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Abstract

Generative models are increasingly vital in protein design, yet conditional generation
for specific targets remains challenging. Current methods often require extensive screening
and lack fine-grained control over functional traits. We propose a flow-matching-based
multimodal model that jointly generates protein sequences and structures conditioned on a
target. Our approach integrates sequence and structure modalities using a locality-aware
transformer with self-attention and cross-attention mechanisms. Experimental results on
fine-grained protein generation, shows significant improvements over baseline methods.

1. Introduction

Generative models are playing increasingly important in biological sciences (Guo et al., 2024),
particularly in protein design (Abramson et al., 2024). While typical protein design models
often focuses on creating novel proteins, therapeutic applications frequently require designing
proteins for specific targets (Nelson et al., 2010). This necessitates conditional protein
generation: that is models that can predict or generate proteins conditional on satisfying
target characteristics. Despite the success of models like EvoDiff (Alamdari et al., 2023),
ProteinGAN (Repecka et al., 2021), MSAVAE (Hawkins-Hooker et al., 2021), these protein
design models have limited practical benefit as researchers need to screen the generated
proteins to fulfill the desired criteria (Mardikoraem et al., 2023).

Recent innovations in generative modeling have addressed some of these limitations.
TaxDiff (Zongying et al., 2024) guides generation via species taxonomy, though this fails to
specify functional traits. CMAdiff (Zhou et al., 2025)addresses this by integrating CVAE
with diffusion models for function-driven design. However these can only leverage very
high level information, and do not work well for tasks involving more fine-grained control.
Vázquez Torres et al. (2024) demonstrated a deep learning-based method, to design high-
affinity binders. Similarly, Wu et al. (2024)developed approaches to design binders for
intrinsically disordered regions (IDRs) of proteins.

Despite these advancements, challenges remain. Many of these methods are focused
on specific targets. Furthermore designed proteins may adopt unintended conformations,
affecting their functional utility. Addressing these issues requires models that consider both
the amino acid sequence and the three-dimensional structure of proteins.

Contributions We present a flow-matching (Lipman et al., 2022) based generative
model that simultaneously generates protein sequences and their corresponding structures,
conditioned on a target protein. Following Yim et al. (2023b) we propose a multimodal
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generative model that learns factorized flows for each data modality. We achieve this by
using a locality aware multi-modal transformer model that integrates information from both
modalities (sequence and structure) to learn the flow. Our method combines full self-attention
blocks (Vaswani et al., 2017) with bottlenecked cross attention blocks (Nagrani et al., 2021)
and distance sensitive attention layers to that can capture both global dependencies as well
as local interactions.

2. Preliminaries

2.1. Flow Matching

Flow Matching (FM) Lipman et al. (2022) is a simulation-free framework for learning an
ordinary differential equation (ODE) of the form:

dxt
dt

= v(t, xt),

where the velocity field v is parameterized by a neural network vθ. The goal is to learn
a transformation from a source distribution p0 to a target distribution p1. The flow of
functions ψt induced by this velocity field generates a time-indexed density path pt via
the pushforward pt = [ψt]#p0. This evolving distribution satisfies the continuity equation:
∂pt(xt)

∂t = −∇xt · (pt(xt)ut(xt)) , where ut(xt) is the (generally intractable) true velocity field
associated with the flow.

Conditional Flow Matching (Lipman et al., 2022), define a conditional probability path
pt(xt | z) conditioned on a latent variable z, such that the conditional vector field ut(xt | z)
becomes tractable. The latent variable z is chosen to simplify the construction of valid
sample paths.

A practical instantiation (Lipman et al., 2022) is to let z depend on x1 ∼ p1, and define
a simple interpolation (e.g., linear) that ends at x1. This gives rise to known intermediate
distributions pt(xt | z) and an explicit formula for the conditional velocity field ut(xt | z).

The learning objective becomes:

Ez,t,xt∼pt(xt|z)

[∥∥∥vθ(t, xt) − ut(xt | z)
∥∥∥2] .

Lipman et al. Lipman et al. (2022) show that this conditional objective correctly recovers
the marginal velocity field ut(xt) when integrated over the conditioning variable z, ensuring
the learned dynamics transport p0 to p1 as desired. Since then, more generalized variants of
this problem have been proposed (Tong et al., 2023). Any suitable conditioning variable z
can be chosen if the objective remains tractable (Pooladian et al., 2023; Tong et al., 2023).

2.2. Transformers

Transformers Vaswani et al. (2017) are neural architectures that rely on self-attention to
process sequential data without recurrent or convolutional operations, and have become
the de-facto models in deep-learning applications. A single transformer block consists of
two core components: a self-attention layer SA and a feedforward networks FFN stacked
with residual connections and norm operations. Given an input sequence of embeddings
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X ∈ Rn×d (for n tokens of dimension d), SA first computes Query, Key, Value Projections
(denoted as Q,V,K). Q of a token i and K of all tokens are used to weigh the different
input tokens, and then these weights are used to aggregate the V projections.

Q = XWQ, K = XWK , V = XWV , Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V

One can further define cross-attention between two inputs X,Y denoted as (MCA(X;Y))
by forming queries from X and keys and values from Y.

Multiple such attention heads (either self or cross) are concatenated and then passed to
a position wise MLP and then combined as follows:

Xl+1 = Trans(Xl) =

{
Xl−0.5 = Xl−1 + SAl(LayerNorm(Xl−1)))

Xl = FFl(LayerNorm(Xl−0.5)) + Xl−0.5

2.3. Other Related Work

Models like AlphaFold2 (Jumper et al., 2021; Evans et al., 2021) and RoseTTAFold (Board,
2021) have significantly improved the accuracy of protein structure prediction (Bennett
et al., 2023). RFdiffusion, developed by Watson et al. (2023), fine-tunes the RoseTTAFold
(Board, 2021) network to achieve high-performance protein backbone generation, facilitating
the design of protein monomers, binders, and symmetric oligomers. These models employ
denoising diffusion (Ho et al., 2020) , initially developed for image generation, to iteratively
refine protein structures from random noise. Recently, we have also seen the emergence
of models like AlphaProteo (Zambaldi et al., 2024) and Chroma Ingraham et al. (2023)
which are generative model capable of producing novel protein structures and sequences,
conditioned on desired properties and functions. Vázquez Torres et al. (2024) and Wu et al.
(2024) have developed models specifically focused on producing better binding proteins. Yet,
despite these advancements, challenges remain in the conditioned design of protein sequences
and structures (Zhou et al., 2025).

FrameDiff (Yim et al., 2023a), utilizes diffusion on the SE(3) group to model protein
structures, enabling designable without relying on pretrained structure prediction networks.
Building upon Yim et al. (2023a), FoldFlow (Bose et al., 2024), employs a flow-matching
paradigm over 3D rigid motions, enhancing the modeling power for protein backbones.
FrameFlow (Yim et al., 2023b), an adaptation of FrameDiff, leverages SE(3) flow matching
to achieve faster and more efficient protein backbone generation. More recently Geffner et al.
(2025) introduced a large scale flow matching model for structure generation.

MultiFlow (Campbell et al., 2024), introduced a multimodal flow-based modeling frame-
work that simultaneously generates protein sequences and structures, achieving state-of-the-
art co-design performance. Genie(Lin and AlQuraishi, 2023), presents a diffusion model that
generates protein backbones as sequences of Cα atomic coordinates, performing diffusion
directly in Cartesian space and utilizing SE(3)-equivariant denoising.

3. Method

Following the design of Campbell et al. (2024), we represent a protein as a sequence and
structure of a chain of amino acids. Let A be the set of 20 common amino acids; then a
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protein of length L is considered as consisting of two modalities: a) a sequence of L amino
acids xA = a1, a2, ....aL and b) the 3D coordinates of the amino acids. Following prior
works Lin et al. (2023b); Lin and AlQuraishi (2024); Geffner et al. (2025), we model protein
residue locations using their 3D α-carbon (Cα) coordinates. Specifically, the backbone
coordinates are given by a vector xR ∈ R3L. Given a target function, the goal of the model
is to predict a corresponding protein ( for example a protein to bind to an antigen), in the
form of its amino acid sequence and their alpha carbon coordinates.

3.1. Training

We propose a multimodal factored flow matching approach to generate the binding protein.
The flow model used in our approach follows the basic design in Campbell et al. (2024) but
takes a conditional embedding c as additional input. Specifically, we have two velocity models
vR and vA, both of which are conditioned on the inputs xRt , x

A
t but produce independently

the velocities in each modality i.e.

vθ(xt, t; c) = [vθ,A(xt, t; c), v
θ,R(xt, t; c)]

where xt represents the joint modalities xRt , x
A
t . During sampling the model computes

the velocity field, and updates the two modalities separately. The details on how the two
modalities xRt , x

A
t are fused into a single representation xt and the architecture of model for

vθ are discussed in the next section.
Other than the flow matching objective, we also provide additional structural supervision

using the distogram loss(Abramson et al., 2024; Qu et al., 2024). This is computed as the

binned pairwise distances D
(b)
ij (x) between residues i and j, where b ∈ {1, . . . , 64} indexes

the discrete bins (Abramson et al., 2024; Qu et al., 2024; Geffner et al., 2025). The distogram
loss is computed via a prediction head attached to the architecture’s pairwise representation.

During training, we adopt the standard noisy linear interpolant scheme xt = tx+ (1 −
t)x0 + ϵ used in flow-matching (Lipman et al., 2022), and define the model’s objective as a
combination of a flow-matching loss and the distogram prediction loss:

min
θ

Et,c,x0,x1,ϵ

[∥∥∥vθt (xt, t; c, x̂(xt)) − (x1 − x0)
∥∥∥2
2︸ ︷︷ ︸

FM loss

−
∑
i,j

64∑
b=1

D
(b)
ij (x) log pθb,ij (xt, t, x̂(xt))

]

(1)

Additionally, following the self-conditioning protocol of Geffner et al. (2025) we introduce
x̂(xt) as an additional input to the velocity model; and is an estimate of the clean data:

x̂(xt) = xt + (1 − t) · vθt (xt, t; c)

During training the self-conditional x̂ is dropped or kept with probability 0.5 for each
sample.
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3.2. Representation

Residue Representation While discrete token-level models have been explored for flow-
matching (FM), continuous representations are generally more compatible with FM-based
generative methods. However, to enable effective cross-modal modeling, these continuous
representations must also retain semantic meaning relevant to the underlying protein sequence.
To this end, we leverage the latent space of a pretrained protein language model (pLM),
following the approach of Hu et al. (2024); Kong et al. (2025).

High-dimensional embeddings from pLMs can present challenges, including poor scalabil-
ity and degraded generative performance, particularly in low-data regimes. To address this,
we project the high-dimensional latent representations into a lower-dimensional, semantically
compressed space. Specifically, we use the pretrained ESM-2 model Lin et al. (2022) as the
base encoder and insert a single transformer layer to project the token embeddings into a
reduced latent space. A corresponding output layer is added as the first layer in the ESM-2
decoder for sequence reconstruction.

We employ a two-stage training strategy: first, we perform LoRA fine-tuning of the
ESM-2 encoder and decoder on the training data. Once adapted, these components are
frozen, and only the newly added projection and reconstruction layers are fine-tuned. The
encoder maps the protein sequence xA = [a1, a2, . . . , aL] ∈ AL to a continuous representation
X = [x1, x2, . . . , xL] ∈ RL×D. This is then further downsampled into a lower dimensional
vector ∈ RL×d by a transformer block. This is the latent representation that is used as
training data for the flow matching model. The explicit sequence is reconstructed by the
decoder during sampling and for distogram computation.

Coordinate Representation Since the coordinates are real numbers, flow matching
can usually deal with it effectively. Recent works (Bose et al., 2024) have proposed using
SE(3)-group based representations to capture the rigid ”frames” (Jumper et al., 2021).
These then use non-Euclidean manifolds ( and non-linear interpolants) to model the flow.
Combining these with the euclidean latent space of sequence can be challenging (Huguet
et al., 2024; Geffner et al., 2025) and hence we simply used linear coordinates.

3.3. Network Architecture

Let X ∈ RL×d denote an input sequence of L tokens with embedding dimension d. For
simplicity we will only refer to the sequence modality as X, but the architecture for the
structure/coordinate modality is identical. We use transformer based neural network to learn
the velocity field. However along with standard vanilla transformer based encoder, we also
include a locality-aware layer to specifically model local interactions and a bottleneck fusion
layer to incorporate cross-modal attention. Our overall network architecture comprises three
main components:

Multi-layer Self-Attention We apply N layers of standard multi-head self-attention
and feed-forward sublayers:

X(0) = X, H(ℓ) = Transℓ(X
(ℓ−1))

Locality-Sensitive Attention (LSA) (Zongying et al., 2024) found that patching
attention to adhere to spatial locality improves generation. We also incorporate an additional
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locality sensitive transformer block which is just an ordinary transformer block bu for
which the attention mechanism has been modified to pay greater emphasis on spatially
or structurally nearby tokens. Let D ∈ RL×L be a matrix of pairwise distances, then the
attention weights are computed as:

αij =
exp

(
q⊤i kj√

dk
· ϕ(Dij)

)
∑′

j exp

(
q⊤i kj′√

dk
· ϕ(Dij′)

) LA(H)i =
L∑

j=1

αijvj

where ϕ(Dij) is a gaussian weighting kernel.

Figure 1: Model architecture for the Flow Model.

Multi-Modal Bottleneck Fusion Full cross-attention between modalities is both slow
to compute and can be less performant, especially when training data is small (Nagrani
et al., 2021). To alleviate this we introduces multimodal fusion bottleneck tokens (Nagrani
et al., 2021) in each modality, and all cross-modal attention flow is restricted to be via
these fusion bottleneck tokens. Let Z ∈ RB×d denote B bottleneck tokens, and Y ∈ RL′×d

represent another modality (e.g., structure, image). The overall fused representation is
then given by Z = ZX + ZY . The information from this fused representation is obtained
by re-integrating Z into the token sequence using standard self-attention. More precisely
cross-modal bottleneck attention between X and Y is given by:

Xl+1, Z
X
l+1 = Trans(Xl||Zl) Yl+1, Z

Y
l+1 = Trans(Yl||Zl) Zl+1 = ZX

l+1 + ZY
l+1

We take X = XA, Y = XR as the sequence and structure modalities.
Full Network The overall network uses N layers for self-attention, followed by one

block of transformer with locality-aware attention. This is followed by a block of bottleneck
cross-modal attention. This constitutes an overall unit, and the overall network comprises
of stacked layers of the described units as presented in Figure 1.
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4. Experiments

We evaluated our proposed method on two representative tasks: a) to create proteins based
on text-based annotations of the protein including information like organism taxonomy
and high-level terms related to protein properties and b) sampling binder proteins for an
antigen-antibody complex design.

4.1. Text Based Generation

We first focus on the task of text-conditioned generation where the problem is to sample
proteins based on a certain desired character given as a text.

Training The data is curated from the Swiss-Prot dataset which, along with proteins,
has additional expert annotations including function, domain structure, etc. We follow the
protocol of Zhou et al. (2025) which paired protein sequences i) taxonomic information about
the organism, ii) comments about function and domain structure, iii) high-level keywords
about properties such as ribosomal protein, membrane protein etc. The conditioning variable
is obtained as the embedding of the prompt text. For comparability with earlier works we
use embeddings obtained from MiniLM-L6-v2.

Baselines Following earlier literature Zhou et al. (2025); Zongying et al. (2024), we
compare against the following conditional generation approaches as baselines CARP (Yang
et al., 2024), ProtGPT2 (Ferruz et al., 2022), EvoDiff (Alamdari et al., 2023), TaxDiff
(Zongying et al., 2024), and CMADiff (Zhou et al., 2025). Among these CARP and
ProtGPT2 are autoregressive models, while the rest are diffusion based.

Evaluation We compare the models on the following metrics: a) pLDDT (predicted
local distance difference) derived from AlphaFold-3 (Jumper et al., 2021; Abramson et al.,
2024), measures the confidence of predicted structures ; b) pTM (template modeling score)
which measures topological similarity between the generated protein and the closest match
in known databases (Zhang and Skolnick, 2005); and c) Fident (fold identity score) (van
Kempen et al., 2022) that measures the global structural identity between the generated
sequence and the closest natural homologous protein (homolog).

Table 1: Model performance on text condition protein design task. (↑): higher is better, (↓):
lower is better. Metrics are calculated with 1000 samples generated from each model.

Model pLDDT ↑ pTM (%) ↑ Fident (%) ↑
CARP 44.5 39.8 11.9
LRAR 47.2 38.2 15.8
ProtGPT2 53.3 40.4 11.5
Evodiff 50.7 48.3 14.6
Taxdiff 64.3 49.1 17.8
CMADiff 68.7 52.0 17.4

Ours 70.1 52.4 18.1
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4.2. Antibody Complex Design

Next we evaluate our model on the significantly more challenging problem of protein binder
design. Specifically we focus on generating antibodies that bind to a given antigen. Unlike
the previous section where the conditioning variable is an embedding of the input text, the
conditioning variable in this task is the antigen protein. The conditioning variable C for the
input protein is obtained from ESM2.

Baselines To the best of our knowledge there are no explicit models which focus on
the antibody binding task. However ProteinMPNN (Dauparas et al., 2022) which learns
to predict protein sequences based on a given structure can be modified to predict binder
based on a protein sequence. Similarly, the more recent CMADiff (Zhou et al., 2025)model
which is originally trained to condition only on text embedding, can be modified to take
ESM-2 (Lin et al., 2023a) based embedding of a protein to predict the binder. We consider
these as baseline models and compare them against our proposed method.

Training For this task we follow the methodology of Jin et al. (2021). We extract 4000
protein complexes from the Structural Antibody Database (Dunbar et al., 2014). Since
this dataset is quite small, training a complex generative model from scratch was not
fruitful. Hence we first obtained a 300k chain pair interfaces from the training of AlphaFold3
(Abramson et al., 2024). We use each chain in the pair as the conditioning variable to
generate the other pair. Once pre-trained on this set, we then finetune on the antibody task.

Evaluation We assess designed protein-protein complexes using the following metrics a)
pLDDT (predicted local distance difference) derived from AlphaFold (Abramson et al., 2024)
b) ipTM (interface predicted TM-score) which evaluates inter-chain interactions (Abramson
et al., 2024); and c) pTM estimates global structure accuracy (Zhang and Skolnick, 2004).

Results are presented in Table 2, from which we can see that our approach outperforms
baseline models.

Table 2: Model performance on text condition protein design task. All metrics are positive
(higher is better) metrics. Our method demonstrates superior performance, achieving the
highest performance. Metrics are calculated with 1000 samples generated from each model.

Model pLDDT ↑ pTM (%) ↑ ipTM ↑
ProteinMPNN 80.5 64.7 0.496
CMADiff 84.7 67.3 0.541

Ours 87.1 71.0 0.579

5. Conclusion

In this paper, we present a flow-matching based generative model for controllable protein
generations. Our approach leverages ideas from Yim et al. (2023b), Geffner et al. (2025),
and Zongying et al. (2024) to create a controllable flow matching based model. The model
architecture is based on combining multi-modal bottleneck transformer and locality-sensitive
attention with factorized flow models to simultaneously generate both sequence and structure.
On both text-based generation and conditioned antibody design our model outperforms
baselines.
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Appendix A. Additional Details

The ProtSemantic/Swiss-Prot dataset is directly availble at https://huggingface.co/

sanyier312/PhysChemDiff/tree/main
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