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Abstract

Drone Visual Active Tracking aims to autonomously follow a target object by con-
trolling the motion system based on visual observations, providing a more practical
solution for effective tracking in dynamic environments. However, accurate Drone
Visual Active Tracking using reinforcement learning remains challenging due to
the absence of a unified benchmark and the complexity of open-world environ-
ments with frequent interference. To address these issues, we pioneer a systematic
solution. First, we propose DAT, the first open-world drone active air-to-ground
tracking benchmark. It encompasses 24 city-scale scenes, featuring targets with
human-like behaviors and high-fidelity dynamics simulation. DAT also provides
a digital twin tool for unlimited scene generation. Additionally, we propose a
novel reinforcement learning method called GC-VAT, which aims to improve the
performance of drone tracking targets in complex scenarios. Specifically, we de-
sign a Goal-Centered Reward to provide precise feedback across viewpoints to the
agent, enabling it to expand perception and movement range through unrestricted
perspectives. Inspired by curriculum learning, we introduce a Curriculum-Based
Training strategy that progressively enhances the tracking performance in complex
environments. Besides, experiments on simulator and real-world images demon-
strate the superior performance of GC-VAT, achieving a Tracking Success Rate
of approximately 72% on the simulator. The benchmark and code are available at
https://github.com/SHWplus/DAT_Benchmark.

1 Introduction

Visual Active Tracking (VAT) aims to autonomously follow a target object by controlling the motion
system of the tracker based on visual observations [80, 75]. It is widely used in real-world applications
such as drone target tracking and security surveillance [22, 73, 77, 54]. Unlike passive visual tracking
[3, 74, 33, 5, 9, 84, 67, 58], which involves proposing a 2D bounding box for the target on a frame-
by-frame with a fixed camera pose, VAT actively adjusts the camera position to maintain the target
within the field of view. Passive visual tracking often falls short in real-world scenarios due to the
highly dynamic nature of most targets. Thus, VAT offers a more practical yet challenging solution for
effective tracking in dynamic environments.
Recently, VAT methods have evolved into two main categories: pipeline VAT methods [40, 46, 15]
and reinforcement learning-based VAT methods [19, 39, 18, 80]. Pipeline VAT methods employ
a sequential framework where the visual tracking [32, 4, 62, 33] and control models are connected
in series. The tracking model estimates the target position in the input image and the control model
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Figure 1: A pipeline for drone VAT.

Table 1: Comparison of DAT benchmark with simula-
tors where existing methods are located.

AD-VAT+ [80]D-VAT [19] AOT [39] DAT

Scenes 8 4 2 24
Targets 1 1 1 24
Tracker Ground Drone Ground Both
Dynamics ✗ Simplified ✗ Full Physics
Target Behavior Policy-based Rule-based Rule-based Human-like
Scene Building Manual Manual Manual Digital Twin

generates control signals. While this modular design allows for clear task separation, it often requires
significant manual effort to label the training data, and the control module requires additional tuning
for different scenes. To address these issues, reinforcement learning-based VAT methods integrate
visual tracking and control within a unified framework. These methods eliminate the need for separate
tuning of the tracking and control modules by using a unified framework to map raw visual inputs
directly to control actions. Therefore, the reinforcement learning-based VAT methods simplify system
design and increase the efficiency of learning adaptive tracking behaviors in dynamic environments.

Unfortunately, achieving accurate drone VAT with reinforcement learning remains challenging, partly
for the following reasons. 1) Missing unified benchmark. Existing benchmark scenes are low in
complexity, neglect tracker dynamics or rely on overly simplified models, making them inadequate to
validate the agent performance (see Table 1). Previous methods [39, 19, 57] use rule-based target
management, far from producing human-like target behaviors. Additionally, current 3D scenes are all
manually constructed, leading to a heavy workload and limited scene number. 2) Vast environments
with complex interference. Open-world tracking involves large, dynamic environments with frequent
interference. In previous methods [39, 19], trackers can only capture images from a fixed horizontal
viewpoint. However, the fixed forward viewpoint captures excessive sky, reducing target-related
visual information, especially for air-to-ground tracking tasks. Besides, since VAT goal is to keep the
target at the image center, such viewpoint restricts the tracker to the same height as the target, severely
limiting the perception and movement range. Moreover, training directly in complex conditions leads
to slow convergence or difficulty in building strong behaviors.

To address the above limitations, we first propose DAT, the first open-world active air-to-ground
tracking benchmark that simulates real-world complexity (see Fig. 2(b)). Specifically, DAT provides
24 city-scale scenes, full-fidelity simulations of drone dynamics, and a lightweight tool that can
be integrated into any 3D scene to enable human-like target behaviors. It also offers a digital twin
tool that can generate unlimited 3D scenes from real-world environments, enabling unlimited scene
expansion. Second, we propose a novel drone VAT with reinforcement learning method (called
GC-VAT), aiming to improve adaptability in complex and diverse scenarios. Specifically, we design
a Goal-Centered Reward to provide precise feedback across viewpoints, enabling the agent to expand
perception range through unrestricted perspectives. Besides, we propose qualitative and theoretical
methods to analyze the effectiveness of our reward. In addition, inspired by curriculum learning
[65, 41, 83], we propose a Curriculum-Based Training strategy that progressively improves agent
performance in complex environments. Our contributions are summarized as follows:

1) A comprehensive drone active tracking benchmark. We present DAT benchmark, featuring
high-fidelity dynamics, 24 city-scale scenes, and tools for simulating human-like target behaviors
and unlimited scenes generation, enabling rigorous algorithm validation. 2) A novel drone active
tracking method. We propose GC-VAT, which leverages a Goal-Centered Reward function and a
Curriculum-Based Training strategy to enhance drone tracking performance in complex and dynamic
environments. Besides, we propose qualitative and theoretical methods to analyze the effectiveness of
our reward. 3) Extensive experimental validation. Experiments on simulator and real-world images
validate DAT usability and GC-VAT effectiveness, with GC-VAT achieving a Tracking Success Rate
of approximately 72% on the simulator.

2 Task Definition of Drone Active Tracking

DAT task seeks to train a model to control a drone for active target tracking in dynamic environments
(see Fig. 1). Using visual and motion sensor data, the model learns actions to keep the target centered
in view, ensuring robust performance across diverse scenarios.
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(a) Statistics of challenges in DAT scenes (including scene area, color 
richness, the density of buildings, trees, roads, mountains, and tunnels).

(b) Example scenes of DAT.

(c) Human-like behaviors of targets. (d) Target examples in DAT.
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Figure 2: Statistics and simulator component examples of DAT. (a) Statistics on 7 complexity aspects
in DAT scenes. (b) Example scenes of DAT. (c) Diverse behaviors of targets. (d) Examples of the
tracking targets. More details can be found at https://github.com/SHWplus/DAT_Benchmark.

Observation spaces. The target is initially positioned at the center of the field of view, and the
observation space comprises data acquired from sensors (e.g., RGB images with 84× 84 resolution).

Action spaces.

The action space can be either discrete or continuous. A discrete space defines a set of predefined
drone maneuvers, whereas a continuous space allows direct control over the velocity.

Success criterion of DAT task. We define a success criterion when the model can keep the target
object, which is initially located at the center of view, in the middle of the image for a long duration.

Challenges. Open-world drone active tracking is challenging due to limited data and high risks of
trial-and-error in the real world, necessitating complex simulation environments. Additionally, the
complexity and dynamics of open-world scenes further demand robust agent performance.

3 DAT Benchmark with Diverse Settings

We develop DAT, including 24 city-scale scenes built by an unlimited scene generation tool, high-
fidelity drone dynamics simulation, and a versatile pipeline for producing human-like target behaviors.

3.1 Diverse Scene Construction

Digital twin tool. Users can select any region from OpenStreetMap [1] to obtain countless scenes
using our tool. Specifically, it generates a high-precision road network with traffic lights and rules,
and it converts elevation and vegetation data into 3D assets placed in the scene. Moreover, all assets
in the generated scene are editable, allowing for data augmentation. See Appendix B for details.

Scene construction. Based on the above tool, we construct 6 outdoor scenes under 4 weather
conditions, modeling 7 real-world complexities. Specifically, the scene area, building density, and
color richness depict the complexity of the visual background. Road density and terrain density
affect the target behaviors. The tree density and tunnel density measure the level of visual occlusion.
As shown in Fig. 2(a), six scenarios exhibit unique and realistic complexity across the seven aspects:

• Citystreet scene covers an area of 0.7 square kilometers. It has a road density of 38.7 and a tree
density of 97.5, mainly testing the agent’s efficiency against tree occlusions.

• Village scene spans 1.4 square kilometers. This scene features a mountain density of 20.1 and a
tunnel density of 6.3, requiring the agent to predict the target’s movement when it is fully obscured.

• Downtown scene covers 0.8 square kilometers. It includes complex road elements and high
building density of 304.9, challenging the agent’s tracking accuracy and obstacle avoidance abilities.
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• Lake scene encompasses 1.6 square kilometers. The density of road elements is 68.1, and the
richness of background colors is 5, challenging the robustness across varying features and colors.

• Farmland scene covers an area of 0.7 square kilometers. The color richness is 5 and multiple color
patches, challenging the agent’s adaptability to multi-color environments.

• Desert scene covers 1.1 square kilometers. It includes a mountain density of 37.1 and a road
density of 31.0. Some roads are covered by sand, testing the agent’s adaptability to such conditions.

Four weather conditions are designed to test the agent’s cross-domain adaptability. Foggy reduces
visibility, night reduces brightness, and snow alters the color. The above 24 scenes (see Fig. 2(b))
can fully measure the agent tracking performance. See Appendix B for scene construction details.

3.2 Various Trackers and Targets Construction

Drone Active Tracking in the real world involves diverse targets depending on tasks. DAT provides
diverse targets with human-like behaviors and enables high-fidelity tracker dynamics simulation.

Tracker. DAT benchmark supports two tracker types: drones and ground robots. The drone used is
the DJI Matrice 100 [14], equipped with a 3-axis gimbal, allowing for precise camera adjustments.
Unlike simpler kinematic models in [19] and methods that ignore the dynamics[39], DAT leverages
webots [37] to simulate the drone’s full dynamics, including mass, inertia, aerodynamics, and the
response and jitter of the gimbal, closely matching real drones. See Appendix B for details.

Targets. DAT includes five categories of targets: automobile, motorbike, pedestrian, wheel robot,
and legged robot, with a total of 24 tracking targets (see Fig. 2(d)). See Appendix B for details.

Target Management. We propose a novel pipeline to simulate realistic target behavior. Specifically,
DAT first utilizes road networks generated by the tools described in Section 3.1, and directly integrates
them with the SUMO traffic simulator [36]. Then, random trajectories are assigned to each vehicle,
with SUMO managing its motion. To bridge the gap between simulation and visualization, we
implement a controller that translates motion data into human-like driving behaviors for 3D vehicles
(see Fig. 2(c)). Our controller also adheres to traffic rules and can simulate phenomena such as traffic
light waits and traffic jams. Even better, the controller can be applied to any 3D scene.

4 VAT with Reinforcement Learning

In this paper, we primarily focus on visual active tracking (VAT), a core task within DAT benchmark.
We propose a drone visual active tracking with reinforcement learning method called Goal-Centered-
VAT (GC-VAT), aiming to improve the performance of tracking targets in complex scenes. As shown
in Fig. 1, we model drone active tracking as a Markov Decision Process (MDP) and train a Drone
Agent capable of adapting to unrestricted viewpoint conditions to track a target in the open scene.

4.1 MDP for Drone Active Tracking

We seek to learn end-to-end drone tracking policies in dynamic environments by modeling the task as
an MDP: ⟨S,A,R, γ, TS,A,R, γ, TS,A,R, γ, T ⟩. In this representation, SSS denotes the state space,AAA represents the action
space, and γγγ is the discount factor. At each time step t, the agent takes the state st ∈ SSS as input and
performs an action at ∈ AAA. Next, the simulator transitions to the next state st+1 = T (st, at) and
calculates the reward rt = R(st, at) for the current step. The details of the MDP are as follows:

State SSS is the visual information of the scene. At each time step t, the camera captures one image of
size 84× 84 as the current state.

ActionAAA is a set of discrete actions, including forward, backward, leftward, rightward, turn left, turn
right, and stop movements. At each time step, the Drone Agent selects an action at ∈ AAA based on the
state st and actively controls the camera movement.

Transition T (st, at) is a function TTT : SSS ×AAA → SSS that maps st to st+1. In this paper, we use the
webots dynamics engine to provide a realistic transition function.

RewardR(st, at) is the reward function. The goal-centered rewards are given in Section 4.2.
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(b) Reward acquisition(a) Camera projection and pinhole imaging
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Figure 3: Diagram of reward acquisition.
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Figure 4: Reward design analysis diagram.

Network structure of Drone Agent. Similar to previous works [39, 80], we select a backbone
architecture consisting of a CNN followed by a GRU network [11] (see Appendix C.2).

Key Challenges in Drone Active Tracking. In open-world environments, drones face unpredictable
target behaviors and frequent occlusions. Designing a single reward that encourages diverse and
robust tracking actions is extremely difficult. To address this, we propose a goal-centered reward in
Section 4.2. Moreover, given the vast observation space, discovering successful policies is non-trivial.
To facilitate efficient learning, we introduce a curriculum-based training strategy in Section 4.4.

4.2 Goal-Centered Reward Design

For drone tracking a ground-based target, our reward is designed to characterize the target’s position
in the image and guide the drone to keep it centered. Therefore, we first need to select an appropriate
distance metric to quantify the proximity between the target and the center in the image plane.

Since the drone typically captures images from a top-down perspective, the image plane is not parallel
to the ground. Due to the affine transformation, the projection of the image plane becomes a trapezoid
(see Fig. 3(b)), and the physical distance between the drone and the target cannot directly correspond
to their pixel distance. Existing methods [39, 19] compute the Euclidean distance between the drone
and the target, which may not accurately reflect their spatial relationship in the image plane.

To address this issue, we employ a deviation metric ϕ(·, ·) to measure the distance between the target
and the image center projection, as illustrated in Fig. 3(b). Specifically, given a target point Pg and
the image center projection Cg , the deviation metric is computed by

ϕ(Pg, Cg) =
| Pg − Cg |

| Eg(Pg, Cg)− Cg | , (1)

where |Pg − Cg| denotes the distance from Pg to Cg and |Eg(Pg, Cg)−Cg| represents distance from
point Eg(Pg, Cg) to the center. Eg(Pg, Cg) is the intersection of the line connecting Pg and Cg with
the projected image boundary, as shown in Fig. 3(b).

The deviation ϕ(·, ·) is designed to ensure that targets inside the image are closer to the center than
those outside, with contours shown in Fig. 4(b).

Principles for Reward Design. The objective of the VAT task is to keep the target at the image
center. Thus, the targets closer to the image center projection should get higher reward values. For
deviation metric ϕ(·, ·), the design principle of the reward functionRϕ(·) is defined as:

∀P1, P2 ∈ W, if ϕ1 < ϕ2, then Rϕ(ϕ1) > Rϕ(ϕ2), (2)

whereW denotes the valid region with non-zero reward, and ϕ1, ϕ2 represents the deviation from the
target point to the image center projection.

Goal-Centered Reward Function. Our reward rgc(·) decreases as the target moves away from the
projected image center Cg , and is zero if outside, as shown as follows:

rgc(Pg)=

{
tanh (α(1−ϕ(Pg, Cg))

3), Pg ∈ Iclip
0, otherwise

. (3)

The attenuation degree of rgc(·) can be adjusted using the hyperparameter α, set to 4. The tanh(·)
provides a strong indication of the task goal due to its relatively quick decay at the image center. Iclip
is the truncated image range set to prevent the drone from keeping the target at the edge of the image.
The truncation of the image can be controlled using the hyperparameter λclip as: λclip = HIclip

/H ,
where H and HIclip

are the heights of the original and the truncated image. We set λclip = 0.7.
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Algorithm 1 Curriculum-Based Training (CBT)

1: Input: Initial policy parameters θ0, phase threshold η, total steps N , rollout steps n
2: Initialize: Training phase phase← 1, reward buffer B ← ∅, rollout buffer Br ← ∅
3: for each step k = 0, 1, ..., N − 1 do
4: if phase = 1 then
5: Configure simple environment: linear target trajectories + no obstacles
6: else
7: Configure complex environment: varied target movements + obstacles/occlusions
8: Collect transition τk = (st, st+1, at, rt) with rewards calculated via (3)
9: Append to buffer: B ← B · rk, Br ← Br · τk

10: if k mod n = 0 then
11: Update policy using PPO: θk+1 ← PPO_Update(θk,Br)
12: Clear rollout buffer: Br ← ∅
13: if phase = 1 and 1

|B|
∑

rt∈B rt ≥ η then
14: Switch training phase: phase← 2
15: Clear buffer: B ← ∅, Br ← ∅

More details about the Goal-Centered Reward. The reward function (Eq. 3) relies on the
projections of the four corners and image center to compute deviation ϕ(·, ·). As shown in Fig. 3(a),
in the camera frame {c}, the image center and four corner points have the coordinates C(−f, 0, 0),
LU(−f,−1

2W, 12H), LD(−f,−1
2W,−1

2H), RU(−f, 12W, 12H), RD(−f, 12W,−1
2H), where W and H are

the image width and height and f denotes the camera focal length, which can be computed using
the pinhole imaging principle [8] as: f = W

2 tan ( 1
2FoV )

. FoV is the camera field of view. Next, the
equations of the lines connecting the image center and the four corner points to the optical center
Oc(0, 0, 0) can be obtained in frame {c}(light blue dashed lines in Fig. 3(a)):

lLUOc : x
−f

= 2y
−W

= 2z
H

lLDOc : x
−f

= 2y
−W

= 2z
−H

lRUOc : x
−f

= 2y
W

= 2z
H

lRDOc : x
−f

= 2y
W

= 2z
−H

lCOc : y = 0, z = 0

, (4)

where lLUOc is the line connecting LU to Oc, similarly for lLDOc , lRUOc , lRDOc and lCOc . Thus,
the projections of the points can be obtained by intersecting the lines with the ground plane.

Therefore, we next derive the expressions for the ground plane and the target. For clarity, we adopt
a unified representation in frame {c}. In DAT scenes, the road surfaces are smooth. Thus, in the
world frame {w} (see Fig. 3(a)), the ground plane Gw is defined as: z = h, where h denotes the
ground height. For simplicity, we here express Gw in {c} as Gc : Agx+Bgy+Cgz+Dg = 0, with
Ag, Bg, Cg, Dg derived in Appendix C.2. Furthermore, the target coordinates Pv = (xv, yv, zv, 1)

T

in {w} can be transformed to {c} using homogeneous transformation matrix [7] Tcw: Pg = T−1
cw Pv .

Subsequently, the ground projections can be obtained by intersecting lines in Eq. 4 and Gc:

LUg : (−f,− 1
2
W, 1

2
H)tlu, tlu = Dg(Agf + 1

2
BgW − 1

2
CgH)−1

LDg : (−f,− 1
2
W,− 1

2
H)tld, tld = Dg(Agf + 1

2
BgW + 1

2
CgH)−1

RUg : (−f, 1
2
W, 1

2
H)tru, tru = Dg(Agf − 1

2
BgW − 1

2
CgH)−1

RDg : (−f, 1
2
W,− 1

2
H)trd, trd = Dg(Agf − 1

2
BgW + 1

2
CgH)−1

Cg : (−Dg

Ag
, 0, 0)

, (5)

where LUg , LDg , RUg , RDg and Cg are the projections of LU , LD, RU , RD and C. Using target
coordinates Pg and Eq. 5, the reward is computed as Eq. 3. See Appendix C.2 for details.

4.3 Theoretical Guarantees on Reward Design

Existing methods [39, 19] assume a fixed forward camera view and use distance-based rewards.
However, when the view changes, these rewards may fail due to the affine transformation effect in
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image projection. We hereby provide a theoretical analysis to show that commonly used distance-
based rewards will fail when the camera deviates from a fixed horizontal forward view.

To this end, we defineRd(·) as a distance-based reward using Euclidean distance between the target
and the image center projection. A distance-based reward Rd(·) satisfying Eq. 2 may still assign
higher rewards to targets farther from the center under the metric ϕ(·, ·), rendering it ineffective. In
contrast, any deviation-based reward Rϕ(·) satisfying Eq. 2 can effectively reflect the target position.

Proposition 1 The commonly used Euclidean distance d(·, ·) between the target and the image center
proposition does not align with the deviation ϕ(·, ·) of the target from the image center projection,
when the camera is not at a fixed horizontal forward viewpoint. That is:

∃P1, P2 ∈ Ip, s.t. ϕ1<ϕ2, d(P1,Cg)>d(P2,Cg), (6)

where ϕi = ϕ(Pi, Cg), Pi are points in the projection region Ip, Cg is the image center projection.
See Appendix C.1 for theoretical proof.

Remark 1. A distance-based reward Rd(·) satisfying Eq. 2 results in targets closer to the center
receiving lower rewards, when the camera is not at a fixed horizontal forward viewpoint. That is:

∃P1, P2∈Ip, s.t. ϕ1<ϕ2, Rd(d1)<Rd(d2), (7)

where di = d(Pi, Cg), and ϕi = ϕ(Pi, Cg) . This illustrates the failure of the distance-based reward
under these viewpoints. See Appendix C.1 for theoretical proof.

Qualitative Analysis. According to the Theoretical Analysis above, rewards should decrease
monotonically along the deviation contours in Fig. 4(b) as the target moves toward the projection
boundary. Thus, the reward contours must align with the deviation contours. The contours of rgc(·)
in Fig. 4(b) perfectly align, indicating accurate position feedback. In contrast, D-VAT [19] (see Fig.
4(a)) shows misaligned contours, explaining its failure as noted in Remark 1.

4.4 Training with Curriculum Learning

DAT scenes contain numerous dynamic targets and obstacles, hindering convergence and performance.
Progressively training the agent from simpler to more complex environments enhances performance
and accelerates learning for the final task [63]. Therefore, we propose a Curriculum-Based Training
(CBT) strategy to optimize reinforcement learning training in complex environments.

To address the challenges, we employ the Proximal Policy Optimization (PPO) [55] algorithm, known
for its efficiency in control tasks. To further enhance agent adaptability and robustness, we apply
domain randomization during agent training. Specifically, we randomize the drone’s initial position
and orientation relative to the target to promote diverse behaviors. Additionally, we randomize the
gimbal pitch angle to improve the agent’s spatial perception. See Appendix C.2 for further details.

Given the scene complexity, we adopt a CBT strategy, which divides the model training into two
stages. The first stage consists of a simplified environment with straight line target trajectories and no
obstacles. The agent learns to center the target through the reward rt in Eq. 3. In the second stage,
the agent encounters more varied target movements and complex visual information, such as tree
occlusions and crosswalks. The goal of the agent is to develop stronger generalization abilities based
on task understanding in the first stage. See Algorithm 1 for the pseudocode of the CBT strategy.

5 Experiments

5.1 Experimental Settings

Experimental Setup. We conduct cross-scene and cross-domain tests. The former tests an agent
trained under daytime conditions in unseen scenes with the same weather. The latter evaluates the
agent in the same scene under varying weather conditions. See Appendix E.1 for details.

Metrics. We use cumulative reward (CR =
∑El

t=1 rgc) and tracking success rate (TSR =
1

Eml

∑El

t=1 rdt × 100%) to evaluate the agent performance. CR primarily reflects how well the
agent centers the target over episode length El, while TSR measures the ability to keep the target in
view, with rdt = 1 meaning the target is within the view (See Appendix C), and Eml denoting the
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Table 2: Results of within and across scenes on DAT benchmark.

Method citystreet desert village downtown lake farmland
CR TSR CR TSR CR TSR CR TSR CR TSR CR TSR

Within Scene
AOT 49±3 0.25±0.02 9±1 0.06±0.00 46±5 0.23±0.03 54±5 0.29±0.01 47±3 0.24±0.02 60±25 0.23±0.01

D-VAT 48±8 0.26±0.02 47±13 0.26±0.04 44±8 0.22±0.05 9±1 0.06±0.01 46±8 0.26±0.06 13±1 0.07±0.00

Ours 279±1100.80±0.30307±1240.84±0.29239±1340.73±0.32203±1190.65±0.30181±1160.61±0.31243±1170.68±0.32

Cross Scene
AOT 48±5 0.24±0.02 9±0 0.06±0.00 52±11 0.25±0.03 52±6 0.28±0.03 48±5 0.24±0.02 49±7 0.24±0.03

D-VAT 49±9 0.26±0.04 48±8 0.27±0.03 50±14 0.25±0.06 8±1 0.05±0.00 51±14 0.25±0.06 14±1 0.07±0.01

Ours 144±1110.52±0.29229±1150.67±0.27156±1190.55±0.31201±1210.64±0.30163±1150.51±0.29162±1060.54±0.26
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Figure 5: Reward values during training.

Table 3: Results of cross domain on DAT.

Method night foggy snow
CR TSR CR TSR CR TSR

AOT 42±4 0.22±0.02 44±7 0.22±0.02 44±7 0.22±0.02

D-VAT 35±7 0.19±0.03 37±7 0.19±0.03 34±6 0.20±0.03

Ours 217±125 0.64±0.32 243±114 0.76±0.26 178±105 0.60±0.26

Table 4: Results of ablation experiments on DAT.

Method Within-Scene Cross-Scene Cross-Domain
CR TSR CR TSR CR TSR

RD-VAT 9±1 0.06±0.00 8±1 0.05±0.00 9±0 0.06±0.00

w/o CBT 46±2 0.23±0.01 53±16 0.26±0.07 46±2 0.23±0.01

w/o AR 106±88 0.44±0.23 92±72 0.37±0.19 80±63 0.36±0.19

w/o HR 174±1180.49±0.30148±1290.48±0.32184±1240.57±0.30

w/o VR 211±1380.63±0.35161±1150.54±0.32203±1170.60±0.32

w/o PR 139±1190.61±0.33 124±85 0.48±0.25145±1220.52±0.28

Ours 243±1170.68±0.32 162±106 0.54±0.26 222±110 0.65±0.27

maximum episode length. Agents are initialized at four relative angles to the target ([0, π
2 , π,

3π
2 ] rad),

with 10 episodes per angle (40 total). The mean and variance of these results are calculated for each
map, and the final cross-scene and cross-domain performance are averaged across different scenes.

Baselines. We reproduce two SOTA methods: AOT [39] and D-VAT [19]. Both baselines and other
methods [81, 18] use distance-based rewards. As concluded in Section 4.3, they may fail in tilted
top-down views. Thus, these baselines sufficiently highlight GC-VAT superiority. See Appendix D.

5.2 Comparison Experiments

We compare our GC-VAT with the SOTA methods for within-scene performance and cross-scene
cross-domain generalization performance on DAT benchmark. As shown in Fig. 5, our method
achieves consistently higher and steadily increasing rewards throughout training, demonstrating its
effectiveness. Both AOT and D-VAT methods fail to learn effective policies due to the misleading
feedback from their distance-based rewards. In particular, AOT learns to quickly drive the target out
of view, resulting in a rapidly declining reward curve. The results validate the theoretical analysis
in Section 4.3. It is worth noting that although AOT and D-VAT exhibit low variance in their
experimental results, consistently low rewards typically indicate a failure to learn effective tracking
policies.

Within-scene performance. We train the model on all scenes and evaluate it on the original scene.
Our GC-VAT performs significantly better than other methods as shown in Table 2. For the CR, the
average performance improvement on six maps relative to the D-VAT method is 591%(35→242).
Regarding the TSR, the average enhancement is 279%(0.19→0.72).

Cross-scene performance. Our method demonstrates strong cross-scene generalization, as shown
in Table 2. Specifically, GC-VAT achieves a 376%(37→ 176) improvement in average CR and a
200%(0.19→0.57) improvement in average TSR compared to D-VAT.

Cross-domain performance. As shown in Table 3, our method outperforms existing methods
significantly in cross-domain generalization. Specifically, GC-VAT demonstrates an average CR
enhancement of 509%(35→213) relative to D-VAT and TSR boost of 253%(0.19→0.67).
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Table 5: Performance under wind
disturbances and target distractors.

CR TSR
w/ Forward 302±94 0.91±0.18

w/ Lateral 304±82 0.91±0.19

w/ Yaw 301±120 0.88±0.23

w/ Distractor 293±120 0.91±0.15

Ours 316±84 0.94±0.14

Table 6: Performance under rainy conditions and unseen targets.
We evaluate the model trained on citystreet-day.

Method
Within-Scene Cross-Scene Cross-Domain

CR TSR CR TSR CR TSR
w/ rain 266±110 0.74±0.29 139±109 0.45±0.30 274±103 0.77±0.29

Unseen Target 222±92 0.79±0.25 131±89 0.50±0.33 207±94 0.79±0.27

Ours 279±110 0.80±0.30 144±111 0.52±0.29 258±110 0.82±0.23
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Figure 6: Results on real-world images.

Table 7: Effectiveness of GC-VAT on
Sim2Real test. We select eight video se-
quences from each dataset for evaluation.

Video VOT [30] DTB70 [35] UAVDT [20]

Average Correct Action Rate
Random 0.413 0.426 0.421

Ours 0.795 0.833 0.802

5.3 Ablation Experiments

We conduct ablation experiments on Goal-Centered Reward to validate the results of the analysis
presented in Section 4.3. Moreover, we verify whether the Curriculum-Based Training strategy and
domain rondomization from Section 4.4 lead to a significant performance improvement. We present
results on the farmland map in Table 4, with additional results provided in Appendix E.3.

Effectiveness of reward design. We contrast the performance of GC-VAT method when using the
reward defined in Eq. 3 and that in [19]. As shown in Table 4, significant performance enhancements
(about 800% improvement in TSR across-scene and cross-domain) are evident with the utilization of
Eq. 3. These results strongly corroborate the analysis in Section 4.3 and underscore the effectiveness
of the proposed reward. See Appendix E.3 for more experimental results.

Effectiveness of CBT strategy and domain randomization. As shown in Table 4, without the
CBT strategy, the model fails to learn effective tracking policies, resulting in consistently low
rewards across different tests. In addition, our domain randomization approach yields significant
improvements. Specifically, AR, HR, V R, and PR denote the randomization of the drone’s initial
angle, horizontal and vertical distance relative to the target, and gimbal pitch angle, respectively.
Among these, AR contributes the most to performance gains, indicating that encouraging diverse
actions through angle randomization facilitates the agent’s exploration of optimal policies.

Robustness under wind gusts and precipitation. To further investigate the impact of real-world dis-
turbances on the GC-VAT method, we conduct rigorous tests under wind gusts and sensor degradation
caused by precipitation. Specifically, we simulate wind effects by applying randomized perturbations
along the forward, lateral, and yaw directions during testing. The results are summarized in Table
5, where the model is trained on citystreet-day and evaluated on citystreet-foggy with added wind
perturbations. The Tracking Success Rate (TSR) drops by less than 0.06, demonstrating that GC-VAT
maintains strong robustness under significant wind disturbances. See Appendix E.3 for more details.

To simulate the blurring caused by raindrops, we follow established practices in test-time adaptation
literature [34]. Specifically, we train the policy on citystreet-day map and evaluate under synthetically
generated rain in within-scene, cross-scene, and cross-domain settings. To ensure realism, we exclude
snowy conditions from the cross-domain evaluation, as snow and rain rarely co-occur in real-world
environments. The results in Table 6 show only marginal performance degradation (less than 0.07 in
TSR) under rain simulation, confirming that GC-VAT is robust to blurring caused by raindrops.

Robustness to distractors and novel targets. As shown in Table 5, our model maintains high tracking
performance even when a similar-looking vehicle is introduced near the target, demonstrating its
ability to effectively distinguish the true target from confusers. In addition, we evaluate GC-VAT on
an unseen target class (bus). As shown in Table 6, our model maintains strong tracking performance,
with a TSR drop of less than 0.03 when encountering this novel object.
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Figure 7: Schematic of the real-world deployment pipeline.
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Figure 8: Results on real drones.

5.4 Experiments in Real-world Scenarios

Effectiveness on real-world images. Due to the difficulty real-robot evaluation, we follow [39] and
validate GC-VAT on real images. We perform zero-shot transfer tests using 8 videos each from VOT
[30], DTB70 [35] and UAVDT [20] datasets. Although camera control is unavailable in recorded
videos, we can feed frames into the model and verify the reasonableness of its predicted actions.

The output actions for the VOT video car16 are shown in Fig. 6. Each point represents the target
position in the image, with colors indicating different actions. As Fig. 6 illustrates, when the target is
located on the left (right) side, the tracker tends to move left (right), attempting to bring the target to
the center. Quantitatively, we use the Correct Action Rate, i.e., the accuracy of predicted actions, to
evaluate the performance. As shown in Table 7, GC-VAT achieves an average Correct Action Rate
(CAR) of 81.0% across 24 videos, demonstrating its effectiveness. More importantly, it is significantly
superior to random policy (p < 0.001) as verified by a t-test. See Appendix E.4 for more results.

Effectiveness on real drones. Furthermore, as a critical step beyond image-based evaluation, we
conduct real-world experiments on a DJI Mini 3 Pro [13] drone. As shown in Fig. 7, we deploy
GC-VAT on a laptop equipped with an RTX 3050 GPU and an Intel i5 CPU, use the DJI Mobile SDK
[12] to obtain images, and control the drone with the predicted actions. The entire pipeline operates at
over 30 FPS. As Fig. 8 illustrates, the model can output actions that maintain the target at the image
center. Quantitatively, GC-VAT achieves an average zero-shot TSR of 88.4% and a CAR of 81.3%.
This successful zero-shot Sim-to-Real transfer validates the practical applicability of our approach.

6 Conclusion and Potential Impacts

In this paper, we propose the first open-world drone active air-to-ground tracking benchmark, called
DAT. DAT benchmark encompasses 24 city-scale scenes, featuring targets with human-like behaviors
and high-fidelity dynamics simulation. DAT also provides a digital twin tool for unlimited scene
generation. DAT benchmark has the potential to impact several key areas, including: 1) Forgetting in
Reinforcement Learning, 2) Robustness in Reinforcement Learning, 3) Multi-Agent Reinforcement
Learning, and 4) Sim-to-Real Deployment. Additionally, we propose a reinforcement learning-
based drone tracking method called GC-VAT, aiming to improve the performance of drone tracking
targets in complex scenarios. Specifically, we design a Goal-Centered Reward to provide precise
feedback across viewpoints to the agent, enabling it to expand perception range through unrestricted
perspectives. Then we propose qualitative and theoretical methods to analyze the reward effectiveness.
Moreover, inspired by curriculum learning, we implement a Curriculum-Based Training strategy that
progressively improves agent performance in increasingly complex scenarios. Experiments on the
simulator and real-world images validate the analysis and demonstrate that our method is significantly
superior to the SOTA methods.
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A Related Work

A.1 Passive Object Tracking

Most of the proposed visual tracking benchmarks belong to passive visual tracking. LaSOT [23]
and OTB2015 [71] benchmarks contain a large number of ground-based videos. These benchmarks
include target videos, and the tracking algorithms utilize both the video frames and the target labels for
tracking. However, ground cameras tend to be affected by occlusion and suffer from the shortcoming
of limited perceptual range, so the need for drone viewpoint tracking is gradually increasing in
practical applications. UAV123 [43] and VisDrone2019 [21] benchmarks are proposed for drone
viewpoint, expanding the spatial dimension of perception. Meanwhile, the single-object tracking
benchmarks have difficulties for many targets. MOT20 [17] and TAO [16] benchmarks are proposed
for multi-object tracking to solve the above problems. In addition, the above benchmarks include
videos from the RGB camera. The RGB camera’s recognition capabilities are limited in complex
scenes, such as ocean environments, and challenging weather conditions, including nighttime and
foggy. IPATCH [47] provides extra infrared images and other sensors like GPS to supplement the
information of the sea scene. Huang et al. propose Anti-UAV410 [28], which provides infrared
camera images for drone tracking.

Visual object tracking methods can be categorized into three main types: Tracking by Detection,
Detection and Tracking (D&T), and pure tracking. Tracking by Detection methods [5, 69, 6] treat
tracking as a sequence of independent detection tasks. These methods use object detection algorithms
[50, 52] to identify the target object in each frame, connecting the detections through data association
methods [31, 70] for continuous tracking. While effective in multi-target tracking, these methods
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may suffer from high computational demands and issues with target occlusion. D&T approaches
[66, 79, 48] integrate detection and tracking, creating end-to-end models that ensure seamless
information flow and reduce redundant calculations through shared feature extraction networks. Pure
tracking methods can be categorized into two main types: Correlation Filters (CF) [72, 44, 27] and
Siamese Networks (SN) [32, 4, 62]. CF-based models train correlation filters on regions of interest,
while SN-based models compare target templates with search areas to enable precise single-target
tracking.

A.2 Visual Active Tracking

Passive visual tracking often falls short in real-world scenarios due to the highly dynamic nature of
most targets. Visual Active Tracking (VAT) aims to autonomously follow a target object by controlling
the motion system of the tracker based on visual observations [40, 80, 75]. Thus, VAT offers a more
practical yet challenging solution for effective tracking in dynamic environments. Maalouf et al.
[40] propose a two-stage tracking method (named FAn), which is based on a tracking model and
a PID control model. This method accomplishes the fusion of perception and decision-making by
transferring control information from the visual tracking model to the control model. However, the
visual network necessitates extensive human labeling effort and the control model requires parameter
adjustments for each scene, significantly constraining the model’s generalizability. Recently, many
approaches [39, 18, 80, 19] model the VAT task as a Markov Decision Process and employ end-
to-end training with reinforcement learning, resulting in a significant enhancement of the agent’s
generalizability.

The complexity and diversity of VAT benchmarks are crucial for training agents with high generaliz-
ability. One common approach [19, 18, 80] to enhancing environmental diversity involves modifying
texture features and lighting conditions within a single scene. However, these methods often result in
low scene fidelity and unrealistic object placement. While UE4 [24] is used to create photorealistic
environments in some benchmarks [80, 39], these benchmarks still face limitations in diversity and
map size. Furthermore, the scenarios provided by these methods are often task-specific, offering
limited configurability and lacking a unified benchmark for VAT tasks.

Existing approaches to VAT frequently neglect the randomness of target trajectories and the scalability
of platforms. Target trajectories are typically predefined by rule-based patterns [19, 18, 39], which
significantly restrict the exploration space. Zhong et al. [80] introduce learnable agents as targets,
increasing trajectory randomness but adding additional cost. Most benchmarks provide only a
single category of target [19, 18, 80, 39], limiting scalability and necessitating repetitive work for
environment development. Zhou et al. [82] utilize CoppeliaSim [2] to provide five categories of
noncooperative space objects. However, the use of a solid black background makes it unsuitable for
general VAT scenarios. In contrast, our environment supports diverse, real-world target types and
offers unified, lightweight management of target behaviors, ensuring both rationality and randomness
in their actions.

A.3 Reinforcement learning in Visual Tracking

Reinforcement learning (RL) is widely used in large language models [26] and robot control [53] to
improve exploration performance. It is also commonly applied in visual object tracking [76, 51, 78].
Song et al. [59] propose a decision-making mechanism based on hierarchical reinforcement learning
(HRL), which achieves state-of-the-art performance while maintaining a balance between accuracy
and computational efficiency. However, the actions generated by reinforcement learning in the
aforementioned work cannot directly influence the camera’s viewpoint, thereby failing to fully
leverage the decision-making capabilities. Real-world applications increasingly require robust
tracking in highly dynamic scenes, motivating researchers to explore reinforcement learning agents
for effectively synchronizing visual perception and decision-making in VAT tasks. Dionigi et al.
[19] demonstrate the feasibility of reinforcement learning for drone VAT missions. However, the
assumption of a fixed-forward perspective limits its applicability in real-world tasks.

A.4 Curriculum Learning in Robot Control

Curriculum Learning (CL) is a training strategy that mimics a human curriculum by training models
on simpler subsets of data at first and gradually expanding to larger and more difficult subsets of data
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Figure 9: Examples of DAT benchmark targets. (a) Illustration of tracking targets for 10 types of
automobile and 2 types of motorbike. (b) Illustration of tracking targets for the pedestrian type. (c)
Illustration of tracking targets for 5 types of wheeled robot. (d) Illustration of tracking targets for 6
types of legged robot.

until they are trained on the entire dataset. CL is widely used in large language models [64] and robot
control. As for robot control, reinforcement learning training is difficult due to the complexity of
the training scenarios and the large action spaces. Therefore, curriculum learning is often required
to reduce the difficulty of agent training. For instance, many works improve the walking ability of
legged robots by adjusting terrain parameters through curriculum learning [53, 41]. Other studies
improve the pushing and grasping performance of robotic arms by progressively increasing task
difficulty [38, 61, 45].

In this paper, Curriculum Learning is introduced in the VAT task, and the training environment is
transitioned from simple features to complex scenarios to achieve successful tracking of agent in
complex outdoor environments.

B More Details of DAT Benchmark

More details of the digital twin tool. Our digital twin tool is based on the osm_importer tool in the
webots simulation software. Users first need to download the map description file (.osm file) for a
specific area from the OpenStreetMap website. Then, the tool preprocesses the map according to the
configuration, modifying information such as the number of lanes and lane directions, and converts
the processed file into a road network file (.net.xml file) that can be read by SUMO. Following this,
the tool adds traffic lights and intersection traffic rules to the road network based on the configuration,
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Table 8: State parameters of DAT benchmark.
Category Sensor Parameter Type Description Potential Tasks

Vision Camera Image Mat Images Default sensor
LiDAR LidarCloud vector2000 Point cloud (m) Obstacle avoidance

Motion

GPS Position vector3 Position (m) Visual navigation
Linear vector3 Linear velocity (m/s) Visual navigation

Accelerometer Acc vector3 Acceleration (m/s2) Visual navigation
Gyroscope Angular vector3 Angular velocity (rad/s) Posture stabilization

IMU Angle vector3 Euler angles (rad) Posture stabilization
Orientation vector4 Quaternion representation Posture stabilization

Table 9: Reward parameters of DAT benchmark. The homogeneous transformation matrices (HTM)
Tcw and Ttw are 4×4 square matrices. Therefore, their data type double[16] corresponds to a double
array of length 16.
Parameter Type Description

cameraWidth double image width(px)
cameraHeight double image height(px)
cameraFov double camera field of view(rad)
cameraF double estimated camera focal length(px)
Tcw double[16] HTM of the camera relative to the world frame
Ttw double[16] HTM of the vehicle relative to the world frame
cameraMidGlobalPos vector3d ground projection of camera center mapped in the world frame
carMidGlobalPos vector3d coordinates of the vehicle center in the world frame
cameraMidPos vector3d coordinates of the camera center in the world frame
carDronePosOri vector4d 1D orientation + 3D position of vehicle in the drone frame
crash double whether tracker collides with a building
carDir double car direction(0-stop,1-go straight,2-turn left,3-turn right)
carTypename string tracking target type

ensuring that the traffic flow operates correctly when the map is converted into a 3D scene. Finally,
the tool reads the road, vegetation, and building information and converts them into PROTO assets
for webots, which can then be correctly recognized and used by the DAT benchmark.

Scenario Construction. Among the DAT scenes, three scenarios: citystreet, downtown, and lake
are directly derived from real-world locations with the digital twins tool. Specifically, the citystreet
scenario is based on a small town in Los Angeles, the downtown scenario is derived from Manhattan,
and the lake scenario is modeled after Wolf Lake Memorial Park in Indiana. In contrast, the village,
desert, and farmland maps possess complex and unique features that are not adequately captured
by OpenStreetMap (OSM) data. For example, the village map features mountainous terrain with
tunnels, while the farmland map is characterized by diverse multicolored patterns. To overcome these
limitations, we use Creo software [29] to model detailed scene elements, which are then integrated
into the webots for constructing realistic maps.

Targets. All tracking target illustrations are presented in Fig. 9. Specifically, Fig. 9(a) presents
automobile and motorbike tracking targets, including passenger vehicles (the first seven cars), buses,
trucks, trailers, and motorcycles (such as scooters and motorbikes). These two categories of tracking
targets leverage Simulation of Urban Mobility (SUMO) [36] for road behavior modeling and inter-
action management with other targets. In contrast, Fig. 9(b)-(d) display pedestrian, wheeled robot,
and legged robot tracking targets, respectively. These three types of targets utilize SUMO paths for
position initialization and rely on specific controllers for action and behavior management.

Sensors. In the real world VAT tasks, a single camera cannot ensure the agent’s stability and
robustness. Thus, integration with other sensors is often required. The DAT benchmark provides
common sensors that can obtain the drone’s state parameters relative to the world coordinate system.
The drone’s position and velocity are determined using GPS, while its acceleration is measured by an
accelerometer, providing essential self-referential data for visual navigation tasks. Angular velocity
is recorded via a gyroscope, and Euler angles obtained from the IMU are converted into quaternions
to facilitate state estimation and ensure orientation stability. Additionally, the RPLIDAR A2, provided
by DAT, generates point cloud data, which supports tasks such as obstacle avoidance and navigation
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Figure 10: Diagram for the theoretical proof of Proposition 1.

by delivering detailed environmental information. The specific sensors, parameters and potential
tasks are in Table 8.

Additional Parameters. The training process of VAT agents often requires additional parameters for
effective reward design. To facilitate this, DAT benchmark provides 4 categories comprising a total
of 13 parameters, supporting diverse reward design strategies, as detailed in Table 9.

First are the camera parameters, which mainly include image width cameraWidth, image height
cameraHeight, field of view cameraFov, and focal length cameraF. Utilizing these, the camera
plane can be projected onto the ground to aid in reward construction.

Next is the homogeneous transformation matrix (HTM). In the reward design, coordinate transforma-
tions are often required to express physical quantities within a unified coordinate system, enabling
consistent calculations. For example, prior studies [19, 39, 18] transform the position, velocity, and
acceleration of targets into the tracker’s coordinate system to construct rewards. To support such
operations, DAT benchmark provides Tcw, the HTM mapping the drone camera coordinate system to
the world coordinate system, and Ttw, the HTM mapping the tracking target’s coordinate system to
the world coordinate system.

Additionally, for the state of the tracker itself, cameraMidPos represents the position of the drone
camera’s optical center in the world coordinate system. The parameter crash indicates whether
the drone collides with any buildings in the scene, which can be used in reward design for obstacle
avoidance tasks.

Lastly, for ease of model training in simulations, reward design often depends on some privileged
information, i.e., variables that are almost impossible to obtain in real-world settings. Thus, DAT
benchmark also provides such adaptations. For example, carMidGlobalPos gives the target’s
position in the world coordinate system, and carDronePosOri represents the target’s orientation and
position relative to the drone coordinate system, frequently used in VAT reward design [19, 39, 18].
Furthermore, information on the target’s direction and type is provided.

Task Configuration. We encapsulate the scenes, tasks, and domain randomization into Python
classes, and provide 3 different environment classes for different algorithm requirements. The
base environment class directly interacts with webots and is designed to support asynchronous
reinforcement learning algorithms, such as the asynchronous advantage actor-critic (A3C) algorithm
[42]. The Gymnasium environment class wraps the base environment class into a Gymnasium [60]
interface, enabling direct compatibility with popular reinforcement learning libraries, such as Stable-
Baselines3 [49] and Tianshou [68] for efficient algorithm development and evaluation. The parallel
environment class encapsulates the base environment class to enable parallel execution, providing
direct support for synchronous algorithms, such as proximal policy optimization (PPO) [55] and soft
actor-critic (SAC) [25]. Additionally, the scenario selection, tracker and target configuration, SUMO
parameters, task additional parameters, and randomization methods can all be efficiently customized
through a JSON configuration file.
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Figure 11: Network structure of Drone Agent.
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Figure 12: Schematic diagram of the training environments for the two-stage of Curriculum Learning

C More Details of Proposed GC-VAT

C.1 Theoretical Proof of Reward Design

Theoretical proof of Proposition 1. Consider two points A and B on the image symmetry axis (in
Fig. 10), which are symmetric with respect to the image center O. The projections of these points
onto the ground are denoted as A′, B′ and O′, respectively. Take a point C ′ on line segment O′B′

such that the Euclidean distance d(O′, C ′) = d(A′, O′).

Given:

1. In the image plane, the deviation ϕ(·, ·) of point A and B from the image center O is the
same, i.e. ϕ(A,O) = ϕ(B,O).

2. In the projection plane, the Euclidean distance from A′ and C ′ to the ideal position O′ are
equal, i.e. d(A′, O′) = d(O′, C ′).

It is evident that:

1. For any point D′ on line segment B′C ′, the following relationship holds: d(O′, D′) >
d(A′, O′).

2. The corresponding point D in the image lies on line segment BC, and thus ϕ(D,O) <
ϕ(A,O).

Thus, it is clear that the actual distance between the target and the ideal position is inconsistent with
the deviation of the target from the image center in the image.

Theoretical proof of Remark 1. According to Proposition 1, the following relationship between the
Euclidean distance and the deviation holds:

∃P1, P2 ∈ Ip, s.t. ϕ1 < ϕ2, d1 > d2, (8)

where ϕi = ϕ(Pi, Cg) and di = d(Pi, Cg). Therefore, for a distance-based reward function Rd(·)
that satisfies the Reward Design Principle, it follows that:

∃P1, P2 ∈ Ip, s.t. ϕ1 < ϕ2,Rd(d1) < Rd(d2). (9)

21



Table 10: Total training steps on different scenes. During the training process, we employ a parallel
training approach involving 35 agents. Consequently, the reported total training steps represent the
cumulative steps taken by all agents combined.

Scene citystreet desert village downtown lake farmland

Steps (M) 19.2 13.4 21.3 19.8 9.9 9.2

Table 11: Transition steps across different scenes.
Scene citystreet desert village downtown lake farmland

T (M) 10.0 6.2 8.0 10.3 5.6 4.1

C.2 More Details

Network Structure. The structure of the GC-VAT is shown in Fig. 11. In this figure, C8×8-16S4
represents 16 convolutional filters of size 8×8 and stride 4. GRU256 denotes a GRU network with
256 hidden units, and FC200 represents a fully connected layer with 200 neurons.

Domain Randomization. While simpler settings facilitate the agent’s learning of task objectives, they
also heighten the risk of the agent rapidly converging to a suboptimal action distribution, undermining
the exploration process. Consequently, implementing domain randomization is essential. This is
achieved through the randomization of the drone’s initial position and orientation relative to the target,
necessitating a broader range of actions to maximize rewards. Moreover, to enhance the agent’s
spatial perception ability, randomization is also introduced in its gimbal pitch angle.

In our two-stage curriculum learning process, we employ identical domain randomization. The
flight altitude is selected from the interval [13, 22]m, and the camera pitch angle is chosen from
[0.6, 1.38]rad. These parameters are consistent throughout each episode. Meanwhile, the drone’s
initial orientation relative to the target fluctuates within the range [−π, π]rad, and the target’s initial
position is set between [−4.5,−2.5] ∪ [2.5, 4.5]m.

Details on coordinate transformations. Given two planes P0 : n̂0xT+D0=0 and P1 : n̂1xT+D1=0,
along with the HTM T01 from P0 to P1. The T01 is defined as:

T01 =

[
R01 t01
0 1

]
. (10)

Hence, the expression of plane P1 can be obtained using the analytical expression of plane P0 and
T01 as follows:

n̂1
T = R01n̂0

T ,

D1 = D0 − n̂1t01.
(11)

Considering the ground plane Gw : z=h in the world coordinate system {w}, with representation in
the camera coordinate system {c} denoted as Gc :Agx+Bgy+Cgz+Dg =0, the vectors of these
two planes are PGw

=(0, 0, 1,−h) and PGc
=(Ag, Bg, Cg, Dg).

Furthermore, from Table 9, we can obtain the HTM Tcw from {c} to {w} defined as follows:

Tcw =

[
Rcw tcw
0 1

]
, (12)

where Rcw is the rotation matrix from {c} to {w}, which can be expressed in row vector form
as: Rcw = [r1, r2, r3]

T . Therefore, the homogeneous transformation matrix (HTM) Twc, which
represents the transformation from the world coordinate system {w} to the camera coordinate system
{c}, can be expressed as follows:

Twc =

[
RT

cw −RT
cwtcw

0 1

]
. (13)

Using Eq. 11 and the matrix Twc, the plane Gc can be formulated as PGc
= (rT3 ,−h+ rT3 R

T
cwtcw).

Privileged knowledge available for Drone Agent. During training in the simulator, the drone agent
has access to additional information (e.g., the precise location of the target). However, during testing
and real-world deployment, such privileged knowledge is not available.
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Table 12: The detailed results of comparison experiments on CR metric.
Within / Cross Scene Cross Domain

Train: citystreet citystreet desert village downtown lake farmland night foggy snow

AOT 49±3 49±9 45±5 49±3 48±3 48±3 49±4 49±3 49±3
D-VAT 48±8 46±12 46±10 57±11 50±8 46±3 48±9 54±10 53±10
GC-VAT 279±110 129±112 153±119 135±109 112±92 191±122 257±126 316±84 202±119

Train: desert citystreet desert village downtown lake farmland night foggy snow

AOT 9±0 9±1 9±1 9±1 9±0 9±0 9±1 9±1 9±1
D-VAT 51±10 47±13 46±10 56±11 39±8 47±3 48±13 48±13 39±10
GC-VAT 278±111 307±124 305±94 119±110 170±139 275±121 182±131 307±124 307±97

Train: village citystreet desert village downtown lake farmland night foggy snow

AOT 51±7 51±11 46±5 49±4 52±11 57±24 47±5 47±5 47±5
D-VAT 46±8 45±9 44±8 69±42 45±8 45±3 44±8 44±8 43±8
GC-VAT 234±122 160±139 239±134 93±102 153±115 140±118 257±122 257±120 114±115

Train: downtown citystreet desert village downtown lake farmland night foggy snow

AOT 52±3 52±9 48±7 54±5 53±5 54±8 54±5 54±5 54±5
D-VAT 8±1 8±1 8±1 9±1 8±1 8±1 9±1 9±1 9±2
GC-VAT 209±131 184±136 202±129 203±119 189±93 223±114 167±135 165±126 178±125

Train: lake citystreet desert village downtown lake farmland night foggy snow

AOT 49±3 49±10 46±5 49±3 47±3 49±3 48±3 48±4 48±3
D-VAT 50±8 45±9 45±10 70±42 46±8 43±2 46±8 51±8 49±9
GC-VAT 112±86 144±110 203±133 143±134 181±116 214±111 190±129 168±110 99±67

Train: farmland citystreet desert village downtown lake farmland night foggy snow

AOT 51±7 50±9 46±5 49±3 51±9 60±25 48±4 56±24 56±24
D-VAT 13±2 13±1 13±1 15±1 14±1 13±1 14±1 13±1 14±1
GC-VAT 162±89 170±125 237±128 81±71 159±119 243±117 253±109 245±117 168±105

Table 13: The detailed results of comparison experiments on TSR metric.
Within / Cross Scene Cross Domain

Train: citystreet citystreet desert village downtown lake farmland night foggy snow

AOT 0.25±0.02 0.24±0.03 0.22±0.03 0.25±0.02 0.23±0.03 0.24±0.01 0.25±0.02 0.25±0.02 0.24±0.02
D-VAT 0.26±0.02 0.25±0.04 0.25±0.02 0.32±0.08 0.27±0.04 0.19±0.01 0.26±0.02 0.28±0.02 0.29±0.02
GC-VAT 0.80±0.30 0.54±0.32 0.50±0.32 0.45±0.30 0.44±0.24 0.66±0.27 0.72±0.29 0.93±0.14 0.79±0.24

Train: desert citystreet desert village downtown lake farmland night foggy snow

AOT 0.06±0.00 0.06±0.00 0.06±0.00 0.06±0.01 0.06±0.00 0.06±0.00 0.06±0.01 0.06±0.01 0.06±0.01
D-VAT 0.27±0.02 0.26±0.04 0.25±0.02 0.32±0.07 0.23±0.03 0.26±0.01 0.26±0.04 0.26±0.04 0.26±0.04
GC-VAT 0.73±0.31 0.84±0.29 0.87±0.19 0.38±0.32 0.56±0.28 0.82±0.25 0.57±0.31 0.86±0.28 0.86±0.22

Train: village citystreet desert village downtown lake farmland night foggy snow

AOT 0.25±0.03 0.25±0.04 0.23±0.03 0.24±0.02 0.25±0.02 0.26±0.06 0.23±0.03 0.23±0.03 0.23±0.03
D-VAT 0.23±0.04 0.23±0.04 0.22±0.05 0.31±0.14 0.24±0.06 0.22±0.01 0.22±0.04 0.22±0.05 0.23±0.05
GC-VAT 0.72±0.28 0.51±0.34 0.73±0.32 0.46±0.29 0.59±0.33 0.48±0.31 0.71±0.32 0.71±0.32 0.40±0.29

Train: downtown citystreet desert village downtown lake farmland night foggy snow

AOT 0.30±0.04 0.26±0.05 0.27±0.02 0.29±0.01 0.29±0.03 0.29±0.02 0.29±0.01 0.29±0.01 0.29±0.01
D-VAT 0.05±0.00 0.05±0.00 0.06±0.00 0.06±0.01 0.05±0.00 0.06±0.00 0.06±0.01 0.06±0.00 0.06±0.00
GC-VAT 0.77±0.31 0.65±0.30 0.67±0.29 0.65±0.30 0.49±0.29 0.63±0.33 0.58±0.31 0.65±0.29 0.64±0.28

Train: lake citystreet desert village downtown lake farmland night foggy snow

AOT 0.25±0.02 0.25±0.03 0.23±0.03 0.24±0.02 0.24±0.02 0.24±0.01 0.24±0.01 0.24±0.02 0.24±0.01
D-VAT 0.25±0.04 0.23±0.04 0.23±0.05 0.30±0.15 0.26±0.06 0.22±0.01 0.26±0.06 0.26±0.06 0.25±0.06
GC-VAT 0.43±0.25 0.47±0.30 0.64±0.31 0.43±0.28 0.61±0.31 0.59±0.30 0.59±0.39 0.62±0.32 0.41±0.24

Train: farmland citystreet desert village downtown lake farmland night foggy snow

AOT 0.24±0.02 0.24±0.04 0.22±0.03 0.25±0.02 0.24±0.02 0.23±0.01 0.23±0.01 0.23±0.01 0.23±0.01
D-VAT 0.07±0.01 0.07±0.01 0.07±0.00 0.08±0.01 0.07±0.00 0.07±0.00 0.08±0.00 0.07±0.00 0.08±0.00
GC-VAT 0.48±0.24 0.59±0.34 0.72±0.26 0.33±0.20 0.58±0.28 0.68±0.32 0.67±0.32 0.78±0.22 0.51±0.28

Sparse Reward. In addition to the dense reward function described in the main text, we also provide
a sparse reward function design. The sparse reward only provides a fixed reward when the target is
within the image and no reward when it is outside. The definition of rd is as follows.

rd =

{
1, t ∈ I
0, otherwise , (14)

where I represents the image range. This reward can be used to construct the metric, Tracking
Success Rate (TSR).
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Figure 13: Schematic diagram of reward curves on DAT scenes.

Training algorithm. For the training method of GC-VAT, we choose to use PPO algorithm. PPO
algorithm regulates the speed of gradient updates by constraining the magnitude of policy changes rt,
expressed as follows:

rt(θ) =
πθ(at|st)

πθold(at|st)
, (15)

where πθ and πθold are the new and old policies. Additionally, to enhance the agent’s exploration, we
introduce an entropy loss termH, formulated as:

H(πθ(s)) = −
∑
a

πθ(a|s) log πθ(a|s). (16)

The optimization objective for the actor is as follows:

LA = Ê[min (rtÂt, clip(rt, 1−ϵ, 1+ϵ)Ât)+βH], (17)

where Ât is the advantage function, ϵ is the clip parameter, and β is the entropy coefficient. The
expression of Ât is:

Ât =

El−t∑
l=0

(γλ)lδt+l, (18)

where T, λ, δt+l are the data collection step, generalized advantage estimator (GAE) [56] discount
factor and temporal difference error respectively. The optimization objective expression of the critic
network V is defined as:

LC = Êt[(rt + γV (st+1)− V (st))
2]. (19)

The hyperparameters of the PPO algorithm used in this article are set as follows: discount factor
γ = 0.9, GAE discount factor λ = 0.95, entropy coefficient β = 0.01, PPO clipping parameter
ϵ = 0.2.

Curriculum Learning for Agent Training. We introduce a Curriculum-Based Training (CBT)
strategy designed to progressively enhance the performance of the tracker. In the first-stage curriculum,
the agent is trained to track vehicles moving along straight trajectories without occlusions or extra
interference. In the second-stage curriculum, the agent is exposed to visually complex environments
and tasked with tracking targets exhibiting diverse and dynamic behaviors. The scenario of each
stage is shown in Fig. 12, where the upper row is the first-stage environment, and the lower row
corresponds to the second-stage environment.
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Table 14: Effectiveness of CBT strategy on the DAT benchmark, results from CR metric.
Within / Cross Scene Cross Domain

Train: citystreet citystreet desert village downtown lake farmland night foggy snow

w/o CBT 54±7 37±21 30±6 30±14 48±13 48±4 54±9 54±9 54±9
GC-VAT 279±110 129±112 153±119 135±109 112±92 191±122 257±126 316±84 202±119

Train: desert citystreet desert village downtown lake farmland night foggy snow

w/o CBT 253±132 302±99 284±92 175±102 236±123 266±110 241±127 279±120 306±95
GC-VAT 278±111 307±124 305±94 119±110 170±139 275±121 182±131 307±124 307±97

Train: village citystreet desert village downtown lake farmland night foggy snow

w/o CBT 230±120 197±124 255±118 59±69 126±105 182±120 267±93 208±141 73±68
GC-VAT 234±122 160±139 239±134 93±102 153±115 140±118 257±122 257±120 114±115

Train: downtown citystreet desert village downtown lake farmland night foggy snow

w/o CBT 54±9 49±13 47±8 57±15 51±9 48±4 29±3 57±15 58±15
GC-VAT 209±131 184±136 202±129 203±119 189±93 223±114 167±135 165±126 178±125

Train: lake citystreet desert village downtown lake farmland night foggy snow

w/o CBT 124±90 88±52 191±108 93±75 187±123 198±117 183±110 185±102 102±57
GC-VAT 112±86 144±110 203±133 143±134 181±116 214±111 190±129 168±110 99±67

Train: farmland citystreet desert village downtown lake farmland night foggy snow

w/o CBT 52±9 47±9 45±9 69±42 50±9 46±2 46±2 46±3 46±2
GC-VAT 162±89 170±125 237±128 81±71 159±119 243±117 253±109 245±117 168±105

Table 15: Effectiveness of CBT strategy on the DAT benchmark, results from TSR metric.
Within / Cross Scene Cross Domain

Train: citystreet citystreet desert village downtown lake farmland night foggy snow

w/o CBT 0.30±0.05 0.14±0.10 0.20±0.10 0.31±0.15 0.28±0.06 0.21±0.01 0.30±0.05 0.30±0.05 0.30±0.05

GC-VAT 0.80±0.30 0.54±0.32 0.50±0.32 0.45±0.30 0.44±0.24 0.66±0.27 0.72±0.29 0.93±0.14 0.79±0.24

Train: desert citystreet desert village downtown lake farmland night foggy snow

w/o CBT 0.83±0.28 0.75±0.32 0.66±0.34 0.52±0.28 0.69±0.24 0.74±0.26 0.59±0.36 0.74±0.34 0.75±0.34

GC-VAT 0.73±0.31 0.84±0.29 0.87±0.19 0.38±0.32 0.56±0.28 0.82±0.25 0.57±0.31 0.86±0.28 0.86±0.22

Train: village citystreet desert village downtown lake farmland night foggy snow

w/o CBT 0.73±0.28 0.62±0.28 0.82±0.16 0.23±0.17 0.46±0.25 0.58±0.33 0.71±0.28 0.69±0.33 0.40±0.24

GC-VAT 0.72±0.28 0.51±0.34 0.73±0.32 0.46±0.29 0.59±0.33 0.48±0.31 0.71±0.32 0.71±0.32 0.40±0.29

Train: downtown citystreet desert village downtown lake farmland night foggy snow

w/o CBT 0.29±0.04 0.27±0.03 0.27±0.03 0.33±0.06 0.28±0.03 0.27±0.01 0.33±0.06 0.33±0.06 0.33±0.06

GC-VAT 0.77±0.31 0.65±0.30 0.67±0.29 0.65±0.30 0.49±0.29 0.63±0.33 0.58±0.31 0.65±0.29 0.64±0.28

Train: lake citystreet desert village downtown lake farmland night foggy snow

w/o CBT 0.51±0.30 0.47±0.29 0.45±0.22 0.44±0.23 0.57±0.28 0.59±0.26 0.78±0.22 0.62±0.24 0.33±0.15

GC-VAT 0.43±0.25 0.47±0.30 0.64±0.31 0.43±0.28 0.61±0.31 0.59±0.30 0.59±0.39 0.62±0.32 0.41±0.24

Train: farmland citystreet desert village downtown lake farmland night foggy snow

w/o CBT 0.26±0.04 0.24±0.04 0.23±0.05 0.31±0.14 0.26±0.06 0.23±0.01 0.23±0.01 0.23±0.01 0.23±0.01

GC-VAT 0.48±0.24 0.59±0.34 0.72±0.26 0.33±0.20 0.58±0.28 0.68±0.32 0.67±0.32 0.78±0.22 0.51±0.28

D Baselines

Active Object Tracking (AOT) [39]. In this paper, the agent learns to follow a fixed target-tracking
trajectory using A3C. In addition, the agent uses the following reward:

r = A− (

√
x2 + (y − d)2

c
+ λ | ω |), (20)

where d represents the optimal distance between the tracker and the target, c is the maximum allowable
distance, and A denotes the maximum reward. In the original paper, c = 200 and A = 1.0. During
our replication, we set A = 1.0, but due to the drone’s camera being tilted downward, a value of
c = 200 would far exceed the camera’s field of view, which is unrealistic. Therefore, we modify the
parameter c to be the maximum offset distance that keeps the target within the image, i.e., c = 9.

D-VAT[19]. In this approach, the agent uses an asymmetric Actor-Critic network structure and the
soft actor-critic learning method [25] to accomplish the task of drone tracking another drone. In the
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Table 16: Effectiveness of reward design on the DAT benchmark, results from CR metric.
Within / Cross Scene Cross Domain

Train: citystreet citystreet desert village downtown lake farmland night foggy snow

RD-VAT 9±1 8±1 8±0 8±1 9±0 9±0 9±1 9±1 9±1

GC-VAT 279±110 129±112 153±119 135±109 112±92 191±122 257±126 316±84 202±119

Train: desert citystreet desert village downtown lake farmland night foggy snow

RD-VAT 9±1 9±0 8±1 9±0 8±0 10±0 8±1 10±1 8±0

GC-VAT 278±111 307±124 305±94 119±110 170±139 275±121 182±131 307±124 307±97

Train: village citystreet desert village downtown lake farmland night foggy snow

RD-VAT 9±1 8±1 9±1 9±1 8±1 9±0 8±1 8±1 8±1

GC-VAT 234±122 160±139 239±134 93±102 153±115 140±118 257±122 257±120 114±115

Train: downtown citystreet desert village downtown lake farmland night foggy snow

RD-VAT 8±1 8±0 8±1 9±1 8±1 8±1 9±1 9±1 9±0

GC-VAT 209±131 184±136 202±129 203±119 189±93 223±114 167±135 165±126 178±125

Train: lake citystreet desert village downtown lake farmland night foggy snow

RD-VAT 11±3 11±1 9±1 9±2 9±0 8±0 9±0 10±1 8±1

GC-VAT 112±86 144±110 203±133 143±134 181±116 214±111 190±129 168±110 99±67

Train: farmland citystreet desert village downtown lake farmland night foggy snow

RD-VAT 9±1 8±1 8±1 9±1 8±1 9±1 9±0 9±0 9±0

GC-VAT 162±89 170±125 237±128 81±71 159±119 243±117 253±109 245±117 168±105

Table 17: Effectiveness of reward design on the DAT benchmark, results from TSR metric.
Within / Cross Scene Cross Domain

Train: citystreet citystreet desert village downtown lake farmland night foggy snow

RD-VAT 0.06±0.00 0.05±0.00 0.06±0.00 0.06±0.00 0.06±0.00 0.06±0.00 0.06±0.00 0.06±0.01 0.06±0.00

GC-VAT 0.80±0.30 0.54±0.32 0.50±0.32 0.45±0.30 0.44±0.24 0.66±0.27 0.72±0.29 0.93±0.14 0.79±0.24

Train: desert citystreet desert village downtown lake farmland night foggy snow

RD-VAT 0.06±0.00 0.06±0.00 0.06±0.00 0.06±0.01 0.06±0.00 0.10±0.00 0.06±0.00 0.09±0.01 0.06±0.00

GC-VAT 0.73±0.31 0.84±0.29 0.87±0.19 0.38±0.32 0.56±0.28 0.82±0.25 0.57±0.31 0.86±0.28 0.86±0.22

Train: village citystreet desert village downtown lake farmland night foggy snow

RD-VAT 0.06±0.01 0.06±0.00 0.06±0.00 0.06±0.01 0.05±0.00 0.06±0.00 0.05±0.00 0.06±0.00 0.06±0.00

GC-VAT 0.72±0.28 0.51±0.34 0.73±0.32 0.46±0.29 0.59±0.33 0.48±0.31 0.71±0.32 0.71±0.32 0.40±0.29

Train: downtown citystreet desert village downtown lake farmland night foggy snow

RD-VAT 0.06±0.01 0.06±0.00 0.06±0.00 0.06±0.00 0.05±0.00 0.06±0.00 0.06±0.00 0.06±0.00 0.06±0.00

GC-VAT 0.77±0.31 0.65±0.30 0.67±0.29 0.65±0.30 0.49±0.29 0.63±0.33 0.58±0.31 0.65±0.29 0.64±0.28

Train: lake citystreet desert village downtown lake farmland night foggy snow

RD-VAT 0.10±0.01 0.09±0.01 0.07±0.00 0.06±0.01 0.06±0.00 0.06±0.00 0.06±0.00 0.08±0.00 0.06±0.00

GC-VAT 0.43±0.25 0.47±0.30 0.64±0.31 0.43±0.28 0.61±0.31 0.59±0.30 0.59±0.39 0.62±0.32 0.41±0.24

Train: farmland citystreet desert village downtown lake farmland night foggy snow

RD-VAT 0.06±0.00 0.05±0.00 0.05±0.00 0.06±0.01 0.05±0.00 0.06±0.00 0.06±0.00 0.06±0.00 0.06±0.00

GC-VAT 0.48±0.24 0.59±0.34 0.72±0.26 0.33±0.20 0.58±0.28 0.68±0.32 0.67±0.32 0.78±0.22 0.51±0.28

actual comparative experiments, we convert it from a continuous action space to a discrete action
space, referring to [10]. Additionally, the method uses the following reward function.

r(k) =

{
re(k)−kvrv(k)−kuru(k) ∥y(k)∥>dm

−kc otherwise,
(21)

In the above equation Eq. 21, rv(k) and ru(k) are regularization terms for the drone’s speed and
output control, as shown in Eq. 22. For the discrete action space, the regularization term has a fixed
value for a given action. This term only regularizes the linear velocity of the drone, which causes
the drone to tend to perform rotational movements. Therefore, in the reproduction process, we set
kv = 0 and ku = 0. Additionally, due to the unexpectedly large acceleration values obtained for the
target relative to the tracker under the discrete action setting, we set the input acceleration of the critic
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Figure 14: Qualitative results on images from the car6 video sequence. Arrows link data points to
the visualization of associated scenarios.

network to a(k) = 0.

rv(k) =
∥v(k)∥

1 + ∥v(k)∥ , ru(k) =
∥u(k)∥

1 + ∥u(k)∥ . (22)

It is important to note that in the AOT and D-VAT experiments, the target is initially positioned at the
center of the tracker’s image, and the initial forward directions of both the tracker and the target are
aligned. Additionally, since the success criterion of DAT requires the agent to keep the target at the
center of its view, the optimal distance between the tracker and the target is defined as the distance in
the forward direction when the target is at the center of the camera’s field of view. The tracker’s flight
altitude is set to 22 meters, and the gimbal pitch angle is 1.37 radians, which remains consistent with
the parameters used during testing.

E More Experiments

E.1 Experiment Settings

More Implementation Details. The training involves a range of 9.2M to 21.3M steps across 35
parallel environments. The webots runs at 500Hz, with the algorithm updating every four steps
(125Hz). Episodes last up to 1500 steps and were terminated early if the drone lost the target for
over 100 consecutive steps, collided, or crashed. The drone translation speed is set to 40m/s, and
rotational speed to 2rad/s. The map features 40 vehicles, each with a maximum speed of 20m/s and
acceleration of ±25m/s2. During testing, the altitude is set to 22m, the pitch angle to 1.37rad, and
the target initializes at the camera’s center.

The drone’s translation speed is set to a higher value to prevent it from becoming too similar to the
target’s speed (with a maximum of 20 m/s). This prevents simple forward movement from yielding
excessively high reward evaluations. If the drone’s speed is set lower (e.g., 20 m/s), it may adopt a
suboptimal strategy, relying solely on one action.

Due to the varying challenges posed by different scene maps, the convergence speed of the agent
differs across experiments. The training steps are shown in Table 10.

Ablation Experiment Settings. In this section, we introduce the training conditions of the single-
stage RL and GC-VAT, as well as the criteria for stage transitions. In single-stage RL, the agent
is placed in one of six scenarios (citystreet, desert, village, downtown, lake, and farmland) for
training. For GC-VAT, the agent is first trained in an environment where a randomly colored target
moves straight along a line without obstacles. After convergence, the model is then trained in the
corresponding complex scenarios. The transition steps T for GC-VAT are in Table 11.

E.2 Comparison Experiments

We provide a comprehensive analysis of the comparative experimental results.
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Figure 15: Qualitative results on the car8 video.

Table 18: Results (metric is Correct Action
Rate) of 8 videos in VOT benchmark.

Video car1 car3 car6 car8

Random 0.418 0.434 0.418 0.430
Ours 0.696 0.845 0.754 0.833
Video carchase car16 following car9

Random 0.429 0.421 0.314 0.439
Ours 0.870 0.834 0.773 0.756

Figure 16: Qualitative results on the Car4 video.

Table 19: Results of 8 videos in DTB70
benchmark.

Video Car2 Car4 Car5 RcCar4

Random 0.419 0.421 0.429 0.436
Ours 0.757 0.894 0.893 0.876
Video Car8 RaceCar RaceCar1 RcCar3

Random 0.411 0.462 0.430 0.400
Ours 0.803 0.713 0.880 0.851

Specifically, we provide detailed evaluations for within-scene (same scenes, same weather), cross-
scene and cross-domain testing. Table 12 reports the CR metric of three models under cross-scene
and cross-domain conditions, while Table 13 presents the TSR metric.

As shown in Table 12 and Table 13, the proposed GC-VAT significantly outperforms SOTA methods.
Due to the reward design based on physical distance, both the AOT [39] and D-VAT [19] fail to
accurately reflect the agent’s tracking performance from a top-down perspective (see Appendix C.1 for
theoretical proof), leading to misleading training signals for the tracker. Consequently, neither AOT
nor D-VAT can effectively learn meaningful features, resulting in irregular performance distributions.
In contrast, the proposed GC-VAT achieves superior convergence across all scenes. Specifically, in
cross-scene experiments, the testing performance of the agent on the downtown map is relatively low,
indicating that dense buildings and complex road elements pose significant challenges to the agent.
Conversely, the testing performance on the village map is comparatively high, suggesting that the
uniform color and simpler road conditions in the village map present fewer challenges.

For cross-domain testing experiments, the agent performs well under night and foggy conditions but
struggles under snow conditions. This indicates that the proposed GC-VAT exhibits strong robustness
to changes in lighting and visibility but is less adaptive to variations in scene tone.

E.3 Ablation Experiments

We present a comprehensive analysis of the ablation studies. First, we provide the reward curves for
the citystreet, desert, village, downtown, lake, and farmland maps (see Fig. 13). Next, we provide
detailed experimental results on the effectiveness of the Curriculum-Based Training strategy, as
shown in Table 14 and Table 15.

Finally, the effectiveness of the reward in the GC-VAT can be found in Table 16 and Table 17.

Effectiveness of reward design. To experimentally validate the effectiveness of the reward design
proposed in this paper and to corroborate the theoretical proof in Appendix C.1, we conduct ablation
experiments on the reward function. The comparative method utilizes the reward function from [19].
The detailed experimental results for the CR and TSR metrics are provided in Table 16 and Table 17.
For within-scene testing, the GC-VAT achieves an average improvement of 1100%(0.06→ 0.72) in
the TSR metric compared to the reward design in [19]. In cross-scene and cross-domain testing, the
GC-VAT achieves average enhancements of 850%(0.06 → 0.57) and 1017%(0.06 → 0.67) in the
TSR metric, respectively. These results demonstrate the high effectiveness of the proposed reward.

Effectiveness of Curriculum-Based Training strategy. To validate the effectiveness of the proposed
Curriculum-Based Training (CBT) strategy, we conduct ablation experiments by removing the CBT
module. The results for the CR and TSR metrics are presented in Table 14 and Table 15, respectively.
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Figure 17: Qualitative results on the RaceCar1 video.

Table 20: Results of 8 videos in UAVDT
[20] benchmark.

Video S1603 S0201 S0101 S0306

Random 0.435 0.438 0.422 0.437
Ours 0.896 0.806 0.865 0.773
Video S1201 S0303 S1301 S1701

Random 0.445 0.385 0.397 0.407
Ours 0.867 0.735 0.760 0.713

The experimental results demonstrate that single-stage reinforcement learning methods without the
CBT strategy successfully learn task objectives and achieve convergence on the desert, village, and
lake maps. These three maps exhibit similar environmental characteristics: the desert and village
maps feature uniform background colors and relatively simple road elements. Although the desert
map has road segments partially covered by sand, these challenges are easy for the agent to overcome.
Similarly, while the village map includes tunnels that may block vision, the proportion of tunnels is
low. Additionally, although the lake map exhibits diverse background colors, the diversity primarily
arises from vegetation-covered areas, which occupy a small proportion of the map, resulting in low
challenges for the agent. In contrast, single-stage reinforcement learning methods without the CBT
strategy fail to converge on the citystreet, downtown, and farmland maps. This suggests that as
the visual complexity of scenes and the density of elements increase, directly applying single-stage
reinforcement learning is highly challenging and unlikely to converge. These results demonstrate the
effectiveness of the CBT strategy.

Robustness under wind gusts and precipitation. In the wind gust simulation experiments, we
apply wind velocities in the range of [2.5, 7.5]m/s for forward and lateral directions, and angular
rate disturbances of [0.05, 0.15]rad/s around the yaw axis to mimic turbulence and gusts.

E.4 Experiments in Real-world Scenarios

We selected eight video sequences each from the VOT [30], DTB70 [35], and UAVDT [20] datasets
to evaluate the transferability of GC-VAT. Specifically, from the VOT benchmark, we chose the
videos car1, car3, car6, car8, carchase, car16, following, and car9. From the DTB70 benchmark,
we selected Car2, Car4, Car5, RcCar4, Car8, RaceCar, RaceCar1, and RcCar3. From the UAVDT
benchmark, we chose S1603, S0201, S0101, S0306, S1201, S0303, S1301, and S1701. We provide
qualitative visualizations for representative video sequences. Specifically, Fig. 14 shows the output
actions for a video in VOT [30] named car6. Fig. 15 shows the output actions for a video in VOT
named car8. Fig. 16 shows the output actions for a video in DTB70 [35] named Car4. Fig. 17 shows
the output actions for a video in VOT named RaceCar1.

F Limitation

Although we validate the effectiveness of DAT and GC-VAT using real-world images and simple
real-world scenarios, deploying the algorithm in truly open environments remains highly challenging.
This is primarily due to the presence of numerous similar interfering objects and the high complexity
of real-world conditions, which still exhibit a significant gap compared to simulated environments. We
will further enhance the algorithm’s adaptability and conduct testing in real open-world environments.
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of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix E for details.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All aspects of the paper comply with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Section 6 for potential impacts of our paper.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
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to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: See anonymous homepage for details.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]

Justification: We provide a well-organized documentation in anonymous homepage.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
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only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Justification: The core method development in our paper does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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