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ABSTRACT

AI-driven materials discovery that couples automated experimentation with algo-
rithmic decision-making requires process aware recipe to property predictors that
are accurate, calibrated, and physically admissible. We approach this as a reasoning
problem with large reasoning models (LRMs). To instill reasoning capability into
language models, we curate reasoning traces from a teacher model to train a student
model. However, most training pipelines select reasoning traces using binary cor-
rectness or learned preference signals that poorly reflect physical admissibility. We
introduce Physics-aware Rejection Sampling (PaRS), a training-time trace selection
scheme that favors traces consistent with fundamental physics and numerically
close to targets, with lightweight halting to control compute. We instantiate our
framework with a large student model fine-tuned on traces synthesized by a larger
teacher model, and evaluate under matched token budgets against various rejec-
tion sampling baselines. Our method improves accuracy and calibration, reduces
physics-violation rates, and lowers sampling cost relative to baselines. These
results indicate that modest, domain-aware constraints combined with trace-level
selection provide a practical path toward reliable, efficient LRMs for process-aware
property prediction and closed-loop materials design.

1 INTRODUCTION

A central goal in materials discovery is to compress the experimental loop by coupling automated
experimentation with algorithmic decision making. Within this loop, property prediction is the
core module. Accurate models that map composition, structure, and process/recipe variables to
target properties (e.g., materials properties or device-level figures of merit) convert combinatorial
exploration into tractable optimization and enable closed-loop design via bayesian optimization,
provided that the models expose calibrated uncertainty and lightweight physics constraints to keep
proposals physically admissible (Stach et al., 2022; Flores-Leonar et al., 2024; Frazier, 2018;
Sabanzagil et al., 2025; Jacobs et al., 2024; Varivoda et al., 2022). Prior work has largely targeted
properties from composition or crystal structure (Xie & Grossman, 2018; Chen et al., 2019) and,
more recently, has explored text- or instruction-conditioned surrogates with LLMs (Ndayishimiye
et al., 2025); yet scaling these predictors to process-aware, recipe to property tasks at the device level
remains challenging (Liu et al., 2022; Lu et al., 2023; Xie et al., 2024).

Recently, large reasoning models (LRMs)—language models trained and/or reinforced to produce
reliable reasoning traces—have shown dominant performance in diverse areas such as math, coding
and scientific QA (Guo et al., 2025; Jaech et al., 2024; Yang et al., 2025). Their step-wise reasoning
capabilities are a natural fit for recipe to property prediction, where multi-step physical arguments
along the classic chemical composition → process→micro-structure→ property chain are essential
and well established in integrated computational materials engineering (National Research Council,
2008). Despite the promise, the leveraging LRMs on property prediction task remains underexplored
relative to LLM and naive knowledge extraction (Zhao et al., 2024; Ndayishimiye et al., 2025). In
this paper, we study how to train LRMs that reason effectively about materials recipes and output
numerically correct, physically grounded properties.

A prevailing strategy for training LRMs to reason is to use filtered or re-weighted training signals
based on the quality of teacher generated traces, complemented by test-time scaling (Muennighoff
et al., 2025). Concretely, models are fine-tuned on self-generated rationales kept only when they
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reach correct outcomes (Zelikman et al., 2022b; Yuan et al., 2023), or on samples ranked by a
learned reward/verifier (Dong et al., 2023; Cobbe et al., 2021; Zheng et al., 2023b), or they aggregate
multiple samples at decoding (Wang et al., 2022). These methods work as standard building blocks
for LRMs along with SFT-only pipelines and RL-style post-training (Xu et al., 2025; Chen et al.,
2025).

We argue that training property prediction LRMs from generated reasoning traces requires more
sophisticated, physically grounded rejection sampling. Two characteristics of this task drive the need:
(1) High combinatorial design space. The composition, process, structure, property chain creates
high-dimensional, multi-mechanism spaces; inverse maps are often non-unique, yielding traces that
seem plausible yet are scientifically incorrect (Xiang et al., 1995; Takeuchi et al., 2002; Ren et al.,
2021; Liu et al., 2018; Yang et al., 2022). Therefore, effective learning requires sufficient exploration
that searches both the design and reasoning trace space. (2) Physically grounded outputs. Targets are
physical quantities whose magnitudes are constrained by physics and even small numeric deviations
matter. Filters must therefore enforce admissible ranges and physical constraints from conservation
laws and constitutive relations rather than rely solely on binary correctness.

Motivated by these challenges, we propose Physics-aware Rejection Sampling (PaRS), a domain-
tailored approach to optimize reasoning traces. Unlike prior methods that depend on binary correct-
ness or learned reward models, our method couples rejection sampling with task-native, continuous
error metrics derived from wet-lab experiments. Concretely, for each device recipe, we sequentially
generate candidate traces, accepting the first trace that satisfies physics-aware acceptance gates and
halting sampling early when further candidates show negligible variance or improvement.

We adopt Qwen3-32B 1 as the backbone model, fine-tuned via supervised fine-tuning (SFT) on
internal prompts, with teacher reasoning traces synthesized from Qwen3-235B 2 (Yang et al., 2025).
We benchmark against various rejection sampling methods under matched token budgets. Empirically,
our method achieves the highest overall accuracy and calibration, while also delivering superior
compute efficiency compared to existing baselines.

Our contributions are threefold.

• We formulate recipe to property prediction as a reasoning task with LRMs where physics-
aware verification is essential.

• We propose novel physically grounded rejection sampling for optimizing reasoning traces,
introducing the combination of powerful gating and halting techniques.

• We conduct (1) a teacher-side ablation, comparing our physics-aware sampler against
six baselines in terms of trace accuracy and sampling efficiency, and (2) a student-side
evaluation, fine-tuning an open-source LRM to demonstrate consistent gains in accuracy,
calibration, and compute efficiency over all baselines.

2 RELATED WORK

LLMs for materials design Recent advances in large language models (LLMs) have demonstrated
strong generalization capabilities in materials design, drawing on interdisciplinary knowledge from
chemistry, physics, and engineering (Miret & Krishnan; Jia et al., 2024). Beyond general-purpose
LLMs, domain-specific models such as MatSciBERT (Gupta et al., 2022), MatBERT (Wan et al.,
2024), and MELT (Kim et al., 2024) have been trained on large-scale materials science corpora,
successfully capturing fundamental concepts that link structure, properties, processes, and perfor-
mance. A key step in the materials design pipeline is accurate property prediction from symbolic
representations, which serves as a surrogate for expensive experiments and enables rapid candidate
screening. Leveraging their ability to process unstructured scientific data, recent studies have applied
LLMs to this task without the need for elaborate feature engineering. For example, LLM-Prop (Niy-
ongabo Rubungo et al., 2025) employs LLMs to predict crystalline material properties, while Li et
al. (Li et al., 2025) integrate LLMs with graph neural networks for improved prediction accuracy. In
the context of quantum-dot materials, Choi et al. (Choi et al., 2025) developed LLM-based synthesis
protocol generation and property prediction models, fine-tuned on proprietary synthesis datasets.

1https://huggingface.co/Qwen/Qwen3-32B
2https://huggingface.co/Qwen/Qwen3-235B-A22B
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LLMs have also been explored as surrogate models in optimization frameworks. LLAMBO (Liu
et al.) utilizes the exploration capability of LLMs within Bayesian optimization, and BOPRO (Agar-
wal et al., 2025) incorporates LLM-based search strategies that exploit evolving uncertainty estimates
to propose promising candidates in each iteration, thereby accelerating the discovery of globally
optimal solutions.

Large Reasoning Models (LRMs) The paradigm of next-token prediction has undergone a signifi-
cant shift with the introduction of "thought" concept—a sequence of intermediate steps representing
a model’s internal reasoning process (Jaech et al., 2024; Guo et al., 2025; Yang et al., 2025; Muen-
nighoff et al., 2025). This innovative approach enables LLMs to mimic complex human reasoning,
such as reflective thinking and tree search. Chain-of-Thought (CoT) prompting (Wei et al., 2022)
initially demonstrated that few-shot rationales could unlock sophisticated reasoning in LLMs, while
Self-Consistency (Wang et al.) further enhanced reliability by marginalizing over multiple reasoning
paths. Tree-of-Thoughts (ToT) (Yao et al., 2023) later reframed inference as a search over partial
thought sequences, incorporating look-ahead and backtracking. Beyond prompting, process supervi-
sion has emerged as a powerful technique, training step-level verifiers or reward models to guide the
reasoning process. This approach has been shown to outperform models trained with outcome-only
labels, particularly in mathematical reasoning tasks (Lightman et al., 2023). More recently, GPT-o1
(Jaech et al., 2024), Qwen3 (Yang et al., 2025), and DeepSeek-R1 (Guo et al., 2025) have popu-
larized modern Large Reasoning Models (LRMs) by integrating long-form thinking with process
supervision, RL-based post-training, and test-time scaling. Building on these foundational advances,
our work adapts these reasoning mechanisms to the domain of materials design, specifically targeting
physically grounded recipe to property prediction.

Rejection sampling for LLMs Rejection sampling is widely recognized as an effective data-
filtering method that promotes higher-quality supervision. In the context of RLHF and preference-
optimization, it narrows multiple generated outputs per prompt to only the high quality responses, as
determined by a reward model during post-training adjustments. For example, RAFT (Dong et al.)
aligns generative models efficiently by using a reward model and abundant candidate samples; it
discards outputs demonstrating undesired behaviors and fine-tunes the model solely on the selected
high-quality subset. Building on this, Reinforce-Rej (Xiong et al., 2025) proposes a minimalist policy-
gradient extension that filters out both entirely incorrect and entirely correct samples, enhancing
stability and efficiency. In reasoning tasks, STAR-like models (Zelikman et al., 2022a; Hosseini
et al., 2024; Koh et al., 2025) eliminate expensive human annotations by employing a self-taught
reasoning loop—generating chain-of-thought traces, self-verifying correctness, and fine-tuning only
on reliable examples. Additionally, Rejection Sampling Fine-Tuning (RFT) (Yuan et al., 2024)
enhances mathematical reasoning by incorporating model-generated reasoning traces filtered for
correctness into training.

3 METHOD

3.1 TASK DEFINITION

Quantum dot light-emitting diodes (QD-LEDs) are electroluminescent devices that use colloidal
semiconductor quantum dots as the emissive layer, offering narrowband spectra and composition
tunable color (Shirasaki et al., 2013a; Li et al., 2024). In practice, closed-loop materials design must
optimize figures of merit measured at the device level—e.g., peak external quantum efficiency and
operational stability—because these metrics ultimately determine application viability for emissive
displays and lighting (e.g., televisions, monitors) (Bang et al., 2021; Huang et al., 2020; Li et al.,
2024). We therefore frame inputs as complete device recipes: a multi-layer stack typically consist
of anode/ITO, hole-injection layer (HIL), hole-transport layer (HTL), quantum-dot emitting layer
(EML), electron-transport layer (ETL), electron-injection layer/cathode with per layer materials and
process parameters. Each layer records identifiers (material, formulation), geometric parameters (e.g.,
thickness), and process variables (e.g., solution concentration, spin profile, bake/anneal temperature
and duration, atmosphere), along with post-process steps (e.g., UV–ozone, plasma, solvent rinse).
See Figure 1 for a recipe example.

We formulate QD-LED device property prediction as a reasoning LLM task. Let D = {(xi, yi)}Ni=1
where xi is a QD-LED recipe as above and yi ∈ R is a device-level target; in this work we focus
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QD-LED recipe:
substrate:
type: ITO/glass, thickness_nm: 150, rsheet_ohm_sq: 15,
roughness_Rq_nm: 1.5
pretreat: UV-ozone, 10 min; solvent rinse (IPA); 120 C annealing 10
min

stack:
[HIL layer]

substances: PEDOT:PSS (AI4083), thickness_nm: 40, filtration_um:
0.45

work_function_eV: 5.1, process: spin (4000 rpm, 60 s -> 8000 rpm, 5
s ramp)
annealing (150 C, 10 min, air)

[HTL layer]
substances: Poly-TPD, thickness_nm: 20, HOMO_eV: -5.2
solution: 8 mg/mL, chlorobenzene (99.8%, anhydrous), filtration_um:

0.2
process: spin(3000 rpm, 45 s); annealing(120 C, 10 min, N2)

[EML layer]
substances: CdSe/ZnS core/shell QDs (green), emission_peak_nm: 525,
FWHM_nm: 22, core_diameter_nm: 5.5, ligand_primary: oleic acid /

oleylamine,
solution_conc_mg_mL: 25, solvent: octane (anhydrous, <10 ppm H2O)
filtration_um: 0.2 PTFE, target_areal_density_ug_cm2: 40,

thickness_nm: 25,
process: spin (2000 rpm, 30 s); annealing (80 C, 5 min),

film_roughness: 1.8
PLQY_solution_fraction: 0.92, PLQY_film_fraction: 0.80

[ETL layer]
substances: ZnO nanoparticles (sol-gel/colloidal),

mean_particle_diam_nm: 5
thickness_nm: 30, solution: 10 mg/mL, isopropanol
process: spin(3000 rpm, 30 s); annealing (90 C, 5 min, N2)
...

Figure 1: Structured QD-LED recipe example.

You are a world-class expert in quantum-dot light-emitting-diode (QD-LED)
device

physics and fabrication.

<Query QD-LED recipe>

TASK: Predict external quantum efficiency for a QD-LED device fabricated
by the

query recipe.

Final output format (only json output)
Please provide your final report in a structured JSON format.
{

"answer": <PREDICTED_VALUE> %
}

Figure 2: Prompt for the property prediction task with large reasoning models (LRMs).

on max external quantum efficiency (i.e., yi = EQEmax). Given a task-specific prompt (See
Figure 2) and recipe xi, a large reasoning model fθ produces a reasoning trace τ along with a numeric
prediction ŷ:

fθ(prompt, xi) → (τ, ŷ). (1)

4
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QD-LED 
recipe (𝑥𝑖)

Prompt

Teacher LRM
Reasoning trace (𝜏)

Predicted value ( ො𝑦)

1) Range 0~100%

2) Near truth 

3) Physics envelope

1) Low Variance

2) No improvement

3) Budget reached

Training data

Pass

Gating

Halting

Fail

No Yes Stop 
sampling

Next sampling round

Figure 3: PaRS workflow: the teacher generates a mini-batch of candidates; a candidate is accepted
only if it passes gates (range, near-truth tolerance, physics envelope). If none pass, halting checks
decide whether to stop or raise temperature and continue to next sampling round. Accepted traces
supervise the student model as training data.

3.2 PARS: PHYSICS-AWARE REJECTION SAMPLING

For training LRMs, the supervision signal extends beyond the final answer to include the sampled rea-
soning traces themselves. Achieving high-quality supervision for reasoning LLMs therefore requires
rejection sampling to filter out suboptimal traces. As illustrated in Figure 3, we propose Physics-
aware Rejection Sampling (PaRS), which integrates physics-aware gating and halting mechanisms to
optimize reasoning traces

Physics-aware Gating For each recipe xi, we generate reasoning traces sequentially from the
teacher model up to K. We accept the first sample that satisfies all of following acceptance gates:

ŷ(k) ∈ [0, 100], (2)∣∣ŷ(k) − yi
∣∣ ≤ εMAE, (3)

As EQEmax is reported as a percentage, Eq. (2) enforces range consistency. Unlike categorical
correctness filters (Zelikman et al., 2022b; Yuan et al., 2023; Dong et al., 2023; Wang et al., 2022;
Muennighoff et al., 2025), Eq. (3) uses a continuous error against wet-lab ground truth, yielding
richer learning signals.

With external quantum efficiency (EQE) as the prediction target, we can define an empirical upper
bound U(x) as follows. EQE is commonly factorized as EQE = ηout · ηrad · γ with ηout ≤ 1 and
γ ≤ 1 by definition. In regimes where solid-state PLQY limits the radiative yield, the conservative
relation ηrad ≤ PLQY holds, implying EQE ≤ PLQY (Shirasaki et al., 2013b; Gather & Reineke,
2015; OE2, 2014). PLQY (photoluminescence quantum yield) denotes the ratio of emitted to absorbed
photons; we use the solid-state PLQY of the EML under device-relevant conditions. We therefore
define an empirical, recipe-specific upper bound as U(x)=UPL(x), where UPL(x) is instantiated by
the highest measured film photoluminescence quantum yield of the emissive layer in the recipe x.
We add this upper bound to the acceptance gates:

ŷ(k) ≤ U(xi) (4)

It prevents reasoning traces that predict physically implausible overshoots for target property. If no
sampled candidate satisfies Eq. (2)–(4), we discard the example.

Adaptive Halting We sample in mini-batches of size b and proceed round by round until
the total budget Kmax is exhausted. In round r (r = 1, 2, . . .), we draw exactly b candidates
{(τ (r,j), ŷ(r,j))}bj=1 at temperature Tr. For each candidate, we apply the acceptance gates in Eqs. (2)–
(4). If any candidate passes, we accept the earliest passing one and terminate sampling.

If no candidate in the mini-batch passes, we apply two halting checks before proceeding. (i) Variance-
based halting (from round 1): stop when the within-batch error variance falls below a threshold,
indicating insufficient diversity to justify further exploration. (ii) Improvement-based halting (from
round 2): stop when the best error in the current round fails to improve over the previous round by

5
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Table 1: Analysis of reasoning trace selection. All traces are generated with QWEN3-235B. Higher
LLM-as-a-Judge score and lower MAE is better. Kavg is the average number of generated reasoning
traces per prompt. Our Halting logic yields Kavg=6.4 on average (fewer required tokens for selected
trace). ‘Budget→selected” counts teacher generates per prompt and the number retained after
selection.

Method Kavg
Budget
(→ selected)

LLM-as-a-Judge
(score, 0–10) MAE

No sampling 1 1 → 1 5.97 2.440
Random sampling 12 12 → 1 5.86 2.327
Longest trace 12 12 → 1 6.10 2.274
Self-consistency 12 12 → 1 5.78 1.829
LLM-as-a-Judge 12 12 → 1 6.55 2.223
Multi-sampling 12 12 → 12 5.89 2.356

PaRS (Ours) 6.4 12 → 0.8† 7.51 0.829
† We drop the around 20% of sample that not passed our acceptance logic in Sec. 3.2 thus 0.8 traces kept per
prompt on average.

at least a small margin. We also halt once the cumulative number of sampled candidates reaches
Kmax. If none of these conditions trigger, we increase Tr and continue to the next round to encourage
exploration. Refer Appendix A.1 for the details of halting methods.

4 EXPERIMENTS

4.1 BASELINES

We curate 11k QD-LED device dataset and split into 10k for training and 1k for testing. We construct
prompts from all 11k dataset for a property prediction task and query 10k train prompts with QWEN3-
235B to sample teacher reasoning traces. To ensure fair comparison, each reasoning trace has a same
sampling budget of K=12, except for no sampling. We compare the following methods for selecting
reasoning traces including our method.

1. No sampling: use the first generated trace.

2. Random sampling: uniformly sample one of the K traces.

3. Self-consistency aggregation: select the trace whose final answer is closest to the median across
all K answers (Wang et al., 2022).

4. Longest trace: select the trace with the largest token length.

5. LLM-as-a-judge: score all traces with a larger judge model (DeepSeek-R1 3) and select the
top-ranked trace (Zheng et al., 2023a). Refer Appendix. A.2 for details of the LLM-as-a-Judge
prompting.

6. Multi-sampling: retain all K traces as supervision (Guha et al., 2025).

7. PaRS (ours): mini-batch size b=4 with a temperature schedule T ∈ {0.6, 0.8, 1.0} increasing
by 0.2 per round. We set εMAE=1, εvar=1 and δimp=1 by analyzing the data distribution. If no
candidate passes the gates within the budget, the example is discarded.

After rejection sampling, we fine-tune QWEN3-32B as the student model for a single epoch on the
traces selected by each method, using AdamW (learning rate 2×10−5) on 32×A100 (80 GB) GPUs;
unless stated otherwise, all other training hyperparameters are shared across methods.

Evaluation metrics We report two groups of metrics. (1) Teacher-side trace quality: mean absolute
error of the selected trace’ prediction, and the average number of sampled traces per prompt to
quantify the cost of constructing the selected traces. To further assess trace quality, we also employ a

3https://huggingface.co/deepseek-ai/DeepSeek-R1-0528
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Table 2: QD-LED property prediction with QWEN3-32B trained on teacher traces selected by each
method from QWEN3-235B. Lower MAE is better; higher R2 and Spearman ρ are better. Viol.% is
computed on test predictions without post hoc clipping to U(x). # train is the number of supervision
traces used for SFT: multi-sampling retains all K=12 traces per example (12× number of train
prompts), whereas our method keeps only candidates that pass our gates, resulting in fewer traces.

Training data (prompt + reasoning trace) # train MAE R2 Spearman ρ Viol. (%)

No sampling 10 000 2.001 0.376 0.607 35.8
Random sampling 10 000 1.961 0.358 0.621 35.2
Longest trace 10 000 1.942 0.375 0.614 35.3
Self-consistency 10 000 1.933 0.377 0.629 36.8
LLM-as-a-Judge 10 000 1.889 0.408 0.667 35.4
Multi-sampling 120 000 1.984 0.335 0.632 36.6

PaRS (ours) 7980 1.808 0.424 0.705 27.7

larger LLM (DeepSeek-R1) as an external judge, providing external evaluation of reasoning quality
on a 0–10 scale. (2) Student-side performance: MAE, R2, Spearman’s ρ, and a physics violation
rate—the fraction of predictions that fall outside [0, 100] or exceed the empirical upper bound U(x)
on the hold out test set.

For each test prompt, we run five independent inferences with the trained student models and take
the median of the five predictions before computing MAE, R2, and Spearman’s ρ. For the physics
violation rate, we evaluate the constraint indicator on each of the five predictions and report the
average violation frequency across all ensemble. Details of the LLM-as-a-Judge prompting procedure
are provided in Appendix A.2.

4.2 RESULTS

0 0.5 1 1.5 2 2.5

0

1

2

empirical pareto-front

Avg. tokens to generate trace (105)

M
A

E

PaRS (ours)
Self-consistency
Random
LLM-as-a-Judge

Figure 4: Compute–accuracy frontier for rejection sam-
pling methods. Our approach achieves the lowest
teacher MAE with substantially fewer required tokens,
forming the empirical Pareto front. The x-axis shows
average required tokens for generating reasoning trace
per prompt and the y-axis shows teacher MAE. See Ap-
pendix A.3 for details.

Our experiments show that PaRS effec-
tively optimize the teacher’ reasoning
traces to induce reasoning capability for
property prediction in student model. We
present our findings in two parts: first, an
analysis of the trace selection process itself
and second, an evaluation of the trained
student LRMs on the property prediction
task.

Analysis of reasoning trace sampling
We evaluate rejection sampling strategies
on the traces generated by the teacher
QWEN3-235B. As summarized in Ta-
ble 1, PaRS achieves lower prediction er-
ror while requiring fewer generations on
average, placing it on the empirical qual-
ity–efficiency Pareto front (Fig. 4). A sim-
ple MAE gate could make low error appear
trivial, yet an external LLM-as-a-judge that
is not optimized for our metric still as-
signs PaRS the highest overall score. Self-
consistency, which got the lowest MAE except for our method, receives the weakest judge score
among the baselines. This gap suggests that generic preference signals do not fully align with
physics-grounded proximity to ground truth. By combining physics-aware gates with temperature
scheduling and early stopping, PaRS concentrates supervision on high-fidelity, physically admissible
traces rather than on merely “good-looking” rationales.

7
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Table 3: Comparison of reasoning traces generate by three teacher models. We calculate MAE
for all traces by using all generated traces (seven traces per prompt in average). MAE from selected
traces is computed only over selected traces by PaRS. Selected ratio is the fraction of generated
traces accepted by textttPaRS.

Teacher model MAE for all traces MAE for selected traces Selected ratio

DeepSeek-R1-671B 2.144 0.785 0.789
Qwen3-235B 2.327 0.829 0.798
Qwen3-235B-FP8 9.078 0.812 0.811

Table 4: Distillation results. Each row fine tunes the same student (QWEN3-32B) on selected traces
generated by the indicated teacher models with PaRS.

Distiled models # train MAE R2 Spearman ρ Viol. (%)

DeepSeek-R1-Distill-Qwen-32B 7897 1.755 0.445 0.717 25.1
Qwen3-235B-Distill-Qwen-32B 7980 1.808 0.424 0.705 27.7
Qwen3-235B-FP8-Distill-Qwen-32B 8112 1.801 0.413 0.712 28.9

Evaluation of distilled LRMs Training the student QWEN3-32B on traces selected by our method
yields consistent gains in accuracy, correlation with ground truth, and physical admissibility, while
using substantially fewer supervision traces than competing approaches (See Table 2). The LLM-as-
a-Judge baseline is competitive in error and correlation but does not match the reduction in violations
or the calibration gains achieved by PaRS. Retaining all sampled traces enlarges supervision volume
yet underperforms, consistent with amplified label and reasoning noise when traces remain unfiltered.
Recent work (Guha et al., 2025) finds that multi-sampling can help by preserving reasoning diversity,
but in our task the same unfiltered diversity amplifies trace noise, increases physics violation rate
and weakens calibration. PaRS reconciles these views by keeping diversity where it matters, namely
multiple near correct physical pathways, while trimming supervision to numerically consistent traces
that respect simple physics. The result is a better accuracy and admissibility with about 15× fewer
traces than the multi sampling baseline.

These improvements arise from aligning the acceptance rubric with a continuous, physically grounded
target. The range check in Eq. (2) and the empirical envelope in Eq. (4) for target EQE suppress
implausible overshoots. The continuous gate in Eq. (3) rewards numerical proximity to wet-lab
measurements rather than binary correctness. Since the mapping from recipe to property is many to
one and complex, enforcing zero error steers supervision toward outliers and collapses trace diversity.
The tolerance εMAE instead admits near-correct and physically plausible traces, which preserves
multiple valid pathways, improves calibration, and lowers violation rates. The halting logic further
reduces redundant sampling and concentrates supervision on diverse, high-fidelity trajectories.

4.3 ANALYSIS

Robustness of PaRS across teacher models To validate robustness of our method across the
diverse teacher models, we sample reasoning traces with DeepSeek-R1-671B and Qwen3-235B-FP8
in addition to Qwen3-235B. MAE for all traces in Table 3 shows that smaller or low-precision teacher
models produce noisier trace distributions than large models. However, after applying PaRS, the
selected traces from small quantized teachers converge to the quality of those of large teachers: error
and stability tighten, and the retained supervision is physically admissible and consistently high
quality. In effect, PaRS equalizes teacher induced variability by filtering out unstable generations
and preserving only high fidelity reasoning trajectories.

This equalization propagates to the student. Fine-tuning the same student on selected traces from
different teachers yields similar MAE, correlation, and violation rates. The correctness ratio of
selected traces also varies little across teachers, indicating that PaRS is broadly compatible with
heterogeneous teacher models and precisions. Consequently, even smaller or low-precision teachers
can provide supervision competitive with that from larger models.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.3 0.5 0.7 0.9

1.8

2

2.2

2.4

Training correctness ratio r

M
A

E
(p

p)

MAE (pp)
Phys. viol. (%)

26

28

30

32

34

36

38

Ph
ys

ic
s

vi
ol

at
io

ns
(%

)

Figure 5: Effect of training correctness ratio on student
performance. Training dataset size and inference token
budget are fixed. Points show means over a 5-model
ensemble on test prompts.

How trace correctness ratio shapes dis-
tillation performance We study how the
fraction of accepted traces (the “correct-
ness ratio” under the tolerance gate εMAE)
relates to student performance (Fig. 5).
Holding the dataset size and token bud-
get fixed, increasing the acceptance rate r
monotonically lowers MAE and reduces
physics violations. Interestingly, recent
work (Muennighoff et al., 2025) shows that
curated rationales and test-time scaling can
yield strong results even when only 53%
of traces are correct. We hypothesize that
tasks such as math, coding, and QA exhibit
binary correctness with explicit derivations,
so trace correctness closely mirrors super-
vision quality. However, for property pre-
diction, categorical correctness is a weak proxy for supervision quality because two traces may follow
different discrete steps yet end within 1% of the true EQE, which is the signal the model must learn.

Table 5: Ablation on adaptive halting. We use 10
nodes of 8 × H100 (80G) to sample reasoning traces
from the 10k prompts with Qwen3-235B and mea-
sure the compute time.

Method Kavg MAE Compute time (h)

PaRS w/o
Adaptive Halting 8.9 0.817 20.5
PaRS w/
Adaptive Halting 6.4 0.829 15.1

Ablation on adaptive halting We ablate the
adaptive-halting mechanism in PaRS to as-
sess the benefit of early stopping. As sum-
marized in Table 5, enabling adaptive halting
reduces the average number of sampled can-
didates from Kavg=8.9 to 6.4 and shortens
compute time from 20.5,h to 15.1,h, with only
a marginal change in accuracy. These results
indicate that the variance- and improvement-
based early stopping criteria are effective, low-
overhead heuristics for pruning unproductive
samples without materially degrading the qual-
ity of the retained traces. As the teacher model’s parameters are fixed, persistently low variance
and minimal improvement suggest limited capacity to produce faithful reasoning traces that recover
ground-truth properties with physically plausible values.

5 CONCLUSION

We cast recipe to property prediction for materials discovery as a reasoning problem and introduce
Physics-aware Rejection Sampling (PaRS) to curate supervision signals that are numerically accurate,
calibrated, and physically admissible. PaRS replaces binary correctness and generic reward models
with domain-grounded gates—range checks, a recipe-specific physical envelope, and a continuous
error tolerance and adds variance and improvement-based halting. Instantiated with a QWEN3-
235B teacher and a QWEN3-32B student on QD-LED device recipes, PaRS consistently optimize
teacher-trace quality and yields student LRMs with lower MAE, higher correlation, better calibration,
and markedly fewer physics violations. These gains are achieved with substantially less sampling,
indicating a favorable quality–efficiency trade-off. While our experiments focus on EQE in QD-LEDs,
the framework naturally extends to other device-level properties (e.g., lifetime, luminance) and to
materials systems beyond optoelectronics. An important next step is to evaluate PaRS at larger scale
and across diverse domains. We also envision coupling PaRS with RL-based adaptive exploration to
enable closed-loop recipe design, where models not only predict reliably but also guide autonomous
exploration of materials space under explicit physical guarantees.
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A IMPLEMENTATION DETAILS

A.1 SAMPLING SCHEDULE

For an example (xi, yi) and rounds r = 1, 2, . . . with mini-batch indices j = 1, . . . , b, draw
candidates (τ (r,j), ŷ(r,j)) and define the per-candidate error er,j := |ŷ(r,j) − yi|. For each round,
let ēr := b−1

∑b
j=1 er,j , s2r := (b − 1)−1

∑b
j=1(er,j − ēr)

2, and e⋆r := min1≤j≤b er,j ; for r ≥ 2,
define the improvement ∆r := e⋆r−1 − e⋆r . The total candidate budget is Kmax, and Tr denotes the
sampling temperature in round r.

A candidate is accepted if it satisfies all gates in Eqs. (2)–(4), namely ŷ(r,j) ∈ [0, 100], |ŷ(r,j)− yi| ≤
εMAE, and ŷ(r,j) ≤ U(xi). If multiple candidates pass within the same round, accept the one with
the smallest j and terminate for that example.

If no candidate is accepted in round r, the procedure halts early under any of the following conditions:
variance small enough, s2r ≤ εvar (available from r = 1); lack of improvement, ∆r ≤ δimp (available
from r = 2); or budget exhausted, r b ≥ Kmax.

The temperature follows a capped, monotone increase to encourage exploration, for example Tr+1 =
min{Tmax, γTr} with γ > 1, or Tr+1 = min{Tmax, Tr + ∆T} with ∆T > 0, starting from
T1 = Tmin.

The overall procedure is: at round r = 1, sample b candidates at temperature Tr and apply the
acceptance gates; if none pass, compute s2r , e⋆r , and (for r ≥ 2) ∆r; if no halting condition triggers,
update the temperature according to the schedule and continue to r+1. Discard the example if no
candidate is accepted before the budget is spent.

A.2 PROMPT FOR LLM-AS-A-JUDGE

We use DEEPSEEK-R1-0528-671B as the LLM-as-a-Judge. The prompt in Fig. 6 instructs the judge
to evaluate synthesized reasoning traces against five rubrics and to return a numeric score for each
rubric on a 0–10 scale with a brief justification. For the LLM-as-a-Judge selection baseline, we score
all candidate traces generated for a prompt, compute a composite judge score by averaging the five
rubric scores, and select the best one per prompt. For the summary metric reported in Table 1, we
evaluate the set of traces selected by each method with the same judge prompt. We compute the
composite score for each trace as the mean over the five rubrics and then report the mean across all
evaluated prompts. This yields a single 0–10 score per method that is comparable across rejection
sampling methods.

A.3 TOKEN ACCOUNTING FOR TRACE SELECTION

For each prompt, let Tteach,in and Tteach,out denote the teacher’s input tokens and average output
tokens per generated trace. Let K be the generation budget, G the random number of traces actually
generated before acceptance or budget exhaustion, and Kavg := E[G]. Let Tselect capture any extra
token cost due to a selection pass (if present). Finally, let racc ∈ [0, 1] be the probability that a prompt
yields at least one accepted trace.

Expected tokens per prompt The expected token cost per prompt, regardless of whether a trace is
accepted, is

E[tokens per prompt] = Kavg
(
Tteach,in + Tteach,out

)
+ Tselect. (5)

For offline selection methods (random, self-consistency, and ours), the selection pass is negligible,
so Tselect ≈ 0. By contrast, LLM-AS-A-JUDGE performs an additional inference pass over the
concatenated set of generated traces. Approximating the judge pass as comparable in length to the
teacher pass yields

E[tokens per prompt]judge ≈ 2Kavg
(
Tteach,in + Tteach,out

)
. (6)
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Expected tokens per accepted trace When some prompts produce no accepted trace, it is useful
to normalize by the acceptance rate racc. The expected tokens per accepted trace are

E[tokens per accepted] =
E[tokens per prompt]

E[accepted traces per prompt]
≈

Kavg
(
Tteach,in + Tteach,out

)
+ Tselect

racc
,

(7)

with the judge variant obtained by substituting Eq. (6) into Eq. (7).

Under online acceptance (our method), generation halts immediately upon acceptance or when the
budget K is reached. Thus G follows a truncated geometric-like process, and Kavg reflects both early
acceptance on easy prompts and full-budget usage on hard prompts. Methods that commit to a fixed
K without early stopping have Kavg ≈ K.

In compute versus accuracy frontiers (e.g., Fig. 4), the x-axis reports the per-prompt token cost
in Eq. (5). When comparing methods with materially different racc, we additionally report the
per-accepted-trace cost using Eq. (7).

As a concrete example, suppose Tteach,in=900, Tteach,out=2000, Kavg=6.4, and racc=0.8. Then the per-
prompt cost for offline selection is 6.4× (900 + 2000) = 18,560 tokens. The judge variant is about
2 × 18,560 = 37,120 tokens per prompt. Normalizing by acceptance rate, the per-accepted-trace
costs are approximately 23,200 (offline) and 46,400 (judge).
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<Prompt>: Device recipe
<Response>: Model’s reasoning trace + final prediction.

# Role
You evaluate QD-LED EQE prediction responses (especially reasoning trace)

quality with following rubric. Judge only against the provided
device prompt.

# Scoring rubric (0~10)
1. Groundedness to Prompt (0~2.5): Quote prompt substrings for all used

parameters; mark extra info as Assumption.
- 0.0~0.5: Largely ungrounded; few/no quotes; multiple unstated details.
- 0.6~1.3: Some quotes, but several parameters not cited; occasional

unstated claims
- 1.4~2.0: Mostly grounded; 1-2 minor misses; assumptions called out but

one is vague
- 2.1~2.3: Fully grounded with trivial omissions only
- 2.4~2.5: Every device parameter quoted; zero unstated details

2. Causal Reasoning Quality (0~2.0): Link given factors -> mechanisms ->
EQE impact; separate Given / Inference / Implication.

- 0.0~0.4: Descriptive or hand-wavy; leaps from factors to EQE without
mechanism.

- 0.5~1.0: Some correct factor->effect links but gaps and mixing of Given
/Inference.

- 1.1~1.5: Coherent chains for most factors; clear separation with one
notable gap

- 1.6~1.8: Mechanism-first, no unjustified jumps; discusses main loss
channels

- 1.9~2.0: Exemplary: prioritizes the limiting mechanism.

3. Numerical & Unit Discipline (0~2.0): Show steps; keep %/nm/eV
consistent; sensible rounding of final EQE.

- 0.0~0.4: Arithmetic or unit errors ; missing key steps.
- 0.5~1.0: Mostly correct; one error or unit slip.
- 1.1~1.5: Correct math; consistent units; minor omission .
- 1.6~1.8: Fully worked steps (e.g., IQE x outcoupling); sanity checks.
- 1.9~2.0: Clean, reproducible pipeline; precision noted where relevant.

4. Assumption Quality (0~2.0): Assumptions explicit, minimal, non-
contradictory, each briefly justified.

- 0.0~0.4: Many hidden or contradictory assumptions.
- 0.5~1.0: Several assumptions; some lack justification.
- 1.1~1.5: Only necessary assumptions; short, credible justifications.
- 1.6~1.8: Minimal & well-justified; references common baselines.
- 1.9~2.0: Parsimonious and transparent; each assumption tied to its EQE

impact; brief sensitivity note if applicable.

5. Clarity & Structure (0~1.5): Use sections: Given / Assumptions /
Reasoning / Result; keep high signal-to-noise.

* 0.0~0.3: Disorganized; sections missing; EQE result absent or hard to
find.

* 0.4~0.7: Sections present but uneven; some redundancy; result line
imprecise.

* 0.8~1.1: Clear sections; stepwise logic; minor verbosity or formatting
slips.

* 1.2~1.3: Crisp, concise, well-formatted; Result line prominent.
* 1.4~1.5: Polished, minimal, easy to audit; bullets/tables used

judiciously.

Figure 6: Prompt for evaluating reasoning traces with DeepSeek-R1. We report the sum of average
score of the five metrics to Table 1.
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