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Abstract

In multi-agent reinforcement learning (MARL) and game theory, agents repeatedly
interact and revise their strategies as new data arrives, producing a sequence of
strategy profiles. This paper studies sequences of strategies satisfying a pairwise
constraint inspired by policy updating in reinforcement learning, where an agent
who is best responding in one period does not switch its strategy in the next period.
This constraint merely requires that optimizing agents do not switch strategies,
but does not constrain the non-optimizing agents in any way, and thus allows for
exploration. Sequences with this property are called satisficing paths, and arise
naturally in many MARL algorithms. A fundamental question about strategic
dynamics is such: for a given game and initial strategy profile, is it always possible
to construct a satisficing path that terminates at an equilibrium? The resolution
of this question has implications about the capabilities or limitations of a class of
MARL algorithms. We answer this question in the affirmative for normal-form
games. Our analysis reveals a counterintuitive insight that reward deteriorating
strategic updates are key to driving play to equilibrium along a satisficing path.

1 Introduction

Game theory is a mathematical framework for studying strategic interaction between self-interested
agents, called players. In an n-player normal-form game, each player i = 1, · · · , n, selects a strategy
xi ∈ X i and receives a reward Ri(x1, . . . , xn), which depends on the collective strategy profile
x = (x1, . . . , xn) =: (xi,x−i). Player i’s optimization problem is to best respond to the strategy
x−i of its counterparts, choosing xi ∈ X i to maximize Ri(xi,x−i). Game theoretic models are
pervasive in machine learning, appearing in fields such as multi-agent systems [21], multi-objective
reinforcement learning [24], and adversarial model training [7], among many others.

In multi-agent reinforcement learning (MARL), players use learning algorithms to revise their
strategies in response to the observed history of play, producing a sequence {x̂t}t≥1 in the set of
strategy profiles X := X 1 × · · · × Xn. Due to the coupled reward structure of multi-agent systems,
each player’s learning problem involves a moving target: since an individual’s reward function
depends on the strategies of the others, strategy revision by one agent prompts other agents to revise
their own strategies. Convergence analysis of MARL algorithms can therefore be difficult, and the
development of tools for such analysis is an important aspect of multi-agent learning theory.

A strategy profile (xi
∗)

n
i=1 is called a Nash equilibrium if all players simultaneously best respond

to one another. Nash equilibrium is a concept of central importance in game theory, and the tasks
of computing, approximating, and learning Nash equilibrium have attracted enduring attention in
theoretical machine learning [47, 27, 14, 42, 17, 26, 31]. Convergence to equilibrium strategies
has long been a predominant, but not unique, design goal in MARL [53]. In this paper, we study
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mathematical structure of normal-form games with the twin objectives of (i) better understanding the
capabilities or limitations of existing MARL algorithms and (ii) producing insights for the design of
new MARL algorithms.

A number of MARL algorithms approximate dynamical systems {xt}t≥1 on the set of strategy profiles
X in which the next strategy for player i is selected as xi

t+1 = f i(xt), where xt = (x1
t , . . . , x

n
t ) is

the strategy profile in period t. A sampling of such algorithms will be offered shortly. This approach
facilitates analysis of the algorithm, as one separately considers the convergence of {xt}t≥1 induced
by the update functions {f i}ni=1, on one hand, and the approximation of {xt}t≥1 by the algorithm’s
iterates {x̂t}t≥1 on the other. In this work, we consider update functions that satisfy a quasi-rationality
condition called satisficing: when an agent is best responding, the update rule instructs the agent
to continue using this strategy. That is, if xi is a best response to x−i, then f i(xi,x−i) = xi. This
quasi-rationality constraint generalizes the best response update and is desirable for stability of the
resulting dynamics, as it guarantees that Nash equilibria are invariant under the dynamics. Moreover,
the satisficing condition is only quasi-rational, in that it imposes no constraint on strategy updates
when an agent is not best responding, and so allows for exploratory strategy updates. Update rules
that incorporate exploratory random search when a strategy is deemed unsatisfactory are common in
MARL theory [6, 32, 11, 34].

Our goal is to better understand the capabilities/limitations of MARL algorithms that use the satisficing
principle to select successive strategies, potentially augmented with random exploration when an
agent is not best responding. Examples include [19, 20, 33, 12, 10, 1] and [52]. Instead of studying a
particular collection of strategy update functions, we abstract the problem to the level of sequences in
X, which allows us to implicitly account for experimental strategy updates. A sequence (xt)t≥1 of
strategy profiles is called a satisficing path if, for each player i and time t, one has that xi

t+1 = xi
t

whenever xi
t is a best response to x−i

t . The central research question of this paper is such:

For a normal-form game Γ and an initial strategy profile x1, is it always possible to construct a
satisficing path from x1 to a Nash equilibrium of the game Γ?

Since many MARL algorithms operate using the satisficing principle (or otherwise approximate pro-
cesses that involve satisficing update rules, e.g. [48]), the resolution of this question has implications
for the effectiveness of such MARL algorithms. Indeed, the question has been answered in the affir-
mative for two-player normal-form games by [19] and for n-player symmetric Markov games by [52],
and in both classes of games this has directly lead to MARL algorithms with convergence guarantees
for approximating equilibria. In addition to removing a theoretical obstacle, positive resolution of
this question would establish that uncoordinated, distributed random search can effectively assist
Nash-seeking algorithms to achieve last-iterate convergence guarantees in a more general class of
games than previously possible.

Contributions. We give a positive answer to the question above: for any finite n-player game Γ
and any initial strategy profile x1, there exists a satisficing path beginning at x1 and ending at a
Nash equilibrium of Γ. This partially answers an open question posed by [52]. We prove this result
by analytically constructing a satisficing path from an arbitrary initial strategy profile to a Nash
equilibrium. Our approach is somewhat counterintuitive, in that it does not attempt to seek Nash
equilibrium by improving the performance of unsatisfied players (players who are not best responding
at a given strategy profile), but by updating strategies in a way that increases the number of unsatisfied
players at each round. This tactic leverages the freedom afforded to unsatisfied players to explore
their strategy space and avoids the challenge of cyclical strategy revision that occurs when agents
attempt to best respond to their counterparts [37]. This insight provides a new approach to MARL
algorithm design beyond the well-structured settings considered in prior work.

Notation. We let ∆A denote the set of probability measures over a set A. For n ∈ N, we let
[n] := {1, 2, . . . , n}. For a point x, the Dirac measure centered at x is denoted δx. When discussing
a fixed agent i, the remaining collection of agents are called i’s counterparts or counterplayers.

Related Work. A vast number of MARL algorithms have been proposed for iterative strategy
adjustment while playing a game. The most widely studied class of algorithms of this type involve
each player running a no-regret algorithm on its own stream of rewards. The celebrated fictitious play
algorithm [9] and its descendants are special cases of this class. Although the convergence behavior of
fictitious play and its variants has been studied extensively, convergence results are typically available
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only for games exhibiting special structural properties amenable to analysis [25, 29, 4, 45, 46].
Indeed, the convergence properties of fictitious play are intimately connected to those of best response
dynamics, a full information dynamical system evolving in continuous time where the evolution
rule for player i’s strategy is governed by its best response multi-function. By harnessing such
connections, convergence results for fictitious play and a number of other MARL algorithms have
been obtained by analyzing the dynamical systems induced by specific update rules [5, 28, 49].

A related line of research considers strategic dynamics defined by strategy update functions, taking
the form xi

t+1 = f i(xt) in discrete time or an analogous form in continuous time. In the case of
deterministic strategy updates, [22] studied strategic dynamics in continuous time and showed that
if the strategy update functions, analogous to f i above, satisfy regularity conditions as well as a
desirable property called uncoupledness, by which f i cannot depend on the reward functions of i’s
counterplayers, then the resulting dynamics are not Nash convergent in general. These results were
recently generalized by [38]. Additional possibility and impossibility results were presented by [2],
who studied strategic dynamics in a different setting, where players do not observe counterplayer
strategies. Under stochastic strategic dynamics, a number of positive results were obtained by
incorporating exogenous randomness into one’s strategy update, along with finite recall of recent
play [23, 19, 20]. In the regret testing algorithm of [19], players revise their strategies according to
whether or not their most recent strategy met a satisfaction criterion: if xi

t performed within ϵ of
the optimal performance against x−i

t , player i continues using it and picks xi
t+1 = xi

t. Otherwise,
player i experiments and selects xi

t+1 according to a probability distribution over X i. Conditional
strategy updates similar to this have appeared in several other works, such as [12, 10, 11], and the
regret testing algorithm has been extended in several ways [20, 1].

A game is said to have the satisficing paths property if every initial strategy profile is connected
to some equilibrium by a satisficing path. As we discuss in the next section, satisficing paths
can be interpreted as a natural generalization of best response paths. Consequently, the problem of
identifying games that have the satisficing paths property is a theoretically relevant question analogous
to characterizing potential games [41] or determining when a game has the fictitious play property
[39, 40]. The concept of satisficing paths was first formalized in [52] in the context of multi-state
Markov games, where it was shown that n-player symmetric Markov games have the satisficing paths
property and this fact could be used to produce a convergent MARL algorithm. However, the core
idea of satisficing paths appeared earlier, before this formalization: in the convergence analysis of the
regret testing algorithm in [19], it was shown that two-player normal-form games have the satisficing
paths property, though this terminology was not used. These earlier works made no claims about the
existence of paths in general-sum n-player games, which is the focus of this paper.

2 Normal-form games

A finite, n-player normal-form game Γ is described by a list Γ = (n,A, r), where n is the number
of players, A = A1 × · · · × An is a finite set of action profiles, and r = (ri)i∈[n] is a collection of
reward functions, where ri : A → R describes the reward of player i as a function of the action
profile. The ith component of A is player i’s action set Ai.

Description of play. Each player i ∈ [n] selects a probability vector xi ∈ ∆Ai and then selects its
action ai according to ai ∼ xi. The vector xi is called player i’s mixed strategy, and we denote
player i’s set of mixed strategies by X i := ∆Ai . Players are assumed to select their actions without
observing one another’s actions, and the collection of actions {ai : i ∈ [n]} is assumed to be mutually
independent. The set of mixed strategy profiles is denoted X := X 1 × · · · Xn. After the action
profile a = (a1, . . . , an) is selected, each player i receives reward ri(a).

Player i’s performance criterion is its expected reward, defined for each strategy profile x ∈ X as

Ri(xi,x−i) = Ea∼x

[
ri(a1, . . . , an)

]
,

where Ea∼x signifies that aj ∼ xj for each player j ∈ [n] and we have used the convention that
x = (xi,x−i) and x−i = (x1, . . . , xi−1, xi+1, . . . , xn). Since player i’s objective depends on the
strategies of its counterplayers, the relevant optimality notion is that of (ϵ-) best responding.
Definition 1. A mixed strategy xi

∗ ∈ X i is called an ϵ-best response to the strategy x−i ∈ X−i if

Ri(xi
∗,x

−i) ≥ Ri(xi,x−i)− ϵ ∀xi ∈ X i.
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The standard solution concept for n-player normal form games is that of (ϵ-) Nash equilibrium, which
entails a situation in which all players are simultaneously (ϵ-) best responding to one another.

Definition 2. For ϵ ≥ 0, a strategy profile x∗ = (xi
∗,x

i
∗) ∈ X is called an ϵ-Nash equilibrium if, for

every player i ∈ [n], xi
∗ is an ϵ-best response to x−i

∗ .

Putting ϵ = 0 above, one recovers the classical definitions of best responding and Nash equilibrium.
For any ϵ ≥ 0, the set of ϵ-best responses to a strategy x−i is denoted BRi

ϵ(x
−i) ⊆ X i.

2.1 Satisficing Paths

We now present the concept of satisficing paths as generalized best response paths.

Definition 3. A sequence of strategy profiles (xt)t≥1 in X is called a best response path if, for every
t ≥ 1 and every player i ∈ [n], we have

xi
t+1 =

{
xi
t, if xi

t ∈ BRi
0(x

−i
t ),

some xi
⋆ ∈ BRi

0(x
−i
t ), else.

The preceding definition of best response paths can be relaxed in several ways, and such relaxations
are often desirable to avoid non-convergent cycling behavior (see [37] for an example). A common
relaxation involves synchronizing players or incorporating inertia, so that only a subset of players
switch their strategies at a given time, which can be help achieve coordination in cooperative settings
[32, 48, 51]. Beyond cooperative settings, the use of best response dynamics to seek Nash equilibrium
may not be justified. In purely adversarial settings, for instance, best response paths cycle and fail
to converge [3], and some alternative strategic dynamics are needed to drive play to equilibrium.
Consider the following generalization of the best response update:

xi
t+1 =

{
xi
t, if xi

t ∈ BRi
0(x

−i
t ),

f i(xi
t,x

−i
t ) else.

The update defined above is characterized by a “win–stay, lose–shift" principle [11, 44], which only
constrains the player to continue using a strategy when it is optimal. On the other hand, the player
is not forced to use a best response when xi

t /∈ BRi
0(x

−i
t ), and may experiment with suboptimal

responses according to a function f i : X→ X i.1 Allowing the function f i to be any function from
X to X i, one generalizes best response updates and obtains a much larger set of sequences (xt)t≥1

and greater flexibility to approach equilibrium from new directions. This motivates the following
definition of satisficing paths.

Definition 4. A sequence of strategy profiles (xt)
T
t=1, where T ∈ N ∪ {∞}, is called a satisficing

path if it satisfies the following pairwise satisfaction constraint for any player i ∈ [n] and any t:

xi
t ∈ BRi

0(x
−i
t )⇒ xi

t+1 = xi
t. (1)

The intuition behind satisficing paths is that they are the result of an iterative search process in which
players settle upon finding an optimal strategy (i.e. a best response to the strategies of counterplayers)
but are free to explore different strategies when they are not already behaving optimally. Note,
however, that the definition above is merely a formal property of sequences of strategy profiles in X
and is agnostic to how a satisficing path is produced. The latter point will be important in the coming
sections, where we analytically obtain a particular satisficing path as part of an existence proof.

We note that Condition (1) constrains only optimizing players. It does not mandate a particular
update for the so-called unsatisfied player i, for whom xi

t /∈ BRi
0(x

−i
t ). In particular, xi

t+1 can be
any strategy without restriction, and xi

t+1 /∈ BRi
0(x

−i
t ) is allowed. In addition to best response paths,

constant sequences (xt)t≥1 with xt ≡ x are always satisficing paths, even when x is not a Nash
equilibrium. Moreover, since arbitrary strategy revisions are allowed when a player is unsatisfied, if
x1 ∈ X is a strategy profile for which all players are unsatisfied, then (x1,x2) is a satisficing path
for any x2 ∈ X.

1As a special case, f i may simply be a best response selector, recovering the best response update.
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Definition 5. The game Γ has the satisficing paths property if for any x1 ∈ X, there exists a
satisficing path (x1,x2, . . . ) such that, for some finite T = T (x1), the strategy profile xT is a Nash
equilibrium.2

Satisficing paths were initially formalized in [52], where it was proved that two-player games and n-
player symmetric games have the satisficing paths property. However, whether general-sum n-player
games have the satisficing paths property was left as an open question. We answer this open question
in Theorem 1, presented in the next section.

3 Existence of paths in normal-form games

Theorem 1. Any finite normal-form game Γ has the satisficing paths property.

Proof sketch. Before presenting the formal proof, we describe the intuition of its main argument. In
the proof of Theorem 1, we construct a satisficing path from an arbitrary initial strategy x1 to a Nash
equilibrium by repeatedly switching the strategies of unsatisfied players in a way that grows the set
of unsatisfied players after the update. Once the set of unsatisfied players is maximal, we argue that a
Nash equilibrium can be reached in one step by switching the strategies of the unsatisfied players.
The final point represents the main technical challenge in the proof, as switching the strategies of
unsatisfied players changes the objective functions for the previously satisfied players. We address
this challenge by showing the existence of a Nash equilibrium on the boundary of a strategy subset in
which previously satisfied players remain satisfied.

To give the complete proof, we will require some additional notation, detailed below, and some
supporting results, detailed in Appendix A and Appendix B.

Additional notation. We require notation for the following sets, defined for any x ∈ X:

Sat(x) :=
{
i ∈ [n] : xi ∈ BRi

0(x
−i)

}
, and UnSat(x) := [n] \ Sat(x).

A player in Sat(x) ⊆ [n] is called satisfied (at x), and a player in UnSat(x) is called unsatisfied (at
x). For x ∈ X, we also define

Access(x) :=
{
y ∈ X : yi = xi, ∀i ∈ Sat(x)

}
.

Access(x) is the subset of strategies that are accessible from strategy x, to mean one can obtain
strategy y ∈ Access(x) ⊆ X from x by switching (at most) the strategies of players who were
unsatisfied at x. We define a subset NoBetter(x) ⊆ Access(x) as

NoBetter(x) := {y ∈ Access(x) : UnSat(x) ⊆ UnSat(y)}
= {y ∈ Access(x)|∀i ∈ UnSat(x), i ∈ UnSat(y)} ,

The set NoBetter(x) consists of strategies y that are accessible from x and also fail to improve the
status of players who were previously unsatisfied. The set name NoBetter(x) is chosen to suggest
that the players unsatisfied at x are not better off at y ∈ NoBetter(x), since they are unsatisfied at
both x and y. We observe x ∈ NoBetter(x), hence NoBetter(x) is non-empty.

Finally, we define a set Worse(x) ⊆ NoBetter(x) as

Worse(x) := {y ∈ NoBetter(x) : UnSat(x) ⊊ UnSat(y)}
= {y ∈ NoBetter(x)|∃i ∈ Sat(x) : i ∈ UnSat(y)}.

The set Worse(x) consists of strategies that are accessible from x, that leave all previously unsatisfied
players unsatisfied, and flip at least one previously satisfied player to being unsatisfied. In particular,
if y ∈ Worse(x), this means |UnSat(y)| ≥ |UnSat(x)| + 1. We observe that Worse(x) may be
empty, and Worse(x) ⊆ NoBetter(x) ⊆ Access(x).

2A more general definition, involving ϵ ≥ 0 best responding and strategy subsets was studied in [52]. In this
paper, we consider true optimality and no strategic constraints, which additionally aids clarity.
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3.1 Proof of Theorem 1

Remark 1. In the proof below, we analytically construct a path from x1 to a Nash equilibrium. The
process of selecting strategies x1,x2, · · · and switching the component strategy of each player is
done centrally, by the analyst, and should not be interpreted as a learning algorithm.

Proof. Let x1 ∈ X be any initial strategy profile. We must produce a satisficing path of finite length
terminating at a Nash equilibrium. Equivalently, we must produce a sequence x1, . . . ,xT with
xt+1 ∈ Access(xt) for each t and xT a Nash equilibrium, where the length T may depend on x1. In
the trivial case that x1 is a Nash equilibrium, we put T = 1. The remainder of this proof focuses on
the non-trivial case, where x1 is not a Nash equilibrium.

To begin, we produce a satisficing path x1, . . . ,xk as follows. We put t = 1, and while both
Sat(xt) ̸= ∅ and Worse(xt) ̸= ∅, we arbitrarily fix xt+1 ∈Worse(xt) and increment t ← t+ 1.
By construction, we have

∅ ̸= UnSat(x1) ⊊ · · · ⊊ UnSat(xt) ⊊ UnSat(xt+1)

for each non-terminal iteration t, where the inequality holds because x1 is not a Nash equilibrium.
Thus, the number of unsatisfied players is strictly increasing along this satisficing path. Since the
number of unsatisfied players is bounded above by n, and since we have assumed |UnSat(x1)| ≥ 1,
this process terminates in at most n− 1 steps. Letting k denote the terminal index of this process, we
have k ≤ n− 1.

By the construction of the path (x1, . . . ,xk), (at least) one of the following holds at index k: either
Sat(xk) = ∅ or Worse(xk) = ∅. In other words, either no player is satisfied at xk, or there is no
accessible strategy that grows the subset of unsatisfied players.

Case 1: Sat(xk) = ∅, and all players are unsatisfied at xk. In this case, we may switch the strategy
of each player i ∈ [n] to any successor strategy. That is, Access(xk) = X. We fix an arbitrary
Nash equilibrium z⋆, put xk+1 = z⋆, and let T = k + 1. Then, (x1, . . . ,xT ) is a satisficing path
terminating at equilibrium.

Case 2: Sat(xk) ̸= ∅ and Worse(xk) = ∅. In this case, there are no accessible strategies that
strictly grow the set of unsatisfied players.

Since Worse(xk) = ∅, the following holds: for any strategy y ∈ NoBetter(xk) and any satisfied
player i ∈ Sat(xk), we have that i ∈ Sat(y). (Otherwise, if i ∈ UnSat(y), then y ∈ Worse(xk),
since it flipped a satisfied player. But this contradicts the emptiness of Worse(xk).)

We now argue that there exists a strategy profile x⋆ accessible from xk such that all players unsatisfied
at xk are satisfied at x⋆. That is, there exists an accessible strategy x⋆ ∈ Access(xk) such that

UnSat(xk) ⊂ Sat(x⋆). (2)

To see that such a strategy x⋆ exists, note that fixing the strategies of the m players satisfied at xk

defines a new game, say Γ̃, with n −m players, and the new game Γ̃ admits a Nash equilibrium
x̃⋆ = (x̃i

⋆)i∈UnSat(xk). We extend x̃⋆ to be a strategy profile in the larger game Γ by putting xi
⋆ = xi

k

for players i ∈ Sat(xk) while putting xj
⋆ = x̃j

⋆ for players j ∈ UnSat(xk). By construction, we
have that xj

⋆ ∈ BRj
0(x

−j
⋆ ) for each j ∈ UnSat(xk), so (2) holds.

From (2), it is clear that x⋆ /∈ NoBetter(xk), since NoBetter(xk) consists of strategies accessible
from xk in which unsatisfied agents remain unsatisfied, while the previously unsatisfied agents are
satisfied at x⋆. We now state a key technical lemma, which asserts that although x⋆ does not belong
to NoBetter(xk), it is a limit point of this set. A proof of Lemma 1 given in Appendix B.

Lemma 1. If Worse(xk) = ∅, then there exists a sequence {yt}∞t=1, with yt ∈ NoBetter(xk) for
each t, such that limt→∞ yt = x⋆.

We will argue that x⋆ is a Nash equilibrium for the original game Γ. For each player i ∈ [n], we
introduce a function F i : X → R given by F i(xi,x−i) = maxai∈Ai Ri(δai ,x−i) − Ri(xi,x−i),
for each x = (xi,x−i) ∈ X. The functions {F i}ni=1 have the following useful properties, which are
well known [35], and are summarized in Appendix A. For each player i ∈ [n]: (a) F i is continuous
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on X; (b) F i(x) ≥ 0 for all x ∈ X; (c) for any x−i ∈ X−i, a strategy xi is a best response to x−i if
and only if F i(xi,x−i) = 0.

Let (yt)
∞
t=1 be a sequence in NoBetter(xk) converging to x⋆, which exists by Lemma 1. For any

previously satisfied player i ∈ Sat(xk), since Worse(xk) = ∅ and yt ∈ NoBetter(xk), from a
previous observation, we have that i ∈ Sat(yt). Equivalently, xi

k ∈ BRi
0(y

−i
t ). Re-writing this using

the function F i and the notation yit = xi
k for satisfied players i ∈ Sat(xk), we have F i(yit,y

−i
t ) = 0

for all t ∈ N and for any i ∈ Sat(xk). By continuity of F i, we have

0 = lim
t→∞

F i(yt) = F i
(
lim
t→∞

yt

)
= F i(x⋆),

establishing that player i is satisfied at x⋆, and thus that Sat(xk) ⊂ Sat(x⋆). Then, by (2), we had
UnSat(xk) ⊂ Sat(x⋆), hence Sat(x⋆) = [n], and x⋆ is a Nash equilibrium accessible from xk. We
put T = k + 1 and xT = x⋆, which completes the proof, since (x1, . . . ,xT ) is a satisficing path
terminating at a Nash equilibrium.

3.2 Algorithmic insights from the proof of Theorem 1

When coupled with a MARL algorithm that uses an exploratory satisficing strategy update, play will
be driven along satisficing paths. Theorem 1 shows that for any starting strategy profile, some such
path connects the strategy profile to an equilibrium, and so a sufficiently exploratory strategy update
may drive play to equilibrium along a satisficing path. This offers important insights for the design of
MARL algorithms. The first takeaway from Theorem 1 is that play can be driven to equilibrium by
changing only the strategies of those players who are not best responding. In particular, this means
that a satisfied agent does not need to continue updating its strategy after it becomes satisfied. As we
will discuss in the next section, this property is helpful in distributed and decentralized multi-agent
systems, where agents are able to assess whether they are satisfied but may not be able to assess
whether the overall system is at equilibrium.

A second, more subtle takeaway comes from the proof of Theorem 1 and relates to the unorthodox
and counterintuitive exploration scheme used to drive play to equilibrium. In the proof, one sees
that suboptimal—and perhaps even reward-deteriorating—strategic updates were key to driving
play to equilibrium along a satisficing path. As we outline below, this construction runs against the
conventional approaches to designing MARL algorithms, and it can be used to avoid common pitfalls
of MARL algorithms such as cyclical behavior.

At a high level, many existing multi-agent learning algorithms update the strategy parameter in
a reward-improving direction at each step. A related approach, described earlier, increments the
strategy parameter in a regret-minimizing direction, which has a similar effect. While such algorithms
are sensible from the point of view of a single self-interested individual, they may fail to drive
play to a Nash equilibrium when all players adopt similar algorithms [36, 18, 37]. To address this
non-convergence issue, one recurring algorithmic modification involves manipulating step sizes,
either with a mixture of fast agents and slow agents [13] or with each individual varying its step sizes
according to its performance [8]. However, such approaches only come with provable convergence
guarantees in select subclasses of games with exploitable structure. In instances where step size
manipulation does not (or cannot) yield convergence, the analysis of Theorem 1 may offer an
alternative route to algorithm modification.

With these two takeaways in mind, we envision at least two design principles that will be useful for
future MARL algorithms. First, strategic updating may incorporate some measure of randomness
when a player is not satisfied. This principle has been previously used with some success, but comes
with a drawback relating to complexity. A second principle, which we believe to be new, leverages
the second takeaway above, involving counterintuitive path construction: players may alternate
between reward-improving periods (during which strategy updates are done in a conventional way
that improves the agent’s reward) and suboptimal periods (during which reward-deteriorating and/or
random strategy updates may be used). The timing of such periods or the extent of the randomness in
strategic updates may be made to depend on whether cycles in the strategy iterates were detected. By
incorporating suboptimal exploration in an adaptive manner, a MARL algorithm can break cycles as
needed but rely on conventional algorithms the remainder of the time.
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4 Discussion

Extension to Markov games

This paper focused on normal-form games with finitely many actions per player due to the central
position that normal-form games occupy in game theory. Indeed, insights and intuition developed in
normal-form games are helpful for understanding more complex models of strategic interaction. Of
special note, finite normal-form games can be generalized to model dynamic strategic environments
where rewards and environmental parameters evolve over time according to the history of play. We
now describe the extension of Theorem 1 to Markov games, one generalization of finite normal-form
games that is a popular model in MARL. Due to space limitations, a formal model for Markov games
is postponed to Appendix C.

In an n-player Markov game, agents interact across discrete time. Each agent i ∈ [n] observes a
sequence of state variables {st}t≥1 taking values in a finite state space S and selects a sequence
of actions {ait}t≥1 taking values in a finite action set Ai. In this dynamic model, player i’s reward
in period t, denoted rit = ri(st,at), depends on both the action profile at and also on the state st.
The state process evolves according to a (jointly controlled) transition probability function T as
st+1 ∼ T (·|st,at). Rewards are discounted across time using a discount factor γ ∈ (0, 1), and player
i attempts to maximize its expected γ-discounted return. In this generalization of finite normal-form
games, policies (defined as mappings from states to probability distributions over actions) generalize
mixed strategies, and the solution concept of Markov perfect equilibrium refines the concept of Nash
equilibrium and serves as a popular stability objective for MARL algorithm designers [53].

Partial results for multi-state Markov games have previously been obtained in special classes of
games and used to produce MARL algorithms [52]. The analysis presented in this paper uses a rather
different approach that seems promising for extending those results. In the proof of Theorem 1,
we used functions {F i}ni=1 to characterize best responding in a finite normal-form game. In fact,
analogous functions can also be obtained for policies in multi-state Markov games, and these functions
satisfy the same desired properties invoked in the proof of Theorem 1 (c.f. [52, Lemmas 2.10-2.13]).
For this reason, and due to the central role of continuity in our proof, it seems likely that Theorem 1
can be extended to general-sum Markov games. However, one aspect of the extension remains open,
namely the generalization of Lemma 1. In Appendix C, we describe the issue that precludes direct
generalization of our normal-form proof of Lemma 1, but we note that this appears to be related only
to the proof technique rather than a fundamental obstacle to the generalization.

On decentralized learning

Multi-agent reinforcement learning algorithms based on the “win–stay, lose–shift” principle char-
acteristic of satisficing paths are especially well suited to decentralized applications, since players
are often able to estimate the performance of their current strategy as well as the performance of an
optimal strategy, even under partial information. In decentralized problems, coordinated search of
the set X of strategy profiles for a Nash equilibrium is typically infeasible, and players must select
successor strategies in a way the depends only on quantities that can be locally accessed or estimated.

For instance, consider a trivial coordinated search method, where player i selects xi
t+1 uniformly at

random from X i whenever xt was not a Nash equilibrium and selects xi
t+1 = xi

t only when xt is a
Nash equilibrium. This process is clearly ill suited to decentralized applications, because player i’s
strategy update depends on both a locally estimable condition (whether player i is best responding
to x−i

t ) as well as a condition that cannot be locally estimated (whether another player j ̸= i is
best responding to x−j

t .) The satisfaction (win–stay) constraint plays a key role as a local stopping
condition for satisficing paths, and rules out coordinated search of the set X such as the trivial update
outlined above. Examples of decentralized or partially decentralized learning algorithms leveraging
satisficing paths in their analysis include [19, 33, 1, 52]. The analytic results of this paper suggest that
algorithms such as these can be extended to wider classes of games and enjoy equilibrium guarantees
under different informational constraints on the players.
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On complexity and dynamics

In Theorem 1, we showed that for any finite n-player normal-form game Γ and any initial strategy
profile x1 ∈ X, there exists a satisficing path x1, . . . ,xT of finite length T = T (x1) terminating at a
Nash equilibrium xT . From the proof of Theorem 1, one makes the following observations. First,
the length of such a path can be uniformly bounded above as T (x1) ≤ n. Second, there exists a
collection of strategy update functions

{
f i
Γ : X→ X i

∣∣i ∈ [n]
}

whose joint orbit is the satisficing
path described by the proof of Theorem 1. That is, f i

Γ(xt) = xi
t+1 for each player i ∈ [n], every

0 ≤ t ≤ T − 1, and every x1 ∈ X, where xi
t is player i’s component of xt in the satisficing path

initialized at x1.

The proof of Theorem 1 is semi-constructive. At each step along the path, we describe how the next
strategy profile should be picked (e.g. xt+1 ∈Worse(xt)), but we do not suggest an algorithm for
computing it. In at least one place, namely Case 1 where we put xT := z⋆, the path construction
involves moving jointly to a Nash equilibrium in one step. The computational complexity of such
a step is prohibitive [15], underscoring that ours is an analytical existence result rather than a
computational prescription.

Although we have shown that there exists a discrete-time dynamical system on X that converges
to Nash equilibrium in n steps and can be characterized by update functions {f i

Γ}ni=1, we note that
our possibility result does not contradict the impossibility results of [22, 2] or [38]. In particular,
the functions {f i

Γ}ni=1 need not be (and usually will not be) continuous, violating the regularity
conditions of [22] and [38], and furthermore the functions {f i

Γ}ni=1 depend crucially on the game Γ
in a way that violates the uncoupledness conditions of [22] and [2].

Open questions and future directions

Several interesting questions about satisficing paths remain open. We now briefly describe some that
we find especially practical or theoretically relevant.

While this paper dealt with satisficing paths defined using a best responding constraint, the original
definition was stated using an ϵ-best responding constraint, according to which a player who was
ϵ-best responding was not allowed to switch its strategy. Putting ϵ = 0, one recovers the definition
used here, but one may also select ϵ > 0, which can be desirable to accommodate for estimation error
in multi-agent reinforcement learning applications. The added constraint reduces freedom to switch
strategies, and thus makes it more challenging to construct paths starting from a given strategy profile.
On the other hand, the collection of Nash equilibria is a strict subset of the set of ϵ-Nash equilibria,
and one can attempt to guide the process to a different terminal point in a larger set. At this time, it is
not clear to us whether the main result of this paper holds for small ϵ > 0. It is clear, however, that the
proof technique used here will have to be modified, since we have relied on Lemma 1, whose proof
involved an indifference condition and invoked the fundamental theorem of algebra, and relaxing to
ϵ > 0 would render such an argument ineffective.

A second interesting question for future work is whether multi-state Markov games with n > 2
players have the satisficing paths property. The case with n = 2 was resolved by [52], but the
proof technique used there did not generalize to n ≥ 3. By contrast, our proof technique readily
accommodates any number of players, but is designed for stateless normal-form games. Our proof
used multi-linearity of the expected reward functions {Ri}ni=1, which does not generally hold in the
multi-state setting.

In this work, satisficing paths were defined in a way that allowed an unsatisfied player i to change its
strategy to any strategy in its set X i, without constraint. This is interesting in many problems where
the set of strategies can be explicitly and directly parameterized, but may be unrealistic in games
where the set of strategies is poorly understood or in which a player can effectively represent only a
subset of its strategies Yi ⊊ X i. In such games, the question more relevant for algorithm design is
whether the game admits satisficing paths to equilibrium within the restricted subset Y1 × · · · × Yn.
This point was implicitly appreciated by both [19] and [20] and explicitly noted in [52]. Some
negative results were recently established in [50] for games admitting pure strategy Nash equilibrium
when randomized action selection was not allowed and the constrained set was given by Yi = Ai,
underscoring the importance of the topology of the sets appearing in the proof of Theorem 1.
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5 Conclusion

Satisficing paths can be interpreted as a natural generalization of best response paths in which players
may experimentally select their next strategy in periods when they fail to best respond to their
counterplayers. While (inertial) best response dynamics drive play to equilibrium in certain well-
structured classes of games, such as potential games and weakly acyclic games [16], the constraint
of best responding limits the efficacy of these dynamics in games with cycles in the best response
graph [43]. In such games, best response paths leading to equilibrium do not exist, and multi-agent
reinforcement learning algorithms designed to produce such paths will not lead to equilibrium.

In this paper, we have shown that every finite normal-form game enjoys the satisficing paths property.
By relaxing the best response constraint for unsatisfied players, one ensures that paths to equilibrium
exist from any initial strategy profile. Multi-agent reinforcement learning algorithms designed to
produce satisficing paths, rather than best response paths, thus do not face the same fundamental ob-
stacle of algorithms based on best responding. While algorithms based on satisficing have previously
been developed for two-player games normal-form games, symmetric Markov games, and several
other subclasses of games, the findings of this paper suggest that similar algorithms can be devised
for the wider class of n-player general-sum normal-form games.
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Appendix: Proofs of technical lemmas

We now discuss the properties of the auxiliary functions {F i : i ∈ [n]} that were used in the proof of
Theorem 1, and we prove Lemma 1.

We remark that for each player i ∈ [n], we identify their set of mixed strategies X i = ∆Ai with the
probability simplex in RAi

. Thus, X i inherits the Euclidean metric from R|Ai|. Neighbourhoods and
limits in X i (or its subsets) are defined with respect to this metric. Similarly, we inherit a Euclidean
metric for X. For ζ > 0, we let Nζ(x) denote the ζ-neighbourhood of the strategy profile x ∈ X.
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A Properties of the auxiliary functions

We begin by discussing the properties of the auxiliary functions {F i : i ∈ [n]}, as they are relevant to
characterizing best responses. The facts below are well known. For a reference, see the text of [35].

Recall that for each player i ∈ [n], the function F i : X→ R is defined as

F i(xi,x−i) = max
ai∈Ai

Ri(δai ,x−i)−Ri(xi,x−i), ∀x ∈ X.

We now show that for any i ∈ [n], the following hold:

a. F i is continuous on X,
b. F i(x) ≥ 0 for all x ∈ X, and
c. For any x−i ∈ X−i, a strategy xi is a best response to x−i if and only if F i(xi,x−i) = 0.

The expected reward function Ri(x) = Ea∼x

[
ri(a)

]
can be expressed as a sum of products:

Ri(x) =
∑
ã∈A

ri(ã)Pa∼x (a = ã) =
∑
ã∈A

ri(ã1, . . . , ãn)

n∏
j=1

xj(ãj), ∀x ∈ X.

From this form, it is immediate that Ri is continuous on X. Moreover, it can easily be shown that Ri

is multi-linear in x. That is, for any j ∈ [n], fixing x−j , we have that xj 7→ Ri(xj ,x−j) is linear.3

Since Ri is continuous on X and Ai is a finite set, one has that the pointwise maximum of finitely
many continuous functions is continuous. Thus, the function

x−i 7→ max
ai∈Ai

Ri
(
δai ,x−i

)
is continuous on X−i. Since F i(xi,x−i) = maxai∈Ai Ri

(
δai ,x−i

)
−Ri(xi,x−i) is the difference

of continuous functions, F i is also continuous. This proves item a.

From the multi-linearity of Ri, we have that, for fixed x−i ∈ X−i, the optimization problem
supxi∈X i Ri(xi,x−i) is equivalent to a linear program

sup
xi∈RAi

w⊤
x−ixi, subject to

{
1⊤xi = 1,

xi ≥ 0
,

where wx−i ∈ RAi

is a vector defined by wx−i(ai) := Ri(δai ,x−i).

The vertices of the feasible set for the latter linear program are precisely the points {δai : ai ∈ Ai}.
This implies that maxai Ri(δai ,x−i) ≥ Ri(xi,x−i) for any xi,x−i. Items b and c follow. From
this formulation, one can also see that a player i ∈ [n] is satisfied at x ∈ X if and only if its strategy
xi is supported on the set of maximizers argmaxai∈Ai{Ri(δai ,x−i)}.

B Proof of Lemma 1

Recall that in the proof of Theorem 1, x⋆ was defined to be some strategy accessible from xk ∈ X
such that all players unsatisfied at xk were satisfied at x⋆. The statement of Lemma 1 was the
following.

Lemma 1 If Worse(xk) = ∅, then there exists a sequence {yt}∞t=1, with yt ∈
NoBetter(xk) for each t, such that limt→∞ yt = x⋆.

Proof. Suppose, to the contrary, that no such sequence exists. Then, there exists some ζ > 0 such that
for every z ∈ Access(xk) ∩Nζ(x⋆), one has z /∈ NoBetter(xk). That is, some player unsatisfied at

3Of course, scaling inputs of Ri means the resulting argument is no longer a probability vector. However,
one can simply linearly extend Ri to be a function on Rd, where d =

∑n
j=1 |A

j |.
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xk is satisfied at z. Equivalently, for some i ∈ UnSat(xk), we have zi ∈ BRi
0(z

−i). This implies
that for that player i, that value of ζ, and the strategy profile (zi, z−i) ∈ Nζ(x⋆), zi is supported on
the set argmaxai∈Ai{Ri(δai , z−i)}.
For each ξ ≥ 0, we define a strategy profile wξ ∈ X as follows:

wi
ξ :=

{
(1− ξ)xi

k + ξUniform(Ai), if i ∈ UnSat(xk)

xi
k, else.

Note that we have defined wi
ξ = xi

k for i ∈ Sat(xk), which is to say that we change only the strategies
of the unsatisfied players, meaning wξ ∈ Access(xk). We will show that if ξ > 0 is sufficiently
small, then continuity of the functions {F i}i∈[n] guarantees that wξ ∈ NoBetter(xk).

Indeed, player i ∈ [n] is unsatisfied at xk if and only if it fails to best respond, xi
k /∈ BRi

0(x
−i
k ).

Using the function F i, this is equivalent to F i(xi
k,x

−i
k ) > 0. For each player i ∈ UnSat(xk), let

σi > 0 be such that F i(xk) ≥ σi > 0. Define σ̄ = min{σi : i ∈ UnSat(xk)}.
The following statement holds by the continuity of the functions {F i}ni=1: for each player i ∈ [n],
there exists ei > 0 such that if a strategy profile x belongs to the ei neighbourhood of xk (i.e.
x ∈ Nei(x)), then |F i(x)− F i(xk)| < σ̄/2. Since F i(xk) ≥ σ̄, it follows that F i(x) > σ̄/2 > 0,
and player i is not best responding at x ∈ Nei(x).

Let ē := min{ei : i ∈ [n]}. By taking ξ < ē/(2n), one has that wξ ∈ Nē(xk). From the preceding
remarks, one can see that UnSat(xk) ⊆ UnSat(wξ), since all players who were unsatisfied at
xk remain unsatisfied at wξ. Since wj

ξ = xj
k for any player j ∈ Sat(xk), one also has that

wξ ∈ Access(xk). These two parts combine to show that wξ ∈ NoBetter(xk).

Fixing ξ > 0 at a sufficiently small value (ξ ∈ (0, ē/2n)), the preceding deductions show that
wξ ∈ NoBetter(xk). By the earlier discussion, we have that wξ /∈ Nζ(x⋆).

A very important aspect of this construction is that wi
ξ(a

i) > 0 for each i ∈ UnSat(xk) and action
ai ∈ Ai, so that wi

ξ is fully mixed for each player who was unsatisfied at xk.

Next, for each λ ∈ [0, 1] and player i ∈ UnSat(xk), we define
ziλ = (1− λ)xi

⋆ + λwi
ξ.

We also define ziλ = xi
k for players i ∈ Sat(xk). For sufficiently small values of λ, say λ ≤ λ̄, we

have that zλ ∈ Nζ(x⋆), which implies zλ /∈ NoBetter(xk).

This implies that there exists a player i† ∈ UnSat(xk) for whom

zi
†

λ ∈ BRi†

0

(
z−i†

λ

)
, for infinitely many λ ∈

(
0, λ̄

]
.

(The existence of such a player is perhaps not obvious. As we previously noted, for λ < λ̄, we have
zλ /∈ NoBetter(xk), which means there exists some player i†(λ) that was unsatisfied at xk and is
satisfied at zλ. The identity of this player may change with λ. To see that some particular individual
must satisfy this best response condition infinitely often, one can apply the pigeonhole principle to
the set {λ̄, λ̄/2, . . . , λ̄/m} for arbitrarily large m.)

By our definition of zi
†

λ as a convex combination involving Uniform(Ai†), we have that zi
†

λ is fully
mixed and puts positive probability on each action in Ai† . Using the characterization involving
F i† , the fact that zi

†

λ ∈ BRi†

0

(
z−i†

λ

)
and the fact that zi

†

λ is fully mixed together imply that

Ri†(δa, z
−i†

λ ) = Ri†(δa′ , z−i†

λ ), for any a, a′ ∈ Ai† . This can be equivalently re-written as∑
a−i†

ri
†
(a,a−i†)

∏
j ̸=i†

{
(1− λ)xj

⋆(a
j) + λwj

ξ(a
j)
}

=
∑
a−i†

ri
†
(a′,a−i†)

∏
j ̸=i†

{
(1− λ)xj

⋆(a
j) + λwj

ξ(a
j)
}

⇐⇒
∑
a−i†

[
ri

†
(a,a−i†)− ri

†
(a′,a−i†)

] ∏
j ̸=i†

{
(1− λ)xj

⋆(a
j) + λwj

ξ(a
j)
}
= 0 (3)
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for any a, a′ ∈ Ai† .

The lefthand side of the final equality (3) is a polynomial in λ of finite degree, but admits infinitely
many solutions (from our choice of i†). This implies that it is the zero polynomial. In turn, this
implies that the left side of (3) holds for any λ ∈ [0, 1], and in particular for λ = 1. This means zi

†

1 ∈
BRi†

0 (z−i†

1 ), meaning z1 /∈ NoBetter(xk). On the other hand, we have z1 = wξ ∈ NoBetter(xk),
a contradiction.

Thus, we see that there exists a sequence {yt}∞t=1, with yt ∈ NoBetter(xk) for all t, such that
limt→∞ yt = x⋆.

C Markov games: model and connections to Theorem 1

Markov games are popular model in the field of multi-agent reinforcement learning. Since the model
is quite standard, we offer a short description of the fundamental objects and notations, and we then
describe connections between Theorem 1 and a possible extension to multi-state Markov games.

A Markov game with n players and discounted rewards is described by a list G = (n,S,A, T , r, γ),
where S is a finite set of statess, A = A1× · · · ×An is a finite set of action profiles, and r = (ri)ni=1
is a collection of reward functions, where ri : S × A → R describes the reward to player i. A
transition probability function T ∈ P(S|S ×A) governs the evolution of the state process, described
below, and a discount factor γ ∈ (0, 1) is used to aggregate rewards across time.

Description of play. Markov games are played across discrete time, indexed by t ∈ N. At time t,
the state variable is denoted st ∈ S and each player i ∈ [n] selects an action ait ∈ Ai according to
a distribution πi(·|st): ait ∼ πi(·|st). The transition probability function πi ∈ P(Ai|S) is called
player i’s policy, and we denote player i’s set of policies by Πi := P(Ai|S). For any time t ∈ N,
the collection of actions {ait}ni=1 is mutually conditionally independent given st. Upon selection of
the action profile at := (ait)

n
i=1, each player i receives the reward ri(st,at), and the state transitions

from st to st+1 according to st+1 ∼ T (·|st,at).
Player i’s performance criterion is its expected γ-discounted return, which depends on the state
variable and the collective policy profile π := (π1, . . . , πn), which we also denote by (πi,π−i) to
isolate player i’s policy. We let Π := Π1 × · · · ×Πn denote the set of policy profiles. For each pair
(π, s) ∈ Π× S , player i’s expected γ-discounted return is given by

V i(πi,π−i, s) := Eπ

[ ∞∑
t=1

γt−1ri(st,at)

∣∣∣∣∣s1 = s

]
,

where Eπ denotes that for every t ≥ 1, we have that ajt ∼ πj(·|st) for each player j ∈ [n] and,
implicitly, st+1 ∼ T (·|st,at).
Definition 6. For ϵ ≥ 0, a policy πi

∗ ∈ Πi is called an ϵ-best response to π−i if

V i(πi
∗,π

−i, s) ≥ V i(πi,π−i, s)− ϵ, ∀πi ∈ Πi, ∀s ∈ S.

Definition 7. For ϵ ≥ 0, a policy profile π∗ = (πi
∗,π

−i
∗ ) ∈ Πi is called a Markov perfect ϵ-

equilibrium if, for each player i ∈ [n], πi
∗ is an ϵ-best response to π−i

∗ .

Putting ϵ = 0 into the definitions above, we recover the classical definitions of best responding and
Markov perfect equilibrium. In analogy to normal-form games, we use BRi

ϵ(π
−i) ⊆ Πi to denote

player i’s set of ϵ-best-responses to a given counterplayer policy profile π−i.

Remarks on Markov games

As is conventional in the literature on MARL, we focus on policies that are stationary, Markovian, and
possibly randomized. That is, we focus on policies for player i that map states st ∈ S to distributions
over the agent’s action set Ai and sample each action ait from that distribution in a time-invariant
and history-independent manner. In principle, agents could use policies that depend also on the time
index t or on the history of states and actions. However, the bulk of works on MARL consider this
simpler class of policies and this is justifiable for several reasons. We refer the reader to [30] for a
summary of such justifications.
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Markov games generalize both normal-form games (taking the state space S to be a singleton) and
also MDPs (taking the number of players n = 1). Moreover, when player i’s counterplayers follow
a stationary policy π−i ∈ Π−i, as assumed in this work, player i’s stochastic control problem is
equivalent to a single-agent MDP (whose problem data depend on π−i). It follows that player i’s set
of (stationary) best responses to π−i is non-empty. Furthermore, player i’s best response condition
can be characterized using the familiar action value (Q-) functions of reinforcement learning theory.
We briefly summarize this below.

In addition to the objective criterion V i(πi,π−i, s), which is called the value function, we may also
define the action value function Qi for player i as

Qi(πi,π−i, s, ai) := Eπ

[ ∞∑
t=1

γt−1ri(st,at)

∣∣∣∣∣s1 = s, ai1 = ai

]
,

for (πi,π−i) ∈ Π, (s, ai) ∈ S × Ai.

We further define an optimal action value function for player i against π−i, denoted Q∗i
π−i , as

Q∗i
π−i(s, ai) := max

πi
∗∈Πi

Qi(πi
∗,π

−i, s, ai), ∀(s, ai) ∈ S × Ai.

For any policy π = (πi,π−i), one can express player i’s value function using its Q-function and
conditional expectations as V i(π, s) =

∑
ai πi(ai|s)Qi(π, s, ai). From this, it follows that

max
ai∈Ai

Q∗i
π−i(s, ai) = max

πi
∗∈Πi

V i(πi
∗,π

−i, s), ∀s ∈ S.

This equality allows us to characterize best responses using a function f i : Π→ R, analogous to the
function F i appearing in the normal-form case. We define f i(π) as

f i(πi,π−i) = max
s∈S

[
max
ai
⋆∈Ai

Q∗i
π−i(s, ai⋆)− V i(π, s)

]
, ∀π ∈ Π.

The functions {f i}ni=1 defined above possess the three properties we required of the functions
{F i}ni=1 in the proof of Theorem 1: (a) f i is continuous on Π [52], (b) f i(π) ≥ 0 for all π ∈ π,
and (c) f i(πi,π−i) = 0 if and only if πi is a best response to π−i.

On extending Theorem 1 to Markov games

We now turn our attention to the task of extending Theorem 1 to Markov games. Following the
proof of Theorem 1, virtually all steps can be reproduced in the multi-state setting. To begin, one
can construct a satisficing path π1,π2, . . . ,πk by growing the set of unsatisfied players at each
iteration until either UnSat(πk) = [n] or Worse(πk) = ∅. In the latter case, one can consider the
subgame involving only the players in UnSat(πk) and obtain a Markov perfect equilibrium π̃⋆ for
that subgame, which can then be extended to a policy profile π⋆ ∈ Access(πk) by putting

πi
⋆ =

{
π̃i
⋆, if i ∈ UnSat(πk),

πi
k, if i ∈ Sat(πk).

To complete the extension of Theorem 1 to Markov games, one must show that this policy π⋆ ∈ Π is
a Markov perfect equilibrium of the n-player Markov game. Since the functions {f i}ni=1 also satisfy
the continuity and semi-definiteness properties described in Appendix A, one possible technique for
completing this proof involves showing that the policy π⋆ is a limit point of the set NoBetter(πk).
In other words, one possible technique for completing this proof requires extending Lemma 1 to the
multi-state case.

Up to this point, analysis of the stateless case and the multi-state case have been conducted perfectly in
parallel. However, it is in the extension of Lemma 1 that the presence of a state leads to a discrepancy
in the analysis that will necessitate a novel proof technique for the extension of Theorem 1 to Markov
games. We elaborate below on this discrepancy.
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Normal-form game analysis. In the context of finite normal-form games, our proof of Lemma 1
in Appendix B involves a proof by contradiction that exploits the explicit form of an indifference
condition in the stateless case. In simple terms, if a player i is best responding and placing positive
probability on every action, then any two actions offer equal expected payoff. In symbols, we note
that Ri(δai

1
,x−i) = Ri(δai

2
,x−i) if and only if∑

a−i∈A−i

[
ri(ai1,a

−i)− ri(ai2,a
−i)

]
Px−i(a−i)

=
∑

a−i∈A−i

[
ri(ai1,a

−i)− ri(ai2,a
−i)

]∏
j ̸=i

{
xj(aj)

}
= 0.

For reasons that will be clarified below, we refer to the expressions
[
ri(ai1,a

−i)− ri(ai2,a
−i)

]
as

coefficient terms, and we refer to the terms Px−i(a−i) =
∏

j ̸=i

{
xj(aj)

}
as strategy-dependent

terms. We remark that in the case of normal-form games, the coefficient terms above do not depend
on the strategy x−i.

Our proof of Lemma 1 in Appendix B considered a one-parameter family of strategies parameterized
by λ ∈ [0, 1]. As part of an intricate proof by contradiction, we obtained an indifference condition,
(3), for a player i† who played each action with positive probability while also best responding. Due
to the explicit parameterization by λ of the strategy zλ, we are able to recognize that the indifference
condition in (3) is characterized by the roots of a polynomial in λ. Critically, the lefthand-side of (3)
is a polynomial in λ because the coefficient terms do not depend on the strategy zλ and hence do not
depend on λ, while the strategy-dependent terms are polynomials in λ.

Markov game analysis. By contrast, we now study indifference conditions in Markov games.
Consider an agent i who is best responding to a policy π−i and places positive probability on actions
ai1 and ai2 in state s. The optimality condition is turned into an indifference condition between ai1 and
ai2 in state s as follows:

Q∗i
π−i(s, ai1) = Q∗i

π−i(s, ai2) = max
ai∈Ai

Q∗i
π−i(s, ai).

One can show that Q∗i
π−i satisfies the following equality for any (s, ai) ∈ S × Ai:

Q∗i
π−i(s, ai) =

∑
a−i∈A−i

[
ri(s, ai,a−i) + γ

∑
s′∈S
T (s′|s, ai,a−i) max

ai
⋆∈Ai

Q∗i
π−i(s′, ai⋆)

]
Pπ(a

−i|s),

where Pπ(a
−i|s) =

∏
j ̸=i π

j(aj |s) denotes the probability of the action profile a−i in state s under
policy π. In analogy to the normal-form case, we refer to Pπ(a

−i|s) as the strategy-dependent term
and we refer to the term enclosed in square brackets as the coefficient term. However, unlike the
normal-form case, here it is clear that the (so-called) coefficient term also depends on the policy π−i,
through the term maxai

⋆∈Ai Q∗i
π−i(s, ai⋆).

Suppose now that we obtain a one-parameter family of policies {ϖλ : 0 ≤ λ ≤ 1} parameterized
by some λ ∈ [0, 1], in analogy to our construction of zλ in Appendix B. Since the coefficient term
depends on the policy of player i’s counterplayers, one has that the indifference condition

Q∗i
ϖ−i

λ

(s, ai1)−Q∗i
ϖ−i

λ

(s, ai2) = 0

cannot generally be characterized by the roots of a polynomial in the parameter λ.4

Without characterization of the indifference condition as a polynomial in the policy parameter, our
proof technique in Appendix B becomes unsuitable for the multi-state setting: we cannot invoke the
fundamental theorem of algebra to conclude that the coefficient terms are identically zero, and thus
we cannot obtain the contradiction critical to our proof by contradiction, where we found that player
i† is in fact indifferent even at the extreme parameter value of λ = 1.

4Although this indifference condition does not generally yield a polynomial in λ, one can easily find
special cases of Markov games in which it does. For instance, if player i’s action does not influence transition
probabilities, the indifference condition will yield a polynomial and the normal-form proof technique will go
through without modification.
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In summary, the proof technique employed in Appendix B to prove Lemma 1 relies crucially on the
specific explicit form of the indifference condition in stateless, finite normal-form games. Passing
to the multi-state setting, the analogous indifference condition takes a different form, and so the
specific derivations cannot be repurposed for a simple extension of Lemma 1. However, it is also
important to recognize that this phenomenon is a limitation of the proof technique and does not pose
a fundamental obstacle to the generalization of Theorem 1 per se. Indeed, the remaining elements of
the proof of Theorem 1 carry over seemlessly to the multi-state case, including various continuity
conditions for functions characterizing best responses. It therefore seems promising that one can
generalize Theorem 1 to apply to Markov games by applying similar machinery as used in this paper
but substituting a different proof for that of Lemma 1 to take advantage of topological or geometric
structure shared by both normal-form and Markov games. We leave this as an interesting open
question for future research.

18



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our claimed contributions consist of a positive theoretical result (Theorem 1),
which we prove rigorously. Additionally, we connect this theoretical finding to multi-agent
reinforcement learning more broadly, which is described in the discussion sections.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We identify practical limits of the applicability of the theory contained in this
paper, and we compare it to existing impossibility results which were already previously
known. In the discussion section, we compare and contrast our result with other results on
limitations of multi-agent learning.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

19



Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Yes, the paper contains complete, correct, and well-documented proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: This paper does not contain experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

20



5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: This paper does not include experiments requiring code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: This paper does not contain experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: This paper does not contain experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: This paper does not contain experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper’s research conforms in every respect to the code of ethics provided
by NeurIPS.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: In the discussion section of our work, we describe the broader impact of our
work in the context of machine learning algorithm design. However, since our work is
theoretical in nature and does not provide an algorithm itself, its broader societal impact
cannot be assessed at this time.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

22

https://neurips.cc/public/EthicsGuidelines


• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The work presented in this paper does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
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• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Guidelines:
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and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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