
Under review as a conference paper at ICLR 2022

TARGET LAYER REGULARIZATION FOR CONTINUAL
LEARNING USING CRAMER-WOLD GENERATOR

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose an effective regularization strategy (CW-TaLaR) for solving contin-
ual learning problems. It uses a penalizing term expressed by the Cramer-Wold
distance between two probability distributions defined on a target layer of an un-
derlying neural network that is shared by all tasks, and the simple architecture of
the Cramer-Wold generator for modeling output data representation. Our strat-
egy preserves target layer distribution while learning a new task but does not
require remembering previous tasks’ datasets. We perform experiments involv-
ing several common supervised frameworks, which prove the competitiveness
of the CW-TaLaR method in comparison to a few existing state-of-the-art con-
tinual learning models.

1 INTRODUCTION

The concept of continual learning (CL), which aims to reduce the distance between human and
artificial intelligence, seems to be considered recently by deep learning community as one of the
main challenges. Generally speaking, it means the ability of the neural network to effectively learn
consecutive tasks (in either supervised or unsupervised scenarios) while trying to prevent forgetting
already learned information. Therefore, when designing an appropriate strategy, it needs to be en-
sured that the network weights are updated in such a way that they correspond to both the current and
all previous tasks. However, in practice, it is quite likely that constructed CL model will suffer from
either intransigence (hard acquiring new knowledge, see Chaudhry et al. (2018)) or catastrophic
forgetting (CF) phenomenon (tendency to lose past knowledge, see McCloskey & Cohen (1989)).

In recent years, methods of overcoming the above-mentioned problems are subject to wide and
intensive investigation. Following Maltoni & Lomonaco (2019), the most popular CL strategies
may be assigned into the following fuzzy categories:

(i) architectural strategies, involving specific (eventually growing) architectures and/or weight
freezing/pruning,

(ii) (pseudo) rehearsal strategies, in which past information is remembered, preferably (to
avoid increasing memory consumption) exploiting a generative model, and then replayed
in future training,

(iii) regularization strategies, introducing a penalization term into the loss function, which pro-
motes selective consolidation of past information or slows training on new tasks.

As respective pure examples, we can recall here: (i) Progressive Neural Network (PNN, see Rusu
et al. (2016)), (ii) Experience Replay for Streaming Learning (ExStream, see Hayes et al. (2019)),
and (iii) Learning without Forgetting (LwF, see Li & Hoiem (2016)). For a more complete and de-
tailed overview of the existing CL models and their classification according to the above distinction
rules, we refer the reader to Maltoni & Lomonaco (2019), especially to the very informative Venn
diagram provided as Figure 1.

This paper aims to show that it is achievable to construct an effective regularization strategy with a
penalizing term expressed by the Cramer-Wold distance (introduced by Knop et al. (2020)) between
two probability distributions designed to represent current and past information, both defined on a
target layer of a neural network that is shared by all models dedicated to solve individual tasks. To
memorize the past knowledge, an additional simple generator architecture is learned to retrieve the

1

Under review as a conference paper at ICLR 2022

network output data from Gaussian noise, which can be considered as a step towards the pseudo-
rehearsal model. Following Knop et al. (2020) we call it the Cramer-Wold (or CW) generator. It is
worth noting that such strategy preserves the network output distribution while learning a new task,
but does not require remembering/replaying (usually high dimensional) previous tasks’ datasets. A
general description of our approach, involving theoretical (mathematical) background, the reader
can find in Section 3.

Figure 1: In each step of the proposed algorithm, we regularize our model by forcing closeness of task target
layer distribution (representing current information) and CW generator output distribution (representing past
information). This applies to both solving individual tasks as well as training the CW generator. Note that our
construction does not require extra memory to remember previous tasks’ datasets. (The figure was produced
using diagrams.net software.)

First task Second task (no regularization) Second task (CW-TaLaR)

Figure 2: The figures demonstrate how CW-TaLaR works in the real world CL scenario. Blue dots represent
output produced on a target layer for samples from the first task wile orange dots represent output for samples
from the second task. In the first column, we present how output data look like after training the first task.
In the second column, we show how output data behave when there is no regularization incorporated. Note
that in such a scenario output for the first task samples completely changed their distribution. In the third
column, we show how our method prevents output data from diverging from the previous tasks’ distribution
which eventually improves model continual learning capabilities. The above results were obtained in the Split
MNIST experimental setting (see Section 5). Output data dimensionality has been reduced with PCA for the
purpose of illustration.

2

Under review as a conference paper at ICLR 2022

We apply our method (see Section 4), which we call henceforth Cramer-Wold Target Layer Regular-
ization (CW-TaLaR) strategy, for different categories of supervised benchmark CL learning scenarios
proposed by Yen-Chang Hsu, involving Incremental Task Learning, Incremental Domain Learning
and Incremental Class Learning on Split MNIST, Split CIFAR-10 and Permuted MNIST datasets.
The conducted experiments show (see Section 5) that the results of the CW-TaLaR method are
comparable or better then those obtained by the other existing state-of-the-art regularization-based
CL models, including (online) Elastic Weights Consolidation (EWC, see Kirkpatrick et al. (2017)),
Synaptic Intelligence (SI, see Zenke et al. (2017)) and Memory Aware Synapses (MAS, see Aljundi
et al. (2018)).

A concept of our regularization strategy and an intuitive motivation (involving the real world CL
scenario) for the CW-TaLaR model are presented in Figures 1 and 2.

Our contribution can be summarized as follows: (i) we introduce a novel CL strategy (CW-TaLaR),
which is based on the Cramer-Wold distance, (ii) we compare the CW-TaLaR method with the other
regularization-based models, including EWC, SI and MAS.

2 CRAMER-WOLD DISTANCE AND CW GENERATOR

The key idea behind the Cramer-Wold distance (dcw) between two multi-dimensional distributions,
which was firstly defined by Knop et al. (2020), is to consider squared L2 distance computed across
multiple single-dimensional smoothed (with a Gaussian kernel) projections of their density func-
tions. In a practical context, where we deal with two D-dimensional samples X = (xi) and
Y = (yi), calculation of dcw boils down to the following general formula:

d2cw(X,Y) =

∫
SD−1

‖smγ(v
TX)− smγ(v

TY)‖22 dσD−1(v), (1)

where smγ means a smoothing function using a Gaussian kernel with the variance γ, and SD−1

denotes the unit sphere in RD with the normalized surface measure σD−1. Then, in light of Theorem
1 from Knop et al. (2020) and assuming sufficiently large dimension of data (D ≥ 20), in all
numerical experiments we can use an approximate version of (1), namely:

2
√
π d2cw(X,Y) ≈ 1

n2

∑
ij(γn +

‖xi−xj‖2
2D−3)−

1
2 + 1

n2

∑
ij(γn +

‖yi−yj‖2
2D−3)−

1
2

− 2
n

∑
ij(γn +

‖xi−yj‖2
2D−3)−

1
2 ,

(2)

where γn is a bandwidth chosen using Silverman’s rule of thumb1.

Since the Cramer-Wold distance turned out to have a closed-form for spherical Gaussians, it was
used by Knop et al. (2020) to construct the Cramer-Wold autoencoder (CWAE). Moreover, the
authors of CWAE indicated that it is also possible to apply d2cw(X,G(Z)) as an objective function
for a data generator G (hence called the CW generator), mapping a latent Gaussian noise Z into the
data space. We want to emphasize that this simple concept showed promising results when trained
on MNIST and Fashion MNIST datasets (see Section 8 of Knop et al. (2020)), which motivated us
to consider it as a part of our model.

3 PROPOSED ALGORITHM

We deal with a general CL scenario, in which a sequence of tasks T1, . . . , Tn, using data samples
(X1, Y1) = (x1i , y

1
i), . . . , (Xn, Yn) = (xni , y

n
i) drawn from some (unknown) distributions on data

spaces X × Y1, . . . ,X × Yn, is given. Let fθ : X → S ⊂ RD be a neural network shared by
all architectures that we need to optimize in order to solve all the tasks one by one (i.e. a new
task is collected only when the current task is over). Assume that a solution of each task Tj for
j = 1, . . . , n may be obtained by minimizing an appropriate objective Ij(θ) = Lj(fθ(Xj), Yj),
where Lj : S × Yj → R means a respective loss.

In our model, we regularize each cost function Ij(θ) for j = 2, . . . , n, by tending to add tuned
squared Cramer-Wold distance calculated between two distributions for tasks Tj−1 and Tj , which

1Specifically, γn = σ̂(4
3n

)2/5, where σ̂ denotes a standard deviation calculated using joined X and Y
samples.

3

Under review as a conference paper at ICLR 2022

are defined on the target layer S and represented by the output samples fθ∗j−1
(Xj−1) and fθ(Xj),

where θ∗j−1 denotes the optimal parameter value achieved when Tj−1 is over. However, since we
do not already have access to previous tasks’ datasets when we solve task Tj , we render a missing
sample fθ∗j−1

(Xj−1) using the CW generator network Gγ : Z → S , which is trained independently
to generate the output of fθ∗j−1

. More precisely, our general algorithm can be presented in the
following steps.

Solving T1. We solve T1 by minimizing I1(θ) and obtain θ∗1 = argminθ I1(θ).

TrainingGγ . We trainGγ by minimizing d2cw(fθ∗1 (X1), Gγ(Z)), where Z = (zi) means a sample
from N(0, I) (a Gaussian noise on the latent Z), and obtain γ∗1 = argminγ d

2
cw(fθ∗1 (X1), Gγ(Z)).

Solving T2. We solve T2 by minimizing

Ĩ2(θ) = I2(θ) + λd2cw(Gγ∗
1
(Z), fθ(X2)), (3)

where λ is a hyperparameter2, and obtain θ∗2 = argminθ Ĩ2(θ).

Retraining Gγ . We retrain Gγ by minimizing d2cw(fθ∗2 (X2), Gγ(Z)) and obtain γ∗2 =

argminγ d
2
cw(fθ∗2 (X2), Gγ(Z)).

. . .

Solving Tj . We solve Tj by minimizing

Ĩj(θ) = Ij(θ) + λd2cw(Gγ∗
j−1

(Z), fθ(Xj)) (4)

and obtain θ∗j = argminθ Ĩj(θ).

Retraining Gγ . We retrain Gγ by minimizing d2cw(fθ∗j (Xj), Gγ(Z)) and obtain γ∗j =

argminγ d
2
cw(fθ∗j (Xj), Gγ(Z)).

. . .

Solving Tn. We solve Tn by minimizing

Ĩn(θ) = In(θ) + λd2cw(Gγ∗
n−1

(Z), fθ(Xn)) (5)

and obtain θ∗n = argminθ Ĩn(θ).
Note that due to flexibility of the above construction and various ways of interpretation of its partic-
ular elements, the proposed method is enough general to be applied to many typical supervised and
unsupervised learning frameworks. However, since in further study we concentrate on application of
our model in solving classification problems, in the next section we describe a more precise version
of the proposed algorithm designed for a supervised setting.

4 ADJUSTMENT TO CLASSIFICATION PROBLEMS

Under notation from the previous section, assume that T1, . . . , Tn is a sequence of classification
tasks. In this case data space Yj is a collection of labels l1, . . . , lmj (that may differ between tasks),
and the last shared layer S (containing the output of fθ) is mapped into a logit layer Rmj by some
single layer network φjδ . Moreover, each loss Lj is expressed by the total cross-entropy evaluated
over the label sample Y = (yi) relative to the output of a classifier (a softmax function) applied for
a given logit sample φjδ(S) = φjδ(si), i.e.:

Lj(S, Y) = −
∑
i

∑
k

I{yi=lk} log softmax(φjδ(si)), (6)

2The hyperparameter λ (which may be different in each step) aims to find a balance between intransigence
and forgetting properties.

4

Under review as a conference paper at ICLR 2022

where I{·} means a characteristic function.

The above approach covers all three categories of CL scenarios, i.e. Incremental Task Learning
(ITL), Incremental Class Learning (ICL) and Incremental Domain Learning (IDL), which were in-
troduced by Yen-Chang Hsu in relation to the differences between tasks, taking into account the
marginal distributions of input data and target labels. Hence, we can apply our method to many vari-
ants of experimental setup that were proposed in Yen-Chang Hsu. In the next section we describe
considered experimental scenarios as well as present the obtained results, comparing them to those
provided by the (online) EWC, SI and MAS models.

5 EXPERIMENTS

To evaluate effectiveness of the CW-TaLaR model in a CL setting, we adhere to experimental setups
proposed by Yen-Chang Hsu. We compare our strategy with a selection of regularization-based
methods, i.e. (online) EWC, SI and MAS, as well as with some vanilla baselines. We use (mentioned
above) three classic scenarios: ITL, IDL and ICL, which are applied for a few datasets commonly
used in various CL settings: Split MNIST, Split CIFAR-10 and Permuted MNIST.

In ITL the output layer is split into 5 separate heads that serve as binary classifiers (only one active
per task), each of which discriminates between 2 different classes. On the other hand, ICL uses a
single head that grows accordingly, from 2 to 10 every 2 outputs. In turn, IDL consists of a single
head that is shared by all tasks, which serve as a classifier that distinguishes between 2 (for Split
MNIST and Split CIFAR-10) or 10 (for Permuted MNIST) different classes.

We repeated each experiment 10 times and reported the average accuracy over all tasks and runs
for all applied strategies. (See the following three subsections for the detailed results.) It should
be noted that for the CW-TaLaR method we added an additional penalizing term to the objective
function (i.e. L2 norm taken from network output sample on a target layer) that prevents large
magnitudes which may occur due to potentially unlimited ReLU values.

5.1 SPLIT MNIST

We summarize the results of all experiments performed on the Split MNIST dataset in Table 1. Note
that CW-TaLaR significantly improves performance in single-head CL scenarios (IDL and ICL).

Method ITL IDL ICL

Adam 93.50 ± 3.40 54.48 ± 0.80 19.88 ± 0.02
SGD 94.45 ± 2.24 75.83 ± 0.40 18.70 ± 0.19

Adagrad 97.06 ± 0.53 63.78 ± 3.38 19.55 ± 0.03
L2 95.39 ± 3.62 65.52 ± 2.89 19.44 ± 2.89

EWC 94.18 ± 3.52 55.74 ± 1.25 19.83 ± 0.03
Online EWC 94.18 ± 4.98 58.66 ± 1.37 19.86 ± 0.02

SI 97.80 ± 1.43 65.66 ± 1.49 20.54 ± 0.78
MAS 97.97 ± 1.15 72.24 ± 5.37 20.24 ± 0.95

CW-TaLaR (ours) 97.53 ± 0.53 80.64 ± 1.25 38.65 ± 3.02
Offline (upper bound) 99.59 ± 0.09 98.69 ± 0.13 97.79 ± 0.20

Table 1: Average accuracy (%, higher is better) with standard deviation achieved on validation dataset by each
method applied for Split MNIST in three CL scenarios, calculated over 5 tasks and 10 runs (at the end of the
training process).

Figure 3 shows that our strategy effectively struggles with catastrophic forgetting, especially in
the case of IDL setting, where all other methods fail to overcome this issue since their accuracy
fall drastically from time to time, as well as in the case of ICL setting, where significantly wins
throughout the entire learning process.

5

Under review as a conference paper at ICLR 2022

ITL IDL ICL

Figure 3: Comparison of average accuracy over currently completed tasks achieved by each method applied for
Split MNIST in three CL scenarios, calculated on validation dataset during the training process. (All results
were additionally averaged over 10 runs.) Note that CW-TaLaR is superior to overcome forgetting in single-
head scenarios.

5.2 SPLIT CIFAR-10

We summarize the results of all experiments performed on the Split CIFAR-10 dataset in Table
2. Note that CW-TaLaR in all scenarios gives scores comparable to SI and MAS, although works
slightly worse than (online) EWC. This observation seems to be confirmed by Figure 4, which
shows comparison of efficiency of all considered CL strategies in overcoming catastrophic forgetting
during the training process. We suppose that such loss of dominance when compared to the results
for Split MNIST is due to significant change in applied architecture (here we use CNN instead of
MPL).

Method ITL IDL ICL

Adam 72.65 ± 3.39 73.13 ± 1.39 19.31 ± 0.05
SGD 68.93 ± 5.68 73.13 ± 1.35 17.51 ± 2.42

Adagrad 70.90 ± 6.50 72.57 ± 1.54 16.02 ± 0.54
L2 76.30 ± 0.96 73.40 ± 1.71 20.36 ± 2.13

EWC 86.07 ± 4.06 78.16 ± 0.68 19.24 ± 0.11
Online EWC 87.57 ± 3.89 77.46 ± 0.89 19.22 ± 0.12

SI 84.41 ± 2.60 75.28 ± 1.26 19.27 ± 0.10
MAS 82.13 ± 1.80 73.50 ± 1.54 19.30 ± 0.04

CW-TaLaR (ours) 82.09 ± 2.04 74.89 ± 0.61 19.20 ± 0.08

Offline (upper bound) 95.25 ± 0.64 91.35 ± 0.32 84.83 ± 1.60

Table 2: Average accuracy (%, higher is better) with standard deviation, achieved on validation dataset by each
method applied for Split CIFAR-10 in three CL scenarios, calculated over 5 tasks and 10 runs (at the end of the
training process).

ITL IDL ICL

Figure 4: Comparison of average accuracy over currently completed tasks achieved by each method applied for
Split CIFAR-10 in three CL scenarios, calculated on validation dataset during the training process. (All results
were additionally averaged over 10 runs.) Note that scores for CW-TaLaR are comparable with those for SI and
MAS.

6

Under review as a conference paper at ICLR 2022

5.3 PERMUTED MNIST

We summarize the results of IDL experiments performed on the Permuted MNIST dataset in Table
3. Note that almost all obtained scores (excluding those for EWC) are comparable. However, closer
inspection of learning process, which is shown in Figure 5, allows to guess that the CW-TaLaR
method is superior in learning new tasks, although may slightly suffer from forgetting in the case
when the number of tasks is relatively large.

Method IDL

Adam 76.19 ± 2.17
SGD 70.35 ± 1.53

Adagrad 85.24 ± 0.75
L2 86.92 ± 1.68

EWC 77.81 ± 1.32
Online EWC 87.63 ± 0.99

SI 83.92 ± 1.22
MAS 87.82 ± 1.47

CW-TaLaR (ours) 86.38 ± 1.08

Offline (upper bound) 97.83 ± 0.05

Table 3: Average accuracy (%, higher is better) with standard deviation, achieved on validation dataset by each
method applied for Permuted MNIST in IDL scenario, calculated over 5 tasks and 10 runs (at the end of the
training process).

Accuracy Average accuracy
on individual tasks over currently completed tasks

Figure 5: Comparison of average accuracy over currently completed tasks achieved by each method applied
for Permuted MNIST in IDL scenario, calculated on validation dataset during the training process. (All results
were additionally averaged over 10 runs.) Note that CW-TaLaR is superior in learning new tasks or for relatively
short term scenarios.

5.4 ARCHITECTURE

For all models we performed a grid search over hyperparameters. Our classification networks were
trained on 128-element mini-batches using ADAM optimizer (see Kingma & Ba (2017)) with a
starting learning rate 1e-4, which decreases to 1e-5 after the first task. CW generator was also
trained on 128-element mini-batches using ADAM optimizer with learning rate set to 1e-4. We
applied ReLU as the activation function and the loss function (in all methods and all scenarios) is
a standard cross-entropy for classification frameworks. Below we include architecture details for
networks used in various experimental settings.

7

Under review as a conference paper at ICLR 2022

5.4.1 SPLIT MNIST

Each classification task was trained for 4 epochs. Generator was trained for 10 epochs.

classifier
fully connected networks with ReLU activation functions
layer sizes: 784→ 1024→ 512→ 256→ 2/10 neurons depends on setting
softmax output layer

generator
noise dimension: 8
fully connected networks with ReLU activation functions
layer sizes: 8→ 16→ 32→ 64→ 128→ 256
ReLU output layer

5.4.2 PERMUTED MNIST

Each classification task was trained for 10 epochs. Generator was trained for 10 epochs. Architec-
tures used for generator and classifiers were the same as those described for Split MNIST.

5.4.3 SPLIT CIFAR-10

Each classification task was trained for 12 epochs. Generator was trained for 10 epochs.

classifier
all convolutional layers use 3× 3 kernel and are followed by batch normalization and
ReLU activation
two convolutional layers with 32 channels
convolutional layer with 64 channels
max pooling layer
two convolutional layers with 64 channels
convolutional layer with 128 channels
max pooling layer
two convolutional layers with 128 channels
convolutional layer with 256 channels
max pooling layer
two dense ReLU layers with 256× 4× 4 and 256 neurons
dense layer with 2 or 10 outputs depending on scenario
softmax output layer

generator
noise dimension: 64
fully connected networks with ReLU activation functions
layer sizes: 64→ 128→ 256→ 512→ 256
ReLU output layer

6 RELATED WORK

As we indicated in Introduction the CL strategies can be assigned into three fuzzy collections: ar-
chitectural strategies, (pseudo) rehearsal strategies and regularization strategies.

Such methods as Progressive Neural Networks (PNN, see Rusu et al. (2016)) or CopyWeights with
Re-init (CWR, see Lomonaco & Maltoni (2017)) prevent catastrophic forgetting by changing their
architectures. CWR trains in each task the same model with new parameters and adds them to the
old ones. A similar idea was used in PNN, where in the next task a bigger neural network is trained,
but a part of its weights is taken from the previous neural network. However, since our method

8

Under review as a conference paper at ICLR 2022

cannot be considered as an architectural strategy, we do not feel obligated to compare it to such CL
models.

Full rehearsal method (mixing all older examples with new ones) is rather a theoretical solution.
An example of effective rehearsal strategy was proposed by Hayes et al. (2019). It creates a special
buffer for each label and each buffer aggregates the same number of examples. The old examples
make a place for new ones by compression or removal. Up to some extent, CW-TaLaR algorithm
can be considered as a pseudo-rehearsal method. However, instead of aggregating old examples, a
generative model is trained so we need to only remember all its parameters.

Another approach to solving CL problems (Learning without Forgetting, LwF) was made by Li &
Hoiem (2016). LwF relies on controlling a change of output data. It was achieved by regularization
but also by adding a small number of nodes in each task. Therefore, it could be partially considered
as an architectural strategy.

A pure regularization strategies usually assume that the optimal parameters for a new task can be
found in the neighborhood of those obtained for older tasks. For example, this idea is underlined
by Elastic Weight Consolidation (EWC, see Kirkpatrick et al. (2017)). EWC algorithm controls the
change of parameters only by introducing regularization term in a loss function. The importance
of parameters is weighted by the diagonal of the Fisher information matrix. An alternative for this
method was presented by Kolouri et al. (2020). There the respective diagonal matrix in regular-
ization term originated from the Cramer distance between output densities for old and new tasks.
Another important modification of EWC is Synaptic Intelligence (SI, see Zenke et al. (2017)). The
novel of this method lies in detecting the change of parameters in the previous tasks and weighting
a regularization term by their importance.

For the other significant CL models we refer the reader to Lomonaco & Maltoni (2017); Hinton et al.
(2015); Lopez-Paz & Ranzato (2017); Rebuffi et al. (2017); Parisi et al. (2018); Mishra & Narayanan
(2021); Nguyen et al. (2018); van de Ven & Tolias (2019); Liu et al. (2018); Hadsell et al. (2020).

7 CONCLUSION

In this paper, we presented the new CL learning strategy (CW-TaLaR) based on regularization in-
volving the Cramer-Wold distance between target layer distributions representing current and past
information, which does not suffer from growing memory consumption. We applied our method
for a few supervised CL scenarios using various versions of experimental setup proposed in Yen-
Chang Hsu.

Our experiments show that CW-TaLaR gives superior average accuracy scores (when compared
to EWC, SI and MAS methods) for IDL and ICL scenarios on Split MNIST dataset, and very
competitive results for the other considered settings (including ITL) on Split MNIST, Split CIFAR-
10 and Permuted MNIST datasets.

In conclusion, the proposed method works very well in general but seems to be especially efficient
for CL scenarios with a single-head classifiers (i.e IDL and ICL). However, the closer inspection
of the results for Permuted MNIST and Split CIFAR-10 suggests that it may slightly suffer from
forgetting, when either the number of tasks is relatively large or the applied architecture consists of
convolutional (rather then fully connected) layers, although in these cases the average scores still
remain competitive with respect to the other state-of-the-art CL models.

REFERENCES

Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars.
Memory aware synapses: Learning what (not) to forget. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), 2018.

Arslan Chaudhry, Puneet K. Dokania, Thalaiyasingam Ajanthan, and Philip H. S. Torr. Riemannian
walk for incremental learning: Understanding forgetting and intransigence. In Proceedings of the
European Conference on Computer Vision (ECCV), 2018.

Raia Hadsell, Dushyant Rao, Andrei A. Rusu, and Razvan Pascanu. Embracing change: Continual
learning in deep neural networks. Trends in Cognitive Sciences, 24:1028–1040, 2020.

9

Under review as a conference paper at ICLR 2022

Tyler L. Hayes, Nathan D. Cahill, and Christopher Kanan. Memory efficient experience replay for
streaming learning. In 2019 International Conference on Robotics and Automation (ICRA), pp.
9769–9776, 2019.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hass-
abis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting
in neural networks. Proceedings of the National Academy of Sciences, 114:3521–3526, 2017.

Szymon Knop, Przemysław Spurek, Jacek Tabor, Igor Podolak, Marcin Mazur, and Stanisław Jas-
trzebski. Cramer-wold auto-encoder. Journal of Machine Learning Research, 21:1–28, 2020.

Soheil Kolouri, Nicholas A. Ketz, Andrea Soltoggio, and Praveen K. Pilly. Sliced cramer synap-
tic consolidation for preserving deeply learned representations. In International Conference on
Learning Representations, 2020.

Zhizhong Li and Derek Hoiem. Learning without forgetting. In Computer Vision – ECCV 2016, pp.
614–629, Cham, 2016. Springer International Publishing.

Xialei Liu, Marc Masana, Luis Herranz, Joost Van de Weijer, Antonio M. López, and Andrew D.
Bagdanov. Rotate your networks: Better weight consolidation and less catastrophic forgetting. In
2018 24th International Conference on Pattern Recognition (ICPR), pp. 2262–2268, 2018.

Vincenzo Lomonaco and Davide Maltoni. Core50: a new dataset and benchmark for continuous
object recognition. In Sergey Levine, Vincent Vanhoucke, and Ken Goldberg (eds.), Proceedings
of the 1st Annual Conference on Robot Learning, volume 78 of Proceedings of Machine Learning
Research, pp. 17–26. PMLR, 2017.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
NIPS’17, pp. 6470–6479, Red Hook, NY, USA, 2017. Curran Associates Inc.

Davide Maltoni and Vincenzo Lomonaco. Continuous learning in single-incremental-task scenarios.
Neural Networks, 116:56–73, 2019.

Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. volume 24 of Psychology of Learning and Motivation, pp. 109–165.
Academic Press, 1989.

Poonam Mishra and Rishikesh Narayanan. Stable continual learning through structured multiscale
plasticity manifolds. Current Opinion in Neurobiology, 70:51–63, 2021.

Cuong V. Nguyen, Yingzhen Li, Thang D. Bui, and Richard E. Turner. Variational continual learn-
ing, 2018.

German I. Parisi, Jun Tani, Cornelius Weber, and Stefan Wermter. Lifelong learning of spatiotem-
poral representations with dual-memory recurrent self-organization. Frontiers in Neurorobotics,
12, 2018.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, G. Sperl, and Christoph H. Lampert. icarl: Incre-
mental classifier and representation learning. 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 5533–5542, 2017.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks, 2016.

Gido M. van de Ven and Andreas S. Tolias. Three scenarios for continual learning, 2019.

Anita Ramasamy Zsolt Kira Yen-Chang Hsu, Yen-Cheng Liu. Re-evaluating continual learning
scenarios: A categorization and case for strong baselines.

10

Under review as a conference paper at ICLR 2022

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 3987–3995.
PMLR, 2017.

11

	Introduction
	Cramer-Wold distance and CW generator
	Proposed algorithm
	Adjustment to classification problems
	Experiments
	Split MNIST
	Split CIFAR-10
	Permuted MNIST
	Architecture
	Split MNIST
	Permuted MNIST
	Split CIFAR-10

	Related work
	Conclusion

