Under review as a conference paper at ICLR 2025

VCoODE: A MULTIMODAL CODING BENCHMARK WITH
SVG AS SYMBOLIC VISUAL REPRESENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Code has emerged as a precise, executable medium for reasoning and action in the
agent era. Yet progress has largely focused on linguistic-centric tasks (e.g., pro-
gram synthesis, debugging), leaving visual-centric coding underexplored. Con-
ventional image representations rely on dense RGB pixels that capture appearance
but provide limited symbolic abstraction. Inspired by how humans reason over
sketches, we advocate SVG code as a compact, interpretable, and executable vi-
sual representation. We introduce VCode, a benchmark that reframes multimodal
understanding as code generation: given an image, a model must produce SVG
that preserves symbolic meaning for downstream reasoning. VCode covers three
challenging domains—general commonsense (MM-Vet), professional disciplines
(MMMU), and visual-centric perception (CV-Bench). To assess symbolic fidelity,
we propose CodeVQA, a novel evaluation protocol in which a policy model an-
swers questions over rendered SVG; correct answers indicate faithful symbolic
preservation. Empirically, frontier VLMs struggle to generate faithful SVGes, re-
vealing a persistent gap between language-centric and visual-centric coding. To
close this gap, we introduce VCoder, an agentic framework that augments VLMs
along two axes: (i) Thinking with Revision, which iteratively analyzes discrep-
ancies and refines SVG code; and (ii) Acting with Visual Tools, where detectors
and parsers supply structured cues (objects, shapes, text) beyond intrinsic model
capacity. Across benchmarks, frontier VLMs with strong reasoning score well
overall yet remain limited on professional knowledge and 3D reasoning; VCoder
delivers a +8.7-point overall gain over the top-performing Claude-4-Opus. Hu-
man studies further show that although VLMs score higher on raw images, hu-
mans are more robust on rendered SVGs—underscoring symbolic visual coding
as a promising paradigm for human-like multimodal intelligence.

1 INTRODUCTION

To advance reasoning and agentic intelligence, code has emerged as a powerful medium for interact-
ing with digital environments Park et al. (2023); Wang et al. (2023); Liu et al. (2023). Unlike natural
language, which is free-form and descriptive, code is precise, structured, and executable—making
it an effective mechanism for action. Consequently, recent benchmarks have predominantly em-
phasized linguistic-centric coding abilities, covering tasks such as program synthesis, debugging,
and competitive programming Chen et al. (2021); Austin et al. (2021); Jain et al. (2024); Tian et al.
(2024); Jimenez et al. (2023), where success is measured by both correctness and executability. In
the multi-modal regime, coding plays a crucial role in generating executable programs that inter-
face with tools or environments to accomplish complex task, a paradigm that has gained particu-
lar traction in embodied agents Wang et al. (2023); Liang et al. (2022). A parallel line of work
leverages code to generate synthetic visual assets—such as charts Yang et al. (2024a); Wu et al.
(2024), diagrams Rodriguez et al. (2025); Chen et al. (2025), or websites Beltramelli (2018); Si
et al. (2024)—which synthesis assets, are not directly grounded in the natural visual world.

When recapping the representation for natural images, the dominant practice has been to encode
them as pixels or superpixels. These representations are effective in that they densely capture visual
apperance. In contrast, humans often perceive and reason through sparse symbolic sketches that
emphasize spatial relationships, object counts, and structural outlines Hu et al. (2024). Similar to an

Under review as a conference paper at ICLR 2025

Three sheep on the farm

Render

Rendered Image (by Code)

s P

Figure 1: Illustration of VCode. An RGB image (left, represented by pixels) is translated into
symbolic SVG code (middle) via VLM as Coder and rendered back into an image (right, represented
by code), aiming to preserve symbolic meaning (e.g., “three sheep on the farm”). As shown at the
bottom, VCode provides a compact, interpretable, and executable representation of original images.

artist drafting a rough sketch before filling in appearance details, such abstraction offers a compact
yet informative scaffold for reasoning. Building on this intuition, we propose using Scalable Vector
Graphics (SVG) code as an alternative visual representation, owing to its compact, interpretable,
and executable nature. Thus, SVGs have long been used for icons and logos Wu et al. (2023); Ro-
driguez et al. (2025); Yang et al. (2025) for a general visual abstraction. This perspective motivates
a fundamental question: can visual representation move beyond raw pixels and learn to represent
and reason through code?

In this work, we introduce VCode, a multimodal coding benchmark that pioneers the use of SVG
code as a visual representation. VCode is constructed by repurposing existing multimodal under-
standing benchmarks across three domains: General commonsense (MM-Vet Yu et al. (2024)),
College-level disciplines (MMMU Yue et al. (2024)), and Visual-centric Perception (e.g., 3D depth
and relationships in CV-Bench Tong et al. (2024)). VCode reframes these tasks as visual coding:
given an image, a model must generate SVG code that faithfully renders the image, thereby re-
constructing its symbolic representation. To evaluate this transformation, we propose CodeVQA,
a novel protocol in which a vision—-language model must answer core questions about the original
image by reasoning over the rendered SVG. This provides a principled test of whether the gener-
ated code serves as an adequate and faithful visual representation. Experiments on VCode show
that existing coders remain limited in such challenging setting. We observe that coding quality im-
proves with a model’s reasoning ability, yet models still fail to preserve fine-grained visual relations
(e.g., near vs. far), exposing a persistent gap between language- and visual-centric coding. Notably,
human studies further show that although VLMs score higher on raw images, humans are more
robust when reasoning over rendered SVGs.

To this end, we augment existing coders with two complementary capabilities. (i) Thinking with
Revision. The model compares intermediate renderings with the original image, explicitly articu-
lates discrepancies, and iteratively updates the SVG to improve fidelity. (ii) Acting with Visual
Tools. We equip the coder with external perception toolboxes—e.g., object detectors and seg-
menters Xiao et al. (2023); Ravi et al. (2024)—to supply structured cues (objects, shapes, text)
as coding context. Together, these strategies yield a +8.7 overall gain over the top-performing
Claude-4-Opus, substantially strengthening visual-centric coding. Our contributions are threefold:

1. VCode: A Novel Perspective for Multimodal Coding. We recast multimodal understanding
as visual-centric coding: given an image, generate SVG that preserves symbolic structure for
downstream reasoning. We further present CodeVQA — a protocol that asks a VLM to answer
the original-image questions using only the rendered SVG, thereby testing whether the code is
an adequate and faithful visual representation.

2. VCoder: Augmenting VLM as Strong Multimodal Coders via (i) Thinking with Revision
(iterative discrepancy analysis and SVG refinement) and (ii) Acting with Visual Tools (structured
visual cues from detectors). VCoder achieves a significant overall gain over a strong baseline.

3. Evaluation and Insights. Extensive experiments expose persistent weaknesses of frontier VLMs
in visual-centric coding. Human studies show greater robustness when reasoning over rendered
SVGs than raw images, suggesting symbolic visual coding as a promising path advancing human-
like multimodal intelligence.

Under review as a conference paper at ICLR 2025

Benchmarks Domain Size Inputs Outputs Evaluation
Coding

HumanEval Chen et al. (2021) Algorithm 164 Text Code Execute Pass
MMCode Li et al. (2024) Visualization 263 Text & Img Code Execute Pass
ChartMimic Yang et al. (2024a) Chart 4800 Text & Img Code Similarity
Design2Code Si et al. (2024) Web Ul 484 Text & Img Code Similarity
SWE-Bench Jimenez et al. (2023) GitHub 2294 Text & Code Code Execute Pass
SVG-Bench Rodriguez et al. (2025) SVG 23K Img / Text Code Similarity
Multi-modal

MM-Vet Yu et al. (2024) General 218 Img. & text Text OpenQA
MMBench Liu et al. (2024) General 3217 Img. & text Text MCQ

MMMU Yue et al. (2024) College 11.5K Img. & text Text OpenQA / MCQ
MMMU-Pro Yue et al. (2025) College 1730 Img. & text Text OpenQA / MCQ
CV-Bench Tong et al. (2024) Perception 2638 Img. & text Text MCQ

VCode (Ours) G&C&P 464 Img. Code Render—VQA

Table 1: Comparison of VCode with coding (top) and multimodal (bottom) benchmarks. VCode differs
in three ways: (i) Task: models must generate code directly from natural images, without extra query guid-
ance; (ii) Scope: focuses on natural multimodal understanding across diverse domains—General (G), College
(C), and Perception (P); (iii) Evaluation: introduces CodeVQA (Render — VQA), which judges whether the
rendered SVG preserves the original image’s symbolic meaning.

2 RELATED WORKS

2.1 CODING BENCHMARKS

Coding in LLMs. Despite there being several coding benchmarks, most of them are initially de-
veloped for purely language coding. Representative efforts include HumanEval Chen et al. (2021)
and MBPP Austin et al. (2021), which evaluate correctness of synthesized programs given natural
language or code-level prompts. Later benchmarks such as SWE-Bench Jimenez et al. (2023) ex-
tend this paradigm to real-world software engineering, requiring models to resolve issues directly in
large GitHub repositories. Despite their diversity, these benchmarks are fundamentally linguistic-
centric: the inputs and outputs remain in textual or code form, with success measured by pass rates
or test-case execution. While effective in quantifying reasoning over program text, such settings
offer little insight into multimodal capabilities.

Coding in Multi-modal. Moving beyond purely textual code, a line of work incorporates visual ob-
servations into coding tasks. Benchmarks such as Plot2Code Wu et al. (2024),Design2Code Si et al.
(2024), and ChartMimic Yang et al. (2024a) translate charts or UI mockups into executable plotting
or layout code. MMCode Li et al. (2024) and SWE-Bench-MM Yang et al. (2024b) further inte-
grate images alongside text, exploring how multimodal inputs can inform code generation. At larger
scale, SVGenius Chen et al. (2025) (generation, editing, understanding) evaluates models’ ability
to produce vector-graphic code, highlighting challenges in preserving both semantics and structure.
Despite this progress, most of these datasets emphasize synthetic visual assets (e.g., charts, Web UI,
vector icons) as shown in Tab.1 top-half, leaving open the question of whether models can encode
real-world natural images into executable visual code. This gap motivates our VCode benchmark,
which repurposes multimodal understanding tasks into the visual coding with SVG.

2.2 MULTIMODAL UNDERSTANDING

Various benchmarks systematically evaluate multimodal understanding. Early efforts such as MM-
Bench Liu et al. (2024) and MM-Vet Yu et al. (2024) emphasize general perception and text—image
reasoning. More recent benchmarks, including MMMU Yue et al. (2024) and MMMU-Pro Yue
et al. (2025), target professional knowledge and domain-specific reasoning. However, most of these
evaluations interact with models through natural language (e.g., query or answer). In VCode, we
argue that generating code to represent natural images constitutes an even more advanced form of
understanding. As illustrated in Tab.1 bottom-half, unlike traditional perception tasks, this requires
the model to distill an image into its core concepts and structural features by a render image, and to
express them in a symbolic format that bridges perception with reasoning and action.

Under review as a conference paper at ICLR 2025

3 VCODE BENCHMARK

3.1 TASK DEFINITIONS

As illustrated in Fig.1, given an input RGB image V), a vision-language model v is tasked with
generating SVG code C that encodes the image. Rendering this code yields a rendered image V.
The objective is to minimize the discrepancy between the symbolic information of the original and
rendered images:

£ =min|I(V) - I(V)], (1)

where I(-) denotes a symbolic information representation. The central challenge, however, lies in
defining an applicable measure of symbolic information, which we elaborate on below.

3.2 EVALUATION METRICS

The key to the evaluation prototype lies in how the correspondence between the input image and
the rendered image V is defined.

SigLip Score. To define what constitutes an ideal SVG representation, we argue that it should
faithfully preserve the semantic content of the original image rather than merely matching pixel-level

similarity. One way to measure this is through embedding consistency. We leverage a pretrained
visual encoder f(-) such as SigLIP Zhai et al. (2023); Tschannen et al. (2025) to extract embeddings

for both V and V, and compute their cosine distance:

L = maxcos (f(V), f(ﬁ)) (2)

CodeVQA. A more direct criterion is whether the rendered image V alone supports correct reason-

ing. Usually, % may even facilitate answering questions that are ambiguous or harder to resolve from
the original V. Hence, the evaluation should not be constrained by the original image’s responses,

but instead focus directly on the correctness of answers derived from V. We define a policy model ¢
that outputs an answer A given an image and a question Q. Then goal is formulated as

A=9(v.Q),

L =max1[Evaluator(A)].

3)

where 1[] is the indicator function. Evaluator(:) is a rule-based matching in multiple-choices
setting, and it can be a LLM-as-Judge in open-ending. If the answer is correct, the SVG suffices to
convey the required semantics; otherwise, it reveals a gap in representational fidelity.

Code tokens. Beyond faithful representation, we argue that an effective coder should represent an
image with as few code tokens as possible, producing a concise yet faithful representation. To assess
this efficiency, we evaluate the length of the generated SVG in terms of its token count |C|.

3.3 DATA CURATION

With the evaluation prototype in place, the next step is to develop appropriate question sets Q for
each associated image V. To this end, we repurpose existing multimodal visual question answering
benchmarks to align with our objective. To ensure diversity in taxonomy and difficulty, we focus
on three representative scenarios: (i) Commonsense perception: Assesses a model’s ability to
capture everyday semantics such as spatial relationships. We adopt MM-Vet Yu et al. (2024) as the
source. (ii) Professional knowledge: Targets domain-specific, diploma-level tasks that demand both
reasoning and coding skills. We incorporate the development set of MMMU Yue et al. (2024), which
spans multiple disciplines and requires deeper reasoning and expert knowledge. (iii) Visual-centric:
Evaluates performance in visually intensive settings involving counting, distance estimation, and
relative spatial relationships in 2D or 3D. We draw from CV-Bench Tong et al. (2024).

Data statistics. Following this three-pronged curation strategy, we processed each source bench-
mark to construct our final dataset. For (i) commonsense perception, we incorporated the entirety of
MM-Vet Yu et al. (2024), resulting in 218 image-question pairs. For (ii) professional knowledge, our

Under review as a conference paper at ICLR 2025

Question: What is the lamp on, a side table or a nightstand? Policy model

Knowledge

Generation G

Spatial
feneral Recognition

Math 47.0%

Tech & Engineering

rofessional é“&b 2=
P i
31’592'"" @«“ S Soug, B
& v Slay;
Business. Py o
S
£ 3 KN
< A: J 3 o N Original Image Render Image -= Render Image

f 5 2 Depth Order o~

/| Answer: Side table Side table V' Nightstand X
(a) Distributions of VCode. (b) INlustration of CodeVQA prototype.

Figure 2: Left: Distributions of tasks in VCode, showing the proportions of general, professional,
and vision-centric categories. Right: Illustration of the CodeVQA prototype: given an image
and a question (e.g., “What is the lamp on, a side table or a nightstand?”), the policy model answers
based on the rendered image. A correct answer indicates that the SVG representation preserves the
semantic content of the original image, while an incorrect answer highlights room for improvement.

curation involved filtering the MMMU Yue et al. (2024) development set to retain only single-image
VQA instances, which yielded a specialized subset of 146 pairs. Finally, for (iii) visual-centric, we
created a balanced 100-pair subset from CV-Bench Tong et al. (2024) through a stratified sampling
process. This involved shuffling the data and applying interval selection to ensure a specific distri-
bution across its sub-tasks: spatial relationship (20), object count (20), depth order (30), and relative
distance (30). In total, this process yields 464 image-question pairs. The taxonomy distribution of
VCode is illustrated in Fig. 2(a).

4 VCODER

In practice, we find that directly prompting Coders to generate SVG code from natural images re-
mains highly challenging. This difficulty arises from three factors: (i) Long-Context Code Inputs:
fully representing an image typically requires thousands of tokens; composing such long sequences
demands strong code reasoning over complex elements, beyond what current Coders provide. (ii)
Visually-Blind Outputs: inputs and outputs are cross-modal; because the rendered image is unseen
until execution, the model must anticipate the visual consequences of code edits during generation.
(iii) Weak Visual Fineness: for irregular objects (e.g., a dog’s boundary), language models struggle
to capture low-level details—edges, masks, and colors—that must be encoded precisely as numeric
values, even though these are fundamental to code-based representations.

To address these intertwined challenges, we propose augmenting Coders at test time with two com-
plementary capabilities. (a) Thinking with Revision: we enhance reasoning through test-time
scaling and a revision strategy that allows the model to iteratively refine its outputs, bridging the gap
between long-context code generation and faithful visual rendering. (b) Acting with Vision Tools:
we equip Coders with external tools that extract fine-grained visual cues—such as edges, masks, and
color regions—and translate them into structured code signals, enabling models to overcome their
inherent limitations in low-level perception.

4.1 THINKING WITH REVISION

Since the initial reconstruction may not always yield a satisfactory result, a natural way to enhance
Coders is to let them re-examine their own outputs and iteratively refine the code. Our revision
strategy follows a two-step loop: detect discrepancies between the rendered output and the target
image, then update the code conditioned on these differences.

(i) Comment the Difference. Given an intermediate rendering V), the coder first perceives its
deviation from the original image). Although VLMs may be limited as Coders, they are already
strong in visual perception. We therefore design the revision process to let them capture differences

Under review as a conference paper at ICLR 2025

: : . -)
Studying online <svg viewBox="0 0 602 Acting with Tools
Teacher 602" {"Label":"man",
1ns="http://www.¥3.
” | o [@) | xinemnep /e ncontidance_aco
1. Initial e 0rg/2000/svg"> ...
a (XD)» re":0.92578125,
Coding <text x="91" y="600"
Students . "box_xy":
font-family="Arial, =
e9 sans-serif" font- [503.5, 412.1,
Access | si7e="72"...>Studying 541.4, 465.011,
Visu;l online</text> ... <.}
Original Image Tools </svg> Rendered Image Localization with Detection
‘ "pol int
Studying online | [Studying onl {"polygon_poin
e | 22 o [0 1. Location-specific differences: Top-Left: -Missing: Person with s":
2.Comment | M= 3 ~ money flying around; - Current: Only green rectangles floating... L1516, 412], [515
ey 2. Visual attribute differences: Color Issues: ... ; Shape Issucs: ...
s n 3. Specific svg revision suggestions: For Zoom Panel: - Replace green
“<rect>" elements with more detailed money bill paths.. M
Original + Render Image
Studying online Studying on =
2om e - \-‘ <svg viewBox="0 0 602 Studying online
\-f p-_ b ' 602" Zoom Teacher
v‘t" ‘* - m smins="hetp://www.w3. s R Studying online
5 o ' ¢ : {"Studying",
3. Recod org/2000/svg"™> ... e ﬂ%
hd 3 "
ABDP | <coxt x=rorr y=r600" "points”: [[94,
Wit company Students
sVG Commen font-family="Arial, 211, 358, 301,
ts sans-serif" font- /i\ [356, 1041,
Code size="60"...>Studying (91, 9411, ...}
— online</text> ...
Original + Render Image <Jsve> Revised Image N
+ Old Code + Comments _ Text with OCR Y,

Figure 3: Augmenting Coders with Test-time Revision & Visual Tools. Left: Thinking with Revi-
sion — the model performs initial coding, comments on discrepancies between original and rendered
images, and iteratively refines the SVG code. Right: Acting with Vision Tools — external modules
provide cues on categories, locations, shapes, colors, and text, which are translated into structured
code signals to guide generation. These techniques yield more faithful and accurate renderings.
through two observations. At each iteration ¢, we compute a difference signal A®*) « zb(V, V(t)),
which quantifies the discrepancy between the reconstruction and the target.

(@) Revise with Render Feedback. The difference signal A® | together with the current code C(*)
and render V*), is provided to the coder v to generate revised code C(**1). Executing this code
produces an updated reconstruction V1) « (Y, Y c® A®).

This revision loop is repeated for t = 0, 1,...,7T, progressively refining the reconstruction until a
satisfactory visual outcome is reached. The full procedure is summarized in Algorithm 1.

4.2 ACT WITH VISUAL TOOLS

Another limitation for Coder is capture the image fine-grained attribution such as boundary. Here
we able the Coder to access additional visual tools to provide meta information to complement the
generated SVG quality. We display part of tools with supple information in the right side of Fig.3.

Category. Object categories are obtained from a detector Xiao et al. (2023) and provide the Coder
with essential semantic labels. For example, a detected object can be annotated in SVG with an
attribute like id=’"bird’. These labels serve as the basic prior for generation and are always
combined with geometric cues like location or shape to describe each object more completely.

Location. A key factor in reconstruction is capturing where objects appear in the image. To provide
this information, we rely on bounding boxes predicted by Florence-2 Xiao et al. (2023), expressed
as absolute coordinates (x1,y1, 2, y2) together with the image width and height. These cues allow
the Coder to anchor elements at the correct positions on the canvas, preserving the overall layout.

Shape. While regular geometric primitives are straightforward to express, a key challenge lies in
representing irregular boundaries. To address this, we employ SAM-2 Ravi et al. (2024) to generate
segmentation masks that capture detailed object contours. These masks are then downsampled into
sparse coordinate points through an adaptive simplification strategy, which reduces the number of
vertices while keeping the overall area nearly unchanged. The resulting polygonal paths provide the
Coder with compact yet faithful shape descriptions that complement category and location cues.

Text. Text often carries critical semantic information that cannot be replaced by shapes or colors.To
incorporate this, We apply OpenOCR Du et al. (2025) to detect and transcribe text regions, and
directly encode them into SVG using the native <text> tag, which preserves both content and
visual attributes without the rendering issues of pixel-based methods.

Under review as a conference paper at ICLR 2025

SigLip Code CodeVQA
Model name score token (K) MM- Vet MMMU ‘ CV-Bench Overall
Rec Ocr Know Gen Spat Math Avg. Avg. 2D 3D Avg.
Orig. Image (40-mini) ‘ 100. N/A ‘ 60.5 789 585 59.5 709 842 67.1 ‘ 479 ‘ 43.1 61.7 524 ‘ 55.8
Claude-4-Opus 65.6 15 304 523 139 185 495 504 375 43.2 380 600 49.0 41.8
Claude-4-Sonnet 65.2 1.6 318 512 249 279 448 346 37.8 41.8 425 483 454 40.7
GPT-5 72.1 23 339 649 205 238 605 654 439 42.5 533 550 542 45.7
GPT-40 60.7 0.6 23.1 584 12.7 17.0 513 604 35.0 44.5 234 433 334 37.6
GPT-03 63.6 1.1 313 552 177 197 485 615 39.8 39.0 387 517 452 40.7
GPT-4.1 68.5 1.6 308 620 155 204 560 558 40.9 44.5 439 617 528 44.6
GPT-40-mini 62.5 0.4 207 584 132 189 468 635 335 44.5 234 483 359 375
Gemini-2.5-Pro 66.4 24 289 578 200 229 479 685 39.1 45.2 482 500 49.1 432
Gemini-2.5-Flash 63.6 1.9 293 56.7 174 21.1 463 538 39.1 39.7 32.1 533 427 40.1
Seed-1.6-thinking 62.7 1.6 189 465 8.1 119 441 385 28.7 432 36.6 517 441 36.6
Qwen2.5-VL-72B 589 0.6 206 529 140 173 513 431 31.8 41.8 205 533 369 36.0
Qwen2.5-VL-7B 244 0.3 49 6.0 3.0 40 7.1 3.8 4.8 349 132 367 249 18.6
InternVL3.5-241B-A28B 59.6 1.0 204 524 11.9 157 392 423 31.1 43.8 226 483 355 36.0
Intern-S1 593 1.0 247 568 121 160 512 419 352 41.8 36.6 483 425 389
InternVL3-78B 58.0 0.7 169 527 83 139 405 550 29.1 45.2 19.1 450 320 34.8
GLM-4.5V 63.4 1.6 224 544 7.1 156 460 569 33.1 40.4 169 433 30.1 34.8
GLM-4.1V-Thinking 62.1 12 21.1 520 10.4 13.7 448 588 31.9 432 322 483 403 37.3
MiniCPM-V-4.5 46.2 0.9 11.8 318 45 108 232 265 17.7 395 277 533 405 295
StarVector-8B 5.1 1.3 00 34 0 1.6 44 0 L5 26.0 0 0 0 8.9
VCoder (Claude-4-Opus) | 71.1 2.0 | 460 644 408 43.0 61.6 727 54166 | 50.0.65 | 43.9 433 436 | 50.5.87

Table 2: Main results on VCode across various top-performing VLM coders. The best scores are in bold.

5 EXPERIMENTS

5.1 BASELINE AND SETTINGS

To comprehensively evaluate our proposed framework, we compare it against a wide range of pro-
prietary and open-source models that represent the current state of the art in multimodal reasoning
and code generation. Proprietary models, such as Claude-4-Opus and Claude-4-Sonnet, GPT-5,
GPT-4.1, GPT-03, GPT-40, and GPT-40-mini Hurst et al. (2024), as well as Gemini-2.5-Pro and
Gemini-2.5-Flash Comanici et al. (2025), and Seed-1.6-thinking. These models are widely recog-
nized for their strong reasoning and multimodal capabilities, and thus provide competitive upper
baselines for our benchmark. Open-source models: including Qwen2.5-VL-72B and Qwen2.5-VL-
7B Team (2025), InternVL3.5-241B-A28B Wang et al. (2025), Intern-S1, InternVL3-78B Zhu et al.
(2025), MiniCPM-V-4.5 Yao et al. (2025), GLM-4.5V and GLM-4.1V-Thinking Team et al. (2025),
and StarVector Rodriguez et al. (2025). These baselines cover a diverse spectrum of model sizes and
training paradigms, enabling a comparison between proprietary and open-source approaches.

Evaluation settings. Unless otherwise noted, all models are queried under a unified prompting
interface with identical inputs to ensure fairness. The primary automatic evaluator is GPT-40-mini,
which provides consistent judgments across benchmarks.

5.2 MAIN RESULTS

In Tab. 2, we evaluate full baselines on VCode, reporting per-domain results—general, college, and
vision-centric—and the overall average. We have the following observation.

Stronger reasoning yield better visual coding scores. Closed-source models consistently outper-
form open-source counterparts across benchmarks. GPT-5 sets the strongest baseline with the top
SigLip score (72.1) and the highest CodeVQA overall (46.2), showing robust performance on both
similarity and reasoning metrics. This pattern indicates that stronger reasoning ability translates into
better VCode performance—i.e., models that reason well produce more faithful symbolic render-
ings. We also observe a positive correlation between semantic similarity (SigLip) and CodeVQA.

Challenges across different dimensions. (i) Best performer still trails the original-image upper
bound. Even the best SVG result—GPT-5 at 45.7—remains well below the raw-image upper bound
(55.8), indicating substantial headroom. This confirms that the task is sufficiently challenging and
that symbolic representation still has ample room for improvement. (ii) SVG specialist underper-
forms. StarVector-8B ranks last, highlighting VCode’s difficulty and the gap between neatly au-
thored SVG corpora and SVGs derived from natural images. (iii) Knowledge is hardest. The Know
dimension is consistently the lowest, reflecting the compounded challenge of recalling facts and then
encoding them faithfully in SVG (e.g., historical entities). (iv) Professional disciplines are hard to

Under review as a conference paper at ICLR 2025

differentiate. On MMMU, models cluster within a narrow, modest band, and most fail the more
demanding disciplinary settings. (v) Vision-centric perception is tough. CV-Bench scores hover
near the low (randomly by 50%), especially on 3D relations (depth or spatial). Even with VCoder,
improvements are meaningful but leave substantial headroom.

Absolute gains with VCoder. Built on Claude-4-Opus, VCoder lifts Overall from 41.8 to 50.5
(+8.7) via revision and vision-tool assistance, improving all three domains—demonstrating an ef-
fective enhancement for visual-centric coding.

Code token length. Models that emit short SVGs underperform (e.g., Qwen-2.5-VL), suggesting
under-specification. By contrast, stronger models (GPT-5, Gemini-2.5-Pro) produce substantially
longer sequences (often > 2K tokens) and attain higher scores. Length is not sufficient on its own,
but performance scales with usable context, highlighting long-context reasoning and generation as
a central bottleneck for visual-centric coding.

5.3 KEY ABLATIONS

Effects of VCoder modules. Ablations in Tab. 3 reveal three takeaways: (i) Adding fine-grained
cues (location, category, shape) yields steady gains; shape is especially helpful for spatial reasoning
(Spat.), even without large changes in SigLip, indicating structural benefits. (ii) Text cues help, with
the full visual-tool ensemble provides the largest overall improvement. (iii) Test-time Revision adds
a further boost on top of the tools—most notably on knowledge, generation, and math—showing
that structured cues and iterative refinement are complementary.

Variant SigLip CodeVQA Evaluator
score | Rec Ocr Know Gen Spat Math Avg. & i
70 ™ Claude-4-Opus
Claude-4-Opus 656 304 523 139 185 49.5 504 375 o 83 uclras
+Loc. & C. 708 [29.7 603 17.5 229 549 462 39.7 s .
+Loc. & C. & S. 715 334 627 193 251 63.1 642 433 3
+Text 69.9 304 59.5 192 215 568 654 415 8 ®
+Visual tool 716 | 445 660 349 389 677 615 524 0
VCoder(+Revision) | 71.6 | 46.0 644 408 43.0 61.6 727 54.1 »
10
Table 3: Effects by by VCoder modules, where Loc. denotes Loca- P o nace SVG oy VGoser
tion, C. denotes Category, and S. denotes Shape. Figure 4: Effects by different policy

during evaluation

Effects across policies and Human studies. Fig. 4 shows the performance differences across policy
¢, including humans. On the original images, all models substantially surpass human perception and
reasoning (51.6 for humans vs. 75.5 for GLM-4.5V). However, when evaluated on SVG representa-
tions, all models exhibit a noticeable performance drop, whereas the human score increases (56.9).
This highlights humans’ strong capacity for symbolic understanding, enabling them to outperform
advanced models such as GPT-40-mini and Claude-4-Opus in this setting. The divergence sug-
gests current VLMs are over-tuned to appearance cues, while humans benefit from the abstraction;
improving model robustness to symbolic inputs is therefore a promising direction.

Effects by Revision. In Fig. 5, we examine the impact of the test-time revision strategy. Both Claude
and GLM-4.5V benefit from revision, with GLM-4.5V showing the most substantial gains—Tlikely
due to its built-in “thinking mode,” which excels at difference analysis and refinement. By contrast,
GPT-4o struggles to leverage revision effectively, reflecting its limitations in deeper reasoning.

Variant Code

SigLip Code2QA Model
a0l -@- Claude-4-Opus
Token | MM-Vet MMMU CV-Bench Overall // :GLM,A sv

3l GPT-40

Img2SVG 656 | 15K | 375 43.2 523 425 g

g

Img2Text2Svg| 68.5 | 1.8K | 43.0 43.2 55.6 46.4 s

Img2Svg* 698 | 16K | 382 425 537 435 *
34
33

Table 4: Effects by different input modes. There *denotes 0 1 2
we run this method with thinking-mode. Revision Rounds

Figure 5: Effect of Thinking revision.

Under review as a conference paper at ICLR 2025

Professor: "Good morni..." Professor: "Good morni Professor: "Good m Professor: "Good morni

Freshmen: Freshmen:

Freshmen: Freshmen:

. s
+

-
IWirite that down
write that down!

() ()
Wiitesthatfdown)
write that dew'n!

o= @Vnte that down)™

T
" wirite thatdown!

write that do\

(b) Initial rendered (d) w. revision

=

MMMU'’s example Rendered by VCoder CV-Bench example Rendered by VCoder

Figure 6: Qualitative examples from VCode. Top row (a—d): an internet meme rendered progressively
by initial decoding, visual-tool assistance, and revision. Bottom row: challenge samples from MMMU (Art-
Theory) and CV-Bench (3D), alongside their SVG renderings by VCoder.

Effects by Visual v.s. Textual query. In Tab. 4, we examine the impact of input modality. Us-
ing raw images (i.e., Ing2SVG) gives the weakest results, suggesting that current coders are poorly
adapted to direct visual input. By contrast, translating images into linguistic captions before cod-
ing (i.e., Img2Text2Svg) achieves the best performance, highlighting the benefit of language as an
intermediate representation. Notably, even with deep thinking enabled (i.e., Img2Svg-Thinking),
performance remains low, underscoring the difficulty of visual-centric coding and the gap between
language-driven and vision-driven code generation.

5.4 QUALITATIVE ANALYSIS

Fig. 7 presents qualitative results by comparing origina image and the rendered image by VCoder.
Top row. Across the four stages, the initial decoding misses layout and semantics. Adding visual
tools recovers key geometry (e.g., the starfish character’s triangular body and facial features), while
revision corrects fine details (character proportions, text alignment, spacing), yielding a rendering
that closely matches the meme’s structure and intent. Bottom row. VCoder produces SVGs that are
both more faithful to the source and more interpretable for downstream reasoning. The left exam-
ple (MMMU) is knowledge-intensive: accurately depicting a multi-panel historical relief requires
domain cues and fine structural abstraction, where base models often collapse detail. The right
example (CV-Bench) is vision-centric: success hinges on visually grounded prompts that localize
and size objects correctly (e.g., monitor in front of keyboard, receding rows of chairs), after which
revision tightens residual misalignments. These examples underscore the challenges by VCode.

6 CONCLUSION

We introduced VCode, offering a new perspective on multimodal coding by benchmarking multi-
modal understanding with SVG as a visual representation, along with CodeVQA to assess symbolic
fidelity through QA over rendered SVGs. Our study shows that frontier VLMs struggle to produce
faithful SVGs despite strong linguistic reasoning, revealing a persistent gap between language- and
vision-centric coding. To address this, we proposed VCoder, which integrates Test-time Revision
and Acting with Visual Tools, yielding substantial improvements. Human studies further indicate
that people are more robust on rendered SVGs than on raw images, underscoring the promise of sym-
bolic visual coding for multimodal intelligence. Future work can focus on developing end-to-end
vision—language coders with scalable training data to enable more faithful symbolic representations.

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

This work repurposes existing public multimodal datasets (MM-Vet, MMMU, CV-Bench) and does
not involve sensitive or private information. Human evaluation was conducted with informed con-
sent and fair compensation. We see minimal risk of harm; potential misuse (e.g., generating mis-
leading visualizations) is noted, and we release our benchmark strictly for research purposes.

REPRODUCIBILITY STATEMENT

We provide details of dataset construction, evaluation protocols, and model settings in the main text
and appendix. All datasets used are publicly available, and our benchmark, code, and evaluation
scripts will be released upon publication to facilitate replication of our results.

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Tony Beltramelli. pix2code: Generating code from a graphical user interface screenshot. In Proceed-
ings of the ACM SIGCHI Symposium on Engineering Interactive Computing Systems, EICS ’18,
New York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450358972. doi:
10.1145/3220134.3220135. URL https://doi.org/10.1145/3220134.3220135.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code. 2021.

Sigi Chen, Xinyu Dong, Haolei Xu, Xingyu Wu, Fei Tang, Hang Zhang, Yuchen Yan, Linjuan
Wu, Wengi Zhang, Guiyang Hou, Yongliang Shen, Weiming Lu, and Yueting Zhuang. Svge-
nius: Benchmarking 1lms in svg understanding, editing and generation, 2025. URL https:
//arxiv.org/abs/2506.03139.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Yongkun Du, Zhineng Chen, Hongtao Xie, Caiyan Jia, and Yu-Gang Jiang. Svtrv2: Ctc beats
encoder-decoder models in scene text recognition. In /CCV, 2025.

Yushi Hu, Weijia Shi, Xingyu Fu, Dan Roth, Mari Ostendorf, Luke Zettlemoyer, Noah A Smith, and
Ranjay Krishna. Visual sketchpad: Sketching as a visual chain of thought for multimodal lan-
guage models. Advances in Neural Information Processing Systems, 37:139348-139379, 2024.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint
arXiv:2410.21276, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

10

https://doi.org/10.1145/3220134.3220135
https://arxiv.org/abs/2506.03139
https://arxiv.org/abs/2506.03139

Under review as a conference paper at ICLR 2025

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Kaixin Li, Yuchen Tian, Qisheng Hu, Ziyang Luo, and Jing Ma. Mmcode: Evaluating multi-modal
code large language models with visually rich programming problems, 2024.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. arXiv preprint
arXiv:2209.07753, 2022.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around
player? In European conference on computer vision, pp. 216-233. Springer, 2024.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings
of the 36th annual acm symposium on user interface software and technology, pp. 1-22, 2023.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Rédle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Va-
sudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollar, and Christoph Fe-
ichtenhofer. Sam 2: Segment anything in images and videos, 2024. URL https://arxiv.
org/abs/2408.00714.

Juan A. Rodriguez, Abhay Puri, Shubham Agarwal, Issam H. Laradji, Pau Rodriguez, Sai Rajeswar,
David Vazquez, Christopher Pal, and Marco Pedersoli. Starvector: Generating scalable vector
graphics code from images and text. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 16175-16186, June 2025.

Chenglei Si, Yanzhe Zhang, Zhengyuan Yang, Ruibo Liu, and Diyi Yang. Design2code: How far
are we from automating front-end engineering?, 2024.

Qwen Team. Qwen2.5-vl, January 2025. URL https://gwenlm.github.io/blog/
qwen2.5-v1/.

V Team, Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale
Cheng, Ji Qi, Junhui Ji, Lihang Pan, Shuaiqi Duan, Weihan Wang, Yan Wang, Yean Cheng,
Zehai He, Zhe Su, Zhen Yang, Ziyang Pan, Aohan Zeng, Baoxu Wang, Bin Chen, Boyan Shi,
Changyu Pang, Chenhui Zhang, Da Yin, Fan Yang, Guoqing Chen, Jiazheng Xu, Jiale Zhu, Jiali
Chen, Jing Chen, Jinhao Chen, Jinghao Lin, Jinjiang Wang, Junjie Chen, Leqi Lei, Letian Gong,
Leyi Pan, Mingdao Liu, Mingde Xu, Mingzhi Zhang, Qinkai Zheng, Sheng Yang, Shi Zhong,
Shiyu Huang, Shuyuan Zhao, Siyan Xue, Shangqin Tu, Shengbiao Meng, Tianshu Zhang, Tianwei
Luo, Tianxiang Hao, Tianyu Tong, Wenkai Li, Wei Jia, Xiao Liu, Xiaohan Zhang, Xin Lyu,
Xinyue Fan, Xuancheng Huang, Yanling Wang, Yadong Xue, Yanfeng Wang, Yanzi Wang, Yifan
An, Yifan Du, Yiming Shi, Yiheng Huang, Yilin Niu, Yuan Wang, Yuanchang Yue, Yuchen Li,
Yutao Zhang, Yuting Wang, Yu Wang, Yuxuan Zhang, Zhao Xue, Zhenyu Hou, Zhengxiao Du,
Zihan Wang, Peng Zhang, Debing Liu, Bin Xu, Juanzi Li, Minlie Huang, Yuxiao Dong, and Jie
Tang. Glm-4.5v and glm-4.1v-thinking: Towards versatile multimodal reasoning with scalable
reinforcement learning, 2025. URL https://arxiv.org/abs/2507.01006.

Minyang Tian, Luyu Gao, Shizhuo Dylan Zhang, Xinan Chen, Cunwei Fan, Xuefei Guo, Roland
Haas, Pan Ji, Kittithat Krongchon, Yao Li, Shengyan Liu, Di Luo, Yutao Ma, Hao Tong, Kha
Trinh, Chenyu Tian, Zihan Wang, Bohao Wu, Yanyu Xiong, Shengzhu Yin, Minhui Zhu, Kilian
Lieret, Yanxin Lu, Genglin Liu, Yufeng Du, Tianhua Tao, Ofir Press, Jamie Callan, Eliu Huerta,
and Hao Peng. Scicode: A research coding benchmark curated by scientists, 2024. URL https:
//arxiv.org/abs/2407.13168.

11

https://arxiv.org/abs/2408.00714
https://arxiv.org/abs/2408.00714
https://qwenlm.github.io/blog/qwen2.5-vl/
https://qwenlm.github.io/blog/qwen2.5-vl/
https://arxiv.org/abs/2507.01006
https://arxiv.org/abs/2407.13168
https://arxiv.org/abs/2407.13168

Under review as a conference paper at ICLR 2025

Shengbang Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Manoj Middepogu, Sai Charitha
Akula, Jihan Yang, Shusheng Yang, Adithya Iyer, Xichen Pan, Austin Wang, Rob Fergus, Yann
LeCun, and Saining Xie. Cambrian-1: A fully open, vision-centric exploration of multimodal
1lms, 2024.

Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alabdul-
mohsin, Nikhil Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, Olivier Hénaff,
Jeremiah Harmsen, Andreas Steiner, and Xiaohua Zhai. Siglip 2: Multilingual vision-language
encoders with improved semantic understanding, localization, and dense features, 2025. URL
https://arxiv.org/abs/2502.14786.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023.

Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu,
Linglin Jing, Shenglong Ye, Jie Shao, et al. Internvl3.5: Advancing open-source multimodal
models in versatility, reasoning, and efficiency. arXiv preprint arXiv:2508.18265, 2025.

Chengyue Wu, Yixiao Ge, Qiushan Guo, Jiahao Wang, Zhixuan Liang, Zeyu Lu, Ying Shan, and
Ping Luo. Plot2code: A comprehensive benchmark for evaluating multi-modal large language
models in code generation from scientific plots, 2024.

Ronghuan Wu, Wanchao Su, Kede Ma, and Jing Liao. Iconshop: Text-guided vector icon synthesis
with autoregressive transformers. ACM Trans. Graph., 42(6), December 2023. ISSN 0730-0301.
doi: 10.1145/3618364. URL https://doi.org/10.1145/3618364.

Bin Xiao, Haiping Wu, Weijian Xu, Xiyang Dai, Houdong Hu, Yumao Lu, Michael Zeng, Ce Liu,
and Lu Yuan. Florence-2: Advancing a unified representation for a variety of vision tasks. arXiv
preprint arXiv:2311.06242, 2023.

Cheng Yang, Chufan Shi, Yaxin Liu, Bo Shui, Junjie Wang, Mohan Jing, Linran Xu, Xinyu Zhu,
Siheng Li, Yuxiang Zhang, et al. Chartmimic: Evaluating Imm’s cross-modal reasoning capability
via chart-to-code generation. arXiv preprint arXiv:2406.09961, 2024a.

John Yang, Carlos E Jimenez, Alex L Zhang, Kilian Lieret, Joyce Yang, Xindi Wu, Ori Press,
Niklas Muennighoff, Gabriel Synnaeve, Karthik R Narasimhan, et al. Swe-bench multimodal:
Do ai systems generalize to visual software domains? arXiv preprint arXiv:2410.03859, 2024b.

Yiying Yang, Wei Cheng, Sijin Chen, Xianfang Zeng, Jiaxu Zhang, Liao Wang, Gang Yu, Xinjun
Ma, and Yu-Gang Jiang. Omnisvg: A unified scalable vector graphics generation model. arXiv
preprint arxiv:2504.06263, 2025.

Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
Weilin Zhao, Zhihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. Nat Commun 16,
5509 (2025), 2025.

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang,
and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities. In
International conference on machine learning. PMLR, 2024.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
Dongfu Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun,
Ming Yin, Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and
Wenhu Chen. Mmmu: A massive multi-discipline multimodal understanding and reasoning
benchmark for expert agi. In Proceedings of CVPR, 2024.

Xiang Yue, Tianyu Zheng, Yuansheng Ni, Yubo Wang, Kai Zhang, Shengbang Tong, Yuxuan Sun,
Botao Yu, Ge Zhang, Huan Sun, Yu Su, Wenhu Chen, and Graham Neubig. Mmmu-pro: A more
robust multi-discipline multimodal understanding benchmark. In Proceedings of ACL, 2025.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. In Proceedings of the IEEE/CVF international conference on computer vision,
pp- 11975-11986, 2023.

12

https://arxiv.org/abs/2502.14786
https://doi.org/10.1145/3618364

Under review as a conference paper at ICLR 2025

Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
open-source multimodal models. arXiv preprint arXiv:2504.10479, 2025.

13

Under review as a conference paper at ICLR 2025

A Implement Details 14
B Experiments Ablations 14
C Prompt Template 15
D More Visualization 19
E The Use of Large Language Models 19

A IMPLEMENT DETAILS

We implement our model using the PyTorch framework on an NVIDIA RTX 4090 GPU with 24GB
of memory. The maximum output length is set to 16,384 tokens, while for the Qwen2.5-VL models
we use 8,192 tokens.

For evaluation, different protocols are used depending on the benchmark. In MM-Vet, we employ
gpt-4-0613 as the evaluator to score model responses. In CV-Bench and MMMU experiments,
we adopt a rule-based string matching parser to determine correctness.

For SigLip2, we use the siglip2-s0400m-patchl4-384. The token cost reported in our
tables is measured using the t ikt oken library with the c1100k base encoding.

It is worth noting that in the img2svg experiments, StarVector cannot take textual prompts as input.
It directly performs image-to-SVG generation.

Algorithm 1 Test-time Revision

Input: Coder 1, an image V, initial rendering V(© initial SVG code C'?, iteration number T
Output: Refined rendering po
fort =0— (T—1)do

Comment the difference: A®) P (V, 17(t))

Generate revised SVG code: CHD «— (v, VB A®)
Update reconstruction: V1 « Render(C**Y)

end for _

return V()

PR R

B EXPERIMENTS ABLATIONS

Effects by SigLip v.s. DINO

Metric Claude-4-Opus Claude-4-Sonnet GPT-5 GPT-40 GPT-03 GPT-4.1 GPT-40-mini Gemini-2.5-Pro Gemini-2.5-Flash Seed-1.6-thinking

SigLip2 67.2 66.9 70.1 60.1 64.9 66.9 58.6 66.4 64.3 62.6
DINO-V2 26.1 24.2 30.4 16.5 224 26.0 14.3 27.2 22.5 20.2

Table 5: Effect by different feature extractor As shown, the DINO reach lower score compare
with Siglip2, as it more focus on low-level visual representation. While SigLip2 focus on more on
semantic space.

Effect by revision on MM- Vet
Effects by different policy during evaluation on MM- Vet

14

Under review as a conference paper at ICLR 2025

Models | Round | Rec Ocr Know Gen Spat Math Avg.
0 304 523 139 185 495 504 375
Claude-4-Opus 1 29.0 543 189 21.7 56.0 53.1 388
2 296 540 169 145 531 554 395
0 224 544 7.1 156 46.0 569 33.1
GLM-4.5V 1 26.5 58.3 145 20.0 544 50.0 374
2 245 65.7 104 156 533 558 383
0 23.1 584 127 170 513 604 35.0
GPT-40 1 2377 535 120 157 465 535 34.1
2 250 600 142 189 50.7 569 363
Table 6: Effect by revision (round) on MM-Vet.
Setting | Evaluator | Rec Ocr Know Gen Spat Math Avg.
GPT-40-mini 60.5 789 585 595 709 842 67.1
Ori Human 41.7 694 186 23.1 70.1 738 51.6
Claude-4-Opus | 68.1 793 59.0 579 821 727 724
GLM-4.5V 674 871 56.5 60.0 80.0 96.2 755
GPT-40-mini 46.0 644 40.8 43.0 61.6 727 54.1
VCod Human 26.3 483 13.7 144 479 550 359
0% | Claude-4-Opus | 437 763 370 412 684 765 558
GLM-4.5V 543 73.6 48.2 49.0 73,6 842 633

Table 7: Evaluation results of different evaluators on Ori vs VCoder

C PROMPT TEMPLATE

Img2SVG

def _build user_ prompt () :
return """Convert this image to SVG code. Follow these rules:

CRITICAL REQUIREMENTS:

— Output only pure SVG code, no markdown blocks or explanations

— Start with <svg viewBox="..." xmlns="http://www.w3.0rg/2000/svg">

and end with </svg>

— Use only native SVG elements (no external images or links)

— Include viewBox to ensure all elements are visible and auto-scale
properly

— Calculate appropriate viewBox dimensions to contain all content
with some padding

Generate the SVG now:"""

Img2Text2SVG

def _build user_ prompt_stagel():
return """Please provide a detailed and accurate description of
this image. Focus on:

Main objects, shapes, and elements
Colors, textures, and visual properties
Spatial relationships and positioning
Style and artistic characteristics

®» Wb

Under review as a conference paper at ICLR 2025

5. Any text, symbols, or specific details

Be precise and comprehensive - this description will be used to
recreate the image as an SVG. Include geometric details,
proportions, and layout information that would be necessary for
accurate reproduction."""

def _build user prompt_stage2 (description):
return f"""Based on the following description, generate clean
and accurate SVG code:

{description}
Requirements:

1. Output ONLY complete SVG code, no explanations or other text
2. Use appropriate dimensions (e.g., viewBox="0 0 400 400" or

similar)

3. Include all elements described with accurate colors, shapes, and
positioning

4. Use clean, well-structured SVG syntax

5. Ensure the SVG is self-contained and complete

6. Start with <svg and end with </svg>

7. Use precise geometric shapes and paths where appropriate

8. Match colors and proportions as closely as possible to the

description

Generate the SVG now:"""

Img2SVG-Thinking

def _build user_ prompt () :
return """Let’s analyze this image and create an SVG
representation through a structured thinking process.

Step-by—-step analysis:

1. Visual Decomposition

— What are the main visual elements?

— What geometric shapes can be identified?

— What are the key colors and their relationships?

2. Structural Analysis

- How are elements arranged and layered?

— What are the proportions and spatial relationships?
— Are there any repeating patterns or symmetry?

3. SVG Implementation Strategy

— Which SVG elements best represent each component?
— What’s the optimal drawing order?

— How to handle complex shapes and gradients?

4. Technical Considerations

- What viewport dimensions are appropriate?

— How to ensure scalability and responsiveness?
— What optimizations can be applied?

After your analysis, provide:
1. Your complete reasoning process

2. The final SVG code implementation

Requirements for SVG output:

16

Under review as a conference paper at ICLR 2025

— Must be complete and self-contained

— Include all necessary attributes and elements
- Start with <svg tag and end with </svg>

- Use appropriate viewBox and dimensions

Please proceed with the analysis and generation:"""

All In One

def _build system prompt () :
return """You are a helpful assistant that converts images into
clean, complete SVG vector graphics.

Your primary task is img2svg conversion for Visual Question
Answering. You have access to two types of metadata to assist
with precision:

METADATA AVAILABLE:

— OCR metadata: Text regions with precise 4-point quadrilaterals
for accurate text placement

— Object detection metadata: Object boundaries with labels,
confidence scores, and svg_path outlines

SPECIAL CASE HANDLING (Hint Strategy):

Sometimes, an image may depict a person, character, or artwork
where fine details like facial features or texture could be lost

during vectorization. Examples include:

— A recognizable public figure such as a scientist or political
leader

— A well-known fictional character from popular culture

- A famous painting or portrait by a specific artist

If the subject in the image is of this nature and important
identity cues might be lost:

— Preserve recognizability by including visual hints such as
characteristic clothing, accessories, environment, or symbolic
elements

— When confident, you may add a <text> element near the subject
that provides:

Their commonly known name
The name of the associated work or series
The title or creator of an artwork

If the subject does not fit these examples or is not clearly
recognizable:

- Generate a clean SVG with no extra text labels

— Focus on accurate shapes, proportions, and composition

METADATA INTEGRATION:

1) Text rendering: Use OCR quadrilaterals as authoritative
coordinates for text placement. Render literal text strings with

appropriate transforms for rotation/skew.

2) Object boundaries: Use detection svg _paths as authoritative
contours. Infer fill/stroke colors and add internal details
within these boundaries.

3) Background reconstruction: Fill in unlabeled regions using
native SVG primitives.

PROCESSING PRIORITY:
1. Use provided metadata for precise positioning (OCR quads,
detection paths)

17

Under review as a conference paper at ICLR 2025

2. Apply hint strategy for recognizable subjects
3. Reconstruct missing background/unlabeled areas
4. Ensure proper layering and visual completeness

OUTPUT REQUIREMENTS:

— Output only pure SVG code, no markdown blocks or explanations

— Start with <svg viewBox="0 0 {W} {H}" xmlns="http://www.w3.org
/2000/svg"> and end with </svg>

— Use only native SVG elements (no external images or links)

— Include viewBox to ensure all elements are visible and auto-scale
properly

— Do not include explanations or commentary

This SVG will be used in a Visual Question Answering task, so
ensure the output retains as much semantic identity as possible
when visual details are reduced."""

def _build user_ prompt () :
return f£"""METADATA:\n{metadata_ json}\n\nGenerate the complete
SVG with precise metadata integration and appropriate hint
strategy for recognizable subjects."""

Revision

def _build user prompt_stagel():
return """Compare the original image (first) with the SVG-
rendered image (second) and identify SPECIFIC differences
for SVG code revision.

Focus on identifying:

1. LOCATION-SPECIFIC DIFFERENCES:
— Which areas/regions differ (top-left, center, bottom-right,
etc.)
- Missing or extra elements in specific positions

2. VISUAL ATTRIBUTE DIFFERENCES:
— Color mismatches (specify which elements and what colors)
— Shape distortions (which shapes are wrong and how)
- Size/proportion issues (which elements are too big/small)
— Position/alignment problems

3. SPECIFIC SVG REVISION SUGGESTIONS:
— Which SVG elements need modification (circles, paths, rects,
etc.)
— What attributes to change (fill, stroke, cx, cy, width, height
, d, etc.)
— Specific color values or coordinate adjustments needed

Format your response as actionable SVG revision instructions."""

def _build user_ prompt_stage2():
return """You are an SVG code specialist. Based on the visual
analysis and comparison between the original image and
current SVG rendering, make SPECIFIC code modifications to
fix identified issues.

VISUAL ANALYSIS FINDINGS:
{optimization_goals}

CURRENT SVG CODE:

18

Under review as a conference paper at ICLR 2025

{current_svg_code}

INSTRUCTIONS:

1. Analyze the current SVG code structure and elements

2. Based on the visual analysis findings, identify which specific
SVG elements need modification

3. Make precise changes to fix the identified issues:
— Adjust colors (fill, stroke attributes)
— Fix shapes and paths (modify d attributes, coordinates)
— Correct sizes and positions (width, height, cx, cy, x, y)
— Add missing elements or remove incorrect ones

4. Output ONLY the complete revised SVG code

5. Ensure all modifications directly address the issues mentioned
in the analysis

6. Start with <svg and end with </svg>

Revised SVG code:"""

D MORE VISUALIZATION

E THE USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) in two limited ways. First, during manuscript preparation,
LLMs were employed solely for surface-level editing (e.g., grammar correction and minor rephras-
ing) to improve readability; they were not used to generate research ideas, methods, experiments, or
conclusions. Second, in our benchmark experiments, LLMs were included as baseline models for
comparison, with results reported transparently in the main paper. All core research contributions,
dataset design, and analyses are the sole work of the authors.

19

Under review as a conference paper at ICLR 2025

Original Image

Initial Rendered

w. Visual Tools

w. Revision

Solve the following eq

1) 8z +11 =4z + 14

2) Td—4=11d—9

Solve the following equation

1) 80+ 11 =4[+ 14

2)70-4=110-9

Solve the following equat

1)8x + 11 =4x+ 14

2)7d-4=11d -9

Solve the following equation|

1)8x + 11 =4x + 14

2)7d-4=11d -9

oo F O OO |\ el OACAS,
1

KIDS IN ACTION
(WITH VISUAL SUPPORTS)
FOR MULTI-STEP DIRECTIONS

KIDS IN ACTION

FOR MULTI-STEP DIRECTIONS

KIDS IN ACTION
(WITH VISUAL SUPPORTS)

FOR MULTI-STEP DIRECTIONS

Figure 7: More visualization results

20

KIDS IN ACTION
(WITH VISUAL SUPPORTS)
FOR MULTI-STEP DIRECTIONS

©

