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Abstract

Large transformer models pretrained on offline reinforcement learning datasets have
demonstrated remarkable in-context reinforcement learning (ICRL) capabilities,
where they can make good decisions when prompted with interaction trajectories
from unseen environments. However, when and how transformers can be trained
to perform ICRL have not been theoretically well-understood. In particular, it
is unclear which reinforcement-learning algorithms transformers can perform in
context, and how distribution mismatch in offline training data affects the learned
algorithms. This paper provides a theoretical framework that analyzes supervised
pretraining for ICRL. This includes two recently proposed training methods —
algorithm distillation and decision-pretrained transformers. First, assuming model
realizability, we prove the supervised-pretrained transformer will imitate the con-
ditional expectation of the expert algorithm given the observed trajectory. The
generalization error will scale with model capacity and a distribution divergence
factor between the expert and offline algorithms. Second, we show transformers
with ReLU attention can efficiently approximate near-optimal online reinforcement
learning algorithms like LinUCB and Thompson sampling for stochastic linear
bandits, and UCB-VI for tabular Markov decision processes. This provides the
first quantitative analysis of the ICRL capabilities of transformers pretrained from
offline trajectories.

1 Introduction
The transformer architecture [66] for sequence modeling has become a key weapon for modern
artificial intelligence, achieving success in language [14, 11, 44] and vision [16]. Motivated by
these advances, the research community has actively explored how to best harness transformers for
reinforcement learning (RL) [12, 29, 34, 54, 30, 33, 75]. While promising empirical results have
been demonstrated, the theoretical understanding of transformers for RL remains limited.

This paper provides theoretical insights into in-context reinforcement learning (ICRL)—an emerging
approach that utilizes sequence-to-sequence models like transformers to perform reinforcement
learning in newly encountered environments. In ICRL, the model takes as input the current state and
past interaction history with the environment (the context), and outputs an action. The key hypothesis
in ICRL is that pretrained transformers can act as RL algorithms, progressively improving their policy
based on past observations. Approaches such as Algorithm Distillation [30] and Decision-Pretrained
Transformers [33] have demonstrated early successes, finding that supervised pretraining can produce
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good ICRL performance. However, many concrete theoretical questions remain open about the ICRL
capabilities of transformers, including but not limited to (1) what RL algorithms can transformers
implement in-context; (2) what performance guarantees (e.g. regret bounds) can such transformers
achieve when used iteratively as an online RL algorithm; and (3) when can supervised pretraining
find such a good transformer. Specifically, this paper investigates the following open question:

How can supervised pretraining on Transformers learn in-context reinforcement learning?

In this paper, we initiate a theoretical study of the ICRL capability of transformers under supervised
pretraining to address the open questions outlined above. We show that (1) Transformers can
implement prevalent RL algorithms, including LinUCB and Thompson sampling for stochastic
linear bandits, and UCB-VI for tabular Markov decision processes; (2) The algorithms learned by
transformers achieve near-optimal regret bounds in their respective settings; (3) Supervised pretraining
find such algorithms as long as the sample size scales with the covering number of transformer class
and distribution ratio between expert and offline algorithms.

Summary of contributions and paper outline

• We propose a general framework for supervised pretraining approaches to ICRL (Section 2). This
framework encompasses existing methods like Algorithm Distillation [30], where the expert and
context algorithms are identical, as well as Decision-Pretrained Transformers [33], where the
expert generates optimal actions for the MDP. It also includes approximate DPT variants where
the expert estimates optimal actions from full interaction trajectories.

• We prove that the supervised-pretrained transformer will imitate the conditional expectation of
the expert algorithm given the observed trajectory (Section 3 & Appendix C). The generalization
error scales with both model capacity and a distribution ratio measuring divergence between the
expert algorithm and the algorithm that generated offline trajectories.

• We demonstrate that transformers can effectively approximate several near-optimal reinforcement
learning algorithms by taking observed trajectories as context inputs (Section 4 & Appendix E).
Specifically, we show transformers can approximate LinUCB (Appendix E.1) and Thompson
sampling algorithms (Appendix E.2) for stochastic linear bandit problems, and UCB-VI (Ap-
pendix E.3) for tabular Markov decision processes. Combined with generalization error bounds for
pretraining and regret bounds of these RL algorithms, this provides regret bounds for supervised-
pretrained transformers.

• Preliminary experiments validate that transformers can perform ICRL in our setup (Appendix I).

• Technically, we prove efficient approximation of LinUCB by showing transformers can implement
accelerated gradient descent for solving ridge regression (Appendix F.4), enabling fewer attention
layers than the vanilla gradient descent approach in [6]. To enable efficient Thompson sampling
implementation, we prove transformers can compute matrix square roots through the Pade
decomposition (Appendix G.3). These approximation results are interesting in their own right.

Related work Our work is intimately related to the lines of work on meta-reinforcement learning,
in-context learning, transformers for decision-making, and the approximation theory of transformers.
Due to limited space, we discuss these related works in Appendix A.

2 Framework for In-Context Reinforcement Learning
Let M be the space of decision-making environments, where each environment M ∈ M
shares the same number of rounds T and state-action-reward spaces {St,At,Rt}t∈[T ]. Each
M = {Tt−1

M ,RtM}t∈[T ] has its own transition model TtM : St×At → ∆(St+1) (with S0,A0 = {∅}
so T0

M (·) ∈ ∆(S1) gives the initial state distribution) and reward functions RtM : St×At → ∆(Rt).
We equipM with a distribution Λ ∈ ∆(M), the environment prior. While this setting is general, we
will later instantiate it on T rounds of bandits or K episodes of H-step MDPs with T = KH .

Distributions of offline trajectories We denote a partial interaction trajectory, consisting of
observed state-action-reward tuples, by Dt = {(s1, a1, r1), . . . , (st, at, rt)} ∈ Tt =

∏
s≤t(Ss ×

As ×Rs) and write D = DT for short. An algorithm Alg maps a partial trajectory Dt−1 ∈ Tt−1

and state st ∈ St to a distribution over the actions Alg(·|Dt−1, st) ∈ ∆(At). Given an environment
M and algorithm Alg, the distribution over a full trajectory DT is fully specified:

PAlg
M (DT ) =

∏T
t=1 T

t−1
M (st|st−1, at−1)Alg(at|Dt−1, st)RtM (rt|st, at).
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In supervised pretraining, we use a context algorithm Alg0 (which we also refer to as the offline
algorithm) to collect the offline trajectories DT . For each trajectory DT , we also assume access
to expert actions a = (at ∈ At)t∈T ∼ AlgE(·|DT ,M), sampled from an expert algorithm AlgE :
TT ×M →

∏
t∈[T ] ∆(At). This expert could omnisciently observe the full trajectory DT and

environment M to recommend actions. Let DT = DT ∪ {a} be the augmented trajectory. Then we
have

PAlg0,AlgE
M (DT ) = PAlg0

M (DT )
∏T
t=1 Alg

t
E(at|DT ,M).

We denote PAlg0,AlgE
Λ as the joint distribution of (M,DT ) where M ∼ Λ and DT ∼ PAlg0,AlgE

M , and
PAlg0

Λ as the joint distribution of (M,DT ) where M ∼ Λ and DT ∼ PAlg0

M .

Three special cases of expert algorithms We consider three special cases of the expert algorithm
AlgE , corresponding to three supervised pretraining setups:

(a) Algorithm distillation [30]. The algorithm depends only on the partial trajectory Dt−1 and
current state st: AlgtE(·|DT ,M) = AlgtE(·|Dt−1, st). For example, AlgE could be a bandit
algorithm like the Uniform Confidence Bound (UCB).

(b) Decision pretrained transformer (DPT) [33]. The algorithm depends on the environment M
and the current state st: AlgtE(·|DT ,M) = AlgtE(·|st,M). For example, AlgE could output the
optimal action a∗t in state st for environment M .

(c) Approximate DPT. The algorithm depends on the full trajectory DT but not the environment M :
AlgtE(·|DT ,M) = AlgtE(·|DT ). For example, AlgE could estimate the optimal action â∗t from
the entire trajectory DT .

For any expert algorithm AlgE , we define its reduced algorithm where the t-th step is
AlgE(·|Dt−1, st) := EAlg0

Λ [AlgtE(·|DT ,M)|Dt−1, st]. The expectation on the right is over
PAlg0

Λ (DT ,M |Dt−1, st) = Λ(M) · PAlg0

M (DT )/PAlg0

M (Dt−1, st). Note that the reduced expert al-
gorithm AlgE generally depends on the context algorithm Alg0. However, for cases (a) and (b), AlgE
is independent of the context algorithm Alg0. Furthermore, in case (a), we have Alg

t

E = AlgtE .

3 Statistical analysis of supervised pretraining
In supervised pretraining, we are given n i.i.d offline trajectories {Di

T = (si1, a
i
1, r

i
1, . . . , s

i
T , a

i
T ,

riT )}ni=1 ∼iid PAlg0

Λ from the interaction of M i ∼iid Λ with an offline algorithm Alg0. Given
an expert algorithm AlgE , we augment each trajectory Di

T by {ait ∼iid AlgE(·|Di
t−1, s

i
t)}t∈[T ].

Supervised pretraining maximizes the log-likelihood over the algorithm class {Algθ}θ∈Θ

θ̂ = arg max
θ∈Θ

1

n

n∑
i=1

T∑
t=1

logAlgθ(a
i
t|Di

t−1, s
i
t). (1)

This section discusses the statistical properties of the algorithm learned via supervised pretraining.

3.1 Main result
Our main result demonstrates that the algorithm maximizing the supervised pretraining loss will
imitate AlgE(·|Dt−1, st) = EM∼Λ,DT∼Alg0

[AlgtE(·|DT ,M)|Dt−1, st], the conditional expectation
of the expert algorithm AlgE given the observed trajectory. The imitation error bound will scale with
the covering number of the algorithm class and a distribution ratio factor, defined in Appendix C.

We aim to bound the performance gap between Algθ̂ and AlgE in terms of expected cumulative
rewards, where the expected cumulative reward is defined as

RΛ,Alg(T ) := EM∼Λ

[
RM,Alg(T )

]
, RM,Alg(T ) = EDT∼PAlg

M
[
∑T
t=1 rt].

An intermediate step of the result is controlling the expected Hellinger distance between two algo-
rithms, where for distributions p, q, we have D2

H(p, q) =
∫

(
√
p(x)−

√
q(x) )2dx.

Theorem 1 (Performance gap between expected cumulative rewards). Let Assumption A hold and let
θ̂ be a solution to Eq. (1). TakeR = RAlgE ,Alg0

as defined in Definition 5, and NΘ = NΘ((nT )−2)
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as defined in Definition 4. Then for some universal constant c > 0, with probability ≥ 1− δ, we have

E
DT∼P

AlgE
Λ

[ T∑
t=1

DH

(
Algθ̂(·|Dt−1, st),AlgE(·|Dt−1, st)

)]
≤ cT

√
R
(√

log [NΘ · T/δ]
n

+
√
εreal

)
.

(2)

Further assume that |rt| ≤ 1 almost surely. Then with probability at least 1− δ, the difference of the
expected cumulative rewards between Algθ̂ and AlgE satisfies∣∣∣RΛ,Alg

θ̂
(T )−RΛ,AlgE

(T )
∣∣∣ ≤ cT 2

√
R
(√

log [NΘ · T/δ]
n

+
√
εreal

)
. (3)

The proof of Theorem 1 is contained in Section D.1. We remark that when the expectation on the
left-hand-side of (2) is with respect to the measure PAlg0

Λ , standard MLE analysis will provide a bound
without the distribution ratio factor R = RAlgE ,Alg0

in the right-hand side. The distribution ratio
factor arises from the distribution shift between trajectories generated by the expert algorithm AlgE
versus the context algorithm Alg0. In addition, it should be noted that the result in Theorem 1 holds
generally provided Assumption A is satisfied, which does not necessitate that the algorithm class be
induced by transformers.
Implications for special cases Theorem 1 directly implies statistical guarantees for Algorithm Dis-
tillation [30], Decision-Pretrained Transformers [33], and its approximate version (Appendix C.1).

4 Approximation by transformers
As another main contribution of this paper, we demonstrate the capability of transformers to implement
various near-optimal reinforcement learning algorithms in bandits and MDPs. Due to the space limit,
the formal settings and theorem statements are deferred to Appendix E.

Theorem 2 (Approximating the soft LinUCB; Informal version of Theorem 12). For a soft version of
the LinUCB algorithm [13] for linear bandits, AlgsLinUCB(τ), there exists a transformer TFR

θ(·) with

D ≤ O(dA), L = Õ(
√
T ), M ≤ 4A, D′ = Õ(d+A

√
Td/(τε)), |||θ||| = Õ(A+ T

√
d/(τε1/4)),

(4)
such that taking Algθ as defined in Eq. (7), we have∣∣∣ logAlgsLinUCB(τ)(at,k|Dt−1, st)− logAlgθ(at,k|Dt−1, st)

∣∣∣ ≤ ε, ∀t ∈ [T ], k ∈ [A].

Theorem 3 (Regret of LinUCB and ICRL; Informal version of Theorem 13). With probability
≥ 1− δ, the learned algorithm Algθ̂, a solution to Eq. (1), achieves regret bound

EM∼Λ

[ T∑
t=1

max
k
〈at,k,w∗〉 −RM,Alg

θ̂
(T )
]
≤ O

(
d
√
T log(T ) + T 2

√
log(NΘ · T/δ)

n

)
,

where logNΘ ≤ Õ(L2D(MD +D′) log n) ≤ Õ(T 3.5d2A3 log n).

Besides LinUCB, we also provide similar transformer approximation results and regret bounds for the
following algorithms, where near-optimal regret can be achieved by polynomial-sized transformers:

• Thompson sampling for linear bandit (Appendix E.2).

• UCB-VI [4] for MDPs (Appendix E.3).

5 Conclusions
This paper theoretically investigates the ICRL capability of supervised-pretrained transformers. We
demonstrate how transformers can efficiently implement prevalent RL algorithms including LinUCB,
Thompson sampling, and UCB-VI, achieving near-optimal regrets in respective settings. We also
provide sample complexity guarantees for the supervised pretraining approach to learning these
algorithms. The generalization error scales with the covering number of the transformer class as well
as the distribution ratio between the expert and offline algorithms. Simulations validate our theoretical
findings. Finally, we discuss the limitations of our results and provide additional discussions in
Appendix A.1.
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A Related work
Meta-learning and meta-reinforcement learning In-context reinforcement learning can be cast
into the framework of meta-learning and meta-reinforcement learning [60, 61, 7, 41, 28, 59, 65].
More recently, a line of work focuses on meta-learn certain shared structures such as the dynamics
of the shared tasks [21, 40], a task context identifier [51, 27, 80], exploration strategies [24], or the
initialization of the network policy [18, 25, 43, 57]. Theories for this last approach of model-agnostic
meta-learning have been explored by [70].

Our work focuses on a more agnostic approach to learning the learning algorithm itself [69, 17,
15, 39, 35, 47, 30, 33]. Among these works, [69, 17] focus on the online meta-RL setting with the
training objective to be the total reward. Furthermore, [15, 39, 35, 47] focus on offline meta-RL, but
their training objectives differ from the cross entropy loss used here, requiring explicit handling of
distribution shift. The supervised pretraining approach we consider is most similar to the algorithm
distillation methods of [30] and the decision-pretrained transformers of [33]. We provide quantitative
sample complexity guarantees and transformer constructions absent from previous work.

In-context learning The in-context learning (ICL) capability of pretrained transformers has gained
significant attention since being demonstrated on GPT-3 [11]. Recent work investigates why and
how pretrained transformers perform ICL [22, 36, 67, 3, 73, 6, 78, 2, 53]. In particular, [73] propose
a Bayesian framework explaining how ICL works. [22] show transformers can be trained from
scratch to perform ICL of simple function classes. [67, 3, 6] demonstrate transformers can implement
in-context learning algorithms via in-context gradient descent, with [6] showing transformers can
perform in-context algorithm selection. [78] studied training dynamics of a single attention layer for
in-context learning of linear functions. Our work focuses on the related but distinct capability of
in-context decision-making for pretrained transformers.

Transformers for decision making Besides the ICRL approach, recent work has proposed goal-
conditioned supervised learning (GCSL) for using transformers to make decisions [12, 29, 34, 54,
10, 62, 75]. In particular, Decision Transformer (DT) [12, 29] uses transformers to autoregressively
model action sequences from offline data, conditioned on the achieved return. During inference,
one queries the model with a desired high return. Limitations and modifications of GCSL have
been studied in [74, 45, 64, 9]. A key distinction between GCSL and ICRL is that GCSL treats the
transformer as a policy, whereas ICRL treats it as an algorithm for improving the policy based on
observed trajectories.

Expressivity of transformers The transformer architecture, introduced by [66], has revolutionized
natural language processing and is used in most recently developed large language models like BERT
and GPT [14, 11]. The expressivity of transformers has been extensively studied [77, 46, 26, 76, 8,
79, 37, 71, 20, 6, 3, 67]. Transformers have been shown to efficiently approximate various algorithms
including automata [37], Turing machines [71], and gradient descent [6, 3, 67]. Our work provides
efficient transformer constructions that implement accelerated gradient descent and matrix square
root algorithms, complementing existing expressivity results.

Statistical theories of imitation learning Our generalization error analysis adapts classical analysis
of maximum-likelihood estimator [23]. The error compounding analysis for imitation learning
appeared in early works [56, 55]. More recent theoretical analyses of imitation learning also appear
in [49, 50, 52].

A.1 Limitation and discussion
In this section, we discuss some limitations of our work and some potential future directions.

Distribution ratio In Theorem 1, our regret bound of the learned algorithms Algθ̂ depends on
the distribution ratioRAlgE ,Alg0

. While in cases like algorithm distillation [30] the distribution ratio
equals one since the offline algorithm matches the expert algorithm, in the worst case, the ratio
can exponentially depend on T or even become arbitrarily large. To control the distribution ratio
in practice, one approach is to augment the offline trajectory dataset with a portion of trajectories
generated by an expert algorithm or no-regret algorithms resembling the expert algorithm. On the
other hand, further research could investigate structural assumptions of decision-making problems
that avoid pessimistic dependence on the distribution ratio in regret bounds.

Guarantee of pretrained transformer Our statistical result (Theorem 1) only guarantees that the
pretrained transformer learns an “algorithm” matching the expert algorithm under the pre-training
distribution, even though our approximation results (Theorem 12, 14, 16) show the existence of a
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transformer approximating the expert algorithm over the entire input space. In our early experiments,
we noticed the learned transformers do not generalize well on out-of-distribution instances, such as
with shifted reward distributions or increased number of runs T . Similar phenomena occur in other
in-context learning problems (e.g. [22]). Understanding the actual algorithm implemented by the
pretrained transformer through theoretical and empirical analysis is an interesting question for future
work.

Alternative pretraining methods Our theoretical results study pretraining the transformer by
maximizing the log-likelihood of i.i.d. offline trajectories as in Eq. (1). This aligns with standard
supervised pretraining of large language models. However, alternative pretraining methods may
also be effective. For instance, one could replace the log-probability in Eq. (1) with an `2 loss for
continuous action spaces, consider other objectives like cumulative reward [17], or explore goal-
conditioned reinforcement learning [12] for in-context RL. While our work focuses on log-likelihood
pretraining, theoretical investigation of alternative methods is an interesting direction for future work.

Possibility of surpassing the expert algorithm by online training Our work considers offline
pretraining by imitating the expert algorithm (i.e., AlgE), which can only learn a transformer matching
the expert’s performance at best. However, through online training, where the transformer interacts
with the environment, the learned transformer may surpass existing experts by training to improve
itself rather than imitating a specific algorithm. Investigating whether online training enables
surpassing expert algorithms is an interesting direction for future work.

Implications for practice While the focus of our work is primarily theoretical, our results lead
to several practical implications for in-context reinforcement learning. One key implication is the
importance of training labels (i.e., expert actions a). When the expert algorithm depends solely
on past observations, we can learn AlgE (see Theorem 13). In contrast, when AlgE is the optimal
action a? (involving knowledge of the underlying MDP), we can learn the posterior average of this
algorithm given past observations. This corresponds to the Thompson sampling algorithm, as in
Decision-Pretrained Transformers (see Theorem 15).

Furthermore, as discussed previously, the distribution ratio between the offline and expert algorithms
may impact the generalization of the learned algorithm. Both our theory (see Theorem 12) and
simulations (see Figure 4) show that a small distribution ratio between the offline algorithm Alg0 and
the expert algorithm AlgE is essential, otherwise the online performance of the learned algorithm
may substantially degrade. This suggests that incorporating trajectories generated purely from the
expert (“on-policy ICRL”) into the offline dataset is advantageous, when feasible.

B Technical preliminaries
In this work, we will apply the following standard concentration inequality (see e.g. Lemma A.4
in [19]).

Lemma 4. For any sequence of random variables (Xt)t≤T adapted to a filtration {Ft}Tt=1, we have
with probability at least 1− δ that

t∑
s=1

Xs ≤
t∑

s=1

logE[exp(Xs) | Fs−1] + log(1/δ), for all t ∈ [T ].

Lemma 5. Adopt the notations in Definition 4. Then for any θ ∈ Θ, there exists θ0 ∈ Θ0 such that
‖Algθ0(·|Dt−1, st)− Algθ(·|Dt−1, st)‖1 ≤ 2ρ.

Proof of Lemma 5. For any θ ∈ Θ, let θ0 ∈ Θ0 be such that ‖ logAlgθ0(·|Dt−1, st) −
logAlgθ(·|Dt−1, st)‖∞ ≤ ρ for all Dt−1, st and t ∈ [T ]. Then

‖Algθ0(·|Dt−1, st)− Algθ(·|Dt−1, st)‖1
=
∑
a∈At

|Algθ0(a|Dt−1, st)− Algθ(a|Dt−1, st)|

≤
∑
a∈At

emax{log Algθ0 (·|Dt−1,st),log Algθ(·|Dt−1,st)}

· | logAlgθ0(·|Dt−1, st)− logAlgθ(·|Dt−1, st)|
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≤ ρ
∑
a∈At

emax{log Algθ0 (·|Dt−1,st),log Algθ(·|Dt−1,st)}

≤ ρ
∑
a∈At

(Algθ0(·|Dt−1, st) + Algθ(·|Dt−1, st)) ≤ 2ρ,

where the second line uses a Taylor expansion of ex, the fourth line uses the assumption on θ0, the last
line uses emax{x,y} ≤ ex + ey and the fact that Algθ0(·|Dt−1, st),Algθ(·|Dt−1, st) are probability
functions.

We have the following upper bound on the covering number of the transformer class {TFR
θ : θ ∈

ΘD,L,M,D′,B}.

Lemma 6. For the space of transformers {TFR
θ : θ ∈ ΘD,L,M,D′,B} with

ΘD,L,M,D′,B :=
{
θ = (θ

[L]
attn,θ

[L]
mlp) : max

`∈[L]
M (`) ≤M,max

`∈[L]
D′

(`) ≤ D′, |||θ||| ≤ B
}
,

where M (`), D′
(`) denote the number of heads and hidden neurons in the `-th layer respectively, the

covering number of the set of induced algorithms {Algθ,θ ∈ ΘD,L,M,D′,B} (c.f. Eq. (7)) satisfies

logNΘD,L,M,D′,B
(ρ) ≤ cL2D(MD +D′) log

(
2 +

max{B,L,R}
ρ

)
for some universal constant c > 0.

Remark of Lemma 6. Note that the transformer classes ΘD,L,M,D′,B ,ΘD,L,M,D′,B have the
same expressivity as one can augment any TFθ ∈ ΘD,L,M,D′,B such that the resulting TFθ,aug ∈
ΘD,L,M,D′,B by adding heads or hidden neurons with fixed zero weights. Therefore, the same bound
in Lemma 6 follows for ΘD,L,M,D′,B , and throughout the paper we do not distinguish ΘD,L,M,D′,B

and ΘD,L,M,D′,B and use them interchangeably. We also use M (`), D′
(`) to represent the number of

heads and hidden neurons in the `-th layer of transformers, respectively.

Proof of Lemma 6. We start with introducing Proposition J.1 in [6].

Proposition 7 (Proposition J.1 in [6]). The function TFR is (LBLHBΘ)-Lipschitz w.r.t. θ ∈
ΘD,L,M,D′,B for any fixed input H. Namely, for any θ1,θ2 ∈ ΘD,L,M,D′,B , we have∥∥TFR

θ1
(H)− TFR

θ2
(H)

∥∥
2,∞ ≤ LB

L
HBΘ|||θ1 − θ2|||,

where ‖A‖2,∞ := supt∈[T ] ‖A·t‖2 for any matrix A ∈ RK×T , and BΘ := BR(1 + BR2 +

B3R2), BH := (1 +B2)(1 +B2R3).

As in the Proof of Theorem 20 in [6], we can verify using Example 5.8 in [68] that the δ-covering
number

logN(δ;B|||·|||(r), |||·|||) ≤ L(3MD2 + 2DD′) log(1 + 2r/δ), (5)

where B|||·|||(r) denotes any ball of radius r under the norm |||·|||. Moreover, we have the following
continuity result on the log-softmax function

Lemma 8 (Continuity of log-softmax). For any u,v ∈ Rd, we have∥∥∥∥log
( eu

‖eu‖1

)
− log

( ev

‖ev‖1

)∥∥∥∥
∞
≤ 2 ‖u− v‖∞

We defer the proof of Lemma 8 to the end of this section.

Note that Algθ(·|Dt−1, st) corresponds to K entries in one column of H(L) applied through the
softmax function. Therefore, combining Proposition 7, Lemma 8 and Eq. (5), we conclude that for
any r > 0, there exists a subset Θ0 ∈ ΘD,L,M,D′,B with size L(3MD2 + 2DD′) log(1 + 2r/δ)
such that for any θ ∈ ΘD,L,M,D′,B , there exists θ0 ∈ Θ0 with∥∥logAlgθ(·|Dt−1, st)− logAlgθ0

(·|Dt−1, st)
∥∥
∞ ≤ 2LBLHBΘδ

for all DT . Substituting r = B and letting δ = ρ/(2LBLHBΘ) yields the upper bound on
NΘD,L,M,D′,B (ρ) in Lemma 6.
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Proof of Lemma 8. Define w := u− v. Then∥∥∥∥log
( eu

‖eu‖1

)
− log

( ev

‖ev‖1

)∥∥∥∥
∞

≤ ‖u− v‖∞ + |log ‖eu‖1 − log ‖ev‖1|

= ‖u− v‖∞ +

∫ 1

0

〈
ev+tw

‖ev+tw‖1
,w

〉
dt

≤ ‖u− v‖∞ +

∫ 1

0

∥∥∥∥ ev+tw

‖ev+tw‖1

∥∥∥∥
1

· ‖w‖∞ dt

= 2 ‖u− v‖∞ ,

where the third line uses the Newton-Leibniz formula.

We present the following standard results on the convergence of GD and AGD. We refer the reader
to [42] for the proof of these results.

Proposition 9 (Convergence guarantee of GD and AGD). Suppose L(w) is a α-strongly convex and
β-smooth function on Rd. Denote the condition number κ := β/α and w∗ := arg minw L(w).

(a). The gradient descent iterates wt+1
GD := wt

GD − η∇L(wt
GD) with stepsize η = 1/β and

initial point w0
GD = 0d satisfies

‖wt
GD −w∗‖22 ≤ exp(− t

κ
)‖w0

GD −w∗‖22,

L(wt
GD)− L(w∗) ≤ β

2
exp(− t

κ
)‖w0

GD −w∗‖22.

(b). The accelerated gradient descent (AGD, [42]) iterates wt+1
AGD := vt

GD −
1
βL(vt

AGD), vt+1
AGD := wt+1

AGD +
√
κ−1√
κ+1

(wt+1
AGD − wt

AGD) with w0
AGD = v0

AGD = 0d
satisfies

‖wt
AGD −w∗‖22 ≤ (1 + κ) exp(− t√

κ
)‖w0

AGD −w∗‖22,

L(wt
AGD)− L(w∗) ≤ α+ β

2
exp(− t√

κ
)‖w0

AGD −w∗‖22.

Transformer architecture We consider a sequence of N input vectors {hi}Ni=1 ⊂ RD, compactly
written as an input matrix H = [h1, . . . ,hN ] ∈ RD×N , where each hi is a column of H (also
a token). Throughout this paper, we define σ(t) := ReLU(t) = max {t, 0} as the standard relu
activation function.

Definition 1 (Masked attention layer). A masked attention layer withM heads is denoted as Attnθ(·)
with parameters θ = {(Vm,Qm,Km)}m∈[M ] ⊂ RD×D. On any input sequence H ∈ RD×N , we
have H = Attnθ(H) = [h1, . . . ,hN ] ∈ RD×N , where

hi = [Attnθ(H)]i = hi +
∑M
m=1

1
i

∑i
j=1 σ(〈Qmhi,Kmhj〉) ·Vmhj ∈ RD.

We remark that the use of ReLU attention layers is for technical reasons. In practice, both ReLU
attention and softmax attention layers should perform well. Indeed, several studies have shown that
ReLU transformers achieve comparable performance to softmax transformers across a variety of
tasks [72, 63, 6].

Definition 2 (MLP layer). An MLP layer with hidden dimension D′ is denoted as MLPθ(·) with
parameters θ = (W1,W2) ∈ RD′×D × RD×D′ . On any input sequence H ∈ RD×N , we have
H = MLPθ(H) = [h1, . . . ,hN ] ∈ RD×N , where

hi = hi + W2 · σ(W1hi) ∈ RD.
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We next define L-layer decoder-based transformers. Each layer consists of a masked attention layer
(see Definition 1) followed by an MLP layer (see Definition 2) and a clip operation.

Definition 3 (Decoder-based Transformer). An L-layer decoder-based transformer, denoted as
TFR

θ(·), is a composition of L masked attention layers, each followed by an MLP layer and a
clip operation: TFR

θ(H) = H(L) ∈ RD×N , where H(L) is defined iteratively by taking H(0) =
clipR(H) ∈ RD×N , and for ` ∈ [L],

H(`) = clipR

(
MLP

θ
(`)
mlp

(
Attn

θ
(`)
mattn

(
H(`−1)

)))
∈ RD×N , clipR(H) = [proj‖h‖2≤R(hi)]i.

Above, the parameter θ = (θ
(1:L)
mattn,θ

(1:L)
mlp ) consists of θ(`)

mattn = {(V(`)
m ,Q

(`)
m ,K

(`)
m )}m∈[M ] ⊂

RD×D and θ
(`)
mlp = (W

(`)
1 ,W

(`)
2 ) ∈ RD′×D×RD×D′ . We define the parameter class of transformers

as ΘD,L,M,D′,B := {θ = (θ
(1:L)
attn ,θ

(1:L)
mlp ) : |||θ||| ≤ B}, where the norm of a transformer TFR

θ is
denoted as

|||θ||| := max
`∈[L]

{
max
m∈[M ]

{
‖Q(`)

m ‖op, ‖K(`)
m ‖op

}
+

M∑
m=1

‖V(`)
m ‖op + ‖W(`)

1 ‖op + ‖W(`)
2 ‖op

}
. (6)

We introduced clipped operations in transformers for technical reasons. For brevity, we will write
TFθ = TFR

θ when there is no ambiguity. We will set the clipping value R to be sufficiently large so
that the clip operator does not take effect in any of our approximation results.

Algorithm induced by Transformers We equip the transformer with an embedding mapping
h : ∪t∈[T ]St ∪ ∪t∈[T ](At × Rt) → RD. This assigns any state st ∈ St a D-dimensional
embedding vector h(st) = h(st) ∈ RD, and any action-reward pair (at, rt) ∈ At × Rt a D-
dimensional embedding h(at, rt) ∈ RD. The embedding function h should encode the time
step t of the state, action, and reward. With abuse of notation, we denote h(Dt−1, st) =
[h(s1), h(a1, r1), . . . , h(at−1, rt−1), h(st)]. We define a concatenation operator cat : RD×∗ →
RD×∗ that concatenates its inputs cat(h1, . . . ,hN ) = [h1, . . . ,hN ] in most examples, but
it could also insert special tokens at certain positions (in MDPs we add an additional token
at the end of each episode). For a partial trajectory and current state (Dt−1, st), we input
H = cat(h(s1), h(a1, r1), . . . , h(at−1, rt−1), h(st)) ∈ RD×∗ into the transformer. This produces
output H = TFR

θ(H) = [h1,h2 . . . ,h−2,h−1] with the same shape as H. To extract a distribution
over the action space At with |At| = A actions, we assume a fixed linear extraction mapping
A ∈ RA×D. The induced algorithm is then defined as: Algθ(·|Dt−1, st) = softmax(A · h−1). The
overall algorithm induced by the transformer is:

Algθ(·|Dt−1, st) = softmax(A · TFR
θ(cat(h(Dt−1, st)))−1). (7)

We will always choose a proper concatenation operator cat in examples, so that in the pretraining
phase, all the algorithm outputs {Algθ(·|Dt−1, st)}t≤T along the trajectory can be computed in a
single forward propagation.

C Details for supervised pretraining results
Definition 4 (Covering number). For a class of algorithms {Algθ, θ ∈ Θ}, we say Θ0 ⊆ Θ is an
ρ-cover of Θ, if Θ0 is a finite set such that for any θ ∈ Θ, there exists θ0 ∈ Θ0 such that

‖ logAlgθ0(·|Dt−1, st)− logAlgθ(·|Dt−1, st)‖∞ ≤ ρ, for all Dt−1, st, t ∈ [T ].

The covering number NΘ(ρ) is the minimal cardinality of Θ0 such that Θ0 is a ρ-cover of Θ.

Definition 5 (Distribution ratio). We define the distribution ratio of two algorithms Alg1,Alg2 by

RAlg1,Alg2
:= E

M∼Λ,DT∼P
Alg1
M

[ T∏
s=1

Alg1(as|Ds−1, ss)

Alg2(as|Ds−1, ss)

]
= 1 + χ2

(
PAlg1

Λ ;PAlg2

Λ

)
.

Our main result requires the realizability assumption of algorithm class {Algθ}θ∈Θ with respect to
the conditional expectation of the expert algorithm.
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Assumption A (Approximate realizability). There exists θ∗ ∈ Θ and εreal > 0 such that for all
t ∈ [T ],

logE
M∼Λ,DT∼P

Alg0,AlgE
M

[ AlgE(at|Dt−1, st)

Algθ∗(at|Dt−1, st)

]
≤ εreal. (8)

C.1 Implications in special cases
Algorithm Distillation When we set AlgE = Alg0, the supervised pretraining approach corre-
sponds to the Algorithm Distillation method introduced in [30]. In this case, it suffices to set ai = ai

for every pretraining trajectory, eliminating the need to sample additional expert actions. The con-
ditional expectation of the expert algorithm is given by AlgE = Alg0, and the distribution ratio
RAlgE ,Alg0

= 1. Under these conditions, Theorem 1 ensures that Algθ̂ imitates Alg0 with a reward
difference bounded by∣∣∣RΛ,Alg

θ̂
(T )−RΛ,Alg0

(T )
∣∣∣ ≤ cT 2

(√ log [NΘ · T/δ]
n

+
√
εreal

)
.

If the context algorithm Alg0 does not perform well, we cannot expect the learned algorithm Algθ̂ to
have good performance, regardless of the number of offline trajectories.

Decision Pretrained Transformer When we set AlgtE = AlgtE(st,M) = a∗t to be the optimal
action at time t, the supervised pretraining approach corresponds to Decision-Pretrained Trans-
formers (DPT) proposed in [33]. In this case, the conditional expectation of the expert algorithm
AlgE(·|Dt−1, st) = E[AlgE(·|st,M)|Dt−1, st] = AlgTS(·|Dt−1, st) is the Thompson sampling
algorithm [33, Theorem 1], which samples from the posterior distribution of the optimal action a∗t
given by P(a∗t (M)|Dt−1, st) ∝ Λ(M) · PAlg0

M (Dt−1, st). This implies that learning from optimal
actions effectively learns to imitate Thompson sampling. Furthermore, the context algorithm is
not required to perform well for the learned algorithm to be consistent with Thompson sampling.
However, a high-quality context algorithm Alg0 may help reduce the distribution ratio R, thereby
learning Thompson sampling with fewer samples.

Approximate DPT In practical scenarios, the learner may not have access to the optimal action
a∗t of the environment M during pretraining. Instead, they might rely on an estimated optimal
action â∗t ∼ AlgtE(·|DT ), derived from the entire trajectory DT . We can offer a guarantee analogous
to Theorem 1, provided the distribution of the estimated action closely aligns with its posterior
distribution:

E
DT∼P

Alg0
Λ

KL(AlgtE(·|DT ) ‖ PTS,t(·|DT )) ≤ εapprox, ∀t ∈ [T ]. (9)

Here, PTS,t(·|DT ) represents the posterior distribution of the optimal action a∗t = a∗t (M) at time t,
given the observation DT , where (M,DT ) ∼ PAlg0

Λ .

Proposition 10. Let Assumption A hold and let θ̂ be the solution to Eq. (1). TakeR = RAlgTS,Alg0

as defined in Definition 5, and NΘ = NΘ((nT )−2) as defined in Definition 4. Assume that for each
trajectory, an estimated optimal action is provided â∗t ∼ AlgtE(·|DT ) at each time t ∈ [T ] satisfying
Eq. (9). Assume that the rewards |rt| ≤ 1 almost surely. Then for some universal constant c > 0,
with probability at least 1− δ, the difference of the expected cumulative rewards between Algθ̂ and
AlgTS satisfies

|RΛ,Alg
θ̂
(T )−RΛ,AlgTS

(T )| ≤ c
√
R · T 2

(√ log [NΘ · T/δ]
n

+
√
εreal +

√
εapprox

)
.

The proof of Proposition 10 is contained in Appendix D.2.

D Proofs in Section 3
In this section, c > 0 denotes universal constants that may differ across equations.
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D.1 Proof of Theorem 1
Proof of Eq. (2) Note that we have

T∑
t=1

EM∼Λ,a1:t−1∼AlgE ,st

√
D2

H(AlgE(·|Dt−1, st),Algθ̂(·|Dt−1, st))

=

T∑
t=1

EM∼Λ,a1:t−1∼Alg0,st

[( t−1∏
s=1

AlgE(as|Ds−1, ss)

Alg0(as|Ds−1, ss)

)
·
√

D2
H(AlgE(·|Dt−1, st),Algθ̂(·|Dt−1, st))

]

≤
T∑
t=1

√√√√EΛ,Alg0

( t−1∏
s=1

AlgE(as|Ds−1, ss)

Alg0(as|Ds−1, ss)

)2

· EΛ,Alg0
D2

H(AlgE(·|Dt−1, st),Algθ̂(·|Dt−1, st))

≤

√√√√EΛ,Alg0

( T∏
s=1

AlgE(as|Ds−1, ss)

Alg0(as|Ds−1, ss)

)2

·
T∑
t=1

√
EΛ,Alg0

D2
H(AlgE(·|Dt−1, st),Algθ̂(·|Dt−1, st)),

where the second line follows from a change of distribution argument, the third line follows from
Cauchy-Schwartz inequality, and the fourth line uses the fact that

Ex,y∼P1·P2

(Q1(x)Q2(y|x)

P1(x)P2(y|x)

)2

=

∫
Q1(x)2Q2

2(y|x)

P1(x)P2(y|x)
dµ(x, y)

=

∫
Q1(x)2

P1(x)

(∫ Q2
2(y|x)

P2(y|x)
dµ(y|x)

)
dµ(x) ≥

∫
Q1(x)2

P1(x)
dµ(x) = Ex∼P1

(Q1(x)

P1(x)

)2

,

for any probability densities {Qi,Pi}i=1,2 with respect to some base measure µ.

Continuing the calculation of the above lines of bounds, we have
T∑
t=1

EM∼Λ,a1:t−1∼AlgE ,st

√
D2

H(AlgE(·|Dt−1, st),Algθ̂(·|Dt−1, st))

≤
√
T

√√√√EM∼Λ,a1:T−1∼Alg0,st

( T∏
s=1

AlgE(as|Ds−1, ss)

Alg0(as|Ds−1, ss)

)2

·

√√√√ T∑
t=1

EM∼Λ,a1:t−1∼Alg0,stD
2
H(AlgE(·|Dt−1, st),Algθ̂(·|Dt−1, st))

=
√
T

√√√√EM∼Λ,a1:T−1∼AlgE ,st

[ T∏
s=1

AlgE(as|Ds−1, ss)

Alg0(as|Ds−1, ss)

]

·

√√√√ T∑
t=1

EM∼Λ,a1:t−1∼Alg0,stD
2
H(AlgE(·|Dt−1, st),Algθ̂(·|Dt−1, st))

≤ cT
√
RAlgE ,Alg0

√
logNΘ(1/(nT )2) + log(T/δ)

n
+ εreal

≤ cT
√
RAlgE ,Alg0

(√ log[NΘ(1/(nT )2)T/δ]

n
+
√
εreal

)
,

where the first inequality follows from the Cauchy-Schwartz inequality, the first equality is due to a
change of distribution argument, the second inequality uses Lemma 11. This completes the proof of
Eq. (2).
Proof of Eq. (3) For any bounded function f such that |f(DT )| ≤ F for some F > 0, we have∣∣∣EM∼Λ,a∼AlgE

[f(DT )]− EM∼Λ,a∼Alg
θ̂
[f(DT )]

∣∣∣
=
∣∣∣ T∑
t=1

EM∼Λ,a1:t∼AlgE ,at+1:T∼Algθ̂
[f(DT )]− EM∼Λ,a1:t−1∼AlgE ,at:T∼Algθ̂

[f(DT )]
∣∣∣
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≤ 2F

T∑
t=1

EM∼Λ,a1:t−1∼AlgE ,st
DTV(AlgE(·|Dt−1, st),Algθ̂(·|Dt−1, st)),

where the first equality uses the performance difference lemma, the last line follows from the
variational representation of the total variation distance

DTV(P,Q) = sup
‖f‖∞=1

EP[f(X)]/2− EQ[f(X)]/2,

and

DTV(P1(x)P2(y | x)P3(z | y),P1(x)P4(y | x)P3(z | y)) = Ex∼P1
DTV(P2(y | x),P4(y | x))

(10)

for probability densities {Pi}i=1,2,3,4 with respect to some base measure µ. Since DTV(P,Q) ≤√
D2

H(P,Q) for any distributions P,Q, it follows from Eq. (2) that∣∣∣EM∼Λ,a∼AlgE
[f(DT )]− EM∼Λ,a∼Alg

θ̂
[f(DT )]

∣∣∣
≤ cF

√
RAlgE ,Alg0

· T
(√ log [NΘ(1/(nT )2)T/δ]

n
+
√
εreal

)
with probability at least 1 − δ for some universal constant c > 0. Letting f(DT ) =

∑T
t=1 rt and

noting that |f(DT )| ≤ T concludes the proof of Theorem 1.

D.2 Proof of Proposition 10
By the jointly convexity of KL(P ‖ Q) with respect to (P,Q) and the fact that D2

H(P,Q) ≤
KL(P ‖ Q), we have

E
Dt−1,st∼P

Alg0
Λ

D2
H(AlgE(·|Dt−1, st),PTS(·|Dt−1, st))

≤ E
Dt−1,st∼P

Alg0
Λ

KL(AlgE(·|Dt−1, st) ‖ PTS(·|Dt−1, st))

≤ E
DT∼P

Alg0
Λ

KL(â∗t ‖ PTS,t(·|DT )) ≤ εapprox.

Therefore, applying Lemma 11 gives

E
M∼Λ,DT∼P

Alg0
M

[
T∑
t=1

D2
H

(
Algθ̂(·|Dt−1, st),AlgTS(·|Dt−1, st)

)]

≤ 2E
M∼Λ,DT∼P

Alg0
M

[
T∑
t=1

D2
H

(
Algθ̂(·|Dt−1, st),AlgE(·|Dt−1, st)

)
+ D2

H(AlgE(·|Dt−1, st),AlgTS(·|Dt−1, st))

]

≤ c
(T log

[
NΘ(1/(nT )2)T/δ

]
n

+ T (εreal + εapprox)
)

with probability at least 1 − δ. Proposition 10 follows from similar arguments as in the proof of
Theorem 1 with εreal replaced by εreal + εapprox.

D.3 An auxiliary lemma

Lemma 11 (General guarantee for supervised pretraining). Suppose Assumption A holds. Then the
solution to Eq. (1) achieves

E
DT∼P

Alg0
Λ

[
T∑
t=1

D2
H

(
Algθ̂(·|Dt−1, st),AlgE(·|Dt−1, st)

)]
≤ c

T log
[
NΘ(1/(nT )2)T/δ

]
n

+ Tεreal.

with probability at least 1− δ for some universal constant c > 0.

Proof of Lemma 11.

Define

Lnt(θ) :=

n∑
i=1

logAlgθ(a
i
t|Di

t−1, s
i
t), and Lnt(expert) :=

n∑
i=1

logAlgE(ait|Di
t−1, s

i
t),
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and let Ln(θ) =
∑T
t=1 Lnt(θ), Ln(expert) =

∑T
t=1 Lnt(expert). We claim that with probability

at least 1− δ
T∑
t=1

EDT
[
D2

H(Algθ(·|Dt−1, st),AlgE(·|Dt−1, st))
]

≤ Ln(expert)− Ln(θ)

n
+ 2

T logNΘ(1/(nT )2)

n
+ 2

T log(T/δ)

n
+

4

n
(11)

for all θ ∈ Θ, i ∈ [T ], where DT follows distribution PAlg0

M (·), M ∼ Λ. For now, we assume this
claim holds. Moreover, it follows from Lemma 4 and the fact Ln(θ̂) ≥ Ln(θ∗) that

Ln(expert)− Ln(θ̂)

n
≤ Ln(expert)− Ln(θ∗)

n
=

T∑
t=1

Lnt(expert)− Lnt(θ∗)
n

≤ T log(T/δ)

n
+

T∑
t=1

logEDT
[ AlgE(at|Dt−1, st)

Algθ∗(at|Dt−1, st)

]
≤ T log(T/δ)

n
+ Tεreal (12)

with probability at least 1− δ.

Choosing θ = θ̂ in Eq. (11) and combining it with Eq. (12) and a union bound, we obtain

T∑
t=1

EDT
[
D2

H(Algθ̂(·|Dt−1, st),AlgE(·|Dt−1, st))
]

≤ Tεreal + 2
(T logNΘ(1/(nT )2) + 2T log(2T/δ) + 2

n

)
≤ Tεreal + cT

( logNΘ(1/(nT )2) + log(T/δ)

n

)
with probability at least 1− δ for some universal constant c > 0. This completes the proof.

Proof of Eq. (11) Let Θ0 be a 1/(nT )2-covering set of Θ with covering number ncov = |Θi|. For
k ∈ [ncov], t ∈ [T ], i ∈ [n], define

`ikt = log
AlgE(ait|Di

t−1, s
i
t)

Algθk(ait|Di
t−1, s

i
t)
,

where (Di
T , a

i) are the trajectory and expert actions collected in the i-th instance. Using Lemma 4
with Xs = −`skt and a union bound over (k, t), conditioned on the trajectories (D1

T , . . . , D
n
T ), we

have

1

2

n∑
i=1

`ikt + log(ncovT/δ) ≥
n∑
i=1

− logE
[

exp
(
− `ikt

2

)]
for all k ∈ [ncov], t ∈ [T ] with probability at least 1− δ. Note that

E
[

exp
(
− `ikt

2

)∣∣∣Di
t−1, s

i
t

]
= ED

[√
Algθk(ait|Di

t−1, s
i
t)

AlgE(ait|Di
t−1, s

i
t)

∣∣∣∣∣Di
t−1, s

i
t

]

=
∑
a∈At

√
Algθk(a|Di

t−1, s
i
t)AlgE(a|Di

t−1, s
i
t),

where the last inequality uses the assumption that the actions ai are generated using the expert
AlgE(·|Di

t−1, s
i
t). Therefore, for any θ ∈ Θ covered by θk, we have

− logE
[

exp
(
− `ikt

2

)]
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≥ 1− EDi
[ ∑
a∈At

√
Algθk(a|Di

t−1, s
i
t)AlgE(a|Di

t−1, s
i
t)
]

= 1− EDi
[ ∑
a∈At

√
Algθ(a|Di

t−1, s
i
t)AlgE(a|Di

t−1, s
i
t)
]

− EDi
[ ∑
a∈At

√
AlgE(a|Di

t−1, s
i
t)
(√

Algθk(a|Di
t−1, s

i
t)−

√
Algθ(a|Di

t−1, s
i
t)
)]

≥ 1

2
EDi

[
D2

H(AlgE(·|Di
t−1, s

i
t),Algθ(·|Di

t−1, s
i
t))
]

− EDi
[∑
a∈A

(√
Algθ(·|Di

t−1, s
i
t)−

√
Algθk(·|Di

t−1, s
i
t)
)2]1/2

≥ 1

2
EDi

[
D2

H(AlgE(·|Di
t−1, s

i
t),Algθ(·|Di

t−1, s
i
t))
]
− ‖Algθ(·|Di

t−1, s
i
t)− Algθk(·|Di

t−1, s
i
t)‖

1/2
1

≥ 1

2
EDi

[
D2

H(AlgE(·|Di
t−1, s

i
t),Algθ(·|Di

t−1, s
i
t))
]
−
√

2

nT

for all i ∈ [n], t ∈ [T ], where the first inequality uses − log x ≥ 1− x, the second inequality follows
from Cauchy-Schwartz inequality, the third inequality uses (

√
x−√y)2 ≤ |x− y| for x, y ≥ 0, the

last inequality uses the fact that θ is covered by θk and Lemma 5. Since any θ ∈ Θ is covered by θk
for some k ∈ [ncov], and for this k summing over t ∈ [T ] gives

n∑
i=1

T∑
t=1

`ikt = Ln(expert)− Ln(θk) ≤ Ln(expert)− Ln(θ) +
1

nT
≤ Ln(expert)− Ln(θ) + 1.

Therefore, with probability at least 1− δ, we have

1

2

(
Ln(expert)− Ln(θ) + 1

)
+ T log(ncovT/δ) +

√
2

≥ n

2

T∑
t=1

EDT
[
D2

H(Algθ(·|Dt−1, st),Algexpert(·|Dt−1, st))
]

for all θ ∈ Θ, where DT follows PAlg0

Λ . Multiplying both sides by 2/n and letting ncov =
NΘ(1/(nT )2) yields Eq. (11).

E Approximation by transformers
In this section, we demonstrate the capability of transformers to implement prevalent reinforcement
learning algorithms that produce near-optimal regret bounds. Specifically, we illustrate the imple-
mentation of LinUCB for stochastic linear bandits in Section E.1, Thompson sampling for stochastic
linear bandits in Section E.2, and UCB-VI for tabular Markov decision process in Section E.3.

E.1 LinUCB for linear bandits
A stochastic linear bandit environment is defined by M = (w∗, E ,A1, . . . ,AT ). For each time step
t ∈ [T ], the learner chooses an action at ∈ Rd from a set of actions At = {at,1, . . . ,at,A}, which
consists of A actions and may vary over time. Upon this action selection, the learner receives a
reward rt = 〈at,w∗〉+ εt. Here,{εt} ∼iid E are zero-mean noise variables, and w∗ ∈ Rd represents
an unknown parameter vector. Stochastic linear bandit can be cast into our general framework by
setting st = At and adopting a deterministic transition where st transits to st+1 deterministically
regardless of the chosen action.

We assume the context algorithm Alg0 is the soft LinUCB [13]. Specifically, for each time
step t ∈ [T ], the learner estimates the parameter w∗ using linear ridge regression wt

ridge,λ :=

arg minw∈Rd
∑t−1
j=1(rj − 〈aj ,w〉)2 + λ‖w‖22. Subsequently, the learner calculates the upper

confidence bounds for the reward of each action as v∗tk := 〈at,k,wt
ridge,λ〉 + α · (a>t,k(λId +∑t−1

j=1 aja
>
j )−1at,k)1/2. Finally, the learner selects an action at according to probability
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{p∗t,j}j∈[A] = softmax({v∗tj/τ}j∈[A]) for some sufficiently small τ > 0. Note that the soft LinUCB
AlgsLinUCB(τ) recovers LinUCB as τ → 0.

We further assume the existence of constants σ, ba, Ba, Bw > 0 such that the following conditions
hold: |εt| ≤ σ, ba ≤ ‖at,k‖2 ≤ Ba, and ‖w∗‖2 ≤ Bw for all t ∈ [T ], k ∈ [A]. Given these, the con-
fidence parameter is defined as: α =

√
λBw + σ

√
2 log(2BaBwT ) + d log((dλ+ TB2

a)/(dλ)) =

Õ(
√
d). The following result shows that the soft LinUCB algorithm can be efficiently approximated

by transformers, for which the proof is contained in Appendix F.4.

Theorem 12 (Approximating the soft LinUCB). Consider the embedding mapping h, extraction
mapping A, and concatenation operator cat as in Appendix F.1. For any small ε, τ > 0, there exists
a transformer TFR

θ(·) with logR = Õ(1),

D ≤ O(dA), L = Õ(
√
T ), M ≤ 4A, D′ = Õ(d+A

√
Td/(τε)), |||θ||| = Õ(A+ T

√
d/(τε1/4)),

(13)
such that taking Algθ as defined in Eq. (7), we have∣∣∣ logAlgsLinUCB(τ)(at,k|Dt−1, st)− logAlgθ(at,k|Dt−1, st)

∣∣∣ ≤ ε, ∀t ∈ [T ], k ∈ [A].

Here O(·) hides some absolute constant, and Õ(·) additionally hides polynomial terms in
(σ, b−1

a , Ba, Bw, λ
±1), and poly-logarithmic terms in (T,A, d, 1/ε, 1/τ).

A key component in proving Theorem 12 is demonstrating that the transformer can approximate
the accelerated gradient descent algorithm for solving linear ridge regression (Lemma 18), a result
of independent interest. Leveraging Theorem 12, we can derive the following regret bound for the
algorithm obtained via Algorithm Distillation, with the proof provided in Appendix F.5.

Theorem 13 (Regret of LinUCB and ICRL). Let Θ = ΘD,L,M,D′,B be the class of transformers
satisfying Eq. (13) with ε = 1/T 3 and τ = 1/ log(4TABa(Bw+2α/

√
λ))/
√

4T = Õ(T−1/2), and
choose the clip value logR = Õ(1). Let both the context algorithm Alg0 and the expert algorithm
AlgE coincide with the soft LinUCB algorithm AlgsLinUCB(τ) with parameter τ during supervised
pretraining. Then with probability at least 1− δ, the learned algorithm Algθ̂, a solution to Eq. (1),
entails the regret bound

EM∼Λ

[ T∑
t=1

max
k
〈at,k,w∗〉 −RM,Alg

θ̂
(T )
]
≤ O

(
d
√
T log(T ) + T 2

√
log(NΘ · T/δ)

n

)
,

where logNΘ ≤ Õ(L2D(MD+D′) log n) ≤ Õ(T 3.5d2A3 log n). Here O hides polynomial terms
in (σ, b−1

a , Ba, Bw, λ
±1), and Õ additionally hides poly-logarithmic terms in (T,A, d, 1/ε, 1/τ).

E.2 Thompson sampling for linear bandit
We continue to examine the stochastic linear bandit framework of Section E.1, now assuming a
Gaussian prior w? ∼ N (0, λId) and Gaussian noises {εt}t≥0 ∼iid N (0, r). Additionally, we
assume existence of (ba, Ba) such that ba ≤ ‖at,k‖2 ≤ Ba. In this model, Thompson sampling
also utilizes linear ridge regression. Subsequently, we establish that transformers trained under the
DPT methodology can learn Thompson sampling algorithms. We state the informal theorem in
Theorem 14 below, where its formal statement and proof are contained in Appendix G.

Theorem 14 (Approximating the Thompson sampling, Informal). Consider the embedding mapping
h, extraction mapping A, and concatenation operator cat as in F.1. Under Assumption B, C, for
sufficiently small ε, there exists a transformer TFR

θ(·) with logR = Õ(1),

D = Õ(AT 1/4d), L = Õ(
√
T ), M = Õ(AT 1/4),

|||θ||| = Õ(T +AT 1/4 +
√
A), D′ = Õ(AT 1/4d),

(14)

such that taking Algθ as defined in Eq. (7), with probability at least 1− δ0 over (M,DT ) ∼ PAlg
Λ for

any Alg, we have

logAlgTS(at,k|Dt−1, st)− logAlgθ(at,k|Dt−1, st) ≤ ε, ∀t ∈ [T ], k ∈ [A].

Here, Õ(·) hides polynomial terms in (M0,C0, λ
±1, r±1, b−1

a , Ba), and poly-logarithmic terms in
(T,A, d, 1/ε, 1/δ0), where (M0,C0) are parameters in Assumption B and C.
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Central to proving Theorem 14 is establishing that the transformer can approximate matrix square
roots via Pade decomposition (Appendix G.3), a result of independent interest. Theorem 14 thereby
implies the subsequent regret bound for transformers trained under DPT.

Theorem 15 (Regret of Thompson sampling and ICRL). Follow the assumptions of Theorem 14. Let
Θ = ΘD,L,M,D′,B be the class of transformers satisfying Eq. (14) with ε = 1/(RT 3), δ0 = δ/(2n),
and choose the clip value logR = Õ(1). Assume the trajectories are collected by some context
algorithm Alg0, and we choose the expert algorithm AlgE(st,M) = a∗t = arg maxa∈At 〈a,w

∗〉 to
be the optimal action of the bandit instance M for each trajectory. Then with probability at least
1− δ, the learned algorithm Algθ̂, a solution to Eq. (1), entails regret bound

EM∼Λ

[ T∑
t=1

max
k
〈at,k,w∗〉 −RM,Alg

θ̂
(T )
]
≤ O

(
d
√
T log(Td) +

√
R · T 2

√
log(NΘT/δ)

n

)
,

where R = RAlgTS,Alg0
, and logNΘ ≤ Õ(L2D(MD + D′) log n) ≤ Õ(T 5/4A2d(M0 +

A
√
Td) log n). Here O hides polynomial terms in (λ±1, r±1, b−1

a , Ba), and Õ additionally hides
poly-logarithmic terms in (M0,C0, T, A, d, 1/ε, 1/δ0).

E.3 UCB-VI for Tabular MDPs
A finite-horizon tabular MDP is specified by M = (S,A, H, {Ph}h∈[H], {Rh}h∈[H], µ1), with H
being the time horizon, S the state space of size S, A the action space of size A, and µ1 ∈ ∆(S)
defining the initial state distribution. At each time step h ∈ [H], Ph : S × A → ∆(S) denotes the
state transition dynamics and Rh : S × A → [0, 1] gives the reward function. A policy π := {πh :
(S ×A×R)h−1×S → ∆(A)}h∈[H] maps history and state to a distribution over actions. The value
of policy π interacting with environment M is defined as the expected cumulative reward VM (π) =

EM,π[
∑H
h=1Rh(sh, ah)]. A policy π∗ is said to be optimal if π∗ = arg maxπ∈∆(Π) VM (π).

We let the context algorithm Alg0 interact with an MDP instance M to generate K episodes, each
consisting ofH horizon sequences (sk,h, ak,h, rk,h)k∈[K],h∈[H]. These can be reindexed into a single
trajectory DT = {(st, at, rt)}t∈[T ] with t = H(k − 1) + h and T = KH . The Bayes regret of any
algorithm Alg gives EM∼Λ[KVM (π∗)−RM,Alg(T )].

Near minimax-optimal regret for tabular MDPs can be attained through the UCB-VI algorithm
[4]. We demonstrate that transformers are capable of approximating the soft UCB-VI algorithm
AlgsUCBVI(τ), a slight modification of UCB-VI formalized in Appendix H.1.

Theorem 16 (Approximating the soft UCB-VI). Consider the embedding mapping h, extraction
mapping A, and concatenation operator cat as in Appendix H.1. There exists a transformer TFR

θ(·)
with logR = Õ(1),

D = O(HS2A), L = 2H + 8, M = O(HS2A),

D′ = O(K2HS2A), |||θ||| ≤ Õ(K2HS2A+K3 + 1/τ),
(15)

such that AlgsUCBVI(τ)(a|Dt−1, st) = Algθ(a|Dt−1, st) for all t ∈ [T ], a ∈ A. Here O(·) hides
universal constants and Õ(·) hides poly-logarithmic terms in (H,K, S,A, 1/τ).

Leveraging Theorem 16, we can derive the following regret bound for the algorithm obtained via
Algorithm Distillation.

Theorem 17 (Regret of UCB-VI and ICRL). Let Θ = ΘD,L,M,D′,B be the class of transformers
satisfying Eq. (15) with τ = 1/K, and choose the clip value logR = Õ(1). Let both the context
algorithm Alg0 and the expert algorithm AlgE coincide with the soft UCB-VI algorithm AlgsUCBVI(τ)

during supervised pretraining. Then with probability at least 1− δ, the learned algorithm Algθ̂, a
solution to Eq. (1), entails regret bound

EM∼Λ[KVM (π∗)−RM,Alg
θ̂
(T )] ≤ Õ

(
H2
√
SAK +H3S2A+ T 2

√
log(NΘT/δ)

n

)
,

where logNΘ ≤ Õ(L2D(MD + D′) log n) = Õ(H4S4A3(K2 + HS2A) log n), and Õ(·) hides
poly-logarithmic terms in (H,K, S,A).
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F Soft LinUCB for linear stochastic bandit
Throughout this section, we use c > 0 to denote universal constants whose values may vary from
line to line. Moreover, for notational simplicity, we use O(·) to hide universal constants, O(·) to
hide polynomial terms in the problem parameters (σ, b−1

a , Ba, Bw, λ
±1), and Õ(·) to hide both

poly-logarithmic terms in (T,A, d, 1/ε, 1/τ) and polynomial terms in (σ, b−1
a , Ba, Bw, λ

±1). We
also use the bold font at ∈ Rd to denote the selected action vector at at time t ∈ [T ].

This section is organized as follows. Section F.1 discusses the embedding and extraction formats of
transformers for the stochastic linear bandit environment. Section F.2 describes the LinUCB and the
soft LinUCB algorithms. Section F.3 introduces and proves a lemma on approximating the linear
ridge regression estimator, which is important for proving Theorem 12. We prove Theorem 12 in
Section F.4 and prove Theorem 13 in Section F.5.

F.1 Embedding and extraction mappings
Consider the embedding in which for each t ∈ [T ], we have two tokens h2t−1,h2t ∈ RD such that

h2t−1 =


0d+1

At
0A
0

pos2t−1

 =:

ha2t−1

hb2t−1
hc2t−1

hd2t−1

 , h2t =


at
rt

0Ad
0A
0

pos2t

 =:

ha2t
hb2t
hc2t
hd2t

 ,

where hb2t−1 = At =
[
a>t,1 . . . a>t,A

]>
denotes the action set at time t, ha2t =

[
a>t rt

]>
denotes

the action and the observed reward at time t, hc2t−1 is used to store the (unnormalized) policy at
time t, 0 in hd denotes an additional zero vector with dimension O(dA), and posi := (i, i2, 1)> for
i ∈ [2T ] is the positional embedding. Note that the token dimension D = O(dA). In addition, we
define the token matrix Ht := [h1, . . . ,h2t] ∈ RD×2t for all t ∈ [T ].

Offline pretraining During pretraining, the transformer TFθ takes in Hpre
T := HT as the input

token matrix and generates Hpost
T := TFθ(Hpre

T ) as the output. For each step t ∈ [T ], we define

the induced policy Algθ(·|Dt−1, st) :=
exp(hpost,c

2t−1 )

‖ exp(hpost,c
2t−1 )‖1

∈ ∆A, whose i-th entry is the probability of

selecting action at,i given (Dt−1, st). We then find the transformer θ̂ ∈ Θ by solving Eq. (1). Due
to the decoder structure of transformer TFθ, the 2t− 1-th token only has access to the first 2t− 1
tokens. Therefore the induced policy is determined by the historical data (Dt−1, st) and does not
depend on future observations.

Rollout At each time t ∈ [T ], given the action set At (i.e., current state st) and the previous data
Dt−1, we first construct the token matrix Hpre

roll,t = [Ht−1,h2t−1] ∈ RD×(2t−1). The transformer
then takes Hpre

roll,t as the input and generates Hpost
roll,t = [Hpost

t−1 ,h
post
2t−1] = TFθ(Hpre

roll,t). Next, the

agent selects an action at ∈ At according to the induced policy Algθ(·|Dt−1, st) :=
exp(hpost,c

2t−1 )

‖ exp(hpost,c
2t−1 )‖1

∈

∆A and observes the reward rt.

Embedding and extraction mappings To integrate the above construction into the framework
described in Section 2, we have the embedding vectors h(st) := h2t−1, h(at, rt) := h2t, the
concatenation operator cat(h1, . . . ,hN ) := [h1, . . . ,hN ], the input token matrix H = Hpre

roll,t :=

cat(h(s1), h(a1, r1), . . . , h(at−1, rt−1), h(st)) ∈ RD×(2t−1), the output token matrix H = Hpost
roll,t,

and the linear extraction map A satisfies A · h−1 = A · hpost

2t−1 = hpost,c
2t−1 .

F.2 LinUCB and soft LinUCB
Let T be the total time and λ, α > 0 be some prespecified values. At each time t ∈ [T ], LinUCB
consists of the following steps:

1. Computes the ridge estimator wt
ridge,λ = arg minw∈Rd

1
2t

∑t−1
j=1(rj−〈aj ,w〉)2 + λ

2t‖w‖
2
2.

2. For each action k ∈ [A], computes v∗tk :=
〈
at,k,w

t
ridge,λ

〉
+ α

√
a>t,kA

−1
t at,k, where

At = λId +
∑t−1
j=1 aja

>
j .
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3. Selects the action at,j with j := arg maxk∈[A] v
∗
tk.

Unless stated otherwise, in step 2 above we choose α = α(δ) with δ = 1/(2BaBwT ) and

α(δ) :=
√
λBw + σ

√
2 log(1/δ) + d log((dλ+ TB2

a)/(dλ)) = O(
√
d log T ) = Õ(

√
d).

In this work, to facilitate the analysis of supervised pretraining, we consider soft LinUCB (denoted
by sLinUCB(τ)), which replaces step 3 in LinUCB with

3’ Selects the action at,j with probability
exp(v∗tj/τ)

‖exp(v∗tj/τ)‖
1

for j ∈ [A].

Note that soft LinUCB recovers the standard LinUCB as τ → 0.

F.3 Approximation of the ridge estimator
In this section, we present a lemma on how transformers can approximately implement the ridge
regression estimator in-context.

Throughout the proof, for t ∈ [2T ], we let h
(L)
t denote the i-th token in the output token matrix

obtained after passing through an L-layer transformer. We also define readwridge
: RD 7→ Rd be the

operator that gives the values of d coordinates in the token vector that are used to store the estimation
of the ridge estimate.

Lemma 18 (Approximation of the ridge estimator). For any small ε > 0, there exists an attention-
only (i.e., no MLP layers) transformer TFθ(·) with

L =
⌈4T (B2

a + λ)

λ
log(TBa(BaBw + σ)/(λε))

⌉
= Õ(T ), max

`∈[L]
M (l) ≤ 3, |||θ||| ≤

√
2+

λ+ 2

B2
a + λ

= O(1)

such that ‖readwridge
(h

(L)
2t−1)−wt

ridge,λ‖2 ≤ ε for all t ∈ [T ].

Moreover, there exists a transformer TFθ(·) with

L =
⌈
2
√

2T

√
B2
a + λ

λ
log
( (2T (B2

a + λ) + λ)TBa(BaBw + σ)

λ2ε

)⌉
= Õ(

√
T ), max

`∈[L]
M (l) ≤ 4,

max
`∈[L]

D′
(`) ≤ 4d, |||θ||| ≤ 10 +

λ+ 2

B2
a + λ

= O(1)

such that ‖readwridge
(h

(L)
2t−1)−wt

ridge,λ‖2 ≤ ε for all t ∈ [T ].

Results similar to Lemma 18 have been shown in [6] under a different scenario. However, we remark
that the second part of Lemma 18 has a weaker requirement on the number of layers as we prove that
transformers can implement accelerated gradient descent (AGD, [42]) in-context.

Proof of Lemma 18. Note that λId � At � (TB2
a + λ)Id. Therefore the optimization problem

wt
ridge,λ = arg min

w∈Rd
L(w) := arg min

w∈Rd

1

2(2t− 1)

t−1∑
j=1

(rj − 〈aj ,w〉)2 +
λ

2(2t− 1)
‖w‖22

is λ/(2t− 1)-strongly convex and (B2
a + λ)-smooth and the condition number κ ≤ 2T (B2

a + λ)/λ.
Moreover, by the definition of wt

ridge,λ we have

‖wt
ridge,λ‖2 = ‖(λId +

t−1∑
j=1

aja
>
j )−1(

t−1∑
j=1

ajrj)‖2 ≤ ‖(λId +

t−1∑
j=1

aja
>
j )−1‖2 · ‖

t−1∑
j=1

ajrj‖2

≤ TBa(BaBw + σ)

λ

for all t ∈ [T ].
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Proof of part 1 By Proposition 9, we see that L = d4T (B2
a + λ) log(TBa(BaBw + σ)/(λε))/λe

steps of gradient descent with stepsize η = 1/(B2
a + λ) starting from w0

GD = 0d finds wL
GD such

that ‖wL
GD −wt

ridge,λ‖2 ≤ ε.

Now we prove that one attention-only layer can implement one step of gradient descent

w`+1
GD := w`

GD −
η

2t− 1

t−1∑
j=1

(
〈
aj ,w

`
GD

〉
− rj)aj −

ηλ

2t− 1
w`

GD.

We encode the algorithm using the last token (i.e., the 2t− 1-th token). Denote the first d entries of
hd2t−1 by ŵ and define readwridge

(h2t−1) = ŵ. Starting from ŵ0 = 0d, for each layer ` ∈ [L], we
let the number of heads M (`) = 3 and choose Q

(`)
1,2,3,K

(`)
1,2,3,V

(`)
1,2,3 such that for even tokens h2j

with j ≤ t− 1 and odd tokens h2j−1 with j ≤ t

Q
(`)
1 h

(`−1)
2t−1 =

[
ŵ`−1

1

]
, K

(`)
1 h

(`−1)
2j =

[
aj
−rj

]
, V

(`)
1 h

(`−1)
2j = −η

[
0
aj
0

]
, K

(`)
1 h

(`−1)
2j−1 = 0, V

(`)
1 h

(`−1)
2j−1 = 0

Q
(`)
2 = −Q

(`)
1 , K

(`)
2 = K

(`)
1 , V

(`)
2 = −V

(`)
1 ,

Q
(`)
3 h

(`−1)
2t−1 =

[
1

−(2t− 1)
1

]
, K

(`)
3 h

(`−1)
2j =

[
1
1
2j

]
, K

(`)
3 h

(`−1)
2j−1 =

[
1
1

2j − 1

]
, V

(`)
3 h

(`−1)
2t−1 = −ηλ

 0
ŵ`−1

0

 .
Summing up the three heads and noting that t = σ(t)− σ(−t), we see that the ŵ part of h2t−1 (i.e.,
readwridge

(h2t−1)) has the update

ŵl = ŵl−1 − η

2t− 1

t∑
j=1

[σ(
〈
aj , ŵ

l−1
〉
− rj)− σ(rj −

〈
aj , ŵ

l−1
〉
)]aj

− ηλ

2t− 1

[ t−1∑
j=1

(σ(1 + 2j − 2t)V
(`)
3 h

(`−1)
2j−1 + σ(1 + 2j − 2t+ 1)V

(`)
3 h

(`−1)
2j ) + V

(`)
3 h

(`−1)
2t−1

]

= ŵl−1 − η

2t− 1

t∑
j=1

[
〈
aj , ŵ

l−1
〉
− rj ]aj −

ηλ

2t− 1
V

(`)
3 h

(`−1)
2t−1

= ŵl−1 − η

2t− 1

t−1∑
j=1

[
〈
aj , ŵ

l−1
〉
− rj ]aj −

ηλ

2t− 1
ŵl−1,

which is one step of gradient descent with stepsize η. Moreover, it is easy to see that one can
choose the marices such that maxm∈[3] ‖Q

(`)
m ‖op = maxm∈[3] ‖K

(`)
m ‖op =

√
2 and ‖V(`)

1 ‖op =

‖V(`)
2 ‖op = η, ‖V(`)

3 ‖op = λη. Therefore the norm of the transformer |||θ||| ≤
√

2+(λ+2)/(B2
a+λ).

Proof of part 2 Similarly, Proposition 9 shows L = d2
√

2T (B2
a + λ)/λ log((1 +

κ)TBa(BaBw + σ)/(λε))e steps of accelerated gradient descent gives ‖wL
AGD −wt

ridge,λ‖2 ≤ ε.

Again, we encode the algorithm using the last token (i.e., the 2t − 1-th token). Denote the first
d, d+ 1 ∼ 2d, 2d+ 1 ∼ 3d entries of hd2t−1 by ŵa, ŵb, v̂ respectively. Starting from ŵ0

a = ŵ0
b =

v̂0 = 0d, AGD updates the parameters as follows:

ŵ`
a = ŵ`−1

a + (v̂`−1 − ŵ`−1
a )− η∇L(v̂`−1), (16a)

v̂` = v̂`−1 + [ŵ`
a +

√
κ− 1√
κ+ 1

(ŵ`
a − ŵ`−1

b )− v̂`−1], (16b)

ŵ`
b = ŵ`−1

b + (ŵ`
a − ŵ`−1

b ). (16c)
We show that one attention layer and one MLP layer can implement one step of AGD as above.
Namely, Eq. (16a) can be obtained using the same attention layer we constructed for gradient descent
with v̂ replacing ŵ, and an extra head with

Q
(`)
4 h

(`−1)
2t−1 =

 2t− 1
−(2t− 1)2

1

 , K
(`)
4 h

(`−1)
i =

1
1
i2

 , V
(`)
4 h

(`−1)
2t−1 =

 0
v̂`−1 − ŵl−1

a
0


25



for i ≤ 2t − 1 that gives v̂`−1 − ŵ`−1
a . Denote the output tokens of the attention layer by h̃.

Eq. (16b), (16c) can be implemented using one layer of MLP. Concretely, we choose W
(`)
1 ,W

(`)
2

such that

W
(`)
1 h̃

(`−1)
2t−1 =


w`
a +

√
κ−1√
κ+1

(ŵ`
a − ŵ`−1

b )− v̂l−1

−w`
a −

√
κ−1√
κ+1

(ŵ`−1
a − ŵ`−1

b ) + v̂l−1

w`
a −w`−1

b

−w`
a + w`−1

b

 , W
(`)
2 σ(W

(`)
1 h̃

(`−1)
2t−1 ) =

 0
ŵ`
b

v̂`

0

 .
Since t = σ(t) − σ(−t) for t ∈ R, it is readily verified that one can choose the linear maps such
that ‖W(`)

1 ‖op ≤ 4
√

2, ‖W(`)
2 ‖op =

√
2. Combining this with the attention layer for Eq. (16a)

and noting that ‖V(`)
4 ‖op =

√
2, we verify that the transformer we constructed has norm |||θ||| ≤

10 + (λ+ 2)/(B2
a + λ). This completes the proof of Lemma 18.

F.4 Proof of Theorem 12
We construct a transformer that implements the following steps at each time t ∈ [T ] starting with
hx2t−1 = hpre,x

2t−1 for x ∈ {a, b, c, d}

h2t−1 =


hpre,a

2t−1

hpre,b
2t−1

hpre,c
2t−1

hpre,d
2t−1

 step 1−−−→


h

pre,{a,b,c}
2t−1
ŵridge

?
0

pos

 step 2−−−→



h
pre,{a,b,c}
2t−1
ŵridge

?

Â−1
t at,1

...

Â−1
t at,A

0
pos


step 3−−−→



h
pre,{a,b,c}
2t−1
ŵridge

?

Â−1
t at,1

...

Â−1
t at,A
v̂t1/τ

...
v̂tA/τ

0
pos



=:


hpost,a

2t−1

hpost,b
2t−1

hpost,c
2t−1

hpost,d
2t−1

 ,

(17)

where pos := [t, i2, 1]>; ŵridge is an approximation to the ridge estimator wt
ridge,λ; Â−1

t at,k are

approximations to A−1
t at,k; v̂tk are approximations to vtk := 〈ŵridge,at,k〉+ α

√〈
at,k, Â

−1
t at,k

〉
,

which are also approximations to

v∗tk :=
〈
wt

ridge,λ,at,k
〉

+ α
√〈

at,k,A
−1
t at,k

〉
for k ∈ [A]. After passing through the transformer, we obtain the policy

Algθ(·|Dt−1, st) :=
exp(hpost,c

2t−1 )

‖ exp(hpost,c
2t−1 )‖1

∈ ∆A.

We claim the following results which we will prove later.

Step 1 For any ε > 0, there exists a transformer TFθ(·) with

L =
⌈
2
√

2T

√
B2
a + λ

λ
log
( (2T (B2

a + λ) + λ)TBa(BaBw + σ)

λ2ε

)⌉
= Õ(

√
T ),

max
`∈[L]

M (l) ≤ 4, max
`∈[L]

D′
(l) ≤ 4d, |||θ||| ≤ 10 +

λ+ 2

B2
a + λ

= O(1)

that implements step 1 in (17) with ‖ŵridge −wt
ridge,λ‖2 ≤ ε.

Step 2 For any ε > 0, there exists a transformer TFθ(·) with

L =
⌈
2
√

2T

√
B2
a + λ

λ
log
( (2T (B2

a + λ) + λ)Ba
λ2ε

)⌉
= Õ(

√
T ), max

`∈[L]
M (l) ≤ 4A,
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max
`∈[L]

D′
(l) ≤ 4dA, |||θ||| ≤ 10 +A(

λ+ 3

B2
a + λ

+
√

2) = O(A)

that implements step 2 in (17) with ‖Â−1
t at,k −A−1

t at,k‖2 ≤ ε for k ∈ [A].

Step 3 Suppose that the approximation error in Step 2 satisfies ε2 ≤ b2a/[2(B2
a + λ)TBa]. For any

ε > 0, there exists a one-layer transformer TFθ(·) with

L = 2, max
`∈[L]

M (l) ≤ 4A, max
`∈[L]

D′
(`) ≤ O(A

√
Tα/(τε)), |||θ||| ≤ O(A+T (α/(τε))1/4+α/τ)

that implements step 3 in (17) with |v̂tk/τ − vtk/τ | ≤ ε for k ∈ [A].

Denote the errors ε appear in each step by ε1, ε2, ε3, respectively. Define for all k ∈ [A] that

v∗tk :=
〈
wt

ridge,λ,at,k
〉

+ α
√〈

at,k,A
−1
t at,k

〉
,

which are the actual values used to compare across different actions in LinUCB. Then for all k ∈ [A],
we have the approximation error∣∣∣v∗tk
τ
− v̂tk

τ

∣∣∣ ≤ ∣∣∣v∗tk
τ
− vtk

τ

∣∣∣+
∣∣∣vtk
τ
− v̂tk

τ

∣∣∣
≤ 1

τ
|
〈
wt

ridge,λ − ŵridge,at,k
〉
|+ 1

τ

∣∣∣α√〈at,k,A−1
t at,k

〉
− α

√〈
at,k, Â

−1
t at,k

〉∣∣∣+ ε3

≤ Baε1

τ
+

αBaε2

2τ min
{√〈

at,k,A
−1
t at,k

〉
,

√〈
at,k, Â

−1
t at,k

〉} + ε3

≤ Baε1

τ
+

√
T (B2

a + λ)αBaε2

baτ
+ ε3,

where the last line uses Eq. (18). For a targeted approximation error ε, choosing ε1 =

ετ/(12Ba), ε2 = min{baτε/(12
√
T (B2

a + λ)αBa), b2a/[2(B2
a + λ)TBa]} and ε3 = ε/12, we

obtain |v∗tk/τ − v̂tk/τ | ≤ ε/2 for all k ∈ [A].

From the proof of each step, we can verify that the token dimension D can be chosen to be of order
O(dA). Moreover, due to the convergence guarantee for each iteration of AGD in Proposition 9, it
can be verified that there exists some sufficiently large value R > 0 with logR = Õ(1) such that
we have ‖h(`)

i ‖2 ≤ R for all layer ` ∈ [L] and all token i ∈ [2T ] in our TF construction. Therefore,
TFR

θ and TF∞θ generate the same output for all the token matrices we consider, and w.l.o.g. we may
assume in the proof of each step that the transformers we consider are those without truncation (i.e.,
TFθ = TF∞θ ).

Finally, combining Step 1—3 with α = Õ(
√
d) and applying Lemma 8 completes the proof of

Theorem 12.

Proof of Step 1 We use the first d entries of hd2t−1 to represent ŵridge and the d+ 1 ∼ 3d entries
(denoted by ?) to record intermediate results for computing ŵridge. Step 1 follows immediately from
the second part of Lemma 18.

Proof of Step 2 Note that

A−1
t at,k = arg min

x∈Rd

1

2(2t− 1)
x>Atx−

1

(2t− 1)
〈x,at,k〉 =: arg min

x∈Rd
Lk(x)

is the global minimizer of a λ/(2t− 1)-strongly convex and (B2
a + λ)-smooth quadratic function

with the condition number κ ≤ 2T (B2
a + λ)/λ. Moreover, we have

‖A−1
t at,k‖2 ≤ ‖A−1

t ‖op‖at,k‖2 ≤ Ba/λ.

It follows from Proposition 9 that L = d2
√

2T (B2
a + λ)/λ log((1 + κ)Ba/(λε))e steps of acceler-

ated gradient descent finds Â−1
t at,k with ‖Â−1

t at,k −A−1
t at,k‖2 ≤ ε.
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Similar to the proof of Lemma 18, we can construct a transformer such that each (self-attention+MLP)
layer implements one step of the accelerated gradient descent (AGD) for all k ∈ [A]. Denote the
(k+ 2)d+ 1 ∼ (k+ 3)d, (A+ 1 + 2k)d+ 1 ∼ (A+ 2 + 2k)d, (A+ 2 + 2k)d+ 1 ∼ (A+ 3 + 2k)d

entries of hd2t−1 by ŵa,tk, ŵb,k, v̂k for k ∈ [A]. Note that in the input vector hpre,d
2t−1 we have

ŵ0
a,tk, ŵ

0
b,k, v̂

0
k = 0d.

For each layer ` ∈ [L] and k ∈ [A], we choose Q
(`)
k1,k2,k3,k4,K

(`)
k1,k2,k3,k4,V

(`)
k1,k2,k3,k4 such that for

even tokens h2j with j ≤ t− 1 and odd tokens h2j−1 with j ≤ t

Q
(`)
k1 h

(`−1)
2t−1 =

[
v̂`−1
k
0

]
, K

(`)
k1 h

(`−1)
2j =

[
aj
0

]
, K

(`)
k1 h

(`−1)
2j−1 = 0, V

(`)
k1 h

(`−1)
2j = −η

[
0
aj
0

]
, V

(`)
k1 h

(`−1)
2j−1 = 0

Q
(`)
k2 = −Q

(`)
k1 , K

(`)
k2 = K

(`)
k1 , V

(`)
k2 = −V

(`)
k1 ,

Q
(`)
k3 h

(`−1)
2t−1 =

 1
1− 2t

1
0

 , K
(`)
k3 h

(`−1)
2j =

 1
1
2j
0

 , K
(`)
k3 h

(`−1)
2j−1 =

 1
1

2j − 1
0

 , V
(`)
k3 h

(`−1)
2t−1 = η

 0
aj,k − λv̂`−1

k
0

 ,

Q
(`)
k4 h

(`−1)
2t−1 =

 2t− 1
−(2t− 1)2

1
0

 , K
(`)
k4 h

(`)
2j =

 1
1

(2j)2

0

 , K
(`)
k4 h

(`)
2j−1 =

 1
1

(2j − 1)2

0

 , V
(`)
k4 h

(`−1)
2t−1 =

 0
v̂`−1
k − ŵ`−1

a,k

0

 ,
where η = 1/(B2

a + λ) and the values V
(`)
kt h

(`−1)
2j ,V

(`)
kt h

(`−1)
2j−1 , t = 1, 2, 3, 4 are supported on the

entries corresponding to ŵa,k. Summing up the M = 4A heads and noting that t = σ(t)− σ(−t),
we see that the ŵa,k part of ht has the update

ŵ`
a,k = ŵ`−1

a,k −
η

2t− 1

t−1∑
j=1

[σ(
〈
aj , v̂

`−1
k

〉
)− σ(−

〈
aj , v̂

`−1
k

〉
)]aj −

ηλ

2t− 1
V

(`)
k3 h

(`−1)
2t−1 + V

(`)
k4 h

(`−1)
2t−1

= ŵ`−1
a,k −

η

2t− 1

t−1∑
j=1

〈
aj , v̂

`−1
k

〉
aj −

ηλ

2t− 1
V

(`)
k3 h

(`−1)
2t−1 + V

(`)
k4 h

(`−1)
2t−1

= v̂`−1
k − η

2t− 1

t−1∑
j=1

〈
aj , v̂

`−1
k

〉
aj −

ηλ

2t− 1
v̂`−1
k +

η

2t− 1
at,k

= v̂`−1
k − η∇L(v`−1

k ),

which is one step of gradient descent with step size η (c.f. Eq. 16a). Moreover, it can be verified that
one can choose the matrices such that maxk∈[A],m∈[4] ‖Q

(`)
km‖op = maxk∈[A],m∈[4] ‖K

(`)
km‖op ≤√

2 and maxk∈[A] ‖V
(`)
k1 ‖op = maxk∈[A] ‖V

(`)
k2 ‖op = η, maxk∈[A] ‖V

(`)
k3 ‖op ≤ (λ +

1)η, maxk∈[A] ‖V
(`)
k4 ‖op ≤

√
2. Therefore, the norm of the attention layer

|||θ||| ≤
√

2(A+ 1) +A(λ+ 3)/(B2
a + λ).

Following the construction as in the proof of Lemma 18, we can choose W
(`)
1 ,W

(`)
2 that implement

Eq. (16b), (16b) for all k ∈ [A] simultaneously and we also have ‖W(`)
1 ‖op ≤ 4

√
2,W

(`)
2 =

√
2

with D′′(`) = 4dA. It follows from combining the bounds for the weight matrices that

|||θ||| ≤
√

2(A+ 1) +A(
λ+ 3

B2
a + λ

+
√

2) +
√

2 + 4
√

2 ≤ 10 +A(
λ+ 3

B2
a + λ

+
√

2) = O(A).

Proof of Step 3 Denote the i-th token of the output of step 2 (i.e., the input of step 3) by h
(0)
i .

We use the (3A + 3)d + 1 ∼ (3A + 3)d + A entries of hd2t−1 to record v̂t1/τ, . . . , v̂tA/τ and
use the (3A + 3)d + A + 1 ∼ (3A + 3)d + 2A entries to store additional information (denoted
by va,t1, . . . , va,tA) for computing v̂t1/τ, . . . , v̂tA/τ . Concretely, for all k ∈ [A], we choose

28



Q
(`)
k1,k2,k3,k4,K

(`)
k1,k2,k3,k4,V

(`)
k1,k2,k3,k4 such that for even tokens h2j with j ≤ t − 1 and odd

tokens h2j−1 with j ≤ t

Q
(1)
k1 h

(0)
2t−1 =

ŵridge

2t− 1
1
0

 , K
(1)
k1 h

(0)
2j−1 =

 aj,k
−B

B(2j − 1)
0

 , K
(1)
k1 h

(0)
2j =

 0d
−B
2Bj
0

 ,
V

(1)
k1 h

(0)
2j−1 =

[
0

2j − 1
0

]
, V

(1)
k1 h

(0)
2j =

[
0
2j
0

]
,

Q
(1)
k2 h

(0)
2t−1 =

−ŵridge

2t− 1
1
0

 , K
(1)
k2 = K

(1)
k1 , V

(1)
k2 = −V

(1)
k1 ,

Q
(1)
k3 h

(0)
2t−1 =

Â−1
t at,k

2t− 1
1
0

 , K
(1)
k3 h

(0)
2j−1 =

 aj,k
−B

B(2j − 1)
0

 , K
(1)
k3 h

(0)
2j =

 0d
−B
2Bj
0

 ,
V

(1)
k3 h

(0)
2j−1 =

[
0

2j − 1
0

]
, V

(1)
k3 h

(0)
2j =

[
0
2j
0

]
,

Q
(1)
k4 h

(0)
2t−1 =

−Â−1
t at,k

2t− 1
1
0

 , K
(1)
k4 = K

(1)
k3 , V

(1)
k4 = −V

(1)
k3 ,

where B := TB2
a(BaBw + σ)/λ + 2B2

a/λ; V
(1)
k1 h

(0)
c ,V

(1)
k2 h

(0)
c (c = 2j − 1, 2j) are supported

on the [(3A + 3)d + k]-th entry of hdc ; V
(1)
k3 h

(0)
c ,V

(1)
k4 h

(0)
c (c = 2j − 1, 2j) are supported on the

[(3A+ 3)d+A+ k]-th entry of hdc .

Since 〈ŵridge,aj,k〉 ≤ ‖ŵridge‖2‖aj,k‖2 ≤ B, it follows that〈
Q

(1)
k1 h

(0)
2t−1,K

(1)
k1 h

(0)
2j−1

〉
= 〈ŵridge,aj,k〉+ (2j − 1− (2t− 1))B ≤ 0

for j < i. Likewise
〈
Q

(1)
k1 h

(0)
2t−1,K

(1)
k1 h

(0)
2j

〉
≤ 0 for j < i. Since we assume the error ε2 ≤

b2a/[2(B2
aT + λ)Ba] in Step 2, ba ≤ ‖at,k‖2 ≤ Ba and λId � At � (B2

aT + λ)Id, it follows that〈
at,k, Â

−1
t at,k

〉
≥
〈
at,k,A

−1
t at,k

〉
− ‖at,k‖2‖A−1

t at,k − Â−1
t at,k‖2

≥ b2a
2(B2

aT + λ)
≥ b2a

2T (B2
a + λ)

=:
1

T
· l1, (18)〈

at,k, Â
−1
t at,k

〉
≤
〈
at,k,A

−1
t at,k

〉
+ ‖at,k‖2‖A−1

t at,k − Â−1
t at,k‖2 ≤

2B2
a

λ
=: l2. (19)

Therefore,
〈
Q

(1)
k3 h

(0)
2t−1,K

(1)
k3 h

(0)
2j−1

〉
=
〈
Â−1
t at,k,aj,k

〉
+ (2j − 1 − (2t − 1))B ≥ 0 iff j = i.

Likewise
〈
Q

(1)
k3 h

(0)
2t−1,K

(1)
k3 h

(0)
2j

〉
≤ 0 for j < i. Similar results hold for the k2, k4-th heads. By

some basic algebra and noting that t = σ(t) − σ(−t) for t ∈ R, we see that the attention layer

updates the position for v̂tk/τ, v̂a,tk with the values 〈ŵridge,at,k〉 ,
〈
at,k, Â

−1
t at,k

〉
for all k ∈ [A],

respectively. Moreover, it can be verified that one can choose the matrices such that

max
k∈[A],m∈[4]

‖Q(1)
km‖op = max

k∈[A],m∈[4]
‖V(1)

km‖op = 1, max
k∈[A],m∈[4]

‖K(1)
km‖op ≤ B.

Now, to compute the value of v̂tk/τ in step 3 in (17), what remains is to approximately compute
α
√
v̂a,tk, add the result to the position for v̂tk/τ , and multiplied it by 1/τ .
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Since v̂a,tk =
〈
at,k, Â

−1
t at,k

〉
∈ [l1/T, l2], to approximately compute

√〈
at,k, Â

−1
t at,k

〉
, it

suffices to approximate f(x) =
√
x, x ∈ [l1/T, l2]. For any level of approximation error εapprox > 0,

let (x1, x2, . . . , xN ) ∈ [l1/T, l2] satisfy

x1 = l1/T, xN = l2, 0 ≤ √xj+1 −
√
xj ≤ εapprox, for j ∈ [N − 1].

Define the function

f̃(x) :=
√
x1 +

N−1∑
j=1

σ(x− xj)
1

√
xj+1 +

√
xj
.

Note that f̃(x) is a piecewise linear function on [l1/T, l2] with f̃(xi) =
√
xi for i ∈ [N ]. By some

basic algebra, it can the shown that for εapprox < l1/T , the difference between f(x) and f̃(x)

max
c∈[xj ,xj+1]

|f̃(c)− f(c)| = max
t∈[0,1]

∣∣∣√xj +
t√

xj + 1 +
√
xj
−
√
xj + t(xj+1 − xj)

∣∣∣ ≤ εapprox

when √xj+1 −
√
xj < c

√
εapproxl1/T for some universal constant c > 0 and all j ∈ [N − 1].

Therefore, there exists a function f̃(x) with N = O(
√
T/εapprox) that satisfies

max
[l1/T,l2]

|f̃(x)− f(x)| ≤ εapprox.

As a consequence, we verify that one can implement f̃(v̂a,tk) for all k ∈ [A] simultaneously by
constructing a two-layer MLP with

‖W(1)
1 ‖op ≤ O(

√
N), ‖W(1)

2 ‖op ≤ O(
√
TN), D′ ≤ AN.

Choose εapprox = τε/α. Substituting the expressions for N, εapprox into the upper bounds on the
norms, we obtain

‖W(1)
1 ‖op ≤ O((αT/(τε))1/4), ‖W(1)

2 ‖op ≤ O(T 3/4(α/(τε))1/4), D′ ≤ O(A(αT/(τε))1/2).

Lastly, we can construct another two-layer MLP with weights W
(2)
1 ,W

(2)
2 such that it implements

the summation and multiplication updates

v̂← v̂ + W
(2)
2 σ(W

(2)
1 h

(1)
2t−1) ≈ v̂ +

(1

τ
− 1
)
v̂ +

α

τ

[√
v̂a,t1, . . . ,

√
v̂a,tA

]>
=
v̂tk
τ

with ‖v̂tk/τ − vtk/τ‖ ≤ ε for all k ∈ [A]. We verify that the weight matrices can be chosen with

‖W(2)
1 ‖op ≤ O(1), ‖W(2)

2 ‖op ≤ O(α/τ)

and D′ ≤ O(A).

Therefore the norm of the transformer that implements step 3 satisfies

|||θ||| ≤ O(B + 1 + 4A+ T 3/4(α/(τε))1/4 + α/τ) = O(A+ T (α/(τε))1/4 + α/τ).

This conclude the proof of Step 3.

F.5 Proof of Theorem 13
By Theorem 1 and Theorem 12 with εreal = ε = 1/T 3, it suffices to show soft LinUCB with parameter
τ has the regret guarantee

EM∼Λ

[ T∑
t=1

max
k
〈at,k,w∗〉 −RM,AlgsLinUCB(τ)

(T )
]
≤ O(d

√
T log(T )).

This follows directly from a regret analysis similar to that for LinUCB (see e.g. [13] or Theorem 19.2

in [31]). Concretely, note that v∗tk =
〈
wt

ridge,λ,at,k

〉
+ α

√〈
at,k,A

−1
t at,k

〉
is the solution to the

optimization problem

maximize 〈w,at,k〉
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subject to w ∈ Ct := {w|(w −wt
ridge,λ)>At(w −wt

ridge,λ) ≤ α2},

where we recall α = α(δ0) with δ0 = 1/(2BaBwT ) and

α = α(δ0) :=
√
λBw + σ

√
2 log(1/δ0) + d log((dλ+ TB2

a)/(dλ)). (20)

Moreover, standard analysis as in the proof of Theorem 19.2 in [31] shows with probability over
1 − 1/(2BaBwT ) we have w∗ ∈ Ct for all t ∈ [T ]. Denote this event by E0. Moreover, let pt,k
denote the probability of soft LinUCB selecting the action at,k at time t for all k ∈ [A]. For any
ε > 0, let St(ε) := {k ∈ [A] : v∗tk −maxj∈[A] v

∗
tj ≤ ε}.

Therefore, on the event E0 at time t we have

max
j
v∗tj −

A∑
k=1

pt,kv
∗
tk =

∑
k∈St(ε0)

pt,k(max
j
v∗tj − v∗tk) +

∑
k/∈St(ε0)

pt,k(max
j
v∗tj − v∗tk)

≤ ε0 +
∑

k/∈St(ε0)

exp
(
− ε0

τ

)
(max

j
v∗tj − v∗tk)

≤ ε0 + 2A exp
(
− ε0

τ

)
Ba(Bw + 2α/

√
λ),

where the second line uses

pt,k ≤ exp
(
− ε0

τ

)
·max pt,k ≤ exp

(
− ε0

τ

)
,

and the last line follows from that |v∗tj | ≤ Ba(Bw + 2α/
√
λ) on the event E0. Choosing ε0 =

ε1/2 := 1/
√

4T and noting that τ = ε0/ log(4TABa(Bw + 2α/
√
λ)) = Õ(1/

√
T ), we obtain

max
j
v∗tj −

A∑
k=1

pt,kv
∗
tk ≤ ε1.

Now, on the event E0, we have

max
j∈[A]

〈w∗,at,j〉 ≤ max
j∈[A]

v∗tj ≤
A∑
k=1

pt,kv
∗
tk + ε1 =

A∑
k=1

pt,k 〈w̃k,at,k〉+ ε1

for some w̃k ∈ Ct, k ∈ [A]. Therefore, on E0 for each t ∈ [T ]

max
j∈[A]

〈w∗,at,j〉 −
A∑
k=1

pt,k 〈w∗,at,k〉 ≤ ε1 +

A∑
k=1

pt,k 〈w̃k −w∗,at,k〉

≤ ε1 +

A∑
k=1

pt,k‖w̃k −w∗‖At
· ‖at,k‖A−1

t
≤ ε1 + 2αEk∼pt‖at,k‖A−1

t
.

Moreover, note that maxj∈[A] 〈w∗,at,j〉 − 〈w∗,at,k〉 ≤ 2BwBa and ‖at,k‖A−1
t
≤ Ba/

√
λ. Sum-

ming over t ∈ [T ] and using the tower property of martingales, we obtain

EM∼Λ

[ T∑
t=1

max
k
〈at,k,w∗〉 −RM,AlgsLinUCB(τ)

(T )
]

= E
[

max
j∈[A]

〈w∗,at,j〉 −
A∑
k=1

pt,k 〈w∗,at,k〉
]

≤ E[2

T∑
t=1

αEk∼pt‖at,k‖A−1
t

+ ε1T + 2BwBaT · 1{Ec0}]

≤ E[2

T∑
t=1

α
(Ba√

λ
∧ ‖at,k‖A−1

t

)
+ ε1T + 2BwBaT · 1{Ec0}]
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≤ 2E
[
α
√
T (

Ba√
λ

+ 1)

√√√√ T∑
t=1

(1 ∧ ‖at,k‖2A−1
t

) + ε1T
]

+ 2BwBaTP(Ec0)

≤
√

8d(Ba/
√
λ+ 1)2Tα2 log((dλ+ TB2

a)/(dλ)) + ε1T + 1,

where the fourth line uses the fact that

Ba√
λ
∧ ‖at,k‖A−1

t
≤ (

Ba√
λ

+ 1) · (1 ∧ ‖at,k‖2A−1
t

)

and Cauchy-Schwatz inequality, the last line follows from Lemma 19.4 of [31]. Plugging in ε1 =
1/
√
T and Eq. (20) gives the upper bound on expected regret

EM∼Λ

[ T∑
t=1

max
k
〈at,k,w∗〉 −RM,AlgsLinUCB(τ)

(T )
]
≤ O(d

√
T log(T ))

for soft LinUCB with parameter τ.

Moreover, the second part of Theorem 13 (i.e., the upper bound on logNΘ) follows directly from
Lemma 6 and Eq. (13).

G Thompson sampling for stochastic linear bandit
Throughout this section, we use c > 0 to denote universal constants whose values may vary from
line to line. Moreover, for notational simplicity, we use O(·) to hide universal constants, O(·) to
hide polynomial terms in the problem parameters (λ±1, r±1, b−1

a , Ba), and Õ(·) to hide both poly-
logarithmic terms in (M0,C0, T, A, d, 1/ε, 1/δ0) and polynomial terms in (λ±1, r±1, b−1

a , Ba). We
also use the bold font at ∈ Rd to denote the selected action vector at at time t ∈ [T ].

This section is organized as follows. Section G.1 describes the Thompson sampling algorithm for
stochastic linear bandits. Section G.2 introduces some additional definitions, assumptions, and the
formal version of Theorem 14 as in Theorem 19. We prove Theorem 19 in Section G.3 and prove
Theorem 15 in Section G.4. Lastly, the proof of Lemma 20 used in the proof of Theorem 19 is
provided in Section G.5.

G.1 Thompson sampling algorithm
Consider the stochastic linear bandit setup as in Section E.1, but instead we assume a Gaussian
prior distribution w? ∼ N (0, λId) and Gaussian noises {εt}t≥0 ∼iid N (0, r). Furthermore, we
assume there exist (ba, Ba) such that ba ≤ ‖at,k‖2 ≤ Ba. At each time t ∈ [T ], Thompson sampling
consists of the following steps:

1. Computes

µt :=
( r
λ

Id +

t−1∑
j=1

aja
>
j

)−1 t−1∑
j=1

ajyj , Σt :=
r

λ
Id +

t−1∑
j=1

aja
>
j .

2. Selects the action at = at,k with probability

Pw̃t∼N (µt,rΣ
−1
t )

(
k = arg max

j∈[A]

〈at,j , w̃t〉
)
.

Note that Thompson sampling is equivalent to the posterior sampling procedure in our stochastic
linear bandit setup, i.e., we select an action with probability that equals the posterior probability of
the action being optimal. We allow λ to be either some constant independent of T, d, or has the form
λ = λ0/d for some constant λ0 > 0. The latter case is considered so that the bandit parameter vector
w∗ has `2 norm of order Õ(1) with high probability. In this case, we use O(·) to hide polynomial
terms in the problem parameters (λ±1

0 , r±1, b−1
a , Ba), and Õ(·) to hide both poly-logarithmic terms

in (M0,C0, T, A, d, 1/ε, 1/δ0) and polynomial terms in (λ±1
0 , r±1, b−1

a , Ba).
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G.2 Definitions and assumptions
For any actions at,1, . . . ,at,A ∈ Rd, we define

fk(at,1, . . . ,at,A;µt, rΣ
−1
t ) := logPw̃t∼N (µt,rΣ

−1
t )

(
k = arg max

j∈[A]

〈at,j , w̃t〉
)
.

For any k ∈ [A], x1, . . . ,xA ∈ Rd, y1, . . . , yA ∈ R, we introduce

gk(x1, . . . ,xA, y1, . . . , yA) := logPz∼N (0,Id)

(
〈xk − xj , z〉+ yk − yj ≥ 0, for all j ∈ [A]

)
.

It can be verified that

fk(a1, . . . ,aA;µt, rΣ
−1
t ) = gk(

√
rΣ
−1/2
t at,1, . . . ,

√
rΣ
−1/2
t at,A, 〈µt,at,1〉 , . . . , 〈µt,at,A〉).

For any η1 ∈ [0, 1], we also define the truncated log-probabilities

fk,η1
(at1, . . . ,at,A;µt, rΣ

−1
t ) := log

[
P
(
k = arg max

j∈[A]

〈at,j , w̃t〉
)
∨ η1

]
,

gk,η1
(x1, . . . ,xA, y1, . . . , yA) := log

[
P
(
〈xk − xj , z〉+ yk − yj ≥ 0, for all j ∈ [A]

)
∨ η1

]
.

Define in addition the region Dη := {x1, . . . ,xA, y1, . . . , yk : ‖xi − xj‖2 ≥ η, for all i 6= j}.
We verify that on the set Dη, the function gk,η1

is Lipschitz continuous in any of its arguments (see
Lemma 20 for more).

We adopt the following definition in [6].

Definition 6 (Approximability by sum of relus). A function g : Rd → R is (ε,R,M0,C0)-
approximable by sum of relus, if there exists a “(M0,C0)-sum of relus” function

fM0,C0(z) =

M0∑
m=1

cmσ
(
w>m [z; 1]

)
with

M0∑
m=1

|cm| ≤ C0, max
m∈[M0]

‖wm‖1 ≤ 1,wm ∈ Rd+1, cm ∈ R,

such that supz∈[−R,R]d |g(z)− fM0,C0(z)| ≤ ε.

Assumption B (Approximation of log-posterior probability). There exist M0,C0 > 0 depending
on (1/ε, 1/η1, 1/η2, Rδ, A) such that for any ε > 0, η1 ∈ (0, 1), η2 > 0, δ ∈ (0, 1/2) and k ∈ [A],
gk,η1

(x1, . . . ,xA, y1, . . . , yA) is (ε,Rδ,M0,C0)-approximable by sum of relus on Dη2
with Rδ :=

2Ba
√
λ(1 + 2

√
log(2/δ) +

√
d) = Õ(

√
λd).

Assumption B states that the (truncated) log-policy of Thompson sampling can be approximated via
a two-layer MLP on a compact set with Õ(

√
d)-radius when λ = Õ(1) (or with Õ(1)–radius when

λ = λ0/d = Õ(1/d)).

Assumption C (Difference between the actions). There exists some η > 0 such that for all instances
M and any time t ∈ [T ], we have ‖at,j − at,k‖2 ≥ η for all 1 ≤ j < k ≤ A.

With the definitions and assumptions at hand, we now present the formal statement of Theorem 14 as
in Theorem 19.

Theorem 19 (Approximating the Thompson sampling, Formal statement of Theorem 14). For any
0 < δ0 < 1/2, consider the same embedding mapping h and extraction mapping A as for soft
LinUCB in F.1, and consider the standard concatenation operator cat. Under Assumption B, C, for
ε < (η ∧ 1)/4, there exists a transformer TFR

θ(·) with logR = Õ(1),

D = Õ(T 1/4Ad), L = Õ(
√
T ), M = Õ(AT 1/4), D′ = Õ(A(T 1/4d+ M0)) ,

|||θ||| ≤ Õ(T +AT 1/4 +
√
M0A+ C0), (21)

such that with probability at least 1− δ0 over (M,DT ) ∼ PAlg
Λ for any Alg, we have

logAlgTS(at,k|Dt−1, st)− logAlgθ(at,k|Dt−1, st) ≤ ε, for all t ∈ [T ], k ∈ [A].

Here M0,C0 are the values defined in Assumption B with η1 = ε/(4A), η2 = η, δ =

δ0, and Õ(·) hides polynomial terms in (λ±1, r±1, b−1
a , Ba) and poly-logarithmic terms in

(M0,C0, T, A, d, 1/δ0, 1/ε).
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G.3 Proof of Theorem 19 (and hence Theorem 14)
We construct a transformer implementing the following steps at each time t ∈ [T ] starting with
h?2t−1 = hpre,?

2t−1 for ? ∈ {a, b, c, d}

h2t−1 =


hpre,a

2t−1

hpre,b
2t−1

hpre,c
2t−1

hpre,d
2t−1

 step 1−−−→


h

pre,{a,b,c}
2t−1
µ̂t
?
0

pos

 step 2−−−→



h
pre,{a,b,c}
2t−1
µ̂t

Σ̂
1/2
t at,1

...
̂

Σ
1/2
t at,A
?
0

pos


step 3−−−→



h
pre,{a,b,c}
2t−1
µ̂t

√
r

̂
Σ
−1/2
t at,1

...
√
r

̂
Σ
−1/2
t at,A

〈µ̂t,at,1〉
...

〈µ̂t,at,A〉
?
0

pos



(22)

step 4−−−→


h

pre,{a,b}
2t−1
v̂t1
...
v̂tA

hd2t−1

 =:


hpost,a

2t−1

hpost,b
2t−1

hpost,c
2t−1

hpost,d
2t−1

 ,

where pos := [t, t2, 1]>; µt,Σt are the mean and covariance of the distribution we sample w̃
from; v̂tk are approximations to v∗tk := logP(j = arg maxk∈[A] 〈at,k, w̃t〉). In addition, we use
h?, ? ∈ {a, b, c, d} to denote the corresponding parts of a token vector h. After passing through the
transformer, we obtain the policy

Algθ(·|Dt−1, st) :=
exp(hpost,c

2t−1 )

‖ exp(hpost,c
2t−1 )‖1

=
exp(v̂t)

‖ exp(v̂t)‖1
∈ ∆A.

In step 1—3 of (22), we use transformer to approximately generate the arguments

(
√
rΣ
−1/2
t at,1, . . . ,

√
rΣ
−1/2
t at,A, 〈µt,at,1〉 , . . . , 〈µt,at,A〉)

of the function gk (or gk,η2), and in step 4 of (22), we use transformer to approximate the truncated
log-probability gk,η1 for some η1 ∈ (0, 1) by exploiting Assumption B, C.

For any 0 < δ0 < 1/2, define Bw :=
√
λ
(√
d+ 2

√
log(2/δ0)

)
and the event

Eδ0 := {max
t∈[T ]

|εt| ≤
√

2r log(2T/δ0)} ∪ {‖w∗‖2 ≤ Bw}.

Then by a standard tail bound for gaussian variables {εt}Tt=1, a union bound over t ∈ [T ], and
Eq. (4.3) in [32], we have

P(Eδ0) ≥ 1− δ0.
We claim the following results which we will prove later.

Step 1 Under the high probability event Eδ0 , for any ε > 0, there exists a transformer TFθ(·) with

L =
⌈
2
√

2T

√
B2
a + λ̃

λ̃
log
( (2T (B2

a + λ̃) + λ̃)TBa(BaBw +
√

2r log(2T/δ0))

λ̃2ε

)⌉
= Õ(

√
T ),

max
`∈[L]

M (l) ≤ 4, max
`∈[L]

D′
(`) ≤ 4d, |||θ||| ≤ 10 + (λ̃+ 2)/(B2

a + λ̃),

where λ̃ := r/λ that implements step 1 in (22) with ‖µ̂t − µt‖2 ≤ ε.
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Step 2 For any ε > 0, there exists s transformer TFθ(·) with

L = Õ(
√
T ), max

`∈[L]
M (`) = Õ(AT 1/4), max

`∈[L]
D′

(`)
= Õ(T 1/4Ad), |||θ||| ≤ Õ(T+AT 1/4)

that implements step 2 in (22) such that ‖Σ̂1/2
t at,k −Σ

1/2
t at,k‖2 ≤ ε for all k ∈ [A].

Step 3 Under the high probability event Eδ0 , for any ε > 0, assume Step 1, 2 above are implemented
with the approximation error less than ε/Ba, ελ̃/

√
4r respectively, then there exists a

transformer TFθ(·) with

L = d2 + 2

√
2T (B2

a + λ̃)/λ̃ log((1 + κ̃)4
√
r

√
T (B2

a + λ̃)Ba/ε)e = Õ(
√
T ), max

`∈[L]
M (l) = 4A,

max
`∈[L]

D′
(`) ≤ 4Ad, |||θ||| ≤ Õ(T +A)

that implements step 3 in (22) with ‖
√
r

̂
Σ
−1/2
t at,k −

√
rΣ
−1/2
t at,k‖2 ≤ ε, | 〈µ̂t,at,k〉 −

〈µt,at,k〉 | ≤ ε for all k ∈ [A].

Step 4 Under Assumption B, C and the high probability event Eδ0 , suppose the approximation error
ε3 in Step 3 satisfies ε3 ≤ Rδ0/2 = Õ(

√
λd), and suppose the vector

v := (
√
r

̂
Σ
−1/2
t at,1, . . .

√
r

̂
Σ
−1/2
t at,A, 〈µ̂t,at,1〉 . . . 〈µ̂t,at,A〉)

lies in Dη/2, for any ε > 0 there exists an MLP-only transformer TFθ(·) with

L = 1, D′ = M0A, ‖W1‖op ≤
√

M0A, ‖W2‖op ≤ C0

that implements step 4 in (22) such that |v̂tk−gk,η1
(v)| ≤ ε for all k ∈ [A] amd η1 = cε/A

for some universal constant c > 0.1

To complete the proof, we in addition present the following lemma.

Lemma 20. For any η1 ∈ (0, 1), η > 0, gk,η1
(x1, . . . ,xA, y1, . . . , yA) is 1/2-Holder continuous in

its arguments on Dη , namely,

|gk,η1(x1, . . . ,xj , . . . ,xA, y1, . . . , yA)− gk,η1(x1, . . . ,x
′
j , . . .xA, y1, . . . , yA)|

≤ 2A

η1

(√2‖xj − x′j‖2
η

+
2‖xj − x′j‖2

η

)
,

|gk,η1
(x1, . . . ,xA, y1, . . . , yj , . . . , yA)− gk,η1

(x1, . . .xA, y1, . . . , y
′
j , . . . , yA)|

≤
2A|yj − y′j |

ηη1

for any

(x1, . . . ,xj , . . . ,xA, y1, . . . , yA), (x1, . . . ,x
′
j , . . . ,xA, y1, . . . , yA) ∈ Dη,

(x1, . . . ,xA, y1, . . . , yj , . . . , yA), (x1, . . . ,xA, y1, . . . , y
′
j , . . . , yA) ∈ Dη

for all k, j ∈ [A].

See the proof in Section G.5.

Now, we complete the proof by combining Step 1— 4 and using Lemma 20.

Let ε1, ε2, ε3, ε4 denote the approximation errors ε appearing in Step 1, 2, 3, 4, respectively. W.l.o.g.,
we assume ε1, ε2, ε3, ε4 < 1/4 ∧ η/4. Define the vector

v∗ := (
√
rΣ
−1/2
t at,1, . . .

√
rΣ
−1/2
t at,A, 〈µt,at,1〉 . . . 〈µt,at,A〉).

By Assumption C and a triangular inequality, we have v,v∗ ∈ Dη/2. By the Lipschitz continuity of
f(x) = exp(x) on (−∞, 1.5], we have

| exp(v̂tk)− AlgTS(at,k|Dt−1, st)| ≤ | exp(v̂t,k)− AlgTS(at,k|Dt−1, st) ∨ η1|+ η1

1Note M0,C0 in the formula implicitly depend on 1/ε.
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≤ e3/2(|v̂tk − gk,η1(v)|+ |gk,η1(v)− gk,η1(v∗)|) + η1,

≤ e3/2
(
ε4 +

2A2

η1

(√2ε3

η
+

2ε3

η

)
+

2A2ε3

ηη1

)
+ η1 =: ε5,

where the second inequality uses

gk,η1
(v∗) = log[AlgTS(at,k|Dt−1, st) ∨ η1],

and the third inequality uses Lemma 20 and Step 4. Therefore,

|
A∑
k=1

exp(v̂t,k)− 1| ≤ Aε5.

and the constructed transformer TFθ satisfies (assume Aε5 < 1)

logAlgTS(at,k|Dt−1, st)− logAlgθ(at,k|Dt−1, st)

≤ (log[AlgTS(at,k|Dt−1, st) ∨ η1]− v̂t,k) + log(

A∑
k=1

exp(v̂t,k))

≤ |v̂tk − gk,η1(v)|+ |gk,η1(v)− gk,η1(v∗)|+Aε5

≤ (A+ 1)ε5,

where third line uses log(1 + x) < x. Finally, for the prespecified ε > 0, choosing ε1, ε2, ε3, ε4, η1

such that ε5 ≤ ε/(2A) gives

logAlgTS(at,k|Dt−1, st)− logAlgθ(at,k|Dt−1, st) ≤ ε.

This can be done via choosing ε1 = c1ε
4, ε2 = c2ε

4, ε3 = c3ε
4, ε4 = c4ε, η1 = ε/(4A), where

ci (i = 1, 2, 3, 4) hide values that could depend polynomially on (A, 1/η), such that ε5 ≤ ε/(4A).

Combining the construction in Step 1— 4 yields Theorem 19.

Similar to the proof of Theorem 12, from the proof of each step, we can verify that the token dimension
D can be chosen to be of order Õ(T 1/4Ad) (see the proof of Step 2b for details). Moreover, due to
the convergence guarantee for each iteration of AGD in Proposition 9, we can be verified that there
exists some sufficiently large value R > 0 with logR = Õ(1) such that we have ‖h(`)

i ‖2 ≤ R for all
layer ` ∈ [L] and all token i ∈ [2T ] in our TF construction. Therefore, TFR

θ and TF∞θ yield identical
outputs for all token matrices considered, and hence we do not distinguish them in the proof of each
step.

Proof of Step 1 Note that µt is a ridge estimator of w∗ with parameter λ̃ = r/λ and the noise
supt |εt| ≤

√
2r log(T/δ0). Step 1 follows immediately from the second part of Lemma 18.

Proof of Step 2 By the boundedness assumption of the actions, we have

λ̃ ≤ σmin(Σt) ≤ σmax(Σt) ≤ T (B2
a + λ̃).

Define the condition number κ̃ = T (B2
a + λ̃)/λ̃ and µ :=

√
T λ̃(B2

a + λ̃). Using the Pade de-
composition for the square root function in Theorem 3.1 and the discussion afterward in [38], we
have

Σ
1/2
t = (λ̃Id +

t−1∑
j=1

aja
>
j )1/2 =

√
µ
(
Id +

(Σt − µId)

µ

)1/2

=
√
µ
[
Id +

m∑
j=1

(
Id +

b
(m)
j (Σt − µId)

µ

)−1 a
(m)
j (Σt − µId)

µ

]
+ Em

for any m ≥ 0, where

a
(m)
j =

2

2m+ 1
sin2 jπ

2m+ 1
, b

(m)
j = cos2 jπ

2m+ 1
,
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and the error term Em satisfies

‖Em‖op

≤ max

2

√
T (B2

a + λ̃)

1 +


√
T (B2

a + λ̃) +
√
µ√

T (B2
a + λ̃)−√µ

2m+1
−1

, 2
√
λ̃

(√µ+
√
λ̃

√
µ−

√
λ̃

)2m+1

− 1

−1


= max
{

2

√
T (B2

a + λ̃)[1 + (
κ̃1/4 + 1

κ̃1/4 − 1
)2m+1]−1, 2

√
λ̃[(

κ̃1/4 + 1

κ̃1/4 − 1
)2m+1 − 1]−1

}
≤ 2 max

{√
T (B2

a + λ̃)(1 +
2

κ̃1/4
)−2m−1,

√
λ̃
[
(1 +

2

κ̃1/4
)2m+1 − 1

]−1}
.

Since (1 + 2/κ̃1/4)κ̃
1/4/2+1 > e, it follows that choosing

m =
( κ̃1/4

4
+ 1
)

max
{⌈

log
(2
√
T (B2

a + λ̃)

ε

)⌉
,
⌈

log
(2
√
λ̃

ε
+ 1
)⌉}

= Õ(T 1/4).

gives ‖Em‖op ≤ ε for any 0 < ε < 1.

Thus, using Pade decomposition, we can write

Σ
1/2
t at,k =

√
µ
[
at,k +

m∑
j=1

(
µId + b

(m)
j (Σt − µId)

)−1

a
(m)
j (Σt − µId)at,k

]
+ Ek

m

with
∥∥Ek

m

∥∥
2
≤ ε for all k ∈ [A] and some m = Õ(T 1/4). Next, we show that there exists a

transformer that can implement the following intermediate steps that give Step 2.


h

pre,{a,b,c}
2t−1
µ̂t
?
0

pos

 step 2a−−−→



h
pre,{a,b,c}
2t−1
µ̂t

0dA
(Σt − µId)at,1

...
(Σt − µId)at,A

?
0

pos



step 2b−−−→



h
pre,{a,b,c}
2t−1
µ̂t

0dA
(Σt − µId)at,1

...
(Σt − µId)at,A(

µId + b
(m)
1 (Σt − µId)

)−1

a
(m)
1 (Σt − µId)at,1

...(
µId + b

(m)
m (Σt − µId)

)−1

a
(m)
m (Σt − µId)at,A

?
0

pos



step 2c−−−→



h
pre,{a,b,c}
2t−1
µ̂t

Σ̂
1/2
t at,1

...
̂

Σ
1/2
t at,A

...
?
0

pos


, (23)

where ? denotes additional terms in hd that are not of concern to our analysis.

Step 2a There exists an attention-only transformer TFθ(·) with

L = 2, maxM (`) = 3A, |||θ||| ≤ T + 2 + µ ≤ O(T )

that implements step 2a in (23).
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Step 2b Denote (Σt − µId)at,k by qk and
(
µId + b

(m)
m (Σt − µId)

)
by Mm. For any ε > 0, there

exists a transformer TFθ(·) with

L = 2

√
2T (B2

a + λ̃)/λ̃ log((1 + κ̃)BaT (B2
a + λ̃)/(λ̃ε))e = Õ(

√
T ),

max
`∈[L]

M (l) = 4Am = Õ(T 1/4A), max
`∈[L]

D′
(`) ≤ O(Adm) = Õ(T 1/4Ad), |||θ||| ≤ O(Am) ≤ Õ(T 1/4A)

approximately implements step 2b in (23) such that the output component M̂−1
m qk satisfies

‖ ̂
a

(m)
j M−1

m qk − a(m)
j M−1

j qk‖2 ≤ ε for all j ∈ [m] and k ∈ [A].

Step 2c There exists an MLP-only transformer TFθ(·) with

L = 1, D′ = 2Ad(m+1) = Õ(T 1/4Ad), ‖W1‖op =
√

2, ‖W2‖op ≤
√
µ(1+m) = Õ(T 3/4)

that implements step 2c in (23).

Combining the intermediate steps with the approximation error in Step 2b chosen as ε/m gives Step 2
as desired.
Proof of Step 2a For all k ∈ [A], we choose Q

(1)
k1,k2,k3,K

(1)
k1,k2,k3,V

(1)
k1,k2,k3 such that for even

token indices 2j with j ≤ t− 1 and odd token indices with j ≤ t

Q
(1)
k1 h

(0)
2t−1 =

[
at,k
0

]
, K

(1)
k1 h

(0)
2j =

[
aj
0

]
, V

(1)
k1 h

(0)
2j =

[
0
aj
0

]
, K

(1)
k1 h

(0)
2j−1 = [0] , V

(1)
k1 h

(0)
2j−1 = [0]

Q
(1)
k2 = −Q

(1)
k1 , K

(1)
k2 = K

(1)
k1 , V

(1)
k2 = −V

(1)
k1 ,

Q
(1)
k3 h

(0)
2t−1 =

 1
−(2t− 1)

1
0

 , K
(1)
k3 h

(0)
2j−1 =

 1
1

2j − 1
0

 , K
(1)
k3 h

(0)
2j =

 1
1
2j
0

 , V
(1)
k3 h

(0)
2t−1 =

 0

(λ̃− µ)at,k
0

 ,
where for each k ∈ [A], V

(1)
k1 h

(0)
2j ,V

(1)
k3 h

(0)
2t−1 are supported on the same d entries of hd. It is readily

verified that summing over the attention heads and k ∈ [A] gives the updates

0d 7→
(Σt − µId)at,k

2t− 1

for all k ∈ [A]. We assume the updated vectors are supported on some Ad coordinates of
hd2t−1. Moreover, one can choose the matrices such that ‖Q(1)

k1,k2,k3‖op ≤ 1, ‖K(1)
k1,k2,k3‖op ≤

1, ‖V(1)
k1,k2,k3‖op ≤ max{1, |λ̃− µ|} ≤ 1 + µ. Therefore the norm of the first layer of the attention-

only transformer
∣∣∣∣∣∣θ(1)

∣∣∣∣∣∣ ≤ 2 + µ.

The second layer is used to multiply the updated vectors by a factor of 2t− 1, namely, to perform the
map

(Σt − µId)at,k
2t− 1

7→ (Σt − µId)at,k

for all k ∈ [A], where the output vectors are supported on coordinates different from the input vectors
(therefore we need 2Ad coordinates for embedding in step 2a). This can be achieved by choosing
‖Q(2)‖op ≤ T, ‖K(2)‖op ≤ T, ‖V(2)‖op ≤ 1 such that

Q
(2)
1 h

(1)
2t−1 =

 (2t− 1)2

−T (2t− 1)2

1
0

 , K
(2)
1 h

(1)
2j−1 =

 1
1

T (2j − 1)2

0

 , K
(1)
k3 h

(1)
2j =

 1
1

T (2j)2

0

 ,

V
(2)
1 h

(1)
2t−1 =


0

(Σt−µId)at,1
(2t−1)

...
(Σt−µId)at,A

(2t−1)

0

 .
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Therefore
∣∣∣∣∣∣θ(2)

∣∣∣∣∣∣ ≤ T + 1 and hence the two layer transformer we constructed has norm |||θ||| ≤
T + 2 + µ.
Proof of step 2b The construction is similar to the construction in Step 2 of the proof of Theorem 12.
Hence we only provide a sketch of proof here. Note that

a
(m)
j M−1

j qk = arg min
x∈Rd

1

2(2t− 1)
x>Mjx−

1

2t− 1

〈
x, a

(m)
j qk

〉
=: arg min

x∈Rd
Lk,j(x)

is the global minimizer of a λ̃/(2t− 1)-convex and (B2
a + λ̃)-smooth function with the conditional

number κ̃ ≤ 2T (B2
a + λ̃)/λ̃. Since

‖a(m)
j M−1

j qk‖2 ≤ |a(m)
j |‖M−1

j ‖op‖qk‖2 ≤ BaT (B2
a + λ̃)/λ̃.

Therefore by Proposition 9 we have L = d2
√

2T (B2
a + λ̃)/λ̃ log((1 + κ̃)BaT (B2

a + λ̃)/(λ̃ε))e

steps of accelerated gradient descent with step size η = 1/(B2
a + λ̃) gives ‖ ̂

a
(m)
j M−1

j qk −
a

(m)
j M−1

j qk‖2 ≤ ε. Now, it remains to construct a transformer that can implement the accelerated
gradient descent steps. Here we only provide the construction of the gradient∇Lk,j(x) at the l-th iter-
ation x = x`−1

k,j ∈ Rd which belongs to the output after `−1 transformer layers. The full construction
of AGD steps follows from similar techniques as in Step 2 of the proof of Theorem 12. Concretely,
for each layer ` ∈ [L] and k ∈ [A], j ∈ [m], we choose Q

(`)
kj1,kj2,kj3,K

(`)
kj1,kj2,kj3,V

(`)
kj1,kj2,kj3 such

that for even token indices 2j with s ≤ t− 1 and odd token indices with s ≤ t

Q
(`)
kj1h

(`−1)
2t−1 =

[
x`−1
k,j

0

]
, K

(`)
kj1h

(`−1)
2s =

[
as
0

]
, K

(`)
kj1h

(`−1)
2s−1 = 0,

V
(`)
kj1h

(`−1)
2s = −η

 0

b
(m)
j as

0

 , V
(`)
kj1h

(`−1)
2s−1 = 0,

Q
(`)
kj2 = −Q

(`)
kj1, K

(`)
kj2 = K

(`)
kj1, V

(`)
kj2 = −V

(`)
kj1,

Q
(`)
kj3h

(`−1)
2t−1 =

 1
−(2t− 1)

1
0

 ,K(`)
kj3h

(`)
2s−1 =

 1
1

(2s− 1)
0

 ,
V

(`)
kj3h

(`−1)
2t−1 = η

 0

a
(m)
j qk − [(1− b(m)

j )µ+ b
(m)
j λ̃]x`−1

k,j

0

 .
Similarly, it can be verified that the constructed attention layer generates

−η · ∇Lk,j(x`−1
k,j ) = − η

2t− 1
[[(1− b(m)

j )µId + b
(m)
j λ̃] + b

(m)
j

t−1∑
s=1

asa
>
s )]x`−1

k,j +
ηa

(m)
j qk

2t− 1
.

Therefore, a construction similar to Step 2 of the proof of Theorem 12 yields Step 2b. Moreover, note
that for the construction to exist we need the embedding dimension D = O(Adm) = Õ(T 1/4Ad)

and the number of hidden neurons D′ = O(Adm) = Õ(T 1/4Ad).

Proof of Step 2c Note that step 2c is a linear transformation from at,k,
̂

a
(m)
j M−1

j qk, k ∈ [A], j ∈

[m] to
√
µ
[
at,k+

∑m
j=1

(
µId+b

(m)
j (Σt − µId)

)−1

a
(m)
j (Σt − µId)at,k

]
and we have the fact x =

σ(x)− σ(−x). One can thus choose W1 =
[
IA(m+1)d −IA(m+1)d 0

]
with D′ = 2A(m+ 1)d

and W2 with ‖W2‖op ≤
√
µ(1 +m) that implements the linear map.

Proof of Step 3 Similar to the proof of Step 2b, given Σ̂
1/2
t at,k we can apprxoimate

Σ−1
t Σ̂

1/2
t at,k ≈ Σ

−1/2
t at,k using accelerated gradient descent. Concretely, note that

√
rΣ−1

t Σ̂
1/2
t at,k = arg min

x∈Rd

1

2(2t− 1)
x>Σtx−

1

2t− 1

〈
x,
√
rΣ̂

1/2
t at,k

〉
=: arg min

x∈Rd
Lk(x)
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is the global minimizer of a λ̃/(2t− 1)-convex and (B2
a + λ̃)-smooth function with the conditional

number κ̃ ≤ 2T (B2
a + λ̃)/λ̃. Since

‖
√
rΣ−1

t Σ̂
1/2
t at,k‖2 ≤

√
r‖M−1

j ‖op‖Σ̂1/2
t at,k‖2 ≤ 2

√
r

√
T (B2

a + λ̃)Ba,

where the last inequality uses the assumption in Step 3. Therefore for any ε0 > 0, it follows

from Proposition 9 that L = d2
√

2T (B2
a + λ̃)/λ̃ log((1 + κ̃)2

√
r
√
T (B2

a + λ̃)Ba/ε0)e steps of

accelerated gradient descent with step size η = 1/(B2
a + λ̃) gives

‖
√
r

̂
Σ
−1/2
t at,k −

√
rΣ−1

t Σ̂
1/2
t at,k‖2 ≤ ε0.

Following the construction in Step 2 of the proof of Theorem 12 it can be verified that there exists a
transformer TFθ(·) with

L = d2
√

2T (B2
a + λ̃)/λ̃ log((1 + κ̃)2

√
r

√
T (B2

a + λ̃)Ba/ε0)e = Õ(
√
T ), max

`∈[L]
M (l) = 4A,

max
`∈[L]

D′
(l)

= 4Ad, |||θ||| ≤ O(A)

that implements the AGD steps. Therefore, the approximation error

‖
√
r

̂
Σ
−1/2
t at,k −

√
rΣ
−1/2
t at,k‖2

≤ ‖
√
r

̂
Σ
−1/2
t at,k −

√
rΣ−1

t Σ̂
1/2
t at,k‖2 + ‖

√
rΣ−1

t Σ̂
1/2
t at,k −

√
rΣ−1

t Σ
1/2
t at,k‖2

≤ ε0 +
√
r‖Σ−1

t ‖op‖Σ̂1/2
t at,k −Σ

1/2
t at,k‖2

≤ ε0 +

√
r

λ̃
‖Σ̂1/2

t at,k −Σ
1/2
t at,k‖2 ≤ ε0 + ε/2,

where the last inequality uses the assumption on the approximation error in Step 2. Letting ε0 = ε/2

yields ‖
√
r

̂
Σ
−1/2
t at,k −

√
rΣ
−1/2
t at,k‖2 ≤ ε.

In addition to the calculation of
√
r

̂
Σ
−1/2
t at,k, we construct a two-layer attention-only transformer

that computes 〈µ̂t,at,k〉. Namely, we choose Q
(1)
k1,k2,K

(1)
k1,k2,V

(1)
k1,k2 such that

Q
(1)
k1 h

(0)
2t−1 =

 µ̂t
−(2t− 1)

B
0

 , K
(1)
k1 h

(0)
2j =

 0
B
2j
0

 , K
(1)
k1 h

(0)
2j−1 =

 aj,k
B

2j − 1
0

 , V
(1)
k1 h

(0)
2t−1 =

[
0
ek
0

]

Q
(1)
k2 h

(0)
2t−1 =

 −µ̂t
−(2t− 1)

B
0

 , K
(1)
k2 h

(0)
2j =

 0
B
2j
0

 , K
(1)
k2 h

(0)
2j−1 =

 aj,k
B

2j − 1
0

 , V
(1)
k2 h

(0)
2t−1 = −

[
0
ek
0

]
,

where B = 2TB2
a(BaBw +

√
2r log(T/δ0)))/λ̃ = Õ(T ) is an upper bound of 〈µ̂t,at,k〉 for all

k ∈ [A] under the event Eδ0 , and ek = (0, 0, . . . , 1, 0, . . . , 0) ∈ RA is the one-hot vector supported
on the k-th entry. Summing up the attention heads gives the update

0 7→ 〈µ̂t,at,k〉
2t− 1

.

Note that one can choose the matrices such that
‖Q(1)

k1,k2‖op ≤ B, ‖K(1)
k1,k2‖op ≤ B, ‖V(1)

k1,k2‖op ≤ 1.

Thus the norm of the attention layer
∣∣∣∣∣∣θ(1)

∣∣∣∣∣∣ ≤ B + 2.

Finally, as in the proof of Step 2a we can construct a single-layer single-head attention-only trans-
former with

∣∣∣∣∣∣θ(2)
∣∣∣∣∣∣ ≤ T + 1 that performs the multiplication

〈µ̂t,at,k〉
2t− 1

7→ 〈µ̂t,at,k〉.

To estimate the approximation error, note that ‖at,k‖2 ≤ Ba and ‖µ̂t − µt‖2 ≤ ε/Ba by our
assumption in Step 3, it follows immediately that | 〈µ̂t,at,k〉 − 〈µt,at,k〉 | ≤ ε for all k ∈ [A].
Combining the construction of the transformer layers above gives Step 3.
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Proof of Step 4 By Assumption B, gk,η1(v) are (ε,Rδ0 ,M0,C0)-approximable by sum of relus for
some M0,C0 depend polynomially on (1/ε, 1/η1, 1/η, 1/δ0, A). Since

‖
√
rΣ
−1/2
t at,k‖2 ≤

√
r‖Σ−1/2

t ‖2‖at,k‖2 ≤
√
λBa, | 〈µt,at,k〉 | ≤ ‖µt‖2‖at,k‖2 = BwBa

andRδ0 = 2(BwBa+
√
λBa), it follows from the assumption ε3 ≤ Rδ0/2 and a triangular inequality

that ‖v‖∞ ≤ Rδ. Therefore, using Assumption B and stacking up the approximation functions for
each coordinate k ∈ [A] we construct a two-layer MLP with ‖W1‖op ≤

√
AM0, ‖W1‖op ≤ C0,

D′ = M0A such that

W2σ(W1h
(1)
2t−1) =


0

v̂t1
...

v̂tA
0,


where (v̂t1, . . . , v̂tA) is supported on hc2t−1 and |v̂tk − gk,η1

(v)| ≤ ε for all k ∈ [A].

G.4 Proof of Theorem 15
Denote the transformer constructed in Theorem 19 by TFθ . From the proof of Theorem 19, we have

log
AlgTS(at|Dt−1, st)

Algθ(at|Dt−1, st)
≤ ε

under the event

Eδ0 := {max
t∈[T ]

|εt| ≤
√

2r log(2T/δ0)} ∪ {‖w∗‖2 ≤ Bw} for all t ∈ [T ]

with probability at least 1 − δ0, where Bw :=
√
λ
(√
d + 2

√
log(2/δ0)

)
. Note that due to the

unboundedness of the noise εt and parameter vector w∗, Assumption A may not be satisfied.
However, setting δ0 = δ/(2n) and applying a union bound gives

log
AlgTS(ait|Di

t−1, s
i
t)

Algθ(ait|Di
t−1, s

i
t)
≤ ε, for t ∈ [T ], i ∈ [n]. (24)

with probability at least 1− δ/2. From the proof of Theorem 1 we see that Assumption A is only
used in Eq. (12) in the proof of Lemma 11. Moreover, it can be verified that the same result holds
with Assumption A replaced by the condition in Eq. (24). Therefore, we have∣∣∣RΛ,Alg

θ̂
(T )−RΛ,AlgTS

(T )
∣∣∣ ≤ cT 2

√
R
(√

log [NΘ · T/δ]
n

+
√
εreal

)
≤ cT 2

√
R
(√

log [NΘ · T/δ]
n

)
+
√
T

with probability at least 1− δ as in Theorem 1, where the second inequality follows as in our setting
εreal = ε = 1/(T 3R). Now, it suffices to show Thompson sampling has the expected regret with

EM∼Λ

[ T∑
t=1

max
k
〈at,k,w∗〉 −RM,AlgTS

(T )
]

= O(d
√
T log(Td)).

The proof follows similar arguments as in Theorem 36.4 in [31]. Define

λ̃ := r/λ, β :=
√
r
(√

2rd log(4d/δTS) +

√
2 log(2/δTS) + d log(1 + TB2

a/λ̃d)
)
,

where δTS will be specified later, and recall Σt = λ̃Id +
∑t−1
j=1 aja

>
j . Since ‖w?‖2 ≤√

2λd log(4d/δTS) with probability at least 1 − δTS/2 by a union bound, it follows from The-
orem 20.5 in [31] that

P(‖w?‖2 ≤
√

2λd log(4d/δTS), and ‖µt −w∗‖Σt
≥ β, for some i ∈ [T ]) ≤ δTS,
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where the probability is taken over the both randomness of the noise and of the bandit instance M .

Let E be the event where ‖µt −w∗‖Σt
≤ β for all i ∈ [T ], and let E0 be the event where {‖w?‖2 ≤√

2λd log(4d/δTS)}. Then P(E ∩ E0) ≥ 1− δTS and the expected regret

EM∼Λ

[ T∑
t=1

max
k
〈at,k,w∗〉 −RM,AlgTS

(T )
]

= E[

T∑
t=1

max
j∈[A]

〈w?,at,k〉 − 〈w?,at〉]

= E
[ T∑
t=1

(max
j∈[A]

〈w?,at,k〉 − 〈w?,at〉)1E∩E0
]

+ E
[ T∑
t=1

max
j∈[A]

(〈w?,at,k〉 − 〈w?,at〉)1(E∩E0)c

]
≤ E

[ T∑
t=1

(max
j∈[A]

〈w?,at,k〉 − 〈w?,at〉)1E∩E0
]

+ E[2BaT‖w∗‖21(E∩E0)c ]

≤ E
[ T∑
t=1

(max
j∈[A]

〈w?,at,k〉 − 〈w?,at〉)1E∩E0
]

+ 2BaTE[‖w∗‖21(E∩E0)c ].

Since

E[‖w∗‖21(E∩E0)c ] ≤ P((E ∩ E0)c)
√

2λd log(4d/δTS) +

∫ ∞
√

2λd log(4d/δTS)

P(‖w∗‖2 ≥ t)dt

≤
√

2λd log(4d/δTS)δTS + d3/2

∫ ∞
√

2λ log(4d/δTS)

P(|w?1 | ≥ t)dt

≤
√

2λd log(4d/δTS)δTS + 2
√

2d3/2λ1/2

∫ ∞
√

log(4d/δTS)

exp(−t2)dt

≤
√

2λd log(4d/δTS)δTS +
√

2d3/2λ1/2

∫ ∞
log(4d/δTS)

1

t1/2
exp(−t)dt

≤ 2
√

2λd log(4d/δTS)δTS,

where the second line follows from a union bound over [d], and the third line uses properties of
subgaussian variables. Therefore, choosing δTS = 1/[T

√
d] gives

EM∼Λ

[ T∑
t=1

max
k
〈at,k,w∗〉 −RM,AlgTS

(T )
]

≤ E
[ T∑
t=1

(max
j∈[A]

〈w?,at,k〉 − 〈w?,at〉)1E∩E0
]

+ 6Ba
√
λ log(4d2T ). (25)

Now define the event Et := {‖µt −w∗‖Σt
≤ β}, then we have Et ∈ Ft−1 and ∩Tt=1Et = E . Also,

we define the upper confidence bound Ut(a) := 〈µt,a〉+ β‖a‖Σ−1
t

, which does not depend on the
true parameter w∗. Let (Ft)t≥0 denote the filtration generated by the data collected up to time t and
the random parameter vector w∗.

Let a∗t denote the optimal action at time t. Due to the construction of Thompson sampling, we
have the distribution of a∗t and at are the same conditioned on Ft−1. Therefore, E[Ut(a

∗
t )|Ft−1] =

E[Ut(at)|Ft−1] and

E
[
(〈w?,a∗t 〉 − 〈w?,at〉)1E∩E0 | Ft−1

]
≤ E

[(
〈w?,a∗t 〉 − Ut(a∗t ) + Ut(at)− 〈w?,at〉

)
1Et | Ft−1

]
≤ E

[(
Ut(at)− 〈w?,at〉

)
1Et | Ft−1

]
≤ E

[(
‖at‖Σ−1

t
‖µt −w∗‖Σt

+ β‖at‖Σ−1
t

)
1Et | Ft−1

]
≤ 2βE[‖at‖Σ−1

t
|Ft−1].
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Moreover, we have
‖at‖Σ−1

t
≤ Ba/

√
λ̃.

Combining the last two displays, we obtain

E
[ T∑
t=1

(max
j∈[A]

〈w?,at,k〉 − 〈w?,at〉)1E∩E0
]

≤
T∑
t=1

E
[
2β‖at‖Σ−1

t
∧ (Ba/

√
λ̃)
]

≤ 2
(
β ∨ (Ba/

√
λ̃)
)
E
[ T∑
t=1

(‖at‖Σ−1
t
∧ 1)

]

≤ 2
(
β ∨ (Ba/

√
λ̃)
)√
T

√√√√E
[ T∑
t=1

(‖at‖2Σ−1
t

∧ 1)
]

≤ 2
(
β ∨ (Ba/

√
λ̃)
)√
T

√
2d log(1 + TB2

a/(λ̃d))

= O(d
√
T log(Td)),

where the fourth line uses Cauchy-Schwartz inequality and the fifth line follows from Lemma 19.4
in [31]. Combining the last display with Eq. (25) completes the proof of first part of Theorem 15.
Moreover, the second part of Theorem 15 (i.e., the upper bound on logNΘ) follows directly from
Lemma 6 and Eq. (14).

G.5 Proof of Lemma 20
For any j 6= k, by definition of gk,η1

|gk,η1
(x1, . . . ,xj , . . . ,xA, y1, . . . , yA)− gk,η1

(x1, . . . ,x
′
j , . . .xA, y1, . . . , yA)|

≤ 1

η1

∣∣∣P(〈xk − xi, z〉+ yk − yi ≥ 0, for all i ∈ [A])

− P(〈xk − xi, z〉+ yk − yi ≥ 0, for all i 6= j,
〈
xk − x′j , z

〉
+ yk − yj ≥ 0)

∣∣∣
≤ 1

η1

(
P(
〈
xk − x′j , z

〉
+ yk − yj ≥ 0 ≥ 〈xk − xj , z〉+ yk − yj)

+ P(
〈
xk − x′j , z

〉
+ yk − yj ≤ 0 ≤ 〈xk − xj , z〉+ yk − yj)

)
≤ 1

η1

(
P(
〈
xj − x′j , z

〉
≥
〈
xk − x′j , z

〉
+ yk − yj ≥ 0)

+ P(
〈
xk − x′j , z

〉
+ yk − yj ≤ 0 ≤ 〈xk − xj , z〉+ yk − yj)

)
≤ 1

η1

(
P(
〈
xj − x′j , z

〉
≥
〈
xk − x′j , z

〉
+ yk − yj ≥ 0) + P(

〈
xj − x′j , z

〉
≤
〈
xk − x′j , z

〉
+ yk − yj ≤ 0

)
.

Note that conditioned on xj ,x
′
j we have

P(|
〈
xj − x′j , z

〉
| ≤ ‖xj − x′j‖2

√
2 log(2/δ1)) ≥ 1− δ1

for any δ1 > 0. Therefore we further have

|gk,η1(x1, . . . ,xj , . . . ,xA, y1, . . . , yA)− gk,η1(x1, . . . ,x
′
j , . . .xA, y1, . . . , yA)|

≤ 1

η1

[
P
( 〈

xk − x′j , z
〉

+ yk − yj ∈ [−‖xj − x′j‖2
√

2 log(2/δ1), ‖xj − x′j‖2
√

2 log(2/δ1)]
)

+ δ1

]
≤ 1

η1
[ sup
A∈F,µ(A)=2‖xj−x′j‖2

√
2 log(2/δ1)

P(
〈
xk − x′j , z

〉
∈ A) + δ1]
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≤ 1

η1
(
2‖xj − x′j‖2

√
2 log(2/δ1)

√
2πη

+ δ1) ≤ 1

η1
(
2‖xj − x′j‖2

ηδ1
+ δ1)

for any δ1 > 0, where the last inequality follows from the fact that standard Gaussian has probability
density less than 1/

√
2π everywhere, ‖xk − x′j‖2 ≤ η and log(2/δ1) ≤ 4/δ1

2. Choosing δ1 =

1 ∧
√

2‖xj−x′j‖2
η gives

|gk,η1
(x1, . . . ,xj , . . . ,xA, y1, . . . , yA)− gk,η1

(x1, . . . ,x
′
j , . . .xA, y1, . . . , yA)|

≤ 2

η1

(√2‖xj − x′j‖2
η

+
2‖xj − x′j‖2

η

)

Similarly, for xk 6= x′k, we have

|gk,η1
(x1, . . . ,xk, . . . ,xA, y1, . . . , yA)− gk,η1

(x1, . . . ,x
′
k, . . .xA, y1, . . . , yA)|

≤ 1

η1

(
P(〈xk − xi, z〉+ yk − yi ≥ 0 ≥ 〈x′k − xi, z〉+ yk − yi, for some i ∈ [A])

+ P(〈xk − xi, z〉+ yk − yi ≤ 0 ≤ 〈x′k − xi, z〉+ yk − yi, for some i ∈ [A])
)

≤
∑
i 6=k

1

η1

(
P(〈xk − xi, z〉+ yk − yi ≥ 0 ≥ 〈x′k − xi, z〉+ yk − yi)

+ P(〈xk − xi, z〉+ yk − yi ≤ 0 ≤ 〈x′k − xi, z〉+ yk − yi)
)

≤ A

η1
max
i6=k

(
P(〈xk − x′k, z〉 ≥ 〈xi − x′k, z〉+ yi − yk ≥ 0) + P(〈xk − x′k, z〉 ≤ 〈xi − x′k, z〉+ yi − yk ≤ 0

)
.

Following the same argument, we have

|gk,η1
(x1, . . . ,xk, . . . ,xA, y1, . . . , yA)− gk,η1

(x1, . . . ,x
′
k, . . .xA, y1, . . . , yA)|

≤ 2A

η1

(√2‖xk − x′k‖2
η

+
2‖xk − x′k‖2

η

)
.

Likewise, for any j 6= k we have

|gk,η1
(x1, . . . ,xA, y1, . . . , yj , . . . , yA)− gk,η1

(x1, . . . ,xA, y1, . . . , y
′
j , . . . , yA)|

≤ 1

η

(
P(〈xk − xj , z〉 ∈ [min{yk − yj , yk − y′j},max{yk − yj , yk − y′j}]

)
≤ 1

η1
sup

A∈F,µ(A)=2|yj−y′j |
P(〈xk − xj , z〉 ∈ A)

≤ 1

η1

2|yj − y′j |√
2πη

≤
2|yj − y′j |

ηη1

and

|gk,η1
(x1, . . . ,xA, y1, . . . , yk, . . . , yA)− gk,η1

(x1, . . . ,xA, y1, . . . , y
′
k, . . . , yA)|

≤
∑
j 6=k

1

η

(
P(〈xk − xj , z〉 ∈ [min{y′k − yj , yk − yj},max{y′k − yj , yk − yj}]

)
≤ A

η1
sup

A∈F,µ(A)=2|yj−y′j |
P(〈xk − xj , z〉 ∈ A)

≤ A

η1

2|yj − y′j |√
2πη

≤
2A|yj − y′j |

ηη1
.
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H Learning in-context RL in markov decision processes
Throughout this section, we use c > 0 to denote universal constants whose values may vary from
line to line. Moreover, for notational simplicity, we use O(·) to hide universal constants, Õ(·) to hide
poly-logarithmic terms in (H,K, S,A, 1/τ).

This section is organized as follows. Section H.1 discusses the embedding and extraction formats of
transformers for Markov decision processes. Section H.2 describes the UCB-VI and the soft UCB-VI
algorithms. We prove Theorem 16 in Section H.3 and prove Theorem 17 in Section H.4.

H.1 Embedding and extraction mappings
To embed MDP problems into transformers, we consider an embedding similar to that for linear
bandits. For each episode k ∈ [K], we construct 2H + 1 tokens. Concretely, for each t ∈ [T ] in the
k-th episode, we write t = H(k − 1) + h and construct two tokens

h2(t−1)+k =


0A+1

sk,h
0A
0

pos2(t−1)+k

 =:


ha2(t−1)+k

hb2(t−1)+k

hc2(t−1)+k

hd2(t−1)+k

 , h2t−1+k =


ak,h
rk,h
0S
0A
0

pos2t−1+k

 =:


ha2t−1+k

hb2t−1+k
hc2t−1+k

hd2t−1+k

 ,
where sk,h, ak,h are represented using one-hot embedding (we let sk,H+1 = 0S), hc2(t−1)+k is used
to store the (unnormalized) policy at time t given current state sk,h, 0 in hd denotes an additional
zero vector. At the end of each episode k, we add an empty token

h(2H+1)k = hemp
k :=

[
0 pos(2H+1)k

]>
to store intermediate calculations. We also include in the tokens the positional embedding posi :=
(k, h, vi, i, i

2, 1)> for i ∈ [2T+K], where vi := 1{hai=0} denote the tokens that do not embed actions
and rewards. In addition, we define the token matrix Ht := [h1, . . . ,h2t−1+k] ∈ RD×(2t−1+k) for
all t ∈ [T ].
Offline pretraining Similar to the bandit setting, during pretraining the transformer TFθ takes in
Hpre
T := HT as the input token matrix, and generates Hpost

T := TFθ(Hpre
T ) as the output. For each

time t ∈ [T ], we define the induced policy Algθ(·|Dt−1, st) :=
exp(hpost,c

2(t−1)+k
)

‖ exp(hpost,c
2(t−1)+k

)‖1
∈ ∆A, whose i-th

entry is the probability of selecting the i-th action (denoted by the one-hot vector ei) given (Dt−1, st).
We then find the transformer θ̂ ∈ Θ by solving Eq. (1).
Rollout At each time t ∈ [T ], given the current state st and previous data Dt−1, we first construct
the token matrix Hpre

roll,t ∈ RD×2(t−1)+k that consists of tokens up to the first token for time t. The
transformer then takes Hpre

roll,t as the input and generates Hpost
roll,t = TFθ(Hpre

roll,t). Next, the agent

selects an action at ∈ A following the induced policy Algθ(·|Dt−1, st) :=
exp(hpost,c

2(t−1)+k
)

‖ exp(hpost,c
2(t−1)+k

)‖1
∈ ∆A

and observes the reward rt and next state st+1 (st+1 ∼ µ1 if t is the last time step in an episode).
Embedding and extraction mappings To integrate the above construction into our general frame-
work in Section 2, for t = (k − 1)H + h, we have the embedding vectors

h(st) := h2(t−1)+k, h(at, rt) := h2t−1+k.

For N ≥ 1, write
d(N + 1)/2e = (kN − 1)H + hN

for some hN ∈ [H], and define the concatenation operator

cat(h1, . . . ,hN ) := [h1, . . . ,h2H ,h
emp
1 ,h2H+1, . . . ,h4H ,h

emp
2 ,h4H+1, . . . ,hN ] ∈ RN+kN−1,

where we insert an empty token hemp
k (i.e., a token with h{a,b,c} = 0) at the end of each episode k.

In this case, we have the input token matrix

H = Hpre
roll,t := cat(h(s1), h(a1, r1), . . . , h(at−1, rt−1), h(st)) ∈ RD×[2(t−1)+k],

the output token matrix H = Hpost
roll,t, and the linear extraction map A satisfies

A · h−1 = A · hpost

2(t−1)+k = hpost,c
2(t−1)+k.
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H.2 UCB-VI and soft UCB-VI
We show that transformers with the embedding in Section H.1 can approximately implement the
UCB-VI algorithm in [4]. Namely, UCB-VI implements the following steps:

for each episode k ∈ [K] and each step h = H, . . . , 1

1. Compute the estimated transition matrix P̂h(s′|s, a) := Nh(s,a,s′)
Nh(s,a)∨1 , where Nh(s, a, s′) de-

notes the number of times the state-action-next-state tuple (s, a, s′) has been visited in the
first k − 1 episodes, and Nh(s, a) =

∑
s′ Nh(s, a, s′) (we assume NH(s, a, s′) = 0 and let

NH(s, a) be the number of times (s, a) is visited at timestep H).

2. Calculate the estimated Q-function

Q̂h(s, a) = min{H, rh(s, a) + bh(s, a) +
∑
s′∈S

P̂h(s′ | s, a)V̂h+1(s′)},

where the bonus bh(s, a) = 2H
√

log(SAT/δ)
Nh(s,a)∨1 , V̂H+1(s) := 0 for all s ∈ S and V̂h(s) :=

maxa∈A Q̂h(s, a).

Throughout this section, we choose the small probability δ = 1/(KH).

During policy execution, at each step h ∈ [H], UCB-VI takes the greedy action ah :=

arg maxa Q̂(sh, a) and observes the reward and next state (rh, sh+1). To facilitate pretraining,
in this work we consider a soft version of UCB-VI, which takes action ah following the softmax
policy

πh(a|sh) =
exp(Q̂h(sh, a)/τ)∥∥∥exp(Q̂h(sh, a)/τ)

∥∥∥
1

using the estimated Q-function for some sufficiently small τ > 0. Note that soft UCB-VI recovers
UCB-VI as τ → 0.

H.3 Proof of Theorem 16
Throughout the proof, we abuse the notations h?i for ? ∈ {a, b, c, d} to denote the corresponding
positions in the token vector hi. For any t′ ∈ [T ], we let k(t′), h(t′) be the non-negative integers
such that t′ = H(k(t′)− 1) + h(t′) and h(t′) ∈ [H]. For the current time t, we use the shorthands
k = k(t), h = h(t). For a token index i ∈ [(2H + 1)K], let k(i), h(i) be the episode and time
step the i-th token corresponds to (for the empty tokens we set h = H + 1). Given the input token
matrix Hpre

roll,t, we construct a transformer that implements the following steps on the last token.
h?2(t−1)+k = hpre,?

2(t−1)+k for ? ∈ {a, b, c, d}


hpre,a

2(t−1)+k

hpre,b
2(t−1)+k

hpre,c
2(t−1)+k

hpre,d
2(t−1)+k

 step 1−−−→



h
pre,{a,b,c}
2(t−1)+k

N1(s, a, s′)
...

NH(s, a, s′)
N1(s, a)

...
NH(s, a, s′)

N1(s, a)r1(s, a)
...

NH(s, a, s′)rH(s, a)
?
0

pos2(t−1)+k



step 2−−−→



h
pre,{a,b,c}
2(t−1)+k

P̂1(s, a, s′)
...

P̂H(s, a, s′)
?
0

pos2(t−1)+k


step 3−−−→



h
pre,{a,b,c}
2(t−1)+k

Q̂1(s, a, s′)
...

Q̂H(s, a, s′)

V̂1(s)
...

V̂H(s)
?
0

pos2(t−1)+k
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step 4−−−→



h
pre,{a,b}
2(t−1)+k
Q̂h(st,a1)

τ
...

Q̂h(st,a1)
τ

hd2(t−1)+k


=:


hpost,a

2(t−1)+k

hpost,b
2(t−1)+k

hpost,c
2(t−1)+k

hpost,d
2(t−1)+k

 , (26)

where Nh(s, a, s
′), P̂h(s, a, s

′), Q̂h(s, a, s
′) ∈ RS2×A, Nh(s, a) ∈ RS×A, V̂h(s) ∈ RS for all h ∈

[H], and ? denote additional quantities in hd2(t−1)+k. Given the current state st, the transformer
TFθ(·) generates the policy

Algθ(·|Dt−1, st) :=
exp(hpost,c

2(t−1)+k)

‖ exp(hpost,c
2(t−1)+k)‖1

∈ ∆A.

We claim the following results which we will prove later.

Step 1 There exists an attention-only transformer TFθ(·) with

L = 4, max
`∈[L]

M (l) ≤ O(HS2A), |||θ||| ≤ O(HK +HS2A)

that implements step 1 in (22).

Step 2 There exists a one-layer transformer TFθ(·) with

L = 1, M ≤ O(HS2A), D′ ≤ O(K2HS2A), |||θ||| ≤ Õ(HS2A+K3 +KH)

that implements step 2 in (22).

Step 3 There exists a transformer TFθ(·) with

L = 2H, max
`∈[L]

M (l) ≤ 2SA, max
`∈[L]

D′
(l) ≤ 3SA, |||θ||| ≤ O(H + SA)

that implements step 3 (i.e., value iteration) in (22).

Step 4 There exists an attention-only transformer TFθ(·) with

L = 3, max
`∈[L]

M (`) = O(HA), |||θ||| ≤ O(H(K +A) + 1/τ)

that implements step 4 in (22).

From the construction of Step 1—4, we verify that one can choose the constructed transformer to have
the embedding dimension D = O(HS2A). Moreover, due to the boundedness of the reward function,
Q-function and the fact that the bonus b(s, a) ≤ Õ(H), we verify that there exists some R > 0 with
logR = Õ(1) such that ‖h(`)

i ‖2 ≤ R for all layer ` ∈ [L] and all token i ∈ [K(2H + 1)]. Therefore,
similar to what we do in the proof of Theorem 12, 14, we may w.l.o.g. consider transformers without
truncation (i.e., R =∞) in our construction of step 1—4 in (26).

Proof of Step 1 We prove this step by constructing a transformer that implements the following
two steps:

Step 1a For each t′ < t with t′ = (k′ − 1)H + h′ for some h′ ∈ [H], we add sk′,h′ , (ak′,h′ , rk′,h′)
from hb2(t′−1)+k′ and ha2t′−1+k′ to hd2t′+k′ .

Step 1b Compute Nh(s, a, s
′), Nh(s, a) for h ∈ [H] and assign them to the current token hd2(t−1)+k.

For step 1a, we can construct a two-layer attention-only transformer with Q
(1)
1,2,3,K

(1)
1,2,3,V

(1)
1,2,3 such

that for all i ≤ 2(t− 1) + k

Q
(1)
1 h

(0)
i =

k(i) + 1− vi
B
1
i

 , K
(1)
1 h

(0)
i =

 −Bk(i)
i+ 3
−1

 , V
(1)
1 h

(0)
2(t′−1)+k′ =

 0
0A+1

sk′,h′
0

 ,
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V
(1)
1 h

(0)
2t′−1+k′ =


0

ak′,h′
rk′,h′
0S
0,


where we choose B = 4 and Vh(0) are supported on some entries in h(0),d. Moreover, we choose
Q

(1)
3 = Q

(1)
2 = Q

(1)
1 , V

(1)
2 = V

(1)
3 = −V

(1)
1 and K

(1)
2 ,K

(1)
3 such that

K
(1)
2 h

(0)
i =

 −Bk(i)
i+ 2
−1

 , K
(1)
3 h

(0)
i =

 −Bk(i)
i+ 1
−1.


We verify that ‖Q(1)

? ‖op, ‖K(1)
? ‖op = 4, ‖V(1)

? ‖op = 1 for ? ∈ [3]. Summing up the heads, we
obtain the following update on a subset of coordinates in h

(0),d
2t′+k′ :

0S+A+1 → 0S+A+1 +

3∑
j=1

2t′+k′∑
i=1

σ(
〈
Q

(1)
j h

(0)
2t′+k′ ,K

(1)
j h

(0)
i

〉
)Vjh

(0)
i

=
1

2t′ + k′
[(V

(1)
1 h

(0)
2t′+k′−2 + 2V

(1)
1 h

(0)
2t′+k′−1 + 3V

(1)
1 h

(0)
2t′+k′)

− (V
(1)
1 h

(0)
2t′+k′−1 + 2V

(1)
1 h

(0)
2t′+k′)−V

(1)
1 h

(0)
2t′+k′)]

=
1

2t′ + k′
(V

(1)
1 h

(0)
2t′+k′−2 + V

(1)
1 h

(0)
2t′+k′−1)

=
1

2t′ + k′

[
ak′,h′
rk′,h′
sk′,h′

]
.

Note that
〈
Q(1)h

(0)
i ,K(1)h

(0)
j

〉
≤ 0 for i = 2t′ − 1 + k′ (i.e., all tokens that embed the action and

reward) since vi = 0, it follows that no update happens on the tokens in which we embed the action
and reward (i.e., the corresponding part of hd remains zero). Moreover, it should be noted that no
update happens on tokens with h = 1.

We then use another attention layer to multiply the updated vectors by a factor of 2t′ + k′, namely, to
perform the map

1

2t′ + k′

[
ak′,h′
rk′,h′
sk′,h′

]
7→

[
ak′,h′
rk′,h′
sk′,h′

]
,

where the output vector is supported on coordinates different from the input vectors. This can be
achieved by choosing ‖Q(2)

1 ‖op ≤ (2H + 1)K, ‖K(2)
1 ‖op ≤ (2H + 1)K, ‖V(2)

1 ‖op ≤ 1 such that

Q
(2)
1 h

(1)
i =

 i2

−(2H + 1)Ki2

1
0

 , K
(2)
1 h

(1)
j =

 1
1

(2H + 1)Kj2

0

 , V
(2)
1 h

(1)
2t′+k′ =

1

2t′ + k′


0

ak′,h′
rk′,h′
sk′,h′

0

 ,
(27)

and noting that
〈
Q

(2)
1 h

(1)
i ,Q

(2)
1 h

(1)
j

〉
= i when j = i and otherwise 0.

For step 1b, we show that it can be implemented using a two-layer attention-only transformer.

To compute Nh(s, a, s
′), in the first layer we construct M = 10HS2A heads with the query, key,

value matrices {Q(1)
ijkh,s}10

s=1, {K
(1)
ijkh,s}10

s=1, {V
(1)
ijkh,s}10

s=1 such that for all i ≤ 2(t − 1) + k and
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i, k ∈ [S], j ∈ [A], h ∈ [H]

Q
(1)
ijkh,1h

(0)
i =



B(vi − 1)
Bei

Bej

Bek

1
1
h

 , K
(1)
ijkh,1h

(0)
i =



1
sk(i),h(i)−1

ak(i),h(i)−1

sk(i),h(i)

−3B
1− h(i)

1


, V

(1)
ijkh,1h

(0)
i = −

 0

eNh

ijk

0

 ,

where we choose B = 2H and eh
ijk denotes the one-hot vector supported on the (i, j, k)-entry in

Nh(s, a, s
′). We similarly construct

Q
(1)
ijkh,2h

(0)
i =



B(vi − 1)
Bei

Bej

Bek

1
1
h

 , K
(1)
ijkh,2h

(0)
i =



1
sk(i),h(i)−1

ak(i),h(i)−1

sk(i),h(i)

−3B
−h(i)

1


, V

(1)
ijkh,2h

(0)
i =

 0

eNh

ijk

0

 ,

Q
(1)
ijkh,3h

(0)
i =



B(vi − 1)
Bei

Bej

Bek

1
1
−h

 , K
(1)
ijkh,3h

(0)
i =



1
sk(i),h(i)−1

ak(i),h(i)−1

sk(i),h(i)

−3B
h(i)− 1

1


, V

(1)
ijkh,3h

(0)
i = −

 0

eNh

ijk

0

 ,

Q
(1)
ijkh,4h

(0)
i =



B(vi − 1)
Bei

Bej

Bek

1
1
−h

 , K
(1)
ijkh,4h

(0)
i =



1
sk(i),h(i)−1

ak(i),h(i)−1

sk(i),h(i)

−3B
h(i)− 2

1


, V

(1)
ijkh,4h

(0)
i =

 0

eNh

ijk

0

 ,

Q
(1)
ijkh,5h

(0)
i =


B(vi − 1)

Bei

Bej

Bek

1

 , K
(1)
ijkh,5h

(0)
i =


1

sk(i),h(i)−1

ak(i),h(i)−1

sk(i),h(i)

−3B

 , V
(1)
ijkh,5h

(0)
i =

 0

eNh

ijk

0

 .

Summing up the first five heads, we verify that such attention updates the token with hai = 0 and has
the form

0→ 0 +
1

i
Ñh(i, j, k)eNhijk

on hdi , where Ñh(i, j, k) denote the number of visits to the state-action-next-state tuple (i, j, k) at time
step h before token i. For ? ∈ [5], we choose V

(1)
ijkh,?+5 = −V

(1)
ijkh,?+5 and Q

(1)
ijkh,?+5,K

(1)
ijkh,?+5 be

such that

Q
(1)
ijkh,?+5h

(0)
i =

Q
(1)
ijkh,?h

(0)
i

B
−k(i)

 , K
(1)
ijkh,?+5h

(0)
i =

K
(1)
ijkh,?h

(0)
i

k(i)
B


which adds positional embedding about the current episode k(i). We verify that summing up the
sixth to the tenth heads gives the update

0→ 0 +
1

i
(Nh(i, j, k)− Ñh(i, j, k))eNhijk
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on hdi for i ≤ 2(t− 1) + k with hai = 0. Therefore, combining all the heads together we have the
update

0→ 0 +
1

i
Nh(i, j, k)eNhijk for all i, k ∈ [S], j ∈ [A], h ∈ [H]

on hdi for i ≤ 2(t − 1) + k with hai = 0, in particular when i = 2(t − 1) + k. Moreover, notice
that the matrices {Q(1)

ijkh,s}10
s=1, {K

(1)
ijkh,s}10

s=1 can be constructed with the operator norm less than

10B = 10H , and {V(1)
ijkh,s}10

s=1 with the operator norm equals 1.

Following a similar construction, we can also compute Nh(s, a), Nh(s, a)rh(s, a) for all h, s, a, s′ on
different supports of coordinates in hdi via adding additional M = O(HSA) heads to the attention-
only layer.

Next, we construct the second attention layer to multiply the token vector by the index number i as in
the proof of Step 1a. The construction is similar to that in Eq. (27) and we omit it here. Moreover,
note that Step 1b can be implemented with the embedding dimension D ≤ O(HS2A) as we need
O(1) dimensions for each quadruple (i, j, k, h). Combining Step 1a, 1b concludes the proof of Step 1.

Proof of Step 2 After Step 1, for the current token i = 2(t − 1) + k, we have
Nh(s, a, s

′), rh(s, a), Nh(s, a), Nh(s, a)rh(s, a) lie in hdi for all h ∈ [H]. Given these vectors that
store the number of visits and rewards, note that

rh(s, a) =
Nh(s, a)rh(s, a)

Nh(s, a) ∨ 1
, when Nh(s, a) ≥ 1,

bh(s, a) = 2H

√
log(SAT/δ)

Nh(s, a) ∨ 1
,

P̂h(s, a, s
′) =

Nh(s, a, s
′)

Nh(s, a) ∨ 1
.

Therefore, we may compute P̂h, bh via using a transformer layer to implement the functions f1(x, y) =
x
y∨1 , f2(y) = 2H

√
log(SAT/δ)

y∨1 , f3(x, y) = x
y∨1 +H1y=0 for x, y ∈ {0}∪ [K]. We demonstrate the

computation of P̂h(s, a, s
′) (i.e., the computation of f1(x, y)) here. We start with constructing an atten-

tion layer withM = O(HS2A) heads such that it implements x 7→ x2 for x = Nh(s, a, s
′), Nh(s, a).

For Nh(s, a, s
′), this can be done by choosing ‖Q(1)

ijkh‖op ≤ K, ‖K(1)
ijkh‖op ≤ K, ‖V(1)

ijkh‖op = 1 such
that

Q
(1)
ijkhh

(0)
i =

[
K
−i

Nh(ei, ej, ek)

]
, K

(1)
ijkhh

(0)
j =

[
j
K

Nh(ei, ej, ek)

]
, V

(1)
ijkhh

(0)
j =

[
0
j
0

]
,

where ei, ek denote the i, j-th states and esj denotes the k-th action. Similarly, we can construct
HSA additional heads to compute Nh(s, a)2 for all possible s, a.

Next, we compute the exact values of P̂ (s, a, s′) using an MLP layer. Namely, we construct
W

(1)
1 = W

(1)
12 W

(1)
11 ,W

(1)
2 = W

(1)
23 W

(1)
22 W

(1)
21 such that for all h, s, a, s′, on the corresponding

vector component we have

W
(1)
11 h

(0)
i =



1
Nh(s, a, s

′)2

...
(Nh(s, a, s

′)−K)2

Nh(s, a)2

...
(Nh(s, a)−K)2


=



1
Nh(s, a, s

′)2

...
Nh(s, a, s

′)2 +K2 − 2KNh(s, a, s
′)

Nh(s, a)2

...
Nh(s, a)2 +K2 − 2KNh(s, a)


,
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W
(1)
12 W

(1)
11 h

(0)
i =


1−Nh(s, a, s

′)2 −Nh(s, a)2

...
1− (Nh(s, a, s

′)− x)2 − (Nh(s, a)− y)2

...
1− (Nh(s, a, s

′)−K)2 − (Nh(s, a)−K)2

 ,

where x, y ∈ {0} ∪ [K]. Moreover, we construct W
(1)
21 so that on the entries corresponding to

h, s, a, s′ it implements

W
(1)
2 σ(W

(1)
1 h

(0)
i ) =

[∑K
x,y=0 σ(1− (Nh(s, a, s

′)− x)2 − (Nh(s, a)− y)2) · x
y∨1

]
=
[
Nh(s,a,s

′)
Nh(s,a)∨1 .

]
It can be verified that we can find such W

(1)
1 ,W

(1)
2 with

‖W(1)
1 ‖op ≤ ‖W(1)

11 ‖op‖W(1)
12 ‖op ≤ O(K2) ·O(K) = O(K3),

‖W(1)
2 ‖op ≤ O(K), and the number of hidden neurons D′ = O(K2HS2A). Simlarly, we can

compute f2(·) (or f3(·)) exactly following the same construction but with a different W
(1)
2 that

records all possible values of f2(·) (or f3(·)). Combining the upper bounds on the operator norm of
the weight matrices, we further have |||θ||| ≤ Õ(HS2A+K3 +KH).

Proof of Step 3 Given V̂H+1 = V̂H+1 = 0, we show the there exists an transformer with

L = 2, max
`∈[L]

M (`) ≤ 2SA, max
`∈[L]

D′
(`) ≤ 3SA, |||θ||| ≤ O(H + SA)

that implements one step of value iteration

Q̂h(s, a) = max{min{H, rh(s, a) + bh(s, a) +
∑
s′∈S

P̂h(s
′ | s, a)V̂h+1(s′)}, 0},

V̂h(s) = max
a∈A

Q̂h(s, a)

for some h ∈ [H]. Namely, we start with constructing an-attention layer with M = 2SA and
{Q(1)

ijh,s}2s=1, {K
(1)
ijh,s}2s=1, {V

(1)
ijh,s}2s=1 such that for all i ≤ 2(t− 1) + k

Q
(1)
ij,1h

(0)
i =

 B
−i

V̂h+1(·)

 , K
(1)
ij,1h

(0)
i =

 i
B

P̂h+1(·|s, a)

 , V
(1)
ij,1h

(0)
i =

 0

ieQh

ij

0,


Q

(1)
ij,2h

(0)
i =

 B
−i

−V̂h+1(·)

 , K
(1)
ij,2 = K

(1)
ij,1, V

(1)
ij,2 = −V

(1)
ij,2

where B = 3H and eQh

ij ∈ RSA is a vector supported on some coordinates in hdi reserved for Q̂h.

Moreover, we have ‖Q(1)
ijh,s‖op, ‖K(1)

ijh,s‖op ≤ B, ‖V(1)
ijh,s‖op = 1. Since∣∣∣ 〈V̂h+1(·), P̂h+1(·|s, a)

〉 ∣∣∣ ≤ ∥∥∥V̂h+1(·)
∥∥∥
∞
·
∥∥∥P̂h+1(·|s, a)

∥∥∥
1
≤ H

as V̂h+1(s) ∈ [0, H] and
∥∥∥P̂h+1(·|s, a)

∥∥∥
1

= 1, it follows that summing up two heads gives the update

for i ≤ 2(t− 1) + k

0 7→ 0 +
[
σ(
〈
Q

(1)
ij,1h

(0)
i ,K

(1)
ij,1h

(0)
j

〉
)− σ(

〈
Q

(1)
ij,1h

(0)
i ,K

(1)
ij,1h

(0)
j

〉
)
]
eQh

ij

=
〈
Q

(1)
ij,1h

(0)
i ,K

(1)
ij,1h

(0)
j

〉
eQh

ij .

Denote the resulting token vector by h
(1)
i . Moreover, we can construct a two-layer MLP with

‖W(1)
1 ‖op = O(H), ‖W(1)

2 ‖op ≤ 3, D′ = 3SA
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such that for any state-action pair (s, a) ∈ S ×A on the corresponding coordinates

W
(1)
1 h

(1)
i =



...
−[rh(s, a) + bh(s, a) +

∑
s′∈S P̂h(s

′ | s, a)V̂h+1(s′)]

rh(s, a) + bh(s, a) +
∑
s′∈S P̂h(s

′ | s, a)V̂h+1(s′)−H
rh(s, a) + bh(s, a) +

∑
s′∈S P̂h(s

′ | s, a)V̂h+1(s′)
...


and

W
(1)
2 σ(W

(1)
1 h

(1)
i ) = σ(−[rh(s, a) + bh(s, a) +

∑
s′∈S

P̂h(s
′ | s, a)V̂h+1(s′)])

− σ(rh(s, a) + bh(s, a) +
∑
s′∈S

P̂h(s
′ | s, a)V̂h+1(s′)−H)

+ σ(rh(s, a) + bh(s, a) +
∑
s′∈S

P̂h(s
′ | s, a)V̂h+1(s′))

= max{min{H, rh(s, a) + bh(s, a) +
∑
s′∈S

P̂h(s
′ | s, a)V̂h+1(s′)}, 0} = Q̂h(s, a).

Denote the resulting token vector by h
(2)
i . Next, we construct a second MLP layer with

‖W(2)
1 ‖op ≤ 2, ‖W(2)

2 ‖op ≤
√
A, D′ = AS

such that for any s ∈ S on the corresponding coordinates we have

W
(2)
1 h

(2)
i =



...
Q̂h(s, a1)

Q̂h(s, a2)− Q̂h(s, a1)
...

Q̂h(s, aA)− Q̂h(s, aA−1)
...


,

where aj denotes the j−th action, and

W
(2)
2 σ(W

(2)
1 h

(2)
i ) = σ(Q̂h(s, a1)) +

A∑
j=2

σ(Q̂h(s, aj)− Q̂h(s, aj−1))

= max
a∈A

Q̂h(s, a) = V̂h(s).

Using the upper bounds on the operator norm of the weight matrices, we further have |||θ||| ≤
O(SA+H). Combining the steps concludes the construction in Step 3.

Proof of Step 4 we start with constructing an-attention layer with M = 2HA and
{Q(1)

jh,s}2s=1, {K
(1)
jh,s}2s=1, {V

(1)
jh,s}2s=1 such that for all the current token i = 2(t− 1) + k and j ≤ i

Q
(1)
jh,1h

(0)
i =

sk(i),h(i)

−i
B

 , K
(1)
jh,1h

(0)
j =

Q̂h(·, aj)
B
j

 , V
(1)
jh,1h

(0)
i =

[
0
iejh

0,

]

Q
(1)
jh,2h

(0)
i =

−sk(i),h(i)

−i
B

 , K
(1)
jh,2 = K

(1)
jh,1, V

(1)
jh,2 = −V

(1)
jh,1,

where we choose B = 2H and V
(1)
jh,1h

(0)
i is a one-hot vector supported on some entry of hdi . We

verify that summing up the heads gives the update

0 7→ Q̂h(sk,h, aj)ejh
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for all h ∈ [H], j ∈ [A]. Moreover, we have ‖Q(1)
jh,s‖op ≤ 2H, ‖K(1)

jh,s‖op ≤ 2H, ‖V(1)
jh,s‖op ≤ 1 for

s = 1, 2. Through this attention-only layer, we extract the values Q̂h(sk,h, aj) for all h ∈ [H] from
the Q-function.

Similar to the proof of Step 1b, we construct a second attention-only layer with attention heads
{Q(2)

jh,s}2s=1, {K
(2)
jh,s}2s=1, {V

(2)
jh,s}2s=1 that

Q
(2)
jh,1h

(1)
i =

 1
−h(i)
−i
B

 , K
(2)
jh,1h

(1)
j =

h1B
j

 , V
(2)
jh,1h

(1)
i = −

 0

Q̂h(sk,h, aj)ej

0

 ,

Q
(2)
jh,2 = Q

(2)
jh,1, K

(2)
jh,2h

(1)
j =

h− 1
1
B
j

 , V
(2)
jh,2 = −V

(2)
jh,2,

where V
(2)
jh,1h

(1)
i are supported on some entry of hdi for s = 1, 2. Summing up the heads gives the

update

0 7→ −
H∑

s=h(i)+1

1

i
Q̂s(sk,h, aj).

Similarly, we can construct attention heads {Q(2)
jh,s}4s=3, {K

(2)
jh,s}4s=3, {V

(2)
jh,s}4s=3 that implements

0 7→ −1

i

h(i)−1∑
s=1

Q̂s(sk,h, aj).

Moreover, we construct Q
(2)
jh,5,K

(2)
jh,5,V

(2)
jh,5 with

Q
(2)
jh,5h

(1)
i =

[
1
−i
B

]
, K

(2)
jh,5h

(1)
j =

[
1
B
j

]
, V

(2)
jh,1h

(1)
i =

 0

Q̂h(sk,h, aj)ej

0,


that implements

0 7→ 1

i

H∑
s=1

Q̂s(sk,h, aj).

Therefore, summing up the M = 5HA heads we obtain the update

0A 7→
1

i
Q̂h(sk,h, ·).

Note that ‖Q(1)
jh,s‖op ≤ 4H, ‖K(1)

jh,s‖op ≤ 4H, ‖V(1)
jh,s‖op ≤ 1 for s ∈ [5].

Finally, we apply an attention-only layer to implement the multiplication by a factor of i/τ using
a similar construction as in Eq. (27) with ‖Q(3)

1 ‖op = O(HK), ‖K(3)
1 ‖op = O(HK), ‖V(3)

1 ‖op =

O(1/τ), and assign the resulting vector Q̂(sk,h, ·)/τ to hci . Combining the three attention-only layers
completes Step 4.

H.4 Proof of Theorem 17
By Theorem 1 and 16, it suffices to show the regret of soft UCB-VI satisfies

E[KVM (π∗)−RM,AlgsUCBVI(τ)(T )] ≤ Õ(H2
√
SAK +H3S2A)

for all MDP instances M , where τ = 1/K and Õ(·) hides logarithmic dependencies on (H,K, S,A).

Throughout the proof, we may drop the dependence on M for notational simplicity when there is no
confusion. For each episode k ∈ [K], let Nk

h , P̂
k
h , Q̂

k
h , V̂

k
h , b

k
h denote the corresponding quantities

Nh, P̂h, Q̂h, V̂h, bh introduced in UCB-VI (see Section H.2).
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For a policy π and time step h ∈ [H], we define the Q-function Qπh and the value function V πh

Qπh (s, a) := E[

H∑
t=h

r(st, at) | sh = s, ah = a, π],

V πh (s) := E[

H∑
t=h

r(st, a) | sh = s, π].

We use πk = (πk1 , . . . , π
k
H), πksm = (πksm,1, . . . , π

k
sm,h, . . . π

k
sm,H) to denote the policies given

by UCB-VI and soft UCB-VI in the k-th episode, respectively. Note that we have VM (π) =
Es∼µ1

[V πh (s)] and cumulative the regret

E[KVM (π∗)−RM,AlgsUCBVI(τ)(T )]] = E
[ K∑
k=1

[V π
∗

1 (sk,1)− V π
k
sm

1 (sk,1)]
]

where the expectation is taken over the collected data

DT = {(sk,h, ak,h, rk,h)}k∈[K],h∈[H] ∼ PsUCBVI(τ)
M .

For any function f = f(s, a), we abuse the notation f(s, π(·)) := Ea∼π[f(s, a)]. Lastly, we define

εsfmax = max
k∈[K],h∈[H],s∈S

[Q̂kh(s, πkh (·))− Q̂kh(s, πksm,h(·))].

We claim the following which we will prove later

εsfmax ≤ Aτ. (28)

The proof follows from similar arguments as in the proof of Theorem 1 in [4] (see also Theorem 7.6
in [1]). Hence we only provide a sketch of proof here. First, from the proof of Theorem 7.6 in [1] , it
can be shown that

V̂ kh (s) ≥ V π
∗

h (s)

for any k, h, s with probability at least 1− δ. Thus with probability at least 1− δ for all h ∈ [H], k ∈
[K]

V π
∗

h (sk,h)− V
πksm
h (sk,h)

≤ V̂ kh (sk,h)− V
πksm
h (sk,h)

= Q̂kh(sk,h, π
k
h (·))− Q̂kh(sk,h, π

k
sm,h(·)) + Q̂kh(sk,h, π

k
sm,h(·))−Q

πksm
h (sk,h, π

k
sm,h(·))

≤ Q̂kh(sk,h, π
k
sm,h(·))−Q

πksm
h (sk,h, π

k
sm,h(·)) + εsfmax

= Q̂kh(sk,h, ak,h)−Q
πksm
h (sk,h, ak,h) + MD

(1)
k,h + εsfmax,

where the first equality uses V̂ kh (sk,h) = arg maxa Q̂
k
h(sk,h, ak,h) = Q̂kh(sk,h, π

k
h (·)), and in the last

line

MD
(1)
k,h := [Q̂kh(sk,h, π

k
sm,h(·))−Q

πksm
h (sk,h, π

k
sm,h(·))]− [Q̂kh(sk,h, ak,h)−Q

πksm
h (sk,h, ak,h)].

Note that for any fixed h ∈ [H], {MD
(1)
k,h}Kk=1 is a bounded martingale difference sequence. Following

the proof of Theorem 7.6 in [1], we further have

V π
∗

h (sk,h)− V
πksm
h (sk,h)

≤ Q̂kh(sk,h, ak,h)−Q
πksm
h (sk,h, ak,h) + MD

(1)
k,h + εsfmax

≤
(

1 +
1

H

)[
V̂ kh+1(sk,h+1)− V π

k
sm

h+1(sk,h+1)
]

+ 2bkh(sk,h, ak,h)

+
c0L0H

2S

Nk
h (sk,h, ak,h)

+ MD
(2)
k,h + MD

(1)
k,h + εsfmax,
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with probability at least 1 − cδ for some universal constant c > 0, where L0 = log(SAKH/δ),
c0 > 0 is some universal constant and

MD
(2)
k,h := Ph(· | sk,h, ak,h) · (V π

∗

h+1 − V
πksm
h+1)− (V π

∗

h+1(sk,h+1)− V π
k
sm

h+1(sk,h+1))

is a bounded martingale difference sequence for any fixed h ∈ [H]. Using the recursive formula and
the fact that (1 + 1/H)H < e, we obtain

E
[ K∑
k=1

[V π
∗

1 (sk,1)− V π
k
sm

1 (sk,1)]
]

≤ cE

[
K∑
k=1

H∑
h=1

[
2bkh(sk,h, ak,h) +

c0L0H
2S

Nk
h (sk,h, ak,h)

+ MD
(2)
k,h + MD

(1)
k,h

]]
+ E[K

H−1∑
h=0

(1 +
1

H
)hεsfmax]

≤ cE

[
K∑
k=1

H∑
h=1

[
2bkh(sk,h, ak,h) +

c0L0H
2S

Nk
h (sk,h, ak,h)

+ MD
(2)
k,h + MD

(1)
k,h

]]
+ cKHAτ

≤ Õ(H2
√
SAK +H3S2A) + cKHAτ

≤ Õ(H2
√
SAK +H3S2A),

where c > 0 is some universal constant, Õ(·) hides logarithmic dependencies on (H,K, S,A), and
the last line follows again from the proof of Theorem 7.6 in [1], and the assumption that τ = 1/K.
We omit the detailed derivations here as they are similar to those in [4, 1]. Therefore, we conclude
the proof of the first part of Theorem 17. Moreover, the second part of Theorem 17 (i.e., the upper
bound on logNΘ) follows immediately from Lemma 6 and Eq. (15).

Proof of Eq. (28) By definition of Q̂kh and πkh , π
k
sm,h, we have

Q̂kh(s, πkh (·))− Q̂kh(s, πksm,h(·)) = max
a

Q̂kh(s, a)−
∑
a

exp(Q̂kh(s, a)/τ)∑
a exp(Q̂kh(s, a)/τ)

· Q̂kh(s, a)

=
∑
a

exp(Q̂kh(s, a)/τ)∑
a exp(Q̂kh(s, a)/τ)

· [max
a

Q̂kh(s, a)− Q̂kh(s, a)]

≤
∑
a

exp(Q̂kh(s, a)/τ)

exp(maxa Q̂kh(s, a)/τ)
· [max

a
Q̂kh(s, a)− Q̂kh(s, a)]

≤ A · [sup
t≥0

t exp(−t/τ)] ≤ Aτ.

I Experiments
In this section, we perform preliminary simulations to demonstrate the ICRL capabilities of trans-
formers and validate our theoretical findings. We remark that while similar experiments have been
conducted in existing works [30, 33], our setting differs in several aspects such as imitating the entire
interaction trajectory in our pretrain loss (1) as opposed to on the last (query) state only as in Lee
et al. [33].

We compare pretrained transformers against empirical average, LinUCB (or UCB), and Thompson
sampling. We use a GPT-2 model [22, 33] with L = 8 layers, M = 4 heads, and embedding
dimension D = 32. We utilize ReLU attention layers, aligning with our theoretical construction. We
pretrain the transformer with two setups: (1) Both context algorithm Alg0 and expert algorithm AlgE
use LinUCB (the Algorithm Distillation approach); (2) Context algorithms Alg0 mixes uniform policy
and Thompson sampling, while expert AlgE = a∗t provides optimal actions (DPT). See Appendix J
for further experimental details.

In the first setup, we consider stochastic linear bandits with d = 5 and A = 10. At each t ∈ [200],
the agent chooses an action at and receives reward rt = 〈at,w∗〉+ εt where εt ∼ N (0, 1.52). The
parameter w∗ is from Unif([0, 1]d). The action set At = A is fixed over time with actions i.i.d. from
Unif([−1, 1]d). We generate 100K trajectories using Alg0 = AlgE = LinUCB and train transformer
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Figure 1: Regrets of transformer (TF), empirical average (Emp), Thompson sampling (TS) and
LinUCB or UCB (LinUCB reduces to UCB for Bernoulli bandits). Left: linear bandit with d = 5,
A = 10, σ = 1.5, Alg0 = AlgE = LinUCB. Right: Bernoulli bandit with d = 5, Alg0 =
(Algunif + AlgTS)/2 and AlgE = a∗. The simulation is repeated 500 times. Shading displays the
standard deviation of the regret estimates.

TFθ̂(·) via Eq. (1). Figure 1 (left) shows regrets of the transformer (TF), empirical average (Emp),
LinUCB, and Thompson sampling (TS). The transformer outperforms Thompson sampling and
empirical average, and is comparable to LinUCB, agreeing with Theorem 13. The small regret gap
between TF and LinUCB may stem from the limited capacity of the GPT2 model.

In the second setup, we consider multi-armed Bernoulli bandits with d = 5. The parameter w∗ is
from Unif([0, 1]d). The fixed action set At = A contains one-hot vectors {ei}di=1 (multi-armed
bandits). At each t ∈ [200], the agent selects at receives reward rt ∼ Bern(〈at,w∗〉). Let Algunif
be the uniform policy. We use Algunif and AlgTS as context algorithms to generate 50K trajectories
each. The expert is fixed as AlgE = a∗. We train transformer TFθ̂(·) via Eq. (1). Figure 1 (right)
shows regrets for the pretrained transformer (TF), empirical average (Emp), UCB, and Thompson
sampling (TS). The transformer aligns with Thompson sampling, validating Theorem 15. However,
TS underperforms UCB for Bernoulli bandits, as shown.

J Experimental details

This section provides implementation details of our experiments and some additional simulations.
Our code is available at https://anonymous.4open.science/r/in-context-rl.

J.1 Implementation details
Model and embedding Our experiments use a GPT-2 model [48] with ReLU activation layers.
The model has L = 8 attention layers, M = 4 attention heads, and embedding dimension D = 32.
Following standard implementations in [66], we add Layer Normalization [5] after each attention
and MLP layer to facilitate optimization. We consider the embedding and extraction mappings as
described in Appendix F.1, and train transformer TFθ̂(·) via maximizing Eq. (1).

Online algorithms We compare the regret of the algorithm induced by the transformer with
empirical average, Thompson sampling, and LinUCB (or UCB for Bernoulli bandits).

(Emp) Empirical average. For time t ≤ A, the agent selects each action once. For time t > A, the
agent computes the average of the historical rewards for each action and selects the action
with the maximal averaged historical rewards.

(TS) Thompson sampling. For linear bandits with Gaussian noises, we consider Thompson
sampling introduced in Appendix G.1 with r = σ = 1.5 and λ = 1 (note that in this case TS
does not correspond to posterior sampling as we assume w∗ follows the uniform distribution
on [0, 1]d). For Bernoulli bandits, we consider the standard TS sampling procedure (see, for
example, Algorithm 3.2 in [58]).

(LinUCB) Linear UCB and UCB. For linear bandits, we use LinUCB (Appendix F.2) with λ = 1
and α = 2. For multi-armed Bernoulli bandits, LinUCB reduces to UCB, which selects
at = arg maxa∈A{µ̂t,a +

√
1/Nt(a)}, where µt,a is the average reward for action a up to

time t, and Nt(a) is the number of times action a was selected up to time t.
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J.2 Additional experiments and plots
We provide additional experiments and plots in this section. In all experiments, we choose the number
of samples n = 100K.

Additional plots of suboptimality 〈a∗t − at,w∗〉 over time are shown in Figure 2 for the two experi-
ments in Section I. In both cases, the transformer is able to imitate the expected expert policy AlgE ,
as its suboptimality closely matches AlgE (LinUCB and TS for the left and right panel, respectively).
While the empirical average (Emp) has lower suboptimality early on, its gap does not converge to
zero. In contrast, both LinUCB and Thompson sampling are near-optimal up to Õ(1) factors in terms
of their (long-term) regret.
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Figure 2: Suboptimalities of transformer (TF), empirical average (Emp), Thompson sampling (TS),
and LinUCB (or UCB). Left: linear bandit with d = 5, A = 10, σ = 1.5, Alg0 = AlgE = LinUCB.
Right: Bernoulli bandit with d = 5, Alg0 = (Algunif + AlgTS)/2, and AlgE = a∗t . The simulation is
repeated 500 times. Shading displays the standard deviation of the sub-optimality estimates.

Additional simulations were run with Alg0 = AlgE = UCB for Bernoulli bandits, which has fewer
actions (A = 5) than linear bandits (A = 10). Figure 3 shows the regret and suboptimality of UCB
and the transformer overlap perfectly, with both algorithms exhibiting optimal behavior. This suggests
the minor gaps between LinUCB and transformer in the left panel of Figure 1 and 2 are likely due to
limited model capacity.
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Figure 3: Regrets and suboptimalities of transformer (TF), empirical average (Emp), Thompson
sampling (TS), and UCB. Settings: Bernoulli bandit with d = 5, and Alg0 = AlgE = LinUCB. The
simulation is repeated 500 times. Shading displays the standard deviation of the estimates.

J.3 The effect of distribution ratio
We evaluate the effect of the distribution ratio R = RAlgE ,Alg0

(Definition 5) on transformer per-
formance. We consider the Bernoulli bandit setting from Section I with expert AlgE = a∗ giving
optimal actions. The context algorithm is

Alg0 = αAlgTS + (1− α)Algunif ,
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mixing uniform policy Algunif and Thompson sampling AlgTS, for α ∈ {0, 0.1, 0.5, 1}. The case
α = 0 corresponds to the context algorithm being the i.i.d. uniform policy, and α = 1 corresponds
to the context algorithm being Thompson sampling. Note that the distribution ratioR may scale as
O((1/α) ∧AO(T )) in the worst case.

Figure 4 evaluates the learned transformers against Thompson sampling for varying context algo-
rithms. The left plot shows cumulative regret for all algorithms. The right plot shows the regret
difference between transformers and Thompson sampling. The results indicate that an increased
distribution ratio impairs transformer regret, as expected. Moreover, it is observed that the transformer,
even with the uniform policy (i.e., α = 0), is capable of imitating Thompson sampling in the early
stages (Time ≤ 30), exceeding theoretical predictions. This suggests the transformer can learn
Thompson sampling even when the context algorithm differs significantly from the expert algorithm.
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Figure 4: Regrets and difference of regrets between transformers and Thompson sampling, for
different context algorithms. Settings: Bernoulli bandit with d = 5, AlgE = a∗t and Alg0 =
αAlgTS + (1− α)Algunif with α ∈ {0, 0.1, 0.5, 1}. The simulation is repeated 500 times. Shading
displays the standard deviation of the estimates.
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