize the utility
of each example. We achieve such information augmentation by introducing reasoning process into
the demo, and each presented example would contain a detailed step-by-step thinking process instead
of a single answer. By doing so, we lower the bar for models to learn from demonstrations by adding
more explicit information to each support data. We also consider a variety of datasets related to both
general perception and specialized reasoning to make the study more comprehensive and trustworthy.

We focus on evaluating VLMs which has an open-source reasoning variant, such as Qwen2.5-VL (Bai
et al., 2025) and VLM-R1 (Shen et al., 2025), VL-Rethinker (Wang et al., 2025a); InternVL2.5 (Chen
et al., 2024c¢) and InternVL2.5-MPO (Wang et al., 2024); Llama-3.2V (MetaAl, 2024) and LLaVA-
CoT (Xu et al., 2024a). We list the parameter size of each version in Appendix Tab. 5. Through
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Figure 4: Visualization of Full Pipeline for ICL with VLM Reasoner

ICL with Reasoning

enforcing such a pairing relationship, we can better compare the ICL capabilities across models from
a fair perspective. To evaluate the effects of reasoning components on MM-ICL performance, we
consider four different protocols. The prompts for each protocol are depicted in Appendix in Fig. 8.

(1) Base model without reasoning demos. This is the standard setting of MM-ICL, where each
demo is a concatenation of image, question, and ground truth answer.

(2) Reasoning model without reasoning demos. This setting is similar to Protocol (1), and
serves as the standard MM-ICL baseline for reasoning models. As before, the support sample is a
concatenation of image, question, and ground truth answer. The key difference is that the reasoning
model is expected to generate both the final answer and a rationale.

(3) Base model with reasoning demos. This setting evaluates whether providing additional informa-
tion (i.e., ground truth or generated rationales) in the support set helps the model learn from them and
predict the correct answer for the query through ICL. If the dataset includes ground truth rationales,
they are concatenated with the image and question in the support samples.

(4) Reasoning model with reasoning demos. This setting is similar to Protocol (3), except that the
reasoning in the demo needs to be formatted in the same way as the reasoner model is trained. This is
to address the issue of format inconsistency, which is discussed below.

We argue that the standard MM-ICL Protocol (2) for reasoning models introduces a format inconsis-
tency. While reasoning models are trained with interleaved inputs—image, question, rationale, and
answer—the demonstrations in MM-ICL typically include only the answer. In contrast, the model is
expected to generate both the explanation and the answer for the query. This mismatch can lead to
suboptimal performance, e.g., the model may focus solely on developing the answer and ignore the
rationale, resulting in degraded output quality (similar findings in Zheng et al. (2025)) (see Sec. 5.1).

To address this, we newly introduce Protocol (4) for the best practice of MM-ICL with VLM
reasoners, which contains a two-stage process. First, we prompt the model with each support sample
to generate both a rationale (Pseudo Reasoning) and an answer, ensuring consistency with the
expected output format. We then concatenate these generated reasoning-augmented demonstrations
with the original input of each support to form a coherent and format-aligned context for the query.

However, since the generated rationales may vary in quality, we introduce two strategies to improve
reliability: (1) Ground truth rationale reformulation: If ground truth rationales are available, we use
them as input to the model to reformat the rationale into the desired structure (Gold Reasoning). (2)
Correctness-based filtering: We use the correctness of the generated answer as a heuristic to filter out
support samples with misleading rationales. The whole pipeline is illustrated in Fig. 4.

5 EXPERIMENTAL RESULTS

We consider datasets that focus on perception and reasoning in the following experiments.
Perception Datasets. TextVQA (Singh et al., 2019) and OK-VQA (Reichman et al., 2023) focus
on reading text in images and answering commonsense questions, respectively. They use their own
answer matching metrics (e.g., string normalization and consensus-based accuracy) for evaluation.
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Table 1: Comparison of inconsistent and consistent support-query format with VLM reasoners.

. 3
Ablation A-OKVQA ScienceQA M°CoT
1 2 4 8 | 1 2 4 8 | 1 2 4 8
VLM-R1

inconsistent  81.31  81.31 80.44 7939 | 81.71 8195 8131 80.61 | 51.64 5336 5151 50.60
consistent 8245 81.83 8148 81.14 | 8230 8339 8245 8294 | 53.19 53.80 5436 52.89
A +1.14 +0.52 +1.04 +1.75 | 40.59 +144 +1.14 +233 | +1.55 +044 +2.85 +2.29

VL-Rethinker-7B

inconsistent 8576 8524 84.28 83.76 | 89.04 8894 88.89 89.14 | 66.22 67.60 6639 66.82
consistent 8550 8498 8498 85.68 | 90.23 90.23 90.18 90.23 | 68.08 69.15 68.59 68.55
A -026  -026 +0.70 +1.92 | +1.19 +129 +129 +1.09 | +1.86 +1.55 +220 +1.73

LLaVA-CoT

inconsistent  85.85 85.33 8428 83.14 | 91.52 9098 87.65 84.78 | 5526 5142 4426 4228
consistent 86.20 8559 84.54 83.23 | 92.81 9197 91.57 9048 | 54.62 53.62 5229 50.99
A +0.35 +0.26 +0.26 +0.09 | +1.29 +0.99 +3.92 +5.70 | -0.64 +2.20 +8.03 +8.71

Reasoning Datasets. ScienceQA (Lu et al., 2022), A-OKVQA (Schwenk et al., 2022), and
M3CoT (Chen et al., 2024a) target multi-step reasoning. ScienceQA features science questions
accompanied by images and provides expert-written explanations as rationales. A-OKVQA offers cu-
rated natural language rationales aligned with commonsense reasoning. M>2CoT uses chain-of-thought
rationales generated via prompting to guide multi-hop reasoning. We follow the VLMEvalKit (Duan
et al., 2024) setup, which uses GPT-40 mini as a judge to assess answer quality.

For each dataset, we use the training split to construct the support set. The query set is taken from
the test split if ground-truth answers are available; otherwise, we use the validation split. Unless
otherwise specified, we use Protocol (1) for VLM base models and Protocol (4) for VLM reasoners.

5.1 FORMAT ALWAYS MATTERS: A CASE STUDY ON THE FORMAT INCONSISTENCY ISSUE

To assess whether modern VLM still suffer from the mismatch in format of the MM-ICL demon-
strations, we experiment with a reasoning-aware support-query format. Specifically, we compare
two setups: (1) Inconsistent (Protocol (2) in Sec. 4): Each demonstration contains only the final
answer. (2) Consistent (Protocol (4) in Sec. 4): Each demonstration contains the full reasoning
process, including rationale and answer, mirroring the model’s expected generation format.

To ensure a fair comparison, we use Pseudo Reasoning, where the rationale component in each
demonstration is generated by the model itself based on the original support set inputs. This avoids
the need for additional supervision and keeps all settings grounded in the same available information.

Tab. 1 shows results across three reasoning models (VLM-R1, VL-Rethinker-7B, and LLaVA-CoT)
on three benchmarks (A-OKVQA, ScienceQA, M3CoT) under different shots. Consistent formatting
where demonstrations include both rationale and answer consistently outperforms inconsistent
formatting across models and datasets, especially in high-shot settings (e.g., +8.71 on M3CoT with
8 shots using LLaVA-CoT). This suggests that aligning the demonstration format with the model’s
expected output is crucial for effective MM-ICL with reasoning, even for capable model VLMs. We
stick to this consistent formatting pipeline for reasoning models for other experiments.

5.2 DOES MM-ICL wiTH REASONING HELP? ZERO-SHOT VS. FEW-SHOT

With the best practice for MM-ICL with VLM reasoners established, we now proceed to determine
whether VLMs can successfully perform MM-ICL with information-enriched demos. We present
the results in Tab. 2 and Tab. 3, and more in Appendix (full results in Tab. 11, Tab. 12 and results on
ICL-tuned models in Tab. 10). As evident from the tables, in the majority of cases, MM-ICL with
a few demonstrations does not exceed the performance when no demonstrations are presented. An
improvement is observed in some rare cases, while the performance gain is often minimal. These
results suggest that current VLMs/VLM reasoners indeed can barely learn from demonstration
data even if the presented example data is ID. This demonstrates an essential weakness of current
VLMs compared to their language-only counterparts, where ICL is often considered to be widely
capable and beneficial (Baldassini et al., 2024; Qin et al., 2024).

The failure of VLMs in MM-ICL could stem from two factors: 1) the models lack the ability to
learn from demonstrations, 2) the support rationales themselves are of low quality and therefore
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Table 3: Reasoning datasets accuracy across models and shots. Higher accuracy between 0-shot and
best few(1,2,4,8)-shot performance within the same model is bolded.

: 3
Models A-OKVQA ScienceQA M°CoT

0-shot  best few-shot  0-shot best few-shot 0-shot  best few-shot
Qwen2.5-VL-3B-Instruct 85.41 82.01 81.61 81.11 51.77 51.34
VLM-RI 85.07 82.45 82.30 83.39 53.11 54.36
Qwen2.5-VL-7B-Instruct 88.56 88.65 88.99 87.65 63.03 60.53
VL-Rethinker-7B 85.68 85.68 89.64 90.23 67.90 69.15
Qwen2.5-VL-72B-Instruct 91.44 91.18 91.18 91.57 70.23 70.02
VL-Rethinker-72B 88.82 89.34 94.40 93.75 74.85 76.40
Llama-3.2-11B-Vision-Instruct ~ 84.02 84.02 83.99 84.43 42.45 43.74
LLaVA-CoT 87.42 86.20 94.55 92.81 56.26 54.62
InternVL2.5-4B 85.85 84.37 97.17 96.43 55.74 54.44
InternVL2.5-4B-MPO 84.89 83.58 97.32 96.88 64.50 58.54
InternVL2.5-8B 87.42 86.90 98.07 97.77 62.42 59.92
InternVL2.5-8B-MPO 87.25 86.03 98.56 98.22 73.51 68.98
Gemini 2.0 Flash-non-thinking ~ 89.52 90.04 88.00 89.69 62.51 64.28
Gemini 2.0 Flash-thinking 91.27 90.66 91.47 92.46 71.40 74.68
Gemini 2.5 Flash-non-thinking ~ 90.04 90.22 93.85 74.52 74.59 55.31
Gemini 2.5 Flash-thinking 90.39 90.48 95.14 95.19 72.48 72.00

uninformative. To reduce the possibility of 2), we enhance the rational capability by filtering incorrect
samples and injecting ground-truth rationales, as shown in Tab. 4 (full tables in the Appendix).

We found that improving rationale Typle 2: Perception datasets accuracy across models and

quality, either by filtering out in- gpoq Best values across shots in bold.
correct support samples or inject-

ing ground truth ratlopale, does not ool TextVOA OK.VOA
COHSIStently lead to 1mproved per- 0-shot  best few-shot ~ 0-shot  best few-shot
formance. In several cases, apply- 5 o SV 3B mstruct 79.13 78.70 54.09 56.63
ing filters to remove incorrect sam-  VLM-RI 74.87 74.54 40.00 42.97
ples slightly degrades performance.  Qwen2.5-VL-7B-Instruct 85.39 84.79 58.74 62.68
One possible reason behind the perfor— VL-Rethinker-7B 76.46 73.01 3243 30.14
3 : _ Llama-3.2-11B-Vision-Instruct ~ 53.87 74.63 20.05 44.03
mance drop is that .the ﬁltenng opera LLaVA-CoT 72.85 74.39 48.91 47.46
tion causes a reduction in support sam-
A . InternVL2.5-4B 78.68 78.88 49.88 54.79
ple diversity and coverage, suggesting  InterVL.2.5-4B-MPO 72.85 72.90 212 42.55
that support set sufficiency and diver- “yemvizsss 79.03 78.73 57.20 59.62
sity may play a more critical role than InternVL2.5-8B-MPO 73.36 73.67 44.49 49.01
the information quality for the current ~ Gemini 2.0 Flash-non-thinking ~ 77.13 78.53 40.47 50.49
VLMs (Zhang et al., 2022; Qin et al Gemini 2.0 Flash-thinking 77.87 76.64 41.17 43.63
- ; "

2024). This implies that the evaluated VLMs are insensitive to the information quality in the demos,
further reinforcing the conclusion that VLM still lack true MM-ICL capabilities to effectively
learning from demonstration data.

Table 4: Comparison of the Quality of the Rationales. Filter: filter out the incorrect support samples.
gt R: add ground truth rationale as the input for support set reasoning generation.

. 3
Ablation A-OKVQA ScienceQA M°CoT
1 2 4 8 | 1 2 4 8 | 1 2 4 8
VL-Rethinker-7B
baseline 8550 84.98 8498 85.68 | 90.23 90.23 90.18 90.23 | 68.08 69.15 68.59 68.55
+ilter -0.35  +0.17 4043 -0.61 | -049 -0.05 +0.00 -049 | -0.18 -0.17 +0.52 -0.65
+gtR +0.35 +043 +0.17 +0.35 | -0.10 -044 +030 +0.15 | -095 -142 -026 +0.00

+gtR & filter  -0.35  +1.05 +0:96 -0.09 | -049 -049 +0.20 +0:35 +0.04 -0.82 +1.38 -0.99
InternVL2_5-8B-MPO

baseline 86.03 84.89 8454 8192 | 98.07 9822 9757 9648 | 6898 67.56 6596 63.37
+ilter +1.13 +0.61 +0.26 +1.84 | -0.10 -0.10 -0.10 -0.10 | -0.04 +0.69 -0.21 -2.41
+gtR +0.78 +1.05 +0.09 +1.92 | -0.05 -0.10 -0.25 +0.35 | +0.99 +0.00 +1.43 +0.39

+gtR & filter  +0.52  +0.52 +0.61 +2.18 | +0.00 -0.65 -025 -0.05 | -0.04 +0.56 +0.48 +0.00
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Figure 6: Performance difference between OOD and ID on ScienceQA and A-OKVQA
5.3 ASSESSING THE ROLE OF RETRIEVER METHODS

In Fig. 5, we compare the performance of the multimodal retriever (MM-retriever, details in App. A)
against random selection. For base models, MM-retriever improves performance on M3CoT, Sci-
enceQA and OK-VQA—suggesting that simple retrieval based on input similarity can be beneficial
when no rationales are involved in the context. However, for reasoning models, MM-retriever
consistently underperforms compared to random selection, especially on reasoning-intensive datasets.

Prior work has suggested that in-context learning often operates via majority voting or pattern
matching over the demonstrations (Baldassini et al., 2024; Qin et al., 2024). In base models without
explicit reasoning, retrieving demonstrations with similar inputs (e.g., similar image-question pairs)
often yields support examples with highly similar answers. This facilitates a form of shallow copying,
where the model infers the correct answer by identifying consistent patterns across demonstrations
and can easily mimic the format or final answer from them, which outperforms random sampling,
where the patterns of support and query samples are usually different.

However, for reasoning-augmented models, this heuristic breaks down. Even when the input similarity
is high, the corresponding rationales can be diverse in content, structure, and logic chain. Because
MM -retriever selects support examples based solely on input similarity (image and question), it
does not account for whether the reasoning paths in the retrieved examples are consistent or relevant
to the current query. As a result, the retrieved demonstrations may not form a coherent support
set, making it harder for the model to extract useful patterns. In contrast, random sampling may
introduce a more diverse set of rationales (Zhang et al., 2022), which while not tailored, can better
expose the model to varied reasoning styles and prevent overfitting to a specific (and possibly
irrelevant) reasoning trajectory. This may explain why MM-retriever underperforms random sampling
in reasoning-intensive MM-ICL settings, despite its advantage in more shallow or pattern-based tasks.

5.4 1D VERSUS OOD WITH MODERN VLMs

To echo our original motivation and experiments in Sec. 3.2, we also benchmark the performances of
MM-ICL with ID and OOD support sets on ScienceQA and A-OKVQA and summarize the results in
Fig. 6. Unlike OpenFlamingo on TextVQA/OK-VQA, we notice a mixed trend across the number
of shots between each model. We observe that for modern VLMs, when presented with the same
number of demonstrations, it’s possible that the OOD setting wins over the ID setting, regardless of
datasets or models. This is possibly because, after we removed the format inconsistency, capable
VLM/VLM reasoners are no longer easily misled by the answer format in the demos. With the use of
LLM judges as answer evaluators, the conjectured performance gap between ID and OOD is further
narrowed. However, we want to emphasize that these results do not imply the success of MM-ICL,
since most of these few-shot results can’t even match zero-shot performance. Interestingly, we also
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Figure 7: Prefix matching score heatmaps for LLaMA-3.1-8B-Instruct, LLaMA-3.2-11B-Vision-
Instruct, Qwen2.5-7B-Instruct and Qwen2.5-VL-7B-Instruct.

notice that the winner of this duel between OOD and ID tends to be consistent among different
shots, as well as among models of the same type. For example, on A-OKVQA, Qwen2.5-VL-3B
consistently performs better with OOD demos, and its reasoner variant VLM-R1 also inherits this
ability. A similar phenomenon is observed for the pair of Llama-3.2V-11B and LLaVA-CoT on both
datasets. This further suggests that the MM-ICL capability of a VLM, including its robustness to
OOD support data, is not significantly impacted during the RL training for reasoning.

6 WHY MM-ICL FALLS SHORT: AN ATTENTION-LEVEL PERSPECTIVE

To better understand why MM-ICL underperforms compared to its language-only counterpart, we
examine the underlying attention mechanisms that enable ICL. Olsson et al. (2022) demonstrated
that in LLMs, induction heads are specialized attention heads that appear to be the primary source
of ICL. These heads operate by attending from the second occurrence of a token back to its earlier
occurrence and then boosting the probability of the token that followed, allowing models to exploit
repeated structures in context. To measure this effect for VLMs, we adopt the prefix matching
protocol following Crosbie and Shutova (2025): we generate a sequence of 50 random tokens,
excluding the most and least common tokens, repeat this sequence four times, and prepend a start-of-
sequence token. We then compute the attention pattern and define the prefix matching score as the
average attention mass from a given token back to the tokens that preceded it in earlier repeats. For
VLMs, we adapt this setup by repeating the image and interleaving it with the text, and calculate the
prefix matching scores for all image and text tokens, respectively. In Fig. 7, we found that LLMs
exhibit a noticeable band of heads with high prefix scores. In contrast, its VLM counterparts exhibit
lower prefix scores, indicating a weakening of the induction heads. Moreover, within VLMs, prefix
matching is substantially stronger for text tokens (e.g., 0.937 for Llama-3.2-11B-V and 0.979 for
Qwen2.5-VL-7B) than for image tokens (0.612 and 0.600), highlighting that image representations
are especially deficient in supporting induction-like behavior. This gap potentially explains why
MM-ICL falls short: VLMs struggle with prefix matching and therefore fail to leverage repeated
multimodal demonstrations in the way LLMs do with text, thus cannot reliably exploit even basic
patterns, let alone reasoning. Our results point to a deeper architectural limitation and suggest that
extending induction-like mechanisms into multimodal attention may be crucial for robust MM-ICL.

7 CONCLUSION, LIMITATIONS AND FUTURE DIRECTION

Our study revisits the assumption that VLMs perform genuine MM-ICL. Under varying conditions
and distribution shifts, we find that current VLMs often fail to utilize demonstrations meaningfully,
relying instead on shallow cues. Our proposed MM-ICL with reasoning pipeline provides a stronger
testbed; however, models exhibit limited sensitivity to shot count, retrieval method, and rationale
quality. We further provide explanation by showing that weak prefix matching and absent induction
heads underlie MM-ICL failure. Limitations and future directions. We focus on diagnosing
MM-ICL weaknesses in VLMs without proposing architectural or training interventions. Future work
could investigate architectural and scaling factors that enable induction-head-like mechanisms to
emerge in multimodal settings, which may ultimately strengthen their ability to perform MM-ICL.
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A  MULTIMODAL IN-CONTEXT LEARNING

Format of MM-ICL. We denote the input quest g from a query set Q, with an image component I,
and a question/instruction T,. So we write ¢ = (I, Ty;). For each query g, we define the associated
context prompt Cy, consisting of N demonstration examples from the support set S using an example
selection protocol, defined as Cy = Retriever(S,N,q).

Each demonstration example includes image [;, instruction 7; and the response/answer R;. For
notation compactness, we write Cy; = {(I;, T;, R;) }s=1,... n. We generate a response R, to each
query q using pre-trained VLMs as R, = VLM([psys, Order(Cy), Dinstruct, q]) , Where pgys is a
system prompt that assigns personas or instructions so that the model generates responses in an
intended format, Order is a function that determines the sequential order of each demonstration
example showing up in the model input, and pj,st,uct 1S an additional, optional instruction prompt
such as Chain-of-Thoughts (CoT) prompt (Wei et al., 2023). Researchers have found that the result
of ICL is sensitive to the choice of psys, Order, and pingtruct, S0 wWe include them in the algorithmic
framework of MM-ICL (Lu et al., 2021; Wu et al., 2022; Xiang et al., 2024; Qin et al., 2023).

Design of Retriever. A naive choice for the demonstration selection protocol is to choose the
examples uniformly at random from the support set S. While this avoids the risk of introducing bias
into ICL, it also does not maximize the potential performance gain from this process by choosing
specialized examples for different queries.

A common improvement over the random selection protocol is similarity-based retrievers, which
score each data point in S by evaluating their similarity to the query and extract the most relevant
ones. This procedure can be formally defined as the following: We start by defining a representation
h; for each text-image pair (I;, T;, R;) as h; = Encoder(I;, T;, R;). The common choice in the
literature is often to use unimodal encoders to embed images I; and texts 7; separately using models
(Baldassini et al., 2024; Yang et al., 2022), and then combine them for final similarity computation.
While, in principle, such a procedure incorporates information from both modalities, it overlooks
the modality interaction that is crucial for selecting relevant examples, which potentially leads to
suboptimal performance compared to using multimodal encoders (Xu et al., 2024b). Therefore, we
utilize similarity-based retrievers with representations obtained from multimodal encoders to achieve
a more competitive performance.

B PROMPT FORMAT FOR EACH MM-ICL PrROTOCOL

(1) Base Model w/o Reasoning Demos (2) Reasoning Model w/o Reasoning Demos
&l System: [Task Description] &l System: [Task Description]

4 User: [Support Image] [Support Question] 4 User: [Support Image] [Support Question]
@ Assistant: [Support Answer (GT)] @ Assistant: [Support Answer (GT)]

i User: [Query Image] [Query Question] i User: [Query Image] [Query Question]

@ Assistant: [Query Answer (Generated)] @ Assistant: [Query Reasoning (Generated)]

3) Base Model w/ Reasoning Demos
System: [Task Description]
i User: [Support Image] [Support Question]
[Support Reasoning (GT)]
@ Assistant: [Support Answer (GT)]
i User : [Query Image] [Query Question]
@ Assistant: [Query Answer (Generated)]

(4) Reasoning Model w/ Reasoning Demos
System: [Task Description]
i User: [Support Image] [Support Question]
@ Assistant: [Support Reasoning (Pseudo / Gold / GT)]
i User: [Query Image] [Query Question]
@ Assistant: [Query Reasoning (Generated)]

Figure 8: Prompt format for each MM-ICL protocol. GT stands for ground truth.
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C MODEL SIZE

Table 5: VLMs and their associated reasoner version used in the evaluation.

Base Model  Size Reasoning Model
3B VLM-R1
Qwen2.5-VL 98 VL Rethinker 7B
72B VL-Rethinker 72B
InternVL 2.5 4B InternVL 2.5-4B-MPO
8B  InternVL 2.5-8B-MPO
Llama-3.2V  11B LLaVA-CoT

D ADDITIONAL RESULTS ON ID v.Ss. OOD FoOR IDEFICS2 AND

QWEN2.5-VL-3B-INSTRUCT

In Sec. 3.2, we present the results of MM-ICL for OpenFlamingo on TextVQA and OK-VQA for
both In-Distribution (ID) and Out-of-Distribution (OOD) settings. Here, we include additional results
for the same experiment setting, except for using IDEFICS2-8B and Qwen2.5-VL-3B-Instruct. The
results for IDEFICS2-8B are presented in Tab. 6 and the results for Qwen2.5-VL-3B-Instruct are

presented in Tab. 7.

Table 6: IDEFICS2-8B. Best values across shots are marked in bold.

Query Dataset  Support Dataset Method 0-shot  1-shot 2-shot 4-shot 8-shot 16-shot
TextVQA Random 64.62 6687 67.00 67.77 68.37 67.54
x MM-Retriever 64.62 6438  63.83 64.18  65.86 65.94
TextVQA
OK-VQA Random 64.62 67.13 67.57 6840 68.50 68.61
MM-Retriever 64.62 6690 67.81 68.60 69.11 69.02
OK-VQA Random 56.48 56.72 56.81 5736 57.75 57.99
OK-VQA MM-Retriever 5648  55.75 56.08 55.66 57.65 59.52
TextVQA Random 56.48 56.02 55.88 56.17 56.23 56.51
MM-Retriever 56.48 5595 5560 56.26 56.12 56.22
Table 7: Qwen2.5-VL-3B-Instruct. Best values across shots are marked in bold.
Query Dataset  Support Dataset Method 0-shot  1-shot 2-shot 4-shot 8-shot 16-shot 32-shot

TextVOA Random 79.13 7870 7858  78.09  77.80 78.06 77.92
extVQ MM-Retriever 79.13  76.49 7644 7656 76.42 76.23 76.40

TextVQA
OKVQA Random 79.13 7858 7792 7791 77.66 77.38 76.85
MM-Retriever 79.13  76.20 75.84 7573  75.63 75.47 75.08
OK-VQA Random 54.09 56.63 56.54 5570 55.67 5491 55.36
] MM-Retriever  54.09  56.37 57.78 57.87  58.27 58.78 59.13

OK-VQA
TextVQA Random 54.09 5490 53.63 5358 5335 53.33 52.75
X MM-Retriever 54.09 50.60 50.57 49.62  49.20 48.51 48.57

We see that more modern VLMs like Qwen2.5-VL barely benefit from MM-ICL as its zero-shot
performance surpasses other settings in most cases. This suggests that capable VLMs can perform
instruction-following well, often without the need for demonstration examples, and succeed in a
zero-shot setting. However, it also indicates that VLMs fail to learn effectively from the demonstration
examples, since the accuracy does not increase as the number of shots grows. For Qwen2.5-VL-
3B-Instruct, we also observe that the performance difference between ID and OOD settings is quite
minimal when using a random retriever for both datasets, which is well aligned with our hypothesis
that the performance decrease in OOD for OpenFlamingo is merely due to model incapability and
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answer format mismatch. Again, due to the strong answer formatting capability, Qwen2.5-VL-3B
Instruct no longer suffers from the issue mentioned above, showing no significant performance
difference between ID and OOD scenarios.

E ADDITIONAL RESULTS ON QUALITY OF RATIONALES

We have demonstrated in Sec. 5.2 that the quality of reasoning rationales does not have a significant
impact on the evaluation results of VLM reasoners by presenting results on VL-Rethinker-7B and
InternVL2.5-8B-MPO. Here, to further enhance the conclusion we draw and verify that it’s universal
across VLM reasoners, we present results on other VLM reasoners in Tab. 8. For other models, we
also observe a similar phenomenon, where the correctness of reasoning doesn’t play an important
role in determining the model’s performance through MM-ICL. This accords with our evaluation that
modern VLM reasoners do not perform true MM-ICL by learning from the demonstration examples
as the example quality seems to be an irrelevant factor in the evaluation.

To show that this is not a special problem for VLM reasoners only, but rather a general problem of
modern VLMs, we perform additional evaluations to assess the effects of the quality of rationales for
VLM base models. We present the results in Tab. 9. Here, for VLM base models, we adopt protocol
3 when using ground truth rationales and protocol 1 when not using them. For VLM reasoners,
we always adopt protocol 4, with Gold Reasoning (ground truth rationale formatted in model’s
output format) when ground truth rationale is feasible, and Pseudo Reasoning when it’s not. We
see that regardless of whether ground truth rationales are incorporated, VLM base models do not
enjoy performance gains from performing MM-ICL, given that zero-shot performances are mostly
the best among all the presented accuracy numbers. This agrees with our findings on VLM reasoners,
suggesting again that the failure of VLMs to perform true MM-ICL exists quite generally among
modern VLMs.

Table 8: Comparison of the Quality of the Rationales. Filter: filter out the incorrect support samples.
gt R: add ground truth rationale as the input for support set reasoning generation.

. 3
Ablation A-OKVQA ScienceQA M°’CoT
1 2 4 8 1 2 4 8 1 2 4 8
VLM-R1
baseline 8245 81.83 81.48 81.14 8230 8339 8245 8294 53.19 5380 5436 52.89
+ilter +1.13  +0.88 -0.08 -0.27 -0.15 -1.44 -0.15 -049 -1.51 +0.04 -147 +0.30
+gtR -044  +035 +40.62 -0.00 +40.60 -0.35 -0.10 -0.29 +043 -0.00 +0.56 +1.29

+gtR & filter  +1.31 +1.23  +0.79 +043 -0.05 -0.30 +0.59 -0.89 +0.43 +0.77 -095 +1.94
VL-Rethinker-7B

baseline 85.50 8498 8498 8568 90.23 90.23 90.18 90.23 68.08 69.15 6859 68.55
+filter -0.35 +0.17 4043 -0.61 -049 -0.05 +0.00 -049 -0.18 -0.17 +0.52 -0.65
+gtR +0.35 +043 +0.17 +0.35 -0.10 -044 4030 +0.15 -095 -142 -026 +0.00
+gtR & filter -0.35 +1.05 +096 -0.09 -049 -049 +0.20 +0.35 +0.04 -0.82 +1.38 -0.99
LLaVA-CoT
baseline 8620 85.59 84.54 83.23 9281 9197 91.57 9048 54.62 53.62 5229 50.99
+filter -1.31  -0.70 +40.09 +0.87 -0.64 +0.05 +0.70 +0.10 -0.44 +0.39 +0.47 +0.82
+gtR -0.79 -0.87 +0.44 +0.18 +0.70 +0.15 +0.05 +0.84 -0.74 -0.77 -0.05 -0.21

+gt R, filter -1.31 -0.87 +149 +1.22 +0.50 -035 -025 +0.55 +1.07 +1.21 +1.38 +1.51
InternVL2.5-4B-MPO

baseline 83.58 8140 8236 8253 96.78 9648 96.88 9593 5854 5565 5522 57.08
+Hilter +0.09 +297 +1.40 +1.14 -0.15 +030 -045 +030 +3.02 +7.25 +6.60 +5.13
+gtR -026  -0.70 -2.19 -209 -035 +040 -0.55 +0.05 +2.85 +3.84 +1.51 -1.77

+gtR & filter -0.09 -2.01 -227 -3.67 -0.15 -0.10 -030 -0.05 4259 +3.67 +2.03 -1.60
InternVL2.5-8B-MPO

baseline 86.03 84.80 8454 8192 98.07 9822 97.57 9648 6898 67.56 6596 63.37
+ilter +1.13  +0.61 +0.26 +1.84 -0.10 -0.10 -0.10 -0.10 -0.04 +0.69 -021 -241
+gtR +0.78 +1.05 +0.09 +192 -005 -0.10 -025 +035 +0.99 -0.00 +143 +0.39

+gtR & filter  +0.52 +0.52 +0.61 +2.18 -0.00 -0.65 -025 -0.05 -0.04 +0.56 +0.48 +0.00
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Table 9: Effects of Ground Truth Rationale in MM-ICL of VLMs for Reasoning datasets. Best values
across shots with or without ground truth rationales is in bold.

3 Py,
Model A-OKVQA ScienceQA M?CoT
0 1 2 4 8 0 1 2 4 8 0 1 2 4 8
Qwen2.5-VL-3B-Instruct 8541 82.01 80.26 8096 78.17 81.61 81.11 80.61 80.61 81.06 51.77 5134 5134 50.78 50.86
+ ground truth rationale 81.31 8227 80.00 79.30 81.11 80.86 81.11 81.06 5091 5134 52,07 51.25
VLM-RI 85.07 8245 8183 8148 81.14 8230 8230 8339 8245 8294 53.11 53.19 5380 5436 52.89
+ ground truth rationale 82.01 82.18 82.10 81.14 8290 83.04 8235 82.65 53.62 53.80 5492 54.18
Qwen2.5-VL-7B-Instruct 88.56 88.65 87.86 87.77 88.03 88.99 86.71 87.65 86.56 86.86 63.03 6040 60.05 6022 60.53
+ ground truth rationale 88.12 88.38 87.60 87.51 86.02 8691 86.42 8691 61.09 60.70 6135 60.87
VL-Rethinker-7B 85.68 8550 84.98 8498 85.68 89.64 90.23 90.23 90.18 9023 67.90 68.08 69.15 6859 68.55
+ ground truth rationale 8585 8541 8515 86.03 90.13 89.79 90.48 90.38 67.13 6773 68.33 68.55
Llama-3.2-11B-Vision-Instruct  84.02 84.02 83.49 83.58 82.71 8399 82.85 8443 84.13 83.64 4245 4275 4374 4258 4249
+ ground truth rationale 83.32 83.84 8323 83.67 8493 85.13 84.18 83.79 4443 4297 4258 42.15
LLaVA-CoT 87.42 86.20 8559 84.54 8323 9455 9281 9197 91.57 9048 56.26 54.62 53.62 5229 50.99
+ ground truth rationale 8541 8472 8498 8341 9351 92.12 91.62 91.32 53.88 52.85 5224 50.78
InternVL2.5-4B 85.85 84.37 84.02 8376 8349 9717 96.28 9643 9593 9554 55.74 5427 5380 5397 5444
+ ground truth rationale 8445 84.19 8253 83.14 96.53 96.68 96.53 95.49 54.62 54.62 5431 54.83
InternVL2.5-4B-MPO 84.89 83.58 8140 8236 8253 97.32 96.78 9648 96.88 9593 64.50 58.54 55.65 5522 57.08
+ ground truth rationale 83.32 80.70 80.17 80.44 96.43 96.88 9633 9598 61.39 5949 56.73 5531
InternVL2.5-8B 87.42 8690 8498 8576 8576 98.07 97.77 97.72 97.17 96.08 6242 59.92 59.75 5846 57.42
+ ground truth rationale 86.90 86.03 8594 84.72 97.82 9757 9732 9643 59.36 5893 58.63 58.54
InternVL2.5-8B-MPO 8725 86.03 84.89 84.54 8192 9856 98.07 9822 9757 96.48 73.51 6898 67.56 6596 63.37
+ ground truth rationale 86.81 8594 84.63 83.84 98.02 98.12 97.32 96.83 69.97 67.56 67.39 63.76

F ADDITIONAL RESULTS ON ICL-TUNED MODELS

In the main paper, we primarily focus on recent VLMs and VLM reasoners, as these models are
expected to possess general in-context learning capabilities. In the Appendix, we also benchmark
the performance of Otter (Li et al., 2023b;a) and MMICL (Zhao et al., 2023), which have explored
Multimodal In-Context Instruction Tuning specifically to enhance ICL capabilities, and present the
results in the table below. Similar to other models studied in this work, Otter and MMICL exhibit
the same performance pattern, where they tend to underperform as the number of demonstrations
increases. This suggests that the incapability of VLM to truly learning from the context potentially
originates from some deeper, more fundamental aspects of VLM, and can’t be simply fixed with
instruction-tuning datasets.

Table 10: Results on A-OKVQA, ScienceQA, and M3CoT with ICL-Tuned Models.

A-OKVQA
Model 0-shot 1-shot 2-shot 4-shot 8-shot Best few-shot
Otter 60.26 59.21 5939 59.65 59.21 59.65
Otter (w/ gt rationale) 60.26 61.05 61.14 60.35 60.00 61.14
MMICL 76.24  69.34 7528 7642 24.10 76.42
MMICL (w/ gt rationale)  76.24 7127 7240 22.62 24.54 72.40
ScienceQA
Model 0-shot 1-shot 2-shot 4-shot 8-shot Best few-shot
Otter 65.25 6420 6148 61.33 61.23 64.20
Otter (w/ gt rationale) 6525 6287 6331 63.01 60.49 63.31
MMICL 7630 7129 69.16 43.13 30.74 71.29
MMICL (w/ gt rationale) 76.30  68.77 55.03 29.85 28.46 68.77
M3CoT
Model 0-shot 1-shot 2-shot 4-shot 8-shot Best few-shot
Otter 3512 3438 3335 32.01 3395 34.38
Otter (w/ gt rationale) 35.12 3486 33.78 3221 31.17 34.86
MMICL 39.99 3443 3689 3641 2593 36.89
MMICL (w/ gt rationale)  39.99  32.53 2627 2627 25.75 32.53

G RESULTS ON GENERAL AND REASONING DATASET

In this section, we present full results for the model used in evaluations on all five datasets, across
different settings. The results on general datasets can be found in Tab. 11, and the results on reasoning
datasets can be found in Tab. 12.
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Note that we also include Gemini 2.0/2.5 Flash, closed-source, commercial-grade models. We
use the Gemini 2.5 Flash native non-thinking and thinking components by setting the thinking
budget to zero and non-zero. Both Gemini 2.0 Flash (non-thinking) and Gemini 2.0 Flash (thinking)
use the same underlying model, but differ in prompting protocols—(1) and (4), respectively. For
protocol (1), we use the prompt "Answer the question directly." For protocol (4), we
use the prompt "Give step-by-step reasoning before you answer, and when
you’ re ready to answer, please use the format Final answer: oWt
for both the Support Pseudo Reasoning generation/demonstrations and the query in MM-ICL.
Overall, our conclusions also generalize well to proprietary models such as Gemini 2.0 and Gemini
2.5. As can be seen from the tables, as the number of demonstrations presented increases, the
performance gain is minimal in most cases, which is consistent with our observations on the
open-sourced VLM/VLM-reasoners. Similarly, we have also observed a performance degradation
of Gemini when more demos are presented, highlighting again that modern VLM’s failure of truly
learning from the context is quite universal. For example, on M3CoT, the performance of Gemini 2.5
Flash drops from 74.59/72.48 to 55.31/72.00. These counterintuitive results agree with our findings
that VLM lacks true ICL capabilities.

Table 11: Accuracy across models and shots for general datasets. Best values across shots are bolded.
Best values across few-shots are underlined.

Model TextVQA OK-VQA
0 1 2 4 8 0 1 2 4 8
Qwen2.5-VL-3B-Instruct 79.13 7870 78.58 78.09 77.80 54.09 56.63 56.54 5570 55.67
VLM-RI 74.87 7429 7433 7454 7342 4000 41.59 4297 4295 4245
Qwen2.5-VL-7B-Instruct 8539 8479 8445 84.09 84.12 5874 6233 62.68 6249 62.33
VL-Rethinker-7B 7646 73.01 7238 72.04 7232 3243 30.14 2937 29.04 28.86
Llama-3.2-11B-Vision-Instruct 53.87 74.52 74.63 7443 73.83 2005 3749 40.05 42.89 44.03
LLaVA-CoT 7285 7439 7404 7439 7296 4891 4746 4695 4633 4561
InternVL2.5-4B 78.68 78.88 78.53 7777 7739 49.88 54.68 5479 5441 53.63
InternVL2.5-4B-MPO 7285 7290 7278 71.64 TI51 4212 4185 4255 41.54 42.05
InternVL2.5-8B 7903 7873 78.61 7845 77.65 5720 59.62 59.13 5830 57.51
InternVL2.5-8B-MPO 7336 73.67 7337 247 73.03 4449 4811 49.01 4851 47.98
Gemini 2.0 Flash-non-thinking  77.13  72.09 74.86 77.48 78.53 4047 45.12 47.54 4949 50.49
Gemini 2.0 Flash-thinking 77.87 7165 7511 7577 7664 41.17 43.63 42.83 43.14 42.64

Table 12: Accuracy across models and shots for reasoning datasets. Best values across shots are
bolded. Best values across few-shots are underlined.

- i 3

Model A-OKVQA ScienceQA M°CoT
0 1 2 4 8 0 1 2 4 8 0 1 2 4 8

Qwen?2.5-VL-3B-Instruct 8541 82.01 8026 8096 78.17 81.61 81.11 80.61 80.61 81.06 51.77 51.34 5134 50.78 50.86
VLM-R1 85.07 8245 81.83 8148 8l1.14 8230 8230 8339 8245 8294 53.11 5319 53.80 5436 52.89
Qwen2.5-VL-7B-Instruct 88.56 88.65 87.86 87.77 88.03 8899 86.71 87.65 86.56 86.86 63.03 6040 60.05 6022 60.53
VL-Rethinker-7B 85.68 85.50 8498 8498 85.68 89.64 90.23 90.23 90.18 90.23 67.90 68.08 69.15 68.59 68.55
Qwen2.5-VL-72B-Instruct 9144 91.18 90.83 91.18 90.39 91.18 91.18 9147 91.57 91.57 7023 6894 6890 70.02 68.42
VL-Rethinker-72B 88.82 89.34 89.17 89.17 8830 9440 93.75 93.06 93.16 9341 7485 76.19 7636 7632 7640
Llama-3.2-11B-Vision-Instruct  84.02 84.02 83.49 8358 8271 8399 8285 8443 8413 83.64 4245 4275 4374 4258 4249
LLaVA-CoT 8742 86.20 8559 84.54 8323 9455 92.81 9197 91.57 9048 56.26 54.62 53.62 5229 50.99
InternVL2.5-4B 8585 84.37 84.02 8376 8349 97.17 9628 96.43 9593 9554 5574 5427 5380 5397 5444
InternVL2.5-4B-MPO 84.89 83.58 8140 8236 8253 9732 96.78 9648 96.88 9593 64.50 58.54 55.65 5522 57.08
InternVL2.5-8B 8742 8690 8498 8576 8576 98.07 97.77 97.72 97.17 96.08 6242 59.92 59.75 5846 57.42
InternVL2.5-8B-MPO 87.25 86.03 84.89 84.54 8192 9856 98.07 9822 97.57 9648 73.51 6898 67.56 6596 63.37
Gemini 2.0 Flash-non-thinking  89.52 89.08 89.52 90.04 89.78 88.00 8830 88.80 88.75 89.69 62.51 62.08 64.19 64.11 64.28
Gemini 2.0 Flash-thinking 91.27 89.96 89.52 90.66 90.39 91.47 92.07 92.17 9246 9246 7140 73.64 7394 73.77 74.68
Gemini 2.5 Flash-non-thinking  90.04 70.83 88.73 90.22 89.61 93.85 60.54 74.52 73.08 7427 7459 5186 5531 5095 51.51
Gemini 2.5 Flash-thinking 90.39 89.78 90.22 90.48 90.04 95.14 93.06 9455 95.09 9519 7248 7092 71.83 72.00 71.10

H QUALITATIVE EXAMPLES OF THE PROMPT AND REASONING

In this section, we present some examples from the evaluation dataset we use to better demonstrate
in detail the protocols we used for model evaluation. The examples are in Fig. 9 and Fig. 10. Note
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that for models with different reasoning formats, we generate reasoning in the same formats for the
demonstration examples. For example, Gemini 2.0 Flash outputs reasoning in steps, but LLaVA-
CoT wraps the thinking process between the tags <SUMMARY> & </SUMMARY>, <CAPTION> &
</CAPTION>, <REASONING> & </REASONING>, and <CONCLUSION> & </CONCLUSTION>.

I SUMMARY OF TRAINING DATASETS FOR VLMS

We summarize the situation of each evaluation dataset in the training of the VLMs in Tab. 13. Such
information can help the reader better judge the performance of each model across datasets and
compare accuracy across models more fairly.

Table 13: Training datasets. v * indicates the dataset went through specific data processing pipelines
before they were used in the training/finetuning. — represents that no information is found.

Model Size OKVQA TextVQA A-OKVQA ScienceQA M?*CoT
Qwen2.5-VL 3B - — - — —
VLM-R1 3B
VL-Rethinker-7B 7B v v v v
VL-Rethinker-72B 72B v v v v
InternVL2.5 4B v v v v
InternVL2.5-4B-MPO 4B v v v Ve
InternVL2.5-8B-MPO 8B v v v v
Llama-3.2V 11B — - — — -
LLaVA-CoT 11B v v

J FURTHER DISCUSSION ON THE POTENTIAL CAUSE OF MMICL FAILURE

J.1 MODEL ARCHITECTURE

To aid the discussion, we provide a summary table of the evaluated models, including their Year,
Architecture, Parameters, Vision Encoder, Glue Layer, LLM, and MoE (Mixture-of-Expert) configu-
rations.

Table 14: Comparison of recent vision-language models.

Model Year Architecture Parameters Vision Encoder Glue Layer LLM MoE
OpenFlamingo 2023  Decoder-only 3B CLIP ViT-L/14 (300M) Cross-Attn MPT-1B None
IDEFICS-2 2024  Decoder-only 8B SigLIP-SO (400M) 2-layer MLP Mistral-7B None
Qwen2.5-VL 2025 Decoder-only 3B/7B/72B  Redesigned ViT (500M) 2-layer MLP Qwen2.5-3B/7B/72B None
InternVL-2.5 2025 Decoder-only 4B/8B InternViT (300M) 2-layer MLP  Qwen2.5-3B InternLM-2.5-7B None
Llama-3.2-Vision 2024  Decoder-only 11B ViT-H/14 (630M) Cross-Attn LLaMA-3.1-8B None
Gemini 2.0 2024 Decoder-only Undisclosed Undisclosed Undisclosed Undisclosed Undisclosed
Gemini 2.5 2025 Decoder-only  Undisclosed Undisclosed Undisclosed Undisclosed Sparse MoE

From Tab. 14 in the paper and the additional results provided in the following section, we find
that models such as Gemini 2.0, Gemini 2.5 (thinking mode), and LLaMA-3.2-Vision appear more
resilient to the common MM-ICL failure mode where few-shot performance is worse than zero-shot.

One potential reason may be related to their use of cross-attention glue layers such as in LLaMA-3.2-
Vision, which could allow better token-level fusion between modalities. In contrast, models using
2-layer MLP glue, like InternVL-2.5 and Qwen2.5-VL, tend to show more frequent performance
drops in few-shot settings.

We also speculate that vision encoder strength may play a role. Models using larger and more
optimized encoders—such as ViT-H/14 (630M) in LLaMA-3.2-Vision and Redesigned ViT (500M)
in Qwen2.5-VL—tend to perform more robustly than those with smaller encoders like CLIP ViT-L/14
(300M) or InternViT (300M). These encoders may produce richer visual features that are easier to
align with the language model.
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Additionally, while larger model scale sometimes helps, it does not appear sufficient on its own. For
instance, Qwen2.5-VL-72B shows strong 0-shot but minor gains in few-shot.

Meanwhile, VLM reasoners—such as VLM-RI1, VL-Rethinker (7B and 72B, and Gemini 2.0/2.5
(thinking mode)—tend to be more resilient in few-shot settings. We speculate this may be due to their
use of reinforcement learning-based policy optimization techniques (e.g., GRPO), which could help
the models better leverage in-context examples and mitigate the typical few-shot degradation.

Finally, regarding MoE, Gemini 2.5 (which uses a sparse MoE) performs well when “thinking” is
enabled, but shows noticeable degradation in non-thinking mode. This may suggest that MoE may
not inherently improve MM-ICL performance unless paired with reasoning mechanisms that can take
advantage of the increased model capacity.

In summary, while we cannot make definitive claims, these patterns suggest that glue layer design,
vision encoder strength, and reasoning strategy may all contribute to stronger few-shot performance
in MM-ICL tasks.

J.2 COMPARISON WITH TEXT-ONLY LLMSs

There is evidence that even in text-only settings, LLMs do not always effectively utilize demonstrations.
As shown in Zhong et al. (2024) (Tables 2 and 3), few-shot prompting often provides only marginal
improvement over zero-shot performance across a range of tasks. Reynolds and McDonell (2021)
further argues that in tasks like translation, the model may not learn anything new from a small
number of demonstrations, and is instead directing the model to pre-learned information.

When reasoning traces (i.e., rationale or CoT) are added, the situation does not always improve.
In Kojima et al. (2022), Figure 8 shows that for many datasets, CoT prompting in the few-shot
setting offers no additional benefit over zero-shot CoT. Min et al. (2022) (Table 5) shows that the
performance gain becomes much less when using examples with different answer types than with
similar ones, confirming prior work Wang et al. (2022) which suggests that LLMs mostly leverage the
few-shot examples to infer the repeated format rather than the task itself in-context. Most surprisingly,
Sprague et al. (2025) demonstrates that CoT reasoning can still emerge even when the demonstrations
include invalid or incorrect reasoning steps-prompting with invalid reasoning steps can achieve over
80-90% of the performance obtained using CoT, while still generating coherent lines of reasoning
during inference.

A possible explanation offered by Zhong et al. (2024) is that instruction tuning and human alignment
have already taught the model to match task formats, reducing the value of few-shot demonstrations.
Since ICL often relies on similar format matching, its additional benefit becomes limited—further
supporting our observation that demonstrations may act more as cues than sources of new informa-
tion. Sprague et al. (2025) further suggests that the model’s CoT behavior is often pretrained, and
demonstrations serve only as triggers for latent capabilities rather than learning signals.

However, we also observe that the failure of ICL is more pronounced in multimodal settings. This
indicates that, beyond the inherent issues in LLMs, additional bottlenecks likely exist in the visual
encoder and the vision-language fusion module. Misalignment in visual representations, or the
inability of the fusion module to generalize from multimodal context, could further impair the
model’s ability to benefit from in-context examples. Additionally, some forms of visual reasoning
cannot be adequately expressed through text-only CoT, suggesting that developing multimodal CoT
approaches—where visual and textual reasoning are jointly modeled—may be a promising direction
to better support in-context learning in VLMs.

In summary, the failure of MMICL appears to stem from both the inherent limitations of LLMs in
utilizing demonstrations and additional challenges introduced by the visual encoder and multimodal
fusion, suggesting that both aspects contribute to the observed degradation and warrant deeper
investigation.

K THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use Large Language Models (LLMs) to aid and polish the writing. They were not involved in
research ideation, experiment design, implementation, or analysis.
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Gemini 2.0 Flash w/ Pseudo Reasoning Demos on M2CoT (2-shot & random selection)

User: [Support Sample 1]
Image:

(A) Object G (B) Object D (C) Object F

Question: In the provided image, how many items from the given choices will submerge underwater? Options: A.0B. 1 C.2D. 3
Please select the correct answer from the options above. Give step by step reasoning before you answer, and when you are ready to
answer, please use the format "Final answer: .."

Assistant:

Here’s how we can determine which objects will sink:

1. **Density Calculation:** An object will sink if its density is greater than the density of water (approximately 1000 kg/m?3). Density
is calculated as mass/volume.

2. **Calculate the density of each object:** * Object A: 5108.68 kg / 8.92 m? = 572.72 kg/m? * Object B: 5521.41 kg / 14.11 m?
=391.31 kg/m? * Object C: 4973.41 kg / 10.2 m? = 487.59 kg/m? * Object D: 2472.27 kg / 16.97 m? = 145.68 kg/m? * Object E:
7085.55 kg / 19.08 m3 = 371.36 kg/m3 * Object F: 2128.44 kg / 16.45 m? = 129.39 kg/m? * Object G: 3982.11 kg / 10.24 m? = 388.88
kg/m?3

3. **Compare to Water Density:** None of the objects have a density greater than 1000 kg/m?3.

4. #*Conclusion:** Since none of the objects have a density greater than water, none of them will sink.

Final answer: A

User: [Support Sample 2]

Image:
497 488

403530322 iz 9 e 3938387
486 12 22 61 27,
59 2 v 2 516

407 414 479 461 a6t

4§ 76 705
08 95 32811 285 4 354
274 081 9 9
2 4 4 &

20150 20175 20200 20225 20150 2017.5 20200 20225 20150 2017.5 20200 20225
Country 3 Country 4 Country 5

Question: How many countries have achieved fiscal surpluses in 2020? Options: A.2 B. 5 C. 6 D. 7 E. 4 Please select the correct
answer from the options above. Give step by step reasoning before you answer, and when you are ready to answer, please use the
format "Final answer: .."

()

-

~

Import Value ($) Export Value
N

Assistant:

Here’s how we can determine the number of countries with fiscal surpluses in 2020:

1. **Understanding Fiscal Surplus:** A fiscal surplus occurs when export value exceeds import value. In the graphs, we need to
compare the export value (top graph) with the import value (bottom graph) for each country in the year 2020.

2. **Analyzing Each Country:** * **Country 3:** Export value in 2020 is approximately 4.03, and import value is approximately
3.23. Export > Import, so Country 3 has a surplus. * **Country 4:** Export value in 2020 is approximately 2.41, and import value is
approximately 2.85. Export < Import, so Country 4 does not have a surplus. * **Country 5:** Export value in 2020 is approximately
3.89, and import value is approximately 2.99. Export > Import, so Country 5 has a surplus.

3. #*Counting Surpluses:** Countries 3 and 5 have fiscal surpluses in 2020.

4. **Total:** Therefore, 2 countries have fiscal surpluses in 2020.

Final answer: A

User:[Query]
Image:
Suppose that a? varies inversely with b.ifa =17
when b = 3, find the value of a* when b = 6.
Choices:
A5
®7
©0
(D) 6.125

Question: Based on the information in the picture, can you determine the correct solution for the Algebra problem? Options: A.
option D in the image is the answer. B. the correct choice is option A in the image. C. the answer is option C in the image D. the
correct choice is option B in the image. Please select the correct answer from the options above. Give step-by-step reasoning before
you answer, and when you are ready to answer, please use the format "Final answer: .."

Assistant:

Here’s how to solve the problem and determine the correct answer:

1. **Inverse Variation:** The statement "a? varies inversely with b3" means that a2 * b® = k, where k is a constant.

2. **Find the Constant (k):** We are given that a = 7 when b = 3. Therefore, a2 = 72 =49. So, k = a2 * b* =49 * 33 =49 * 27 = 1323.
3. **Find a2 when b = 6:** We know that a> * b> =k, so a> =k /b3 When b =6, a2 = 1323/ 63 = 1323 /216 = 6.125.

4. **Match with the Choices: ** The value of a2 when b = 6 is 6.125, which corresponds to option D in the image.

Final answer: A

Figure 9: Gemini 2.0 Flash w/ Pseudo Reasoni%Demos on M3CoT (2-shot & random selection)
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LLaVA-CoT w/ Pseudo Reasoning Demos on ScienceQA (2-shot & random selection)

User: [Support Sample 1]
Image:

Question: Which country is highlighted? Options: A. Cuba B. Saint Vincent and the Grenadines C. Grenada D. Trinidad and Tobago
Please select the correct answer from the options above.

Assistant:

<SUMMARY > I will analyze the map to identify the highlighted country and compare it with the options provided to determine the
correct answer. </SUMMARY >

<CAPTION> The image depicts a map of the Caribbean region with several islands. One island, located at the southernmost part of
the Caribbean, is highlighted in green. </CAPTION>

<REASONING> To identify the highlighted country, I will examine its location in the Caribbean. The highlighted area is at the
southernmost part of the Caribbean, near the northeastern coast of South America. This location corresponds to Trinidad and Tobago,
which is situated at the southern end of the Caribbean island chain. </REASONING>

<CONCLUSION> D </CONCLUSION>

User: [Support Sample 2]
Image:

Question: Two magnets are placed as shown. Will these magnets attract or repel each other? Options: A. repel B. attract. Please
select the correct answer from the options above.

Assistant:

<SUMMARY > To solve the problem, I will analyze the orientation of the magnets in the image and determine whether they will attract
or repel each other based on the positions of their poles. </SUMMARY>

<CAPTION> The image shows two identical circular magnets. Each magnet has a distinct north pole (N) and south pole (S). The
north pole of the left magnet is facing the south pole of the right magnet. </CAPTION>

<REASONING> Magnets have two poles: north (N) and south (S). Opposite poles attract each other, while like poles repel each other.
In the image, the north pole of the left magnet is adjacent to the south pole of the right magnet. Since opposite poles (N and S) are
facing each other, the magnets will attract. </REASONING>

<CONCLUSION> B. attract </CONCLUSION>

User:[Query]
Image:

Question: Which continent is highlighted? Options: A. Africa B. North America C. South America D. Asia. Please select the correct
answer from the options above.

Assistant:

<SUMMARY> I will examine the image to identify the highlighted continent. I will describe the relevant details in the CAPTION,
use logical reasoning to determine the continent in the REASONING section, and provide the final answer in the CONCLUSION.
</SUMMARY>

<CAPTION> The image is a world map where one continent is highlighted in a darker shade. The highlighted continent is located in
the eastern hemisphere and is known for its vast landmass. </CAPTION>

<REASONING> To identify the highlighted continent, I will consider its geographical position and characteristics. The highlighted
area is in the eastern hemisphere, extending from the Middle East to East Asia. It is the largest landmass in this hemisphere, covering
a vast area that includes regions such as Russia, China, and India. This description matches the continent of Asia. </REASONING>
<CONCLUSION> D. Asia </CONCLUSION>

Figure 10: LLaVA-CoT w/ Pseudo Reasoning Demos on ScienceQA (2-shot & random selection)
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