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Abstract

Skin cancer is one of the most common forms of cancer worldwide. Automated diagnosis us-
ing deep learning has shown promise, but high-performing models like Vision Transformers
are often computationally expensive. Swin Transformers are less computationally expensive
than ViTs because they use a hierarchical structure with shifted windows for self-attention,
limiting computations to local regions instead of the entire image. We propose a Parame-
ter Efficient Fine-tuning (PEFT) method integrating Low-Rank Adaptation (LoRA) into
Swin Transformers to reduce model training and inference computational complexity while
maintaining high diagnostic performance. Experiments on the standard HAM10000 skin
cancer dataset demonstrate the proposed model’s effectiveness in skin lesion classification
with improved efficiency.
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1. Introduction

Skin cancer, encompassing both melanoma and non-melanoma types, represents a signif-
icant global health concern, with early and accurate diagnosis being crucial for effective
treatment. Traditional visual diagnosis methods, however, are often hindered by subjec-
tivity and inter-observer variability. Over the years, deep learning techniques have greatly
improved diagnostic performance for medical image classification, with models like ResNet
(He et al., 2015) and DenseNet (Huang et al., 2017) playing a central role in skin lesion
analysis. However, these models often struggle with capturing long-range dependencies in
images, limiting their ability to fully model the complex spatial relationships present in
medical images.

To address this limitation, Vision Transformers (ViTs), and specifically Swin Trans-
formers, have emerged as a promising alternative. Swin Transformers leverage shifted
window attention mechanisms and hierarchical structures, which allow them to capture
global contextual information more effectively than traditional architectures. However, the
computational demands of Swin Transformers are significant, posing challenges for their
practical use in large-scale applications, even though their attention mechanism is linear in
time complexity.

To overcome this challenge, we propose integrating Low-Rank Adaptation (LoRA) into
Swin Transformers for the task of skin cancer classification. LoRA reduces the number of
trainable parameters by incorporating low-rank matrices into the attention weights, enabling
efficient fine-tuning without sacrificing performance.
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Recent advancements in transformer-based models, such as SkinSwinViT (Tang et al.,
2024), have demonstrated the potential of Swin Transformers in dermoscopic image classi-
fication. Other transformer-based architectures, including MedT (Valanarasu et al., 2021)
and UNETR (Hatamizadeh et al., 2021), have been explored for segmentation and classifi-
cation tasks in medical imaging.

In addition, parameter-efficient methods like Adapter-BERT (Houlsby et al., 2019), Bit-
Fit (Zaken et al., 2021), and LoRA (Hu et al., 2021) have been developed to enable scalable
model adaptation with minimal computational cost. While LoRA has been less explored in
medical imaging, it holds significant promise for fine-tuning large models efficiently, making
it a powerful solution for skin cancer classification tasks.

2. Methods

We adopt the Swin Transformer as the backbone for our classification model. Swin Trans-
former operates with shifted windows and hierarchical feature maps, making it well-suited
for visual recognition tasks.

LoRA is applied to the self-attention layers of the Swin Transformer. Given a weight
matrix W ∈ Rd×k, LoRA approximates it as:

W ′ = W + AB,

where A ∈ Rd×r and B ∈ Rr×k, and r ≪ min(d, k). Only A and B are trainable during
fine-tuning, while W is frozen.

2.1. Dataset

We train and evaluate our model using the HAM10000 (”Human Against Machine with
10000 training images”) dataset, which is a benchmark dermoscopic image dataset for skin
lesion analysis. The dataset consists of 10,015 high-resolution dermoscopic images collected
from different populations and stored in a consistent format. These images are annotated
with seven classes of skin lesions: Melanocytic nevi (nv), Melanoma (mel), Benign keratosis-
like lesions (bkl), Basal cell carcinoma (bcc), Actinic keratoses (akiec), Vascular lesions
(vasc), and Dermatofibroma (df).

The dataset is balanced through stratified sampling to mitigate class imbalance during
training. Each image is preprocessed by resizing to 224×224 pixels and normalized using
ImageNet statistics. We randomly split the dataset into 80% training, 10% validation, and
10% testing sets while ensuring a balanced distribution across lesion types.

2.2. Training Details and Hyperparameters

We used the base Swin Transformer model from Hugging Face, implemented in PyTorch
2.4, and trained (fine-tune) it on a single NVIDIA RTX 3090 GPU (24GB VRAM) using
mixed precision (FP16) and Unsloth kernels for faster computation and reduced memory
usage. The base Swin Transformer (Swin-B) has approximately 87.7 million parameters
and was pretrained on ImageNet-1K. It uses a patch size of 4×4, an embedding dimension
of 96, and a window size of 7. The model architecture includes 4 stages with depths [2,
2, 18, 2], a multilayer perceptron (MLP) ratio of 4, GELU activations, and LayerNorm for
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normalization. This configuration offers a balance of efficiency and performance, making it
well-suited for vision tasks like skin cancer classification. Training with HAM10000 dataset
was conducted over 50 epochs with early stopping (patience of 10 epochs) based on valida-
tion F1-score. The Adam optimizer was used with a learning rate of 1×10−4, a batch size of
32, and a weight decay of 1× 10−5. A dropout rate of 0.1 was applied to reduce overfitting.
The learning rate followed a cosine annealing schedule with 500 warm-up steps. LoRA was
used for parameter-efficient fine-tuning, and we experimented with LoRA ranks 4, 8, and 16.
The LoRA scaling factor was set to 32. LoRA was applied to query and value target matrics
within the attention kernels of all the transformer blocks. The hyperparameters were se-
lected based on grid search and prior work in transformer-based medical imaging tasks. In
addition, data augmentation techniques included random flipping, cropping, rotation (up
to 20°), color jittering, and normalization using ImageNet statistics.

3. Results

Performance is assessed using accuracy, precision, recall, and F1-score.

Table 1 presents the comparison between baseline Swin Transformer and the proposed
LoRA-enhanced version.

Table 1: Classification Performance on HAM10000 Dataset with Varying LoRA Ranks

Model Accuracy Precision Recall F1-score

Swin Transformer 85.7% 84.3% 83.9% 84.1%
Swin + LoRA (r = 4) 87.4% 86.1% 85.6% 85.8%
Swin + LoRA (r = 8) 87.1% 85.8% 85.3% 85.5%
Swin + LoRA (r = 16) 86.6% 85.2% 84.7% 84.9%

The LoRA-integrated model achieves improved accuracy with a significantly reduced
number of trainable parameters on a single GPU with FP32 precision. (Table 2).

Table 2: Model Complexity Comparison

Model Trainable Parameters Training Time (per epoch)

Swin Transformer (Swin Base) 88M 4.2 min
Swin + LoRA (r=4) 28M 2.5 min

4. Conclusion

This work presents an efficient transformer-based model for skin cancer diagnosis by inte-
grating Low-Rank Adaptation into Swin Transformers. Our model maintains high classifi-
cation performance while significantly reducing the training burden, making it suitable for
clinical settings with limited computational resources. Future work includes expanding to
other medical image tasks and exploring hardware-specific optimizations.
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