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ABSTRACT

This paper introduces a new framework for recovering causal graphs from obser-
vational data, leveraging the fact that the distribution of an effect, conditioned on
its causes, remains invariant to changes in the prior distribution of those causes.
This insight enables a direct test for potential causal relationships by checking the
variance of their corresponding effect-cause conditional distributions across multi-
ple downsampled subsets of the data. These subsets are selected to reflect different
prior cause distributions, while preserving the effect-cause conditional relation-
ships. Using this invariance test and exploiting an (empirical) sparsity of most
causal graphs, we develop an algorithm that efficiently uncovers causal relation-
ships with quadratic complexity in the number of observational features/variables,
reducing the processing time by up to 25x compared to state-of-the-art methods.
Our empirical studies on a diverse benchmark of large-scale datasets demonstrate
that the developed algorithm consistently performs better or comparable to ex-
isting works while generally achieving better scalability. Our code is publicly
accessible at https://anonymous.4open.science/r/GLIDE-DC57.

1 INTRODUCTION

A core challenge in causal learning is finding a directed acyclic graph (DAG) that captures the cause-
effect relationships between variables in an observational dataset (Zanga et al., 2022). A direct
approach to uncover these causal links is through intervention which conducts more experiments to
confirm whether changes in one set of variables will consequently affect the outcome distribution of
another variable (Peters et al., 2016; Guo et al., 2024). However, such interventional experiments
can be prohibitively expensive. Furthermore, recovering the entire causal graph requires running
intervention on an exponential number of candidate cause-effect relationships among subsets of
variables, thus rendering this approach both costly and impractical (Pearl, 2009).

To sidestep such expensive interventions, numerous approximation approaches have been developed
to instead find an equivalence class of DAGs (Pearl et al., 2016; Peters et al., 2017), all of which
are compatible with a set of statistical evidence or constraints derived from the observational data1.
Most of these approaches are formulated as graph searches that proceed either by finding statistical
evidence to eliminate incompatible graph candidates (Spirtes & Glymour, 1991; Spirtes, 2001) or
by optimizing for a heuristic score defined on graphs (Hauser & Bühlmann, 2012; Rolland et al.,
2022; Montagna et al., 2023). Such approaches however are either (a) not scalable due to the expen-
sive computation cost of running statistical tests on an exponentially large number of cause-effect
relationship candidates (i.e., subsets of variables); or (b) less accurate due to the heuristic nature of
the score function defined over the graph space.

For examples, Spirtes & Glymour (1991) and Spirtes (2001) required performing local conditional
independence tests between effect variables and their corresponding sets of causes across all can-
didate causal relationships, incurring a process that scales exponentially with the number of fea-
tures/variables. In contrast, Hauser & Bühlmann (2012), Rolland et al. (2022), and Montagna et al.
(2023) proposed direct optimization of a global heuristic score on graphs, avoiding the need to
solve such constraint satisfaction problems involving an exponentially large set of local constraints.
There are also other approaches in this direction which further impose simplified assumptions on the

1Finding the true causal graph is not possible without running intervention since the empirical distribution
over the observational data might admit different sets of statistical constraints entailed by different graphs.
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functional structure of the causal relationship (e.g., linear relationship between effects and causes
perturbed with Gaussian noises). Base on those assumptions, the problem of causal learning can
be formulated as a continuous optimization task and can be solved by more effective solution tech-
niques (Kalainathan et al., 2022; Lachapelle et al., 2019; Ng et al., 2022; 2019). However, these
approaches often perform less robustly when the heuristic scores or modeling assumptions do not fit
well with the nature of the observational data (see Section 5).

To mitigate the aforementioned limitations of existing causal learning methods, we propose a new
solution perspective based on a new causal test. Such a method that avoids imposing additional
assumptions on the effect-cause data generation process while also achieving better performance
with affordable computational costs. Our approach leverages the invariance of the effect-cause con-
ditional distribution P (effect | cause) to changes in the prior cause distribution P (cause). This
inspires a principled test for causal relationships via estimating the variance of P (X | Z) across
synthetic data augmentations that reflect different cause distributions P (Z). That is, (Z → X) rep-
resents a causal relationship if the data-induced P (X | Z) does not change much2 across different
choices of P (Z). This test can then be integrated with a systematic search that identifies candidates
for the causal parents of all variables with quadratic complexity, achieving improved scalability and
performance over previous methods. In particular, our technical contributions that substantiate the
above include:

1. An invariance test that reliably determines if Z = Pa[X] for each effect variable X and a candi-
date set of causes Z via checking the variance of P (X | Z) against changes in P (Z). In particular,
the invariance test identifies and constructs the most informative data augmentations to reliably ap-
proximate the variance of P (X | Z) across potential changes to P (Z). This is achieved via a
downsampling scheme of the observational data that modifies P (cause) without changing the con-
ditional P (effect | cause) for true (cause, effect) tuples (Section 4.2).

2. A practical parent-finding algorithm that (i) adopts a previous approach (Edera et al., 2014) to
find the Markov blankets of all variables using observational data; and (ii) uses this information to
construct an augmented bidirectional graph for each variable whose maximal cliques correspond to
its most plausible candidate parent sets. Due to the sparsity of such augmented graphs, the number
of maximal cliques is quadratic in the number of variables and an effective depth-first search (DFS)
algorithm can be devised to enumerate through all these cliques and hence, the corresponding parent
candidates (Section 4.3). The developed invariance test (Section 4.2) can then be used to find the true
parent set among the plausible candidates for each variable, thus recovering the true causal graph.

3. An extensive empirical evaluation of our proposed causal discovery framework on a variety of di-
verse benchmark datasets including both synthetic and large-scale real-world datasets. The reported
results consistently show that our framework performs better or comparable to prior work in terms
of causal discovery performance while achieving generally better scalability, with an average of up
to 73.3% reduction in spurious rate and (up to) 25× reduction in processing time (Section 5).

2 RELATED WORKS

Existing causal discovery methods that aim to recover causal graphs from observational data without
using interventional data can be categorized in three main groups (Glymour et al., 2019):

First, constraint-based methods aim to recover an equivalence class of causal graphs via deriving
statistical evidence from the observational data to eliminate incompatible candidates as much as
possible. Their main goal is to minimize the chance of mistaking correlation for causation and
hence, maximizing the reliability of the output graph. For example, Peter-Clark (PC) (Spirtes &
Glymour, 1991) and Fast Causal Inference (FCI) (Spirtes, 2001; Spirtes et al., 2013) run all possible
conditional independence tests between all potential (effect, cause) tuples to find the most reliable
relationship candidates that pass all tests. In practice, while such approaches often produce reliable
results, they do not scale well to high-dimensional datasets since the number of (effect, cause)
candidate tuples often grows exponentially in the number of variables/features (Spirtes et al., 2001).

2The variance of the true effect-cause conditional distribution P (effect | cause) with respect to changes in
P (cause) is theoretically zero but in practice, P (effect | cause) has to be estimated using observational data
which causes (small) additional variance due to (slight) variations in its estimation across augmented datasets.
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Figure 1: Overall workflow of our proposed GLIDE framework which comprises two main steps:
(a) an algorithmic configuration –the key effect-cause distributional invariance test that helps test
potential parent-child relationships (Section 4.2); and (b) a graph search algorithm exploiting prior
knowledge of each node’s Markov blanket and an (empirically verified) sparsity of causal graphs to
provably reduces the number of tests to recover the true causal graph (Section 4.3).

Alternatively, score-based methods instead use heuristic scores defined on graphs to reformulate
causal learning as an optimization task which associate true causal graphs with those that maxi-
mize the score (Heckerman et al., 1995; Chickering, 2002; Teyssier & Koller, 2012; Solus et al.,
2021). Thus, unlike constraint-based methods which cast causal learning as a constraint satisfac-
tion task that involves an exponentially large set of local constraints, scored-based methods recast
it as a global optimization task, which often admits more scalable solutions. As a result, existing
score-based methods (Hauser & Bühlmann, 2012; Rolland et al., 2022; Montagna et al., 2023) often
scale better to larger datasets. However, the heuristic design of the score function imposes implicit
assumptions on the causal structure of data which are often violated in practice. Consequently, the
reliability (i.e., not mistaking correlation for causation) of methods in this group is relatively lower
than those of constraint-based methods. This is also verified in Section 5.1 (see Figures 2 and 3).

To reconcile the above conflicting goals of reliability and scalability, model-based methods adopt
additional assumptions on the effect-cause generation model of the observed data (e.g., linear rela-
tionship perturbed with Gaussian noise (Zheng et al., 2018)). This often allows a provable reformu-
lation of the true causal structure as an optimal solution to a continuous optimization task that can
be solved efficiently with numerous modern and scalable machine learning algorithms (Scanagatta
et al., 2015; Zheng et al., 2018; 2020). However, their performance is often not stable in scenarios
where such assumptions on the data generation process do not hold, e.g., non-linear effect-cause
relationships perturbed with non-Gaussian noises.

Existing Limitations. Overall, existing methods are either limited by expensive processing costs
(as seen in constraint-based approaches), unreliable performance due to the use of a heuristic score
function and greedy nature of the optimization algorithms (as with score-based methods), or inap-
plicable to scenarios involving unknown data-generation models (as is the case with model-based
approaches). To mitigate these limitations, we investigate an alternative approach to causal learning
by exploiting the invariance of the effect-cause conditional distribution across different data aug-
mentations that induce changes to the prior distribution of causes. This, in turn, inspires a highly
scalable graph search for effective causal discovery, as detailed in Section 4.

3 PROBLEM FORMULATION AND BACKGROUND

Let D denote a dataset comprising n observations X(1), . . . ,X(n) of a set X = (X1, X2, . . . , Xd)
of d random variables. Suppose these observations are drawn independently from an unknown
distribution P (X) = P (X1, X2, . . . , Xd), we want to learn from D a DAG G = (X,E) over
(X1, X2, . . . , Xd) which is a causal model of P (X) following Definition 1.

Definition 1 (Causal Model). A direct acylic graph G = (X,E) is a causal model of P (X) if
every conditional independence derived from P (X) can be derived from G, and vice versa.

3



Under review as a conference paper at ICLR 2025

A conditional independence X ⊥⊥P Y | Z derived from P (X) means P (X | Y,Z) = P (X | Z)
where P (X | Y,Z) and P (X | Z) are marginal likelihoods derived from P (X). On the other hand,
a conditional independence X ⊥⊥G Y | Z derived from G means given Z, X and Y are d-separated
following the below definition of d-separation.

Definition 2 (D-separation). Given two variables X,Y ∈X and a set of variables Z ⊆X\{X,Y },
X and Y are d-separated given Z (i.e., X ⊥⊥G Y | Z) if any path between them contains either: (a)
a fork A ← B → C with B ∈ Z, (b) a chain A → B → C such that B ∈ Z; and (c) a collider
A→ B ← C such that B or any of its descendants Desc[B] is not in Z.
Definition 1 implies G is a causal model of P (X) when X ⊥⊥P Y | Z ⇔ X ⊥⊥G Y | Z. Thus, sup-
pose G is a causal model of P (X), X ⊥⊥P (X \Desc[X]) | Pa[X] since X ⊥⊥G (X \Desc[X]) |
Pa[X] due to d-separation – see Definition 2 – where Pa[X] denote the set of parents of X in G.

Local Markov Conditions. The above means each node X is independent of its non-descendants
X \Desc[X] given its parents Pa[X] according to P (X), resulting in the following factorization:

(I) P
(
X
)

=

d∏
i=1

P
(
Xi | Pa [Xi]

)
which implies (II) X ⊥⊥P

(
X \M(X)

)
| M(X) ,

where M(X) denotes the Markov blanket of a variable X that consists of its immediate parents, its
children, and its children’s other parents. (II) can also be verified via checking d-separation on G.

Core Idea. Suppose the Markov blanket in condition (II) is known, an augmented bidirectional
graph for each variable X can be constructed such that each of its maximal cliques corresponds to
a plausible candidate Z of the true causal parents Pa[X]. We can leverage this representation to
develop an effective DFS procedure that systematically enumerates through each candidate with a
quadratic time complexity in the number of features/variables (Section 4.3). Each candidate can
be tested using the developed causal test via synthetic data augmentation (Section 4.2). The fea-
sibility of this approach is enabled by adopting an existing algorithm that can recover the Markov
blankets for all X ∈ G from D with O(d2) complexity (Edera et al., 2014). This is guaranteed
under the causal sufficient assumption (Pearl et al., 2016) that there is no unobserved variables (i.e.,
confounders) that affect the causal mechanism that generate the observational data.

4 INVARIANCE OF EFFECT-CAUSE CONDITIONAL DISTRIBUTION

Here, we first present a bird’s eye view on our proposal in Section 4.1, and then navigate into the
details of the method in Sections 4.2 and 4.3, as depicted in Figure 1.
4.1 AN OVERVIEW

The core idea of our causal discovery framework is based on the invariance of the (marginal) effect-
cause conditional distribution P (X | Pa[X]) induced from P (X) across different choices of the
prior P (B) over the source variables B ≜ {B | B ∈ X , Pa[B] = ∅} ⊆ X of the true causal
graph G = (X,E) – see Theorem 1 below (a detailed proof is provided in Appendix A.1).
Theorem 1 (Effect-Cause Distributional Invariance). Let P1(B), P2(B), . . . , Pm(B) denote a set
of m different priors over B. Let Pi(X) = Pi(B) · P (X \ B | B) denote the corresponding
augmentation of the true data distribution P (X) when we replace its marginal prior P (B) with
Pi(B). For each variable X ∈X \B, its true causal parents Pa[X] and a candidate Z, we have

VP+(X) ∼ P

[
P+

(
X | Z

)]
> 0 ⇒ Z ̸= Pa[X] , (1)

regardless of how P+(X) is drawn from P ≜ (P1(X), P2(X), . . . , Pm(X)). Here, P+(X | Z) is
induced from P+(X).
This result reveals a principled test of whether a subset Z ⊆ X is the parent set of X ∈ X
according to the true causal graph G. The intuition is if we can re-sample Di from D ∼ P (X) such
that Di ∼ Pi(X), we can test whether Z = Pa[X] via checking whether the sample variance of the
empirical conditional Pi(X | Z) is distinguishably small. This is formalized below:

A. Effect-Cause Invariance Test. Given m augmented datasets D1, D2, . . . , Dm which are resam-
pled from D ∼ P (X) such that Di ∼ Pi(X), then Z = Pa[X] when
1

m

m∑
i=1

∥∥∥Pi

(
X | Z

)
− P

(
X | Z

)∥∥∥2 ≃ 0 where P
(
X | Z

)
=

1

m

m∑
i=1

Pi

(
X | Z

)
. (2)
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This test will become more accurate with more source priors. When m is infinitely large, the impli-
cation in Eq. (1) becomes bi-directional and V[P+(X | Z)] = 0 definitively implies Z = Pa[X].
Otherwise, when m is sufficiently large and {Pi(B)}mi=1 are sufficiently representative of the entire
space of source priors, the test might not be perfect but remains highly accurate (see Section 5).

For more convenience, we note that the above test can also be rephrased as a selection criteria to
find the true causal parents Pa[X] for each variable X as detailed next.

B. Parent-Finding via Effect-Cause Invariance. Given m augmented datasets D1, D2, . . . , Dm

which are resampled from D ∼ P (X) such that Di ∼ Pi(X). Let Z1,Z2, . . . ,Zp denote the set
of plausible parent candidates containing the true parent set, then Pa[X] can be determined via

Pa[X] = Zr where r ≜ argmin
t

(
1

m

m∑
i=1

∥∥∥Pi

(
X | Zt

)
− P

(
X | Zt

)∥∥∥2), (3)

when the number m of augmented datasets is sufficiently large and diversified (see Section 4.2).

C. High-Level Framework. Suppose we know how to generate D1, D2, . . . , Dm (see Section 4.2)
for which Di ∼ Pi(X) as required in Theorem 1, optimizing Eq. (3) can be achieved via exhaus-
tively checking all subsets Z as candidates for Pa[X]. Repeating this for all X allows us to recover
the causal graph. This process is however impractical since its complexity is exponential in d.

Fortunately, this can be avoided using the local Markov condition (II) (see Section 3) which implies
that (i) Z ⊆ M(X) if Z = Pa[X] and (ii) there are at most p = O(d) candidates for Pa[X] which
can be provably identified via finding maximum cliques on augmented bidirectional graphs. Under
an empirically verified assumption on causal graph sparsity, this can be achieved with a customized
DFS procedure with O(d2) complexity (see Theorem 7, Section 4.3). This results in an effective
O(d2) total complexity for our causal discovery framework as detailed below.

D. Time Complexity. As there are d observational variables, our framework needs to make d
calls to the parent-finding routine in part (B). As each routine will consider at most p = O(d)
plausible parent candidates, the per-call complexity is O(md). This amounts to a total cost of
O(md2) to recover the full causal graph. This can be enabled with (a) an O(d2) overhead to find the
Markov blankets for all variables following the prior work of Edera et al. (2014); and (b) another
O(d2 +m|D| +m|B|) overhead to construct D1, . . . , Dm for Eq. (3) (Section 4.2.4). The overall
complexity (including overhead) is therefore O(md2 +m|D|+m|B|).
To substantiate the above high-level framework, we need to (i) choose representative variants of the
source priors to improve the test reliability (Section 4.2); and (ii) find all plausible sets of candidate
for Pa[X] for all X ∈X which are guaranteed to have sizes at most O(d) (Section 4.3).

4.2 AUGMENTING SOURCE PRIOR

To enable practical use of the parent-finding routine in Eq. (3), we need to (i) find the set B of
sources, (ii) choose a representative set of source priors P1(B), . . . , Pm(B) so that the invariance
test is reliable; and (iii) re-sample Di from D so that Di ∼ Pi(X) = Pi(B) · P (X \B | B).

The above (iii) is essential because we do not have direct access to P (X \ B | B). This means
we cannot compute Pi(X) and induce Pi(X | Z) to assess its variance directly. However, as
P (X \ B | B) can be simulated using the original data D, we can re-sample Di from D so that
Di ∼ Pi(X), which then allows us to use Di to estimate Pi(X | Z) and consequently, its variance.

To achieve the above, we will develop an algorithm to find the source variables B (Section 4.2.1).
We will then derive a re-sampling procedure to obtain a downsampled dataset Di from D such
that Di ∼ Pi(X) (Section 4.2.2). Last, we will detail a criterion to choose informative Pi(B)
(for the invariance test) based on the above re-sampling procedure and how to determine a set of
representative source priors (Section 4.2.3).

4.2.1 FINDING SOURCE VARIABLES

To find the set of source variables (i.e., those with no parent in the true causal graph), we introduce
below the concept of a basis of a DAG.
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Definition 3. A basis B ⊆X of a DAG G = (X,E) is a set of mutually d-separated (independent)
variables (see Definition 2) such that for each X /∈ B, there exists X ′ ∈ B and X ′ ⊥̸⊥ X .

As finding the true sources is not possible without intervention, we will use a basis set as a surrogate.
This is because the basis has similar properties to the set of sources. First, similar to source variables,
basis variables are mutually independent. Second, each source variable X is either in the basis B
or shares the same dependence set Φ(X) ≡ Φ(X ′) – as defined in Theorem 3 – with another basis
variable X ′ ∈ B (see Appendix B.1). Furthermore, Theorem 2 confirms that the maximum size of
a basis set is equal to the number of sources in the true causal graph. This means changing the prior
over basis variables will have similar effect to changing prior over source variables. Hence, we can
use the priors over basis variables instead of priors over sources to test the effect-cause invariance.
Theorem 2. The maximum size of a basis set of a DAG is equal to the number of its sources.

The proof of Theorem 2 is deferred to Appendix A.2.Another advantage of the maximum basis
set is that it can be provably identified with O(d2) complexity following the procedure detailed in
Theorem 3 below. See its detailed proof in Appendix A.3.
Theorem 3. Let V = X and Φ(X) ≜ {Y | Y ∈ V \ {X} : Y ⊥̸⊥ X}. The maximum
basis can be constructed via continually (i) selecting X in V with lowest |Φ(X)|; (ii) setting V ←
V \ (Φ(X) ∪ {X}); and (iii) stopping when V = ∅. The selected X forms the maximum basis.

Computing Φ(X) requires checking Y ⊥̸⊥ X which can be practically achieved using existing
reliable pairwise independence tests provided by the causal-learn open library (Zheng et al., 2024).

4.2.2 RE-SAMPLING OBSERVATIONAL DATA

Given a target Pi(B), we want to find a resampled dataset Di from the original observation data D
such that Di ∼ Pi(X). To guarantee this, Di must be a downsampled version of D via sampling
with no replacement to avoid introducing duplicates and hence, false causal biases into Di.

On the other hand, among valid downsamples Di ∼ Pi(X), we want to choose the one that has the
minimal downsampled rate |D|/|Di| to preserve (as much as possible) observations of the effect-
cause conditionals in P (X \B | B). Interestingly, it can be shown that given the target Pi(B), the
minimum downsampling rate can be computed and achieved via the following results.
Theorem 4. Suppose Di is the downsampled dataset with minimum downsampling rate that satisfies
the condition Di ∼ Pi(X). Then, it follows that

|D|/|Di| = γ−1
i , where γi = min

b

(
P (B = b)/Pi(B = b)

)
. (4)

Given the (computable) optimal downsampling rate in Theorem 4, the corresponding downsampling
procedure that achieves it can be derived via Theorem 5 below.
Theorem 5. Let γi be defined in Theorem 4. Suppose Di is created via sampling without replace-
ment Pi(B = b) · |D| · γi points from D where B = b. Then, |D|/|D|i = 1/γi and Di ∼ Pi(X).

The derivations of Theorems 4 and 5 are deferred to Appendices A.4 and A.5. For a practical imple-
mentation, we associate P (B = b) with its empirical estimate P (B = b) = |D[B = b]|/|D|. To
accommodate for continuous data, we use binning with fixed bin width to make the data categorical.

4.2.3 CHOOSING SOURCE PRIORS

We can now leverage the insight of Theorem 4 to choose the most informative source priors to
enhance the reliability of the invariance test in Eq. (3). Intuitively, we want Di ̸= D so γi should
not be too large. Otherwise, as γi → 1, Di → D and Pi(B)→ P (B) which cannot be used to test
the effect-cause invariance against changes in P (B). On the other hand, if γi is too small, Di might
drop too much information from D which might obscure some effect-cause relationship.

As such, we want to choose Pi(B) such that its inverse downsampling rate γi (see Theorem 4) is
above a certain threshold γo where γo ∈ (0, 1) is an adjustable parameter that we can experiment
with. Our ablation studies in Section 5 shows the impact of γo on the overall causal discovery
performance. The question is now how to sample representative Pi(B) from the subspace of source
priors whose (inverse) optimal downsampling rate γi ≥ γo. To answer this question, we establish
Theorem 6 below which characterizes its convex hull (see a detailed derivation in Appendix A.6).
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Theorem 6. Let r ≜ |Dom(B)| denote the number of (categorical) candidate values of B. The
subspace of Pi(B) that satisfies γi ≥ γo is a convex subspace Cr(γo) of the r-dimensional simplex
∆r over Dom(B) which cuts ∆r at r points P (1)(B), . . . , P (r)(B) representing its convex hull:

P (k)(B) = αk · P (B) + (1− αk) · δk(B), where

αk =
(
1− P

(
B = b(k)

)
γ−1
o

)
/
(
1− P

(
B = b(k)

))
, (5)

δk(B) is a point mass function that assigns 1 when B = b(k) and 0 otherwise. Here, b(k) is the
k-th candidate value in Dom(B).

Each source prior Pi(B) with γi ≥ γo belongs to this convex set and can be represented as a linear
combination of the above points:

Pi(B) =

r∑
k=1

ak · P (k)(B), where
r∑

k=1

ak = 1 and ak ≥ 0 . (6)

Hence, Pi(B) can be sampled via drawing a = (a1, a2, . . . , ar) from ∆r and using Eq. (6).

4.2.4 PRACTICAL IMPLEMENTATION

The parent-finding procedure involves three main steps: finding basis variables, sampling source
priors, and re-sampling observational data. First, finding the basis variables has a time complexity
of O(d2). Next, we sample a from a Dirichlet distribution to compute Pi(B), with 104 samples
clustered using K-means. The K = m centroids are selected as source priors, with a complexity
of O(mr) = O(mc|B|) where c is the maximum number of candidate values of a single variable.
To avoid exponential costs in |B|, we resample for each basis variable individually, reducing the
complexity to O(mc|B|). Finally, generating the augmented dataset for each Pi(B) incurs a cost
of O(m|D|) via Theorem 5. This amounts to O(d2 +mc|B|+m|D|) total complexity.

4.3 FINDING PLAUSIBLE PARENT SETS

To ensure the parent-finding routine is scalable, we customize a DFS algorithm which leverages
prior work in Markov blanket identification to provably find O(d) candidate parent sets for each
effect variable X . The true causal graph can then be recovered via solving Eq. (3) for each X with
respect to the discrete set of O(d) plausible parents found above.

As previous work in Markov blanket identification incurs an O(d2) cost (Edera et al., 2014), the total
cost of our parent finding phase is also O(d2). This helps avoid the brute-force search through all
subsets of variables as candidates for Pa[X] whose complexity is otherwise exponential in d (Peters
et al., 2016). To achieve this, we will leverage the following result which relates candidate sets of
causal parents to maximal cliques on an augmented bidirectional graph.
Theorem 7 (Plausible Parent Sets). For each variable X , let G′(X) = (V ,E′) denote a bidi-
rectional graph where V = M(X) and (U, V ) ∈ E iff V ∈ M(U) and U ∈ M(V ). Then,
Pa[X] ⊆M(X) corresponds to a clique in G′(X).

See Appendix A.7 for a detailed proof. Leveraging Theorem 7, we can find all plausible parent
sets of X as subsets in M(X), each corresponding to a clique in G′(X). Restricting the set of
plausible parent sets to that of maximal cliques in G′, we can reduce the task of finding plausible
parent sets to finding maximal cliques in a bidirectional graph. For a sparse graph G′(X) with a low
degeneracy constant p (see Definition 4), this can be achieved effectively via a customized version
of the DFS-based Bron-Kerbosch (Bron & Kerbosch, 1973) algorithm (see Appendix B.2) which
finds all maximal cliques with O(dp3p/3) time complexity.
Definition 4 (Degeneracy). A bidirectional graph is p-degenerate if every subgraph has at least one
node with degree ≤ p. The graph’s degeneracy is the smallest p for which it is p-degenerate.

Consider p as a small constant compared to d, the cost of finding all plausible parent sets for each
variable X is effectively O(d). Hence, the total cost of finding all plausible parent sets for all
variables is O(d2). Furthermore, it is also established in Bron & Kerbosch (1973) that the (worst-
case) number of maximum cliques is O

(
(d − p) · 3p/3

)
. Our empirical studies in fact show that
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Table 1: Baselines and Data Models. The table indicates the applicability of each baseline to
each data models. Applicability is determined based on the baseline’s empirical effectiveness on
recovering the causal graph from observational data under the corresponding data model.

Data Models PC GIES FCI Notears MLP-Notears DAS SCORE GLIDE(Ours)

Linear, Gaussian (L-G)

Non-linear, non-Gaussian (nL-nG)

Categorical, Synthetic

Categorical, Real-world

p ≤ 13 across all benchmark datasets even for the largest graphs, confirming that the set of maximal
cliques in G′(X) is practically O(d) with a constant factor smaller than 313/3 < 117. Our additional
ablation studies in Appendix C.2.3 also show that for a variety of graph topologies, random DAGs
with an increasing number of causal edges, the sparsity constant p of the corresponding augmented
(bidirectional) graph remains insignificant compared to d. Exploiting this, our proposed method is
able to scale efficiently on these large graphs where previous methods fail to do so.

5 EXPERIMENT

This section evaluates and compares the performance of our proposed method, Causal Graph
Learning via Distributional Invariance of Cause-Effect Relationship (GLIDE), against existing
state-of-the-art baselines in causal graph learning.

Baselines. Our empirical evaluations are conducted with respect to a variety of data models as sum-
marized in Table 1 3 and a diverse suite of both classical and recent baselines, including PC (Spirtes
& Glymour, 1991), GIES (Hauser & Bühlmann, 2012), FCI (Spirtes, 2001), NOTEARS (Zheng
et al., 2018), MLP-NOTEARS (Zheng et al., 2020), DAS (Montagna et al., 2023), and SCORE (Rol-
land et al., 2022). Each baseline is configured with its best hyper-parameters (see Appendix C.1).

Datasets. Our experiments are based on both synthetic and real-world datasets. For synthetic exper-
iments (Sections 5.1 and 5.2), we follow the commonly used protocols in previous work to generate
observationals data based on the Erdos-Renyi (Zheng et al., 2018; Heinze-Deml et al., 2018), bi-
partite and scale-free (Zheng et al., 2020) classes of causal graphs. Due to limited space, we only
present the empirical results on synthetic data generated from the Erdos-Renyi class of graphs. Our
other experiments with the bipartite and scale-free classes of graphs are deferred to Appendix C.2.
For real-world experiments (Section 5.3), we use the datasets provided in the bnlearn package (Scu-
tari, 2009), which includes Sachs, Insurance, Water, Alarm, Barley, Pathfinder, and Munin. Notably,
the Munin dataset features observational data from a large-scale graph comprising 1041 variables.

Evaluation Metrics. We use the structural Hamming distance (SHD), spurious rate (percentage),
and running time (minutes) to measure both the effectiveness and scalability of our proposed method.
The SHD and running time metrics are commonly used in the evaluation of existing causal discovery
methods (Zheng et al., 2018; Montagna et al., 2023). The spurious rate measures the ratio of the
number of false causal relationships among all causal relationships discovered by each algorithm.
This helps compare the reliability of causal prediction across baselines. All performance metrics are
reported with their mean and confidence interval 95% averaged over 10 independent runs.

5.1 SYNTHETIC CONTINUOUS DATA

We consider two experiment settings. First, in the normal setting, the graph’s number of edges is the
same as its number of nodes, which varies from 100 to 500. Second, in the extreme setting, we fix
the number of nodes at 500 and increase the number of edges from 600 to 1000. In each setting, we
further consider two data-generation models for the effect-cause relationship: (1) linear relationship
perturbed with Gaussian noise (annotated as L-G); and (2) non-linear and non-Gaussian relationship
(annotated as nL-nG). Such data generation mechanism is implemented using the public code in
(Zheng et al., 2018; 2020). In each experiment, we first generate a random Erdos-Renyi DAGs
and then simulate (synthetic) observational data from it using the above mechanisms. Our reported
results and observations in each setting are detailed below.

3Note that except for our versatile method, most other baselines are not applicable to all data models (i.e.,
producing very poor performance that is not meaningful for comparison).
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Figure 2: Baseline performance in normal set-
ting (continuous data). Lower metrics are better.

Figure 3: Baseline performance in extreme set-
ting (continuous data). Lower metrics are better.

Normal Setting. Figure 2 reports the performance of our method GLIDE in comparison to those of
other baselines. In the L-G cases, GLIDE, NOTEARS, and MLP-NOTEARS outperform the rest
of the baselines significantly in terms of both SHD and spurious rate. Notably, GLIDE achieves a
remarkable 64.17% reduction rate on SHD over FCI. Furthermore, GLIDE incurs much less com-
putational cost than both NOTEARS and MLP-NOTEARS (see the runtime plots) while achieving
comparable or better performance. For example, GLIDE runs 96.54× and 15.66× faster than both
NOTEARS and MLP-NOTEARS in in 100- and 500-node graphs while being second to MLP-
NOTEARS in terms of SHD (with a small gap of 16.2%) and achieving best spurious rate in the
largest graph setting with 500 nodes (4.2% vs the second best of 11.75% of NOTEARS and third
best of 13.19% of MLP-NOTEARS). In the nL-nG cases, we also have a similar observations where
GLIDE is again the second best in SHD and best in spurious rate (in the largest graph settings) while
being much more scalable than the best and second best baselines in SHD and spurious rate, respec-
tively. Our reported results also confirm our intuition earlier that score-based methods, despite being
more scalable than constraint-based approaches, tend to perform much less robustly in large graph
settings where the score function becomes less accurate. For example, both SCORE and DAS reach
over 30% of false causal detection rate (i.e., spurious rate) in 500-node graphs.

Extreme Setting. Figure 3 reports the performance of GLIDE in comparison to other baselines in
this setting. In the L-G cases, it is observed that GLIDE achieves the best performance in both SHD
and spurious rate while also achieving the fastest running time in most graph settings. In terms of
SHD, the performance gaps between GLIDE and the second best (NOTEARS) and worst baselines
(SCORE) are 11.74% and 108.5%, respectively. In terms of spurious rate, GLIDE also improves
over the baselines with substantial performance gaps ranging from 5.46% and 48.61% against the
second best and worst baselines, respectively. In the nL-nG cases, GLIDE and MLP-NOTEARS
perform comparably as best baselines in SHD but GLIDE outperforms it by a gap of 8.23% in term
of spurious rate. Furthermore, against the most high-performing baselines in this case, NOTEARS
and MLP-NOTEARS, GLIDE achieve 9.6× and 25.52× faster processing time, respectively.

5.2 SYNTHETIC CATEGORICAL DATA

Categorical data are generated in the same manner as continuous data in Section 5.1. The only
difference is that instead of using Gaussian models, we first randomize conditional probabilities

9
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Table 2: Performance on real-world datasets. N/A denotes no results within 48 hours.

Metrics Method Sachs
(11)

Insurance
(27)

Water
(32)

Alarm
(37)

Barley
(48)

Pathfinder
(186)

Munin
(1041)

SHD
GIES 14.0 ± 0.0 36.0 ± 0.0 49.0 ± 0.0 44.0 ± 0.0 65.0 ± 0.0 1156.0 ± 0.0 1235.0 ± 0.0
PC 10.3 ± 0.7 33.7 ± 0.7 54.3 ± 0.7 35.7 ± 2.4 58.3 ± 1.7 N/A N/A
GLIDE 5.2 ± 0.4 18.0 ± 2.8 41.6 ± 1.8 27.8 ± 2.0 45.8 ± 2.4 59.1 ± 1.9 883.2 ± 21.8

Spurious
rate
(%)

GIES 34.8 ± 0.0 31.9 ± 0.0 35.8 ± 0.0 44.3 ± 0.0 35.8 ± 0.0 87.0 ± 0.0 42.4 ± 0.0
PC 4.2 ± 4.1 0.0 ± 0.0 17.1 ± 2.1 27.7 ± 3.6 17.8 ± 1.9 N/A N/A
GLIDE 0.0 ± 0.0 3.6 ± 2.7 23.0 ± 0.9 13.1 ± 0.9 8.2 ± 1.1 1.9 ± 0.5 1.8 ± 0.2

Runtime
(seconds)

GIES 1.5 ± 0.4 2.7 ± 0.6 3.1 ± 0.6 3.3 ± 0.4 3.4 ± 0.8 19.3 ± 0.4 61.5 ± 15.2
PC 52.0 ± 1.8 450.3 ± 19.4 573.8 ± 16.1 503.2 ± 21.2 761.1 ± 9.5 N/A N/A
GLIDE 23.0 ± 1.1 34.2 ± 0.9 49.1 ± 3.3 43.3 ± 0.4 61.7 ± 2.0 197.0 ± 21.2 6200.3 ± 88.7

Figure 4: Reported performance of the baselines across two cases: (1) E = 3V and (2) E = 4V

for each node and then use Gibbs sampling to simulate the data. The number of categories are
randomly chosen from 2 to 5 for each variable. We compare our proposal with two competitive
baselines, GIES and PC, while excluding the rest since they fail to produce meaningful results for
comparison (i.e., very poor performance). To focus on settings where the PC baseline can produce
results within the time limit of 48 hours, we restrict our evaluation to two classes of graphs where
the number of edges is (i) 3×, and (ii) 4× the number of nodes, which ranges between 100 and 500.

The results are reported in Figure 4 which shows that GLIDE consistently outperforms the baselines
in terms of SHD with substantial gaps of 10.49% and 27.95% in the (E = 3V) case; and 11.56%
and 13.3% in the (E = 4V) case. In both cases, GLIDE is the second best in terms of spurious rate,
increasing the false causal detection (spurious) rate of the best baseline (PC) by a mere margin of
4%. In exchange, GLIDE achieves a 30× faster processing time than PC. In contrast, GIES achieves
the fastest running time but incurs 40% spurious rate (i.e., low reliability). Overall, GLIDE has the
best trade-off between scalability (processing time) and performance (SHD, spurious rate).

5.3 REAL-WORLD CATEGORICAL DATA

Table 2 reported the performance of PC, GIES, and GLIDE on 7 real-world datasets. Note that GIES
is a deterministic method and has zero deviation across different seeds on the same test case. It is
observed that GLIDE achieves the best SHD performance across 7/7 datasets and also achieves the
best spurious rate in 5/7 datasets, especially on large datasets such as Barley, Pathfinder, and Munin.
On the largest dataset (Munin), GLIDE achieves a spurious rate of 1.8% which is remarkably better
than GIES’ (42.36%). Again, GLIDE has the best balance between performance and scalability.

6 CONCLUSION

This paper presents a new perspective of causal learning via a new invariance test for causality that
inspires a reliable and scalable algorithm for recovering causal graphs from observational data. Our
approach explores a key insight that the effect-cause conditional distribution remain invariant under
changes in the prior cause distribution, leading to a parent-finding procedure for each variable via
synthetic data-augmentation. This procedure is further coupled with an effective search algorithm
that exploits prior knowledge of each effect variable’s Markov blanket and an (empirically verified)
sparsity of the causal graphs to significantly reduces the overall complexity. The reduction in com-
plexity and the marked improvements in both speed and accuracy, as demonstrated on large-scale
benchmark datasets, highlight the potential for this approach to outperform existing methods. These
findings suggest that our framework offers a promising direction for further research and practical
applications in causal inference, especially in scenarios involving large and complex datasets.
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Sébastien Lachapelle, Philippe Brouillard, Tristan Deleu, and Simon Lacoste-Julien. Gradient-based
neural dag learning. arXiv preprint arXiv:1906.02226, 2019.

Francesco Montagna, Nicoletta Noceti, Lorenzo Rosasco, Kun Zhang, and Francesco Locatello.
Scalable causal discovery with score matching. In Conference on Causal Learning and Reason-
ing, pp. 752–771. The Proceedings of Machine Learning Research, 2023.

Ignavier Ng, Shengyu Zhu, Zhitang Chen, and Zhuangyan Fang. A graph autoencoder approach to
causal structure learning. arXiv preprint arXiv:1911.07420, 2019.

Ignavier Ng, Shengyu Zhu, Zhuangyan Fang, Haoyang Li, Zhitang Chen, and Jun Wang. Masked
gradient-based causal structure learning. In Proceedings of the 2022 SIAM International Confer-
ence on Data Mining (SDM), pp. 424–432. SIAM, 2022.

Judea Pearl. Causality. Cambridge university press, 2009.

Judea Pearl, Madelyn Glymour, and Nicholas P Jewell. Causal inference in statistics: A primer.
John Wiley & Sons, 2016.
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A PROOFS

A.1 PROOF OF THEOREM 1

To prove Theorem 1, it suffices to prove its (equivalent) contrapositive statement that for X ∈X\B,

VP+(X)

[
P+

(
X | Pa[X]

)]
= 0 , (7)

which in turn can be established via showing that P1(X | Pa[X]) = P2(X | Pa[X]) = . . . =
Pm(X | Pa[X]) or equivalently, Pi(X | Pa[X]) does not depend on the choice of Pi(B) in
Pi(X) = Pi(B) · P (X \B | B). To see this, we first establish the below lemma.
Lemma 1. Suppose Z ∈X \B, Pi(Z | B) remains constant across different choices of Pi(B).

Proof. Since Z ∈X \B, we have

Pi

(
Z | B

)
=

∫
X\
(
B∪Z

) Pi

(
X \B | B

)
d
(
X \

(
B ∪Z

))
(8)

=

∫
X\
(
B∪Z

) P(X \B | B)d(X \ (B ∪Z
))

, (9)

where the first equality is a direct application of marginalization. The second equality is true due to
the definition of Pi(X) = Pi(B)P (X \B | B) which implies Pi(X \B | B) = P (X \B | B).
Hence, Eq. (7) implies Pi(Z | B) remains constant across different choices of Pi(B).

Now, suppose Pa[X] = Z1 ∪Z2 where Z1 ⊆ B and Z2 ⊈ B, it follows that

Pi

(
X | Pa[X]

)
= Pi

(
X | Z1,Z2

)
= Pi

(
X | Z1,Z2,B \Z1

)
= Pi

(
X | B,Z2

)
(10)

= Pi(X,Z2 | B) / Pi(Z2 | B) , (11)

where the first equality is due to the first local Markov condition (I) in Section 3 which stipulates
that given the parent Pa[X] = Z1 ∪Z2, X is independent of its non-descendant B \Z1. We know
B\Z1 is X’s non-descendant because Pa[B] = ∅ due to the choice of B as source variables. Then,
the second equality follows from a direct application of the Bayes theorem.

Finally, note that by design, both Z2 ∪ {X} and Z2 are subsets of X \B. As a result, Lemma 1
can be applied to both the numerator and denominator of the RHS of Eq. (11), asserting that they
both remain constant across different choices of Pi(B). This means Pi(X | Pa[X]) also remains
constant against changes in Pi(B) and hence, its variance in Eq. (7) is indeed zero as expected.

A.2 PROOF OF THEOREM 2

Let S(G) ⊆ X and B(G) ⊆ X denote respectively the set of sources and an arbitrary basis set of
the DAG G = (X,E). We will prove the following inductive statement:

P (n): “Given a DAG G of n (n ≥ 1) nodes, we have |B(G)| ≤ |S(G)|”
To see this, note that in the base case n = 1, G has single node which is obviously both a source and
basis node. Hence, |B(G)| = |S(G)| and P (1) is true.

Now, suppose P (n) is true, we will complete induction by showing that P (n + 1) is also true. To
show this, let X be a terminal node in G that has no children. Removing X from G thus results in
another DAG G′ with n nodes.

Let B(G′) denote an arbitrary basis set of G′. By definition, nodes in B(G′) are mutually inde-
pendent and for any nodes X ′ /∈ X \ (B(G′) ∪ {X}), there exists a node Z in B(G′) such that
X ′ ⊥̸⊥ Z following the definition of d-separation.

Choosing X ′ ∈ Pa[X], there must exist Z ∈ B(G′) such that Z is connected to X ′ via d-separation.
Since X ′ is a parent of X , Z is also connected to X via d-separation. This means each node in G
is either a part of B(G′) or connected to another node in B(G′) via d-separation. Hence, B(G′) is
also a basis set of G. In this case, |B(G′)| = |S(G′)| ≤ |S(G)| since P (n) is true.
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Otherwise, suppose B(G) is a basis set of G that is not in G′. In this case, B(G) must contain
X and by definition of basis (see Definition 3) and its choice, X must be an isolated node with no
parents and children. This also means B(G) \ {X} is a basis set of G′. Otherwise, there exists a
node in G that is not connected to any nodes in the basis set B(G), resulting in a contradiction. As
such, we have |B(G)| = |B(G) \ {X}| + 1 ≤ |S(G′)| + 1 = |S(G)| where the first inequality is
true due to P (n) and the last equality is true since X is an isolated node which is also a source node.

As such, |B(G)| ≤ |S(G)| meaning P (n+ 1) is true if P (n) is true. Induction completes.

A.3 PROOF OF THEOREM 3

To prove that the procedure in Theorem 3 produces a basis set with maximum size, it suffices to
prove that each step in this procedure removes exactly one source from the graph (see Lemma 2). In
this case, the returned basis set has the same size as the source set, which is also the maximum basis
set according to Theorem 2.

Lemma 2. If X has the smallest number of dependent nodes, i.e., X ≜ argminY ∈V |Φ(Y )|, then
X is a source or X is dependent on exactly one source in G = (V ,E).

Proof. To prove this lemma, we will use the following definition that distinguishes between two
types of collider stemming from the V-structure A→ B ← C.
Definition 5. A node B is a Type-1 collider if and only if:

∃A,C ∈ Pa[B] : A ⊥⊥ C.

If such A,C do not exist, B is a Type-2 collider.

Suppose X has the smallest number of dependent nodes in G and X is dependent on more than 1
source. Since sources are mutually independent, this implies that either X is a Type-1 collider or X
has an ancestor Y who is a Type-1 collider.

That is, there must exist a V-structure S1 → . . .→ Y ← . . .← S2 and a path Y → . . .→ X where
S1 and S2 are two sources in G. However, using the result of Lemma 3,

1. There must exists such a node Z on the path from S1 to Y (Z can be S1, but not Y ) that
satisfies: |Φ(Z)| < |Φ(Y )|. This is because Y is a Type-1 collider.

2. Since Y → . . .→ X , |Φ(Y )| ≤ |Φ(X)|.

The above implies ∃Z : |Φ(Z)| < |Φ(X)| which contradicts the assumption that X has the smallest
number of dependents. Hence, X must be either dependent on at most 1 source, or X is a source
variable itself.
Lemma 3. Let Φ(X) ≜ {Y ∈ V : Y ⊥̸⊥ X}. If ∃A,B ∈ V : A→ . . .→ B then |Φ(A)| ≤ |Φ(B)|
where the equality “=” occurs when B is not a Type-1 collider.

Proof. For any nodes X in the graph that is dependent on A, there must exist a path that connects
X and A without a collider in between. Furthermore, since A → . . . → B, the path from X to A
and then, to B also does not contain any colliders. Therefore, all nodes dependent on A are also
dependent on B. Hence, Φ(A) ⊆ Φ(B) or |Φ(A)| ≤ |Φ(B)|.
Following the above logic, suppose B is not a collider, any dependent of B must also be a dependent
of A and hence, |Φ(B)| = |Φ(A)|. Otherwise, if B is a collider but there does not exist A,C ∈
Pa[B] such that A ⊥⊥ C, then any dependent of B can be reached by A via d-separation and
therefore, we have |Φ(B)| = |Φ(A)|.
Now, suppose B is a collider such that there exists A,C ∈ Pa[B] where A ⊥⊥ C (Type-1 collider). In
this case, |Φ(B)| = |Φ(A)∪Φ(C)| > |Φ(A)|. Thus, in all cases, |Φ(B)| ≥ |Φ(A)| if A→ . . .→ B
and the equality occurs only when B is not a Type-1 collider.

A.4 PROOF OF THEOREM 4

Let Di be any downsampled dataset of D. Consider a candidate value b of the source variable B
that occurs D. Let n(b) and ni(b) denote the corresponding numbers of data points in D and Di that
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have B = b. Since Di is downsampled from D, ni(b) ≤ n(b). Hence, let n ≜ |D| and ni ≜ |Di|,
P (B = b)/Pi(B = b) ≥ (n(b)/n)/(ni(b)/ni)

= (n(b)/ni(b)) · (ni/n) ≥ ni/n = |Di|/|D| (12)

which follows from the facts that P (B = b) = n(b)/n, Pi(B = b) = ni(b)/ni, and n(b) ≥ ni(b)
due to the downsampled nature of Di. Taking the minimum over all candidate values b of B,

γi ≜ min
b

(
P (B = b)/Pi(B = b)

)
≥ |Di|/|D| (13)

As a result, for all downsampled dataset Di of D, the downsampling rate |D|/|Di| ≥ γi where γi is
defined in terms of the original and target marginal over the source variable B as stated in Eq. (13).
Hence, if Di is the downsampled data with minimum downsampling rate |D|/|Di| ≥ γ−1

i . Such a
downsampled dataset can indeed be found using the sampling procedure in Theorem 5 below.

A.5 PROOF OF THEOREM 5

Since Di is created via sampling with no replacement Pi(B = b) · |D| ·γi data points from D where
B = b, we know that ni(b) = Pi(B = b) · |D| · γi = Pi(B = b) · n · γi. Thus,

ni ≜

(∑
b

ni(b)

)
=

(∑
b

Pi

(
B = b

)
· |D| · γi

)

= Pi

(
B = b

)
· n · γi = n · γi ·

(∑
b

Pi

(
B = b

))
= n · γi (14)

As a result, |Di|/|D| = ni/n = γi and ni(b)/ni = (Pi(B = b) · n · γi)/(n · γi) = Pi(b). Thus,
Di ∼ Pi(X) and the downsampling rate |D|/|Di| achieves minimum as expected.

A.6 PROOF OF THEOREM 6

A. Convexity. We will first prove that the subspace of Pi(B) that satisfies γi ≥ γo is convex. To see
this, consider P 1

i (B) and P 2
i (B) whose (inverse) downsampling rates (see Theorem 4) γ1

i and γ2
i

are both larger than γo. This means both P 1
i (B) and P 2

i (B) belong to the aforementioned subspace.

Now, let α ∈ (0, 1) and Pα
i (B) = α · P 1

i (B) + (1 − α) · P 2
i (B). The (inverse) downsampling

rate of Pα
i (B) is defined as

γα
i ≜ min

b

(
P (B = b)

Pi(B = b)

)
= min

b

(
P (B = b)

α · P 1
i (B = b) + (1− α) · P 2

i (B = b)

)
(15)

≥ min
b

(
P (B = b)

α · γ−1
o · P (B = b) + (1− α) · γ−1

o · P (B = b)

)
=

1

γ−1
o

= γo , (16)

where the inequality follows from the facts that (1) P (B = b)/P 1
i (B = b) ≥ γ1

i ≥ γo; and
P (B = b)/P 1

i (B = b) ≥ γ2
i ≥ γo which follows from the (inverse) downsampling rate’s definition

in Theorem 4. This means P 1
i (B = b) ≤ γ−1

o · P (B = b) and P 2
i (B = b) ≤ γ−1

o · P (B = b),
which can plugged into Eq. (15) to arrive at Eq. (16). This in turn implies Pα

i (B) belongs to the
subspace of source priors with the induced (inverse) downsampling rate above γo. Thus, following
the definition of convexity, we know that this subspace is convex.

B. Convex Hull. Note that any source prior Pi(B) is a point in an r-dimensional simplex where r
is the number of candidate values of the source variables B. The convex hull of the aforementioned
convex set can then be determined by finding its intersection with the edges of the simplex. This
comprises r points of the following form:

P (k)(B) = αk · P (B) + (1− αk) · δk(B) , (17)

where αk is selected such that γ(k)
i ≜ minb(P (B = b)/P (k)(B = b)) = γo. Solving for αk

results in the following equation:

γo = min

 1

αk
,

P
(
B = b(k)

)
αk · P

(
B = b(k)

)
+
(
1− αk

)
 =

P
(
B = b(k)

)
αk · P

(
B = b(k)

)
+
(
1− αk

) , (18)
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where b(k) denote the k-th candidate value of B. The second equality in the above holds since
αk ∈ (0, 1) which means αk · P (B = b) ≤ αk · P (B = b) + 1 − αk or equivalently, 1/αk ≥
P (B = b)/(αk ·P (B = b)+1−αk). This allows us to get rid of the min operator in Eq. (18) and
consequently, compute αk in closed-form:

αk =
(
1− γ−1

o · P
(
B = b(k)

))
/
(
1− P

(
B = b(k)

))
. (19)

This completes our derivation for the convex hull in Theorem 6.

A.7 PROOF OF THEOREM 7

Suppose U, V ∈ Pa[X], it must follow that U ∈M(V ) and V ∈M(U) since U and V are spouses.
This means (U, V ) ∈ E. Hence, there is a bidirectional edge in G′(X) between any two parents of
X which means Pa[X] corresponds to a clique in G′(X).

B ALGORITHMS & ANALYSIS

B.1 FIND THE BASIS OF A GRAPH

This section provides visualization and pseudocode of the basis finding procedure in Theorem 3.

A. Pseudocode. First, the pseudocode of the basis finding algorithm is detailed below.

Algorithm 1 Maximum-Sized Basis Search
Input: Data D and the set of all variable indices V .
Output: Maximum-Sized Basis B.

1: Compute [Φ]ij = I(Xi ⊥̸⊥ Xj) using existing statistical independence test.
2: while |V | > 0 do
3: Choose t = argmini∈V

∑
j [Φ]ij

4: Update B = B ∪ {Xt}
5: Update V ← V \

(
{i : [Φ]ti = 1} ∪ {Xt}

)
6: end while
7: return B
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Figure 5: A step-by-step visualization of Algorithm 1. From left to right: each step finds the node
with minimum number of dependents and remove it along with its dependent set from the graph.
Each node is accompanied by a number in red that indicates the number of variables being dependent
on that node. The removed nodes are colored gray while active nodes are blue. The example graph
is taken from the ASIA dataset (Scutari, 2009).

This algorithm is guaranteed to find the maximum-sized of basis variables since each of its iteration
will remove exactly one source node from V as proved in Appendix A.3. Thus, the number of nodes
added to the basis is also the number of source nodes. Such basis is guaranteed to has maximum
size following Theorem 2. A visualization of this algorithm is provided in Figure 5.
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B. Time Complexity. Algorithm 1 consists of (i) computing the dependence network matrix Φ, and
(ii) selecting the node with minimum number of dependents from V per iteration. The complexity
for step (i) is O(d2) while the complexity for step (ii) is O(d) per iteration. As there are at most d
iterations, the total cost of Algorithm 1 is therefore O(d2).

B.2 FIND PLAUSIBLE PARENT SETS

Algorithm 2 Finding Plausible Parent Sets
Inputs: root node ro containing the virtual variable Xo, Markov blanket M(X) of all variable X .
Outputs: a plausible-parent-set tree, the path from each intermediate search node of variable X to
each leaf node represents a plausible candidate for Pa[X]

1: Initialize an empty list of leaves L← ∅;
2: search(ro)← the set of all variables X;
3: procedure RECURSIVE-BUILD(r)
4: for ℓ in L do
5: if path(ro → r) ∪ search(r) ∈ path(ro → ℓ) then return
6: end if
7: end for
8: S ← sort Xi ∈ search(r) in the decreasing order of |search(r) ∩M(Xi)|
9: V ← ∅ #initialize the set of visited nodes

10: if |S| > 0 then
11: while |S| > 0 do
12: X ← S.pop()
13: q ← node(X)
14: search(q)← (M(X) ∩ search(r)) \ V
15: path(q)← path(r)) ∪ {X}
16: Recursive-Build(q)
17: V ← V ∪ {X}
18: end while
19: else
20: L← L ∪ {r}
21: end if
22: end procedure

(a) Markov blanket (b) Plausible parents tree of X6 (c) The use of the imaginary X0

Figure 6: Step-by-step visualization of Algorithm 2 showing (a) a Markov blanket of a search node,
(b) a plausible parent tree resulting from a search at a particular node, and (c) a search tree starting
from a virtual variable which are connected to all other (real) variables. The grey-colored nodes
correspond to branches which are terminated following lines 4-7 in Algorithm 2. For example, in
(b) we see that continuing to explore the branch X6 − X4 will re-produce the content which is
already produced in a previous X6 −X2 −X4 branch. Hence, it was terminated.

Theorem 7 implies that if two nodes in the Markov blanket of X do not belong to each other’s
Markov blanket, then they can not both be parents of X . According to this logic, we wish to find
all sets of nodes whose Markov blanket contains one another. To do this, we develop a tree-based
recursive algorithm that works as follows. Given the Markov blanket of all nodes, we perform
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Algorithm 2, which is a modification of the Bron-Kerbosch algorithm (Bron & Kerbosch, 1973).
Instead of running Bron-Kerbosch for each node X and its Markov blanket M(X), we add a virtual
node that directly connects to all other nodes in the graph and start building the set of plausible
parent sets for all nodes recursively from this virtual node.

Note that Algorithm 2 does not create a sub-tree (branch) if the search space of the root of that
sub-tree is guaranteed to re-produce the content of a previously visited leaf and generate no new
information – see lines 4-7. Otherwise, a plausible parent set of X is the set of variables in the path
from the search node containing X to a leaf node, which is computed following the recursion of
Algorithm 2. A step-by-step visualization of this algorithm is illustrated in Figure 6.

C ADDITIONAL EXPERIMENTS

C.1 EXPERIMENT SETTINGS

Baselines & Hyper-parameters for baselines. In this section, we present the experimental settings
for each baseline used in the empirical report in the Section V of the main manuscript. Firstly, the
code for PC is from the bnlearn package(Scutari, 2009), provided in Python. We reported results
of the PC-stable, which is an upgraded version of PC. On the other hand, the implementation of
GIES and FCI are provided from the cdt package (Kalainathan et al., 2020) and the causal-learn
package (Zheng et al., 2024), respectively. These algorithms require no tuned parameters as in-
put and therefore can be used as recommended from the package from which they are provided.
Notears and MLP-Notears are open-source on Github, and are provided by Zheng et al. (2018).
For our experiments, we reuse the parameters recommendation in the original papers: Notears
(λ1 = 0.1, wth = 0.3) and MLP-Notears (λ1 = λ2 = 0.01, wth = 0.3). It is worth noting that
we do not modify the original architecture of the network used in MLP-Notears. Lastly, DAS and
SCORE are also open-source and are available from (Montagna et al., 2023). Both of these base-
lines share the same operational parameters as follows: ηG = ηH = 0.001,K = 10,pns = 10,
threshold = 0.05 and camcutoff = 0.001.

Hyper-parameters for our proposed method GLIDE. Our proposal has the following hyper-
parameters:

• (1) The number of prior distributions m used for the invariance test.
• (2) γ factor which controls the ratio of the data generated from weak interventions.

Both of these parameters are concerned with the data sampling procedure. Other than these two
parameters, there are two more thresholds which control the level of tolerable variance we con-
sider as invariant and the confidence interval for the Conditional Independence Tests (CITs). These
thresholds are set at 10−3 and 0.05, respectively, across all experiments reported in this study. We
recommend tuning the former threshold depends on the nature of the data whereas the latter should
remain unchanged.

C.2 ABLATION STUDIES

C.2.1 STUDIES ON THE INFLUENCE OF m AND γ

The number of prior distributions m corresponds to the number of environments/sub-datasets that
our proposal generates. The higher this figure, the better the performance of invariance test. How-
ever, this comes with a trade-off on time consumption: the invariance test loops through all generated
sub-datasets; therefore, it consumes increasing time linearly with the increase of K. On the other
hand, γ factor virtually controls the error in estimations produced by sub-datasets because γ bounds
the volume of the downsampled datasets.

In this study, we conduct experiments on the 100-variable Erdos-Renyi categorical data graph and
continuous data graph. In each data model, we examine different values of γ ∈ {0.2, 0.4, 0.6, 0.8},
along with increasing values of m ∈ {10, 20, 30, 40, 50}. The input data volume is 10000 and we
examine 10 runs to report mean values and 95% confidence intervals as in Table3. The results show
a significant decrease (averagely, over 18%) in SHD when we increase the number of environments
m from 10 to 50. However, such performance comes at the expense of Runtime. As we discussed,
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Table 3: Influence of hyper-parameters. Mean value and confidence interval 95% are reported.

m γ SHD Spurious rate
(%)

Runtime
(minutes)

10

0.2 122.2 ± 9.788 5.91 ± 1.678 1.95 ± 0.037
0.4 127.4 ± 10.31 5.41 ± 0.951 2.02 ± 0.127
0.6 113.6 ± 2.525 4.64 ± 1.01 2.39 ± 0.113
0.8 121.0 ± 7.717 4.19 ± 1.552 2.45 ± 0.114

20

0.2 116.8 ± 9.139 5.53 ± 0.841 4.54 ± 0.221
0.4 109.8 ± 8.796 4.30 ± 0.792 4.18 ± 0.086
0.6 123.0 ± 2.772 5.96 ± 0.957 3.88 ± 0.098
0.8 112.8 ± 5.958 3.27 ± 1.448 3.93 ± 0.095

30

0.2 117.0 ± 4.679 5.19 ± 0.505 5.67 ± 0.068
0.4 112.8 ± 7.874 4.37 ± 0.613 5.66 ± 0.012
0.6 102.0 ± 6.263 3.85 ± 1.603 5.58 ± 0.218
0.8 106.0 ± 9.461 4.15 ± 0.981 5.75 ± 0.194

40

0.2 114.0 ± 5.714 4.79 ± 0.753 7.44 ± 0.032
0.4 112.8 ± 5.088 3.94 ± 0.529 7.50 ± 0.028
0.6 108.6 ± 8.072 3.97 ± 1.536 7.30 ± 0.051
0.8 108.8 ± 4.444 4.03 ± 1.279 7.36 ± 0.048

50

0.2 100.8 ± 2.432 5.03 ± 0.518 8.97 ± 0.024
0.4 106.6 ± 5.834 4.64 ± 0.958 9.35 ± 0.061
0.6 99.01 ± 6.261 3.68 ± 1.589 9.21 ± 0.021
0.8 107.6 ± 7.606 4.61 ± 0.955 9.22 ± 0.039

the time complexity is linear with m, thus, we see that the runtime is about 5 times higher when m
is 5 times higher. As for γ. The increase of γ does not guarantee better performance, as can be seen
in settings m = 10, m = 30, and m = 50 where the best γ is neither the smallest nor the biggest.
Despite the effect of γ is secondary to that of m, a good γ can boost the performance roughly 6−8%
in term of SHD without incurring additional time complexity.

C.2.2 STUDIES ON DIFFERENT TOPOLOGIES

In this section, we test the performance of baselines and our proposal on Scale-free graphs and
Bipartite graphs (Zheng et al., 2018). The code used to generate the datasets for experiments is
introduced by Zheng et al. (2018). We also evaluate our proposal and baselines in normal and
extreme cases - the former has the number nodes increasing from 100 to 500 and the number of
edges equals the number of nodes, the latter has the number of nodes fixed at 500 while the number
of edges increases from 600 to 1000. In each case, we also generate linear Gaussian data and non-
linear non-Gaussian data scenarios. The results are depicted in Figures 7 and 8 for Bipartite graphs
and Scale-free graphs, respectively.

Bipartite graphs. Regarding Bipartite graphs, our proposal shows superior performance in almost
all cases and data generation scenarios. As can be seen in Figure 7(a)-upper, our proposal achieves
relatively similar to the strongest baseline (MLP-Notears) in terms of SHD and spurious rate, but
costs over an order of magnitude smaller in runtime, about 15.68 times.

The performance gap is noticeable when it comes to the non-linear non-Gaussian data scenario –
Figure 7(a)-lower. Our proposal now has a clear advantage in terms of SHD (roughly 10% perfor-
mance gap) and spurious rate (17.21% performance gap) against MLP-Notears, while the runtime
difference is as significant as the previous scenario. It is worth noticing that, none of the baselines
can achieve both fast runtime and relatively high performance. For example, GIES and DAS have
the same runtime as our proposal, but their performance in terms of SHD and spurious rate are
significantly worse (at an aaverage of 61.55% and 46.22%, respectively).

As for the extreme cases in Bipartite graphs, we isolate best baselines, Notears and MLP-Notears, to
compare with our proposal. The overall result in Figure 7(b) is that our proposal outperforms both
baselines in both scenarios and in all metrics, albeit with an exception. Figure 7(b)-upper shows the
result in linear Gaussian data scenario. We can see that our proposal has a noticeable gap to the other
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(a) Evaluation on linear Gaussian (upper) and non-linear non-Gaussian (lower) data models. The number
of edges equals the number of nodes.

(b) Evaluation on linear Gaussian (upper) and non-linear non-Gaussian (lower) data models at extremes.
The number of nodes is fixed at 500. Best baselines are selected to compare with our proposal.

Figure 7: Performance on continuous data models in normal and extreme cases on Bipartite
graphs. Apply for all metrics: Lower is better.

2 baselines in both SHD (12.81% and 27.18% lower than MLP-Notears and Notears, respectively)
and runtime (16.62 and 14.18 times less than MLP-Notears and Notears, respectively). However,
Notears marginally outperforms our proposal in term of spurious rate, about 1%.

Figure 7(b)-lower shows that our proposal returns relatively stable performance even in the non-
linear non-Gaussian data scenario with an average of 0.69% spurious rate. Furthermore, our pro-
posal consistently outperforms both Notears and MLP-Notears in all cases in term of SHD. In con-
trast, Notears and MLP-Notears seem to be heavily affected by non-linearity in term of spurious rate.
MLP-Notears has an average of 10.06% spurious rate – about 5 times higher than linear Gaussian
data scenario. Notears also suffers an average 3% higher spurious rate. Interestingly, both baselines
seem to benefit from the increasing number of edges in the graph as the results show an downward
trend in spurious rate. However, it is worth noticing that Notears incurs a linearly increasing in SHD
as the number of edges increases.

Scale-free graphs. Regarding Scale-free graphs, Figure 8 shows the results of algorithms in nor-
mal cases. Overall, despite not being the best performer in all metrics, GLIDE maintains a good
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Figure 8: Evaluation on linear Gaussian (upper) and non-linear non-Gaussian (lower) data
models on Scale-free graphs. The number of edges equals the number of nodes.

(a) Erdos Renyi graphs (b) Bipartite graphs (c) Scale-free graphs

Figure 9: Degeneracy measure on different topologies. The number of nodes is fixed at 500.

trade-off between all metrics. Regarding the L-G case (Figure 8-upper) shows a different trends in
performance of baselines compared to GLIDE in term of SHD. In details, the SHD of our proposal
gradually increases until plateaus out in the 400 and 500-node graphs contrasting to other base-
lines (e.g., SCORE, and MLP-NOTEARS) that show an accelerating rate in SHD towards 500-node
graphs. Furthermore, these baselines are noticeably worse than GLIDE when it comes to spurious
rate (GLIDE produces an average of 5.52% less spurious relationships than SCORE, 28.57% than
MLP-NOTEARS while being comparable to NOTEARS and DAS). As for the nL-nG case (Fig-
ure 8-lower), we have the same observation where our proposal consistently being comparable with
other baselines in term of SHD, having a low spurious rate and runtime, simultaneously.

As regarding the extreme cases on the Scale-free graphs, when the number of edges exceeds 700,
we encounter the following problem: the average number of parents for each node becomes expo-
nentially large due to the nature of the graph. Such that the performance of MLP-Notears is heavily
impacted: MLP-Notears cannot produce meaningful results within 48 hours. Our proposal - GLIDE
is also impaired by this setting. The reason is that the data set is not sufficiently large to perform
invariance test with adequate accuracy due to the exponentially large number of parents. Therefore,
we do not include the report on performance of GLIDE as well as other baselines on this particular
setting.
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Table 4: Degeneracy measures on real-world causal graphs.

Datasets Sachs Insurance Water Alarm Barley Pathfinder Munin
Number of Nodes 11 27 32 37 48 186 1041

Degeneracy p 3 4 6 4 5 5 4

C.2.3 STUDIES ON THE DEGENERACY MEASURE

In this ablation study, we investigate the degeneracy measure p on different topologies and connect
them to the performance of GLIDE. As mentioned in Section 4.3, the time complexity that GLIDE
requires to find the plausible parent sets of all d variables is O(pd ·3p/3). As such, we want to assert
that, the degeneracy p of most graphs is indeed insignificant compared to the number of variables
d of those graphs. To show this, we design the following ablation study: we generate DAG with a
fixed number of nodes (500) and an increasing number of edges (500 to 2000). For each setting of
the number of edges, we randomly generate 10 graphs and record their degeneracy measure. Notice
that most baselines presented in this research are incapable of running on graphs with 500 nodes and
more than 1000 edges – as we presented in Main text’s Section 5 and Appendix C.2. However, for
the sake of the argument of this section, we increases the number of edges to 2000 to investigate the
range value of the degeneracy measure p. Figure 9 shows the mean and confidence interval 95% of
the degeneracy measure on different topologies (Erdos-Renyi, Bipartite, and Scale-free graphs) as
the number of edges increases.

Clearly, Bipartite graphs return the most stable degeneracy measure out of the three topologies.
With very small variations, the degeneracy measures on increasingly dense Bipartite graphs demon-
strate an almost linear growth. We speculate that this stable behavior of the degeneracy measure of
the Bipartite graph benefits the performance of GLIDE, as we can see in Figure 7(b) where GLIDE
consistently and noticeably outperforms the other two prominent baselines, especially in term of run-
time. It is worth noting that at the (500-node, 1000-edge) setting, the degeneracy measure is roughly
15, which is much less than the number of nodes. This shows that, at cases where most baselines
take hours to solve, GLIDE can still achieve almost quadratic time complexity (Section 4.3) and
thus only takes minutes to recover the causal graph.

Regarding the Erdos-Renyi graphs, we can see it random nature manifest in a noticeable – yet not too
significant – variation of the degeneracy measure. Nonetheless, these values (even at maximum, e.g.,
p = 13 at 1000-edge or p = 22 at 2000-edge graphs) are insignificant compared to the number of
nodes. This partially explains the scalability of GLIDE on the Erdos-Renyi graphs as we reported in
Main text’s Section 5. Contrasting to the previous two, the degeneracy measure on Scale-free graphs
shows an unstable behavior and a wide range of fluctuation. The degeneracy measure on 500-edge
graphs upto 700-edge graphs has an average of 52.4±14.27, which is highly unstable and generally
much higher than that of the same setting but on other topologies. As the number of edges gradually
reaches 700, the degeneracy has a sudden leap upto an average of 112 ± 27.43. This unusual (and
perhaps, non-linear) behavior may stem from the implementation (Zheng et al., 2018) or may need
further studies to address. Regardless, we can see that the range for degeneracy in Scale-free graphs
are significantly higher than that in Erdos-Renyi or Bipartite graphs, which potentially affect the
runtime of Algorithm 2. However, as we will see in Appendix C.2.4, the number of plausible sets in
Scale-free graphs is still negligible compared to the number of nodes.

Finally, we also investigate the degeneracy of real-world causal graphs. These graphs are the same as
the one presented in the Main text’s Section 5.3. As it turns out, real-world causal graphs are indeed
sparse (see Table 4). In details, the degeneracy of the causal graph of these dataset are: (Sachs: 3,
Insurance: 4, Water: 6, Alarm: 4, Barley: 5, Pathfinder: 5, Munin: 4). In which the Munin dataset
has over 1000 variables. This shows that, in practice, we indeed often encounter large causal graphs
that are sparse.

C.2.4 STUDIES ON THE NUMBER OF PLAUSIBLE PARENT SETS

The number of plausible parent sets plays an essential role in the time complexity of our proposal. As
per Algorithm 2 – an enhanced Bron-Kerbosch algorithm (Bron & Kerbosch, 1973), each plausible
set corresponds to a maximal clique. Theoretical results from Bron & Kerbosch (1973) give us the

22



Under review as a conference paper at ICLR 2025

(a) Erdos-Renyi graphs (b) Bipartite graphs (c) Scale-free graphs

Figure 10: Investigation on the number of plausible parent sets in different topologies. The
number of edges equals the number of nodes.

(a) Erdos-Renyi graphs (b) Bipartite graphs (c) Scale-free graphs

Figure 11: Investigation on the number of plausible parent sets in different topologies. The
number of edges doubles the number of nodes.

(a) Erdos-Renyi graphs (b) Bipartite graphs (c) Scale-free graphs

Figure 12: Investigation on the number of plausible parent sets in different topologies. The
number of nodes is fixed at 500.

bound for the number of maximal clique, which is O((d − p) · 3p/3) where p is the degeneracy of
the graph. As we have shown in Appendix Section C.2.3, p is indeed insignificant compared to d in
the common Erdos-Renyi and Bipartite class of graphs. In this section, we empirically investigate
the number of plausible parent sets in different graph scenarios. For each scenarios, we randomly
generate 10 graphs using the source code provided by (Zheng et al., 2018) and perform Algorithm 2,
then record the number of plausible parent sets of each node. We use the violin plot to show the
distribution of the number of plausible sets at each setting. The maximum, minimum, mean, and
median are reported.
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Figure 13: Preliminary results in Distributed Causal Discovery settings. The performance is a
straightforward application of our proposal to the setting of Distributed Causal Discovery, which
might not be the best possible performance.

Figure 10 shows the number of plausible sets on graphs whose number of nodes equals that of edges,
which gradually increases from 100 to 1000. Notice that this setting mimics that of experiments that
we reported in normal cases in Main text’s Section 5.1 but the number of nodes grows from 100
to 500. As we can see in Figure 10(a), the number of plausible sets on Erdos-Renyi graphs peaks
at 10, with mean being roughly 2. This supports the excellent runtime of GLIDE as we reported.
When it comes to Bipartite graphs, the number of plausible sets is approximately double that in the
same settings on the Erdos-Renyi graphs. However, in all cases, this figure is much lower than the
number nodes. Noticably, in the case of Scale-free graph, we see an almost similar distribution of
the number of plausible sets across graphs with different nodes. In details, most nodes have only
1 plausible parent set, and other have 2. This observation combined with nature of the Scale-free
graphs, suggest that each plausible set contains a large number of nodes. Consequently, given that
the observational data volume is limited at 10000, the accuracy of the invariance test of GLIDE
reduces significantly, which explains the performance that we reported in Appendix Section C.2.

We also conduct experiments on graphs that are twice as dense (the number of edges is doubled that
of nodes) as in the previous setting, and the results are reported in Figure 11. Interestingly, while the
number of plausible sets on Erdos-Renyi roughly doubles (both maximum and medium) compared
to the previous setting, the that on Bipartite graphs increases significantly. In details, in most setting,
the maximum number of plausible ranges from under 100 (on 100-node graphs) to over 300 (on
400-node graphs), which is innegligible compared to the number of nodes. Nontheless, these figures
are still strictly less than the number of nodes. It is worth noting that most nodes in the graphs have
about 10 to 15 plausible parent sets. As for the Scale-free graphs (Figure 11(c)), despite the median
number of plausible sets is 10, the maximum increases linearly with the number of nodes and then
plateaus out at about 150 when the number of nodes reaches 900.

Lastly, we study the number of plausible sets at extreme scenarios (as in Main text’s Section 5.1):
we fix the number of nodes at 500, and increase the number edges from 500 to 1000. The results
are depicted by box plot in Figure 12. The number of plausible sets on the Erdos-Renyi graphs is
strictly less than 25 even in the hardest setting (1000-edge graphs) while the mean value is roughly
3.8 and 75%-percentile is at 5. In contrast, the number of plausible sets on the Bipartite graphs
grows non-linearly, reaching a maximum (outlier) 180 on 1000-edge graphs. However, since most
nodes do not have more than 5 plausible parent sets, we see that the outliers have little effect on
the overall performance of GLIDE, as can be seen in Figure 7(b). On the other hand, the number
of plausible sets on Scale-free graphs is very unstable, and (interestingly) has the same trend as the
degeneracy (reported in Figure 9(c)). In details, when the number of edges is below 700, we have
the number of plausible sets ranges from 1 to 3 with the mean 1.4. But when the number of edges
exceeds 700, despite the mean of 5 and 75%-percentile of 10, the maximum number of plausible
sets may reach to over 100.

C.2.5 PRELIMINARY RESULTS ON DISTRIBUTED CONFIGURATIONS

Out method benefits from distributed data because the data is already segmented in advance. How-
ever, this also poses a new challenge in general: uncontrolled skewness. In this study, we simulate
10 distributed devices with 10 separated datasets, each having 1000 samples of d variables. These
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datasets share the same causal structure but different data-generating seeds (Zheng et al., 2018). In
the realm of distributed causal discovery, CDNOD (Zhang et al., 2017) stands as a seminal repre-
sentative. We compare the performance of our proposal to that of CDNOD on the same criteria as
in the Main text.

Figure 13 shows the results of GLIDE as we increase the number of variables d from 10 to 500.
Note that the reported performance is a straightforward application of our proposal to the setting of
Distributed Causal Discovery, which lacks considerations on the nature of distributed data. There-
fore, these results are not the peak performance of GLIDE. Nonetheless, it can be seen that our
proposal significantly outperforms CDNOD in all criteria, up to over 84.09% in SHD when the
number of nodes reaches 500, albeit with relatively poorer performance at small-sized graphs. The
difference in term of SHD is staggering - the error of GLIDE grows almost linearly whereas that
of CDNOD displays an exponential trend instead. Lastly, the spurious rate of our proposal is stable
around 20% − 25% where as that of CDNOD sky-rises up to over 80% when the graph gets large.
This study once again demonstrates our capability to scale well with size of the graph.

D SUPPORT MATERIALS

D.1 ON THE GENERATION OF WEAKLY INTERVENTIONAL SAMPLING DISTRIBUTIONS

(a) Illustration of the space of Cr(γ0), original
prior P (B), and point mass distributions δ(B).

(b) Step 1: Computing the boundary points
P (i)(B) via Eq.17, which forms a convex hull.

(c) Step 2: Performing weighted average of the
boundary points to generate midpoints Pi(B).

Figure 14: The procedure of generating distributions for downsampling.

The fact that we can sample an infinite number of prior distributions Pi(B) in Cr(γ0) is not helpful
from the computational point of view. Because a larger number of prior distributions incurs a cor-
responding increase in the processing time of the invariance test. Furthermore, when the number of
sampled prior distributions grows too large, it is inevitable that there exist similar prior distributions,
which in fact does not improve the quality of the invariance test. On the other hand, an insufficient
number of prior distributions reduces the reliability of the invariance test. Therefore, we wish to
select only an adequate number of representative prior distributions within Cr(γ0).

Inspired by the aforementioned logic, we perform the following:

1. Sampling Pi(B) where i goes up to 104 (Figure 15(a)) to overwhelmingly fill in the convex
hull Cr(γ0). We use the Dirichlet distribution to sample weighted vectors a(i).
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(a) Before applying K-means. (b) After applying K-means.

Figure 15: A mock-up experiment: Representative distributions selection via K-means.

2. Using the K-means algorithm with parameter K = m to cluster them into m partitions,
each corresponds to a representative centroid. These centroids are the output prior distri-
butions of the procedure (Figure 15(b)).

To this end, we have sampled m prior distributions that act as variants of the original P (B) and can
be used to fuel the invariance test by applying Theorem 6.

D.2 FURTHER DISCUSSION

Parallelism Prospect. Our proposed framework GLIDE is readily applicable to scenarios where
the data is distributed across multiple, private local devices such as the popular federated learning
setting. In such scenarios, GLIDE will benefit directly from the fact that the distributed datasets,
which are presumed to be governed by the same causal model, are already admitting identical under-
lying conditional distributions. As such, GLIDE can use those local datasets as synthetic augmented
datasets which are essential to the effect-cause distributional invariance test. This can save time and
help avoid unnecessary sampling errors.

Limitations. The proposed framework GLIDE has the following limitations:

1. Our performance partially relies on how well Algorithm 1 can find the source nodes for the basis.
As previously mentioned, it is not guaranteed that Algorithm 1 will find all the basis variables. How-
ever, our extensive experiments have shown that when the number of data augmentations increases,
the chance that non-source nodes are included in the basis set is lessen.

2. GLIDE’s performance might be hampered on scenarios where the observational data is insuffi-
cient to discern the true complexity of the underlying causal graph – as can be seen with scale-free
graphs.

E REPRODUCIBILITY

Software. Our implementation is in Python. The requirements include the installation of the causal-
learn package (Zheng et al., 2024) for the use of CITs, scikit-learn Python package, along with
pandas and numpy, which are standard libraries commonly used in Python.

Support Module for Continuous Data. For the use of our proposal for continuous data
models, we use a Discretizer module provided by the Python standard scikit-learn library.
The number of discretizing bins is fixed at 4 and the width of bins is equal to capture the
marginal distribution of each variable in the observational data. As for the categorical data
models, this module is deactivated.

26



Under review as a conference paper at ICLR 2025

Hardware. All experiments are run on a machine with a 64-core Intel(R) Xeon(R) Gold 6242 CPU
@ 2.80GHz. The running of GPU-based baselines is conducted on an NVIDIA GeForce RTX 4090.
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