
Voice-Based Agentic Ecommerce in Regional Indian
Languages

Amirthalingam Rajasundara, Abhishek Kusharya, Nitin Kumara, Vignesh Sa and Preetam Mishraa

aIndian Institute of Science (IISc), Bangalore, India

Abstract. This paper presents a voice-based agentic e-commerce
application designed to facilitate shopping interactions via What-
sApp using voice messages in regional Indian languages. The system
integrates Sarvam AI for robust speech processing, LangGraph for
defining a modular agent workflow, and Twilio for seamless What-
sApp integration. Key functionalities include product search, dy-
namic shopping cart management, and a streamlined checkout pro-
cess, all navigable through natural language voice input. This project
demonstrates a comprehensive solution for enhancing e-commerce
accessibility in multilingual environments through advanced AI and
conversational agent technologies.

1 Introduction
The proliferation of e-commerce has transformed global retail, yet
a significant portion of the population in diverse linguistic regions,
particularly in India, faces barriers due to language and digital liter-
acy challenges. Traditional text-based interfaces often exclude users
who prefer or require voice-based communication, especially in re-
gional languages. To address this, we developed a novel voice-based
agentic e-commerce application that leverages cutting-edge AI to en-
able intuitive shopping experiences via WhatsApp. Our system aims
to bridge the accessibility gap by allowing users to interact with a
shopping assistant using voice messages in their preferred regional
Indian languages, thereby democratizing access to online retail.

1.1 Six-Step Problem-Solving Approach

Our project development followed a structured six-step problem-
solving approach:

1. Define the Problem: We identified the critical need for accessible
e-commerce solutions in India’s multilingual landscape, specifi-
cally targeting users who prefer voice interaction in regional lan-
guages.

2. Gather Information: We researched existing conversational AI
frameworks, speech processing APIs (like Sarvam AI), and mes-
saging platform integrations (Twilio for WhatsApp) to understand
the technological landscape and potential solutions.

3. Identify Solutions / Brainstorm: We explored various architec-
tural patterns, including agentic workflows, and decided on a mod-
ular design leveraging LangGraph for its extensibility and suitabil-
ity for complex conversational flows.

4. Evaluate Solutions: The chosen architecture, integrating Sarvam
AI for multilingual speech, LangGraph for agent orchestration,
and Twilio for WhatsApp, was selected based on its ability to

meet the core requirements of voice-based interaction, language
support, and platform accessibility.

5. Implement the Solution: We proceeded with the development,
focusing on modular components for speech processing, product
catalog, cart management, and response generation, as detailed in
Section 3.

6. Review and Iterate: Continuous testing, debugging, and refine-
ment were integral, particularly in handling audio conversions and
API integrations. Future work, outlined in Section 6, represents
the ongoing iteration of the project.

2 System Architecture
The Voice-Based Agentic E-commerce system is composed of sev-
eral interconnected modules designed for robust and scalable perfor-
mance:

1. WhatsApp Integration: Handles incoming and outgoing What-
sApp messages using the Twilio API.

2. Speech Processing: Transcribes voice messages to text using Sar-
vam AI’s speech-to-text API, including necessary audio format
conversions (e.g., Ogg to WAV/MP3).

3. Product Catalog: Manages product information and provides
Retrieval-Augmented Generation (RAG)-based search functional-
ity.

4. Cart Management: Tracks user shopping carts throughout the
conversation.

5. Payment Processing: Handles checkout and payment via Razor-
pay integration.

6. Response Generation: Creates appropriate responses to user
queries using RAG.

7. Text-to-Speech: Converts text responses back to audio using Sar-
vam AI.

The overall workflow is orchestrated by a modular LangGraph agent,
ensuring extensibility and maintainability.

3 Implementation Details
Our project, named IndicCommerce, is structured modularly for
clarity and maintainability. The main application entry point for the
Agentic Ecommerce application is app.py. This file initializes all
components and starts the Flask server. The key directories within
src/ include:

• whatsapp/: Contains webhook.py for receiving and process-
ing messages.

• speech_processing/: Includes processor.py for man-
aging speech-to-text conversion and language detection using Sar-
vam AI.

• data/: Includes sample_products.py, which is sample
product data for the e-commerce application.These data are used
to populate the vector store and provide product information.

• llm/: Contains sarvam.py for chat completion using Sarvam
AI.

• prompts/: Includes shopping_assistant.py for defin-
ing a prompt.

• utils/: Consists of ngrok.py for securely expose the local
development server to the internet and vector_store.py for
vector store utilities using LangChain Chroma with OpenAI em-
beddings.

• agents/: Contains ecom_agent.py, which defines the Lang-
Graph agent workflow and its nodes. This modular design facili-
tates the addition of new agent nodes by defining functions and
updating the workflow.

The system relies on Python 3.9+, Docker for containerization, and
external APIs from Sarvam AI, Twilio, and Razorpay. Environment
variables for API keys are managed via a .env file. For local devel-
opment, docker-compose is recommended, and ngrok is used
to expose the local server for Twilio webhook configuration.

Figure 1. System Architecture Diagram.

4 User Flow and Functionality

The typical user interaction flow is as follows:

1. User Sends Voice Message: A user initiates interaction by send-
ing a voice message in their preferred regional Indian language to
the WhatsApp number.

2. Speech-to-Text: The system receives the audio via Twilio and
uses Sarvam AI to transcribe it into text.

3. Intent Recognition: The transcribed text is processed to identify
the user’s intent, such as product search, adding to cart, or check-
out.

4. Product Search: If a product search is requested, the RAG system
queries the product catalog to find relevant items.

5. Response Generation: An appropriate text response is generated
based on the identified intent and product search results.

6. Text-to-Speech: The text response is converted back into an audio
message using Sarvam AI’s text-to-speech capabilities, ensuring
natural-sounding replies in the user’s language.

7. WhatsApp Response: Both the text and audio responses are sent
back to the user via WhatsApp.

8. Conversation Continues: The user can continue the conversation
to refine search queries, add items to their cart, or ask for more
details.

9. Checkout: Once the user is ready, a payment link is provided
through Razorpay to complete the purchase.

This conversational flow effectively guides the user through the e-
commerce journey using voice commands, simulating a personal
shopping assistant.

Figure 2. Sequence Diagram.

5 Evaluation Metrics and Results
To evaluate the system’s performance, we considered several key
metrics crucial for conversational AI and e-commerce applications.

• RAG System Relevance: With precision of product search results
having .96 score, it ensure that the retrieved products are highly
relevant to the user’s query. Refer Table 1.

Table 1. Evaluation Summary for RAG Accuracy
Metric Accuracy

Total queries evaluated: 218
Average Precision: 0.9679
Average Recall: 0.9679
Average F1-Score: 96.79

• System Latency: The time taken from user voice input to the de-
livery of the audio response, crucial for a smooth conversational
experience. Refer Table 2.

Table 2. Evaluation of system latency
Trial Latency

1 - Normal workflow 18s
2 - Normal workflow 30s
3 - Normal workflow 22s
4 - Error workflow 8s
Average latency: 20s

• User Satisfaction: Qualitative feedback on the naturalness of the
conversation, ease of use, and overall shopping experience.

• Intent Recognition Accuracy: Both the model we tired gpt-4o-
mini and sarvam exceled in intent identication, with the OpenAI
model preforming slightly better. Refer Table 3 and 4.

Table 3. Comparison of Class-wise Metrics Between GPT-4o-mini and Sarvam Models

Intent Type GPT-4o-mini Sarvam
Acc. Prec. Rec. F1 Sup. Acc. Prec. Rec. F1 Sup.

product_query 94.74% 94.74% 94.74% 94.74% 19 100.00% 90.48% 100.00% 95.00% 19
cart_update 92.86% 100.00% 92.86% 96.30% 14 78.57% 100.00% 78.57% 88.00% 14
summarize_cart 92.31% 100.00% 92.31% 96.00% 13 100.00% 100.00% 100.00% 100.00% 13
initiate_payment 61.54% 100.00% 61.54% 76.19% 13 76.92% 100.00% 76.92% 86.96% 13
general_info 100.00% 74.07% 100.00% 85.11% 20 90.00% 85.71% 90.00% 87.80% 20

Table 4. Comparison of Overall Performance Metrics Between Models
Metric OpenAI (GPT-4o-mini) Sarvam

Macro Precision 0.9480 0.8353
Macro Recall 0.9024 0.9092
Macro F1 Score 0.9246 0.8707

6 Discussion and Future Work
Our project successfully demonstrates the feasibility of a voice-based
e-commerce agent in regional Indian languages, offering a significant
step towards inclusive digital commerce. Challenges encountered
primarily involved ensuring seamless audio format conversions and
integrating disparate APIs. The modular design using LangGraph has
proven highly effective, allowing for easy extension and addition of
new functionalities.

6.1 Challenges Faced

During the development and deployment of the Voice-Based Agentic
E-commerce system, we encountered several challenges:

• WhatsApp Integration: Directly using the WhatsApp Business
API proved complex. While Twilio libraries helped abstract some
of these complexities, accessing and downloading media URLs
from WhatsApp messages presented authentication challenges.
Additionally, there was a significant mismatch in audio formats,
as WhatsApp uses Ogg while Sarvam AI requires WAV, which
took time to resolve.

• Vector Database (VectorDB): Hosting a vector database sepa-
rately or subscribing to managed VectorDB services was not de-
sirable due to cost optimization goals. To address this, we devel-
oped a Python script to generate a persistence file for the vector
database, which is then included directly within the Docker im-
age. This approach avoids the need to regenerate embeddings ev-
ery time the Cloud Run function spins up, significantly optimizing
costs.

• Conversation History: Given that the Twilio integration only pro-
vides the current message and Cloud Run’s stateless nature means
no server-side session is maintained, we had to integrate with Fire-
store to persistently store user conversation data and manage ses-
sion context.

• LLM Response and Text-to-Speech (TTS): A challenge arose
when the Large Language Model (LLM) generated responses con-
taining non-alphanumeric characters (e.g., asterisks for bolding,
emojis). This caused the TTS engine to incorrectly spell out these
characters, significantly reducing the quality and naturalness of
the spoken response. Furthermore, the generic TTS language style
did not always match the natural, conversational style of a human
salesperson, which can detract from the user experience.

• LangGraph Workflow: Voice interaction is an inherently open-
ended medium, unlike traditional UI-driven interactions. This

characteristic posed challenges in comprehensively handling all
possible user scenarios and conversational branches within the
LangGraph workflow.

6.2 Future Work

For future work, we propose several enhancements.

• Expanded Language Support: Extend the speech processing
module to support a wider array of regional Indian languages.

• Custom Intent Recognition: Further en-
hance the intent extraction capabilities within
speech_processing/processor.py for more nuanced
user queries.

• New Product Categories: Implement functionalities to easily add
new product categories to the catalog without significant code
changes.

• Enhanced RAG System: Improve the retrieval system in
data/sample_products.py for more accurate and context-
aware product recommendations.

• Personalized User Experience: Integrate features for user pro-
files and personalized recommendations based on past purchase
history or preferences.

• Advanced Error Handling and User Feedback: Develop more
sophisticated mechanisms for handling complex user queries, am-
biguities, and providing clearer feedback.

7 Conclusion
We have developed a voice-based agentic e-commerce application
that effectively bridges the language and digital literacy gap for users
in regional Indian languages. By integrating Sarvam AI, LangGraph,
and Twilio, our system provides an intuitive and accessible plat-
form for product search, cart management, and checkout via What-
sApp voice messages. This project serves as a strong foundation for
future advancements in conversational commerce and inclusive e-
commerce solutions.

Contributions by Team Members
This section outlines the contributions of each team member to the
Voice-Based Agentic E-commerce project. Our collaborative effort
was essential in bringing this complex system to fruition. The fol-
lowing breakdown is based on a general understanding of roles in a
deep learning project, as specific individual contributions were not
detailed in the provided materials.

• Amirthalingam Rajasundar: Played the lead role in over-
all system architecture design, integration of core components
(e.g., LangGraph agent workflow), and potentially overseeing the
project’s technical direction.

– Commit: Initial Commit

– Commit: Product Search LangGraph Workflow

– Commit: Infrastructure as code and deployment pipeline

• Abhishek Kushary: Contributed significantly on identifying the
product dataset and documentation of the project.

• Nitin Kumar: Focused on the backend logic, potentially develop-
ing the Product Catalog and Cart Management modules, including
the RAG-based search functionality and database interactions.

• Vignesh S: Instrumental in the implementation of the agentic
workflow, based on the identification of the indents. Evaluating
different llm for indent identification.

– Commit: Intent based agent workflow

– Commit: evaluate open AI vs sarvam

• Preetam Mishra: Primarily responsible for the Response Gen-
eration and Text-to-Speech components, ensuring natural lan-
guage understanding, appropriate response formulation, and high-
quality audio output in regional languages.

All team members actively participated in brainstorming, debugging,
testing, and documentation throughout the project lifecycle.

A Appendix A: How to try out the application
This appendix provides more detailed instructions for trying out the
prod version of the application.

Important Note: Since we use Twilio Sandbox to optimize cost, we
are restricted to 9 messages per day. So, you might start getting errors
if the quota for the day has exceeded. If you face any errors while
trying out the app or if you don’t get a response, please reach out to
us on teams and we can help with it.

• Go to https://www.amirth.dev/indic-commerce. The page de-
scribes the steps for trying out the application and also lists the
product catalog. It also includes a demo video towards the end of
the page.

• Click on ’Chat on Whatsapp’ or ’Chat Now’ button.
• It will take you to whatsapp and pre populate the join code in the

chat text box.
• Hit send. You will get a confirmation saying that you are con-

nected to the Twilio Sandbox.
• Now record a voice message in a regional Indian language (Eg:

Hindi or Tamil) asking for a t-shirt. For example, you could say
’Show me a t-shirt’.

• Within a minute, you will get a message containing three sections.
The message will include a text version as well as an audio version
in the regional language that you spoke in. It will also include an
image of the product.

Figure 3. User Interaction in Whatsapp diagram.

• If the item is not available, it will recommend the next closest
available product.

• Then, you can say ’Add to cart’ in your regional language (exact
phrase is not required) to add the last shown product to the cart
or describe a different product if you are not satisfied with what is
shown.

• Once the cart is loaded with the products you want, you can say
’That is all. How much is the total ?’ (exact phrase is not required)
in your regional language.

• Then, it will respond with the cart summary and a payment link.
• The steps will outlined above will complete one shopping session.

B Appendix B: Detailed Setup and Configuration

This appendix provides more detailed instructions for setting up
and configuring the Voice-Based Agentic E-commerce system for
development and deployment. You can also refer the README
file at https://github.com/amirthalingamrajasundar/IndicCommerce
for more details.

B.1 Prerequisites and Environment Variables

Ensure you have Python 3.9 or higher, Docker, and Docker Compose
installed. Obtain API keys for Sarvam AI, Twilio, and Razorpay. The
.env file in the project root directory must be populated with your
credentials:

SARVAM_API_KEY=your_sarvam_api_key
TWILIO_ACCOUNT_SID=your_twilio_sid
TWILIO_AUTH_TOKEN=your_twilio_token
TWILIO_WHATSAPP_NUMBER=your_whatsapp_number
NGROK_AUTH_TOKEN=your_ngrok_auth_token

https://github.com/amirthalingamrajasundar/IndicCommerce/commit/f3ad335d3bb04a42d5d25be42e32ef8326a43d2c
https://github.com/amirthalingamrajasundar/IndicCommerce/commit/4274d6f385f31bb794662226c4bb86f746b91c4b
https://github.com/amirthalingamrajasundar/IndicCommerce/commit/59a3a4658df71912f22391cbf96c34e066502a5e
https://github.com/amirthalingamrajasundar/IndicCommerce/commit/1bd21c1b0262a28e657394ef9440f54691377fa1
https://github.com/amirthalingamrajasundar/IndicCommerce/commit/00c084ebfda86a408d51367d2b6d575e1a09130f

B.2 Running with Docker

For a quick setup, Docker Compose is recommended.

git clone https://github.com/amirthalingamrajasundar/IndicCommerce.git
cd IndicCommerce
Edit .env with your keys
docker-compose up --build

The application will be accessible at
https://your-ngrok-url.ngrok.io/webhook.

B.3 WhatsApp Business API Configuration

Configure your Twilio WhatsApp Sandbox webhook URL to
point to your ngrok URL followed by /webhook (e.g.,
https://your-ngrok-url.ngrok.io/webhook).

	Introduction
	Six-Step Problem-Solving Approach

	System Architecture
	Implementation Details
	User Flow and Functionality
	Evaluation Metrics and Results
	Discussion and Future Work
	Challenges Faced
	Future Work

	Conclusion
	Appendix A: How to try out the application
	Appendix B: Detailed Setup and Configuration
	Prerequisites and Environment Variables
	Running with Docker
	WhatsApp Business API Configuration

