Automated Detection of Visual Attribute Reliance with
a Self-Reflective Agent

Christy Li'* Josep Lopez Camuiias’ Jake Thomas Touchet® Jacob Andreas',

Agata Lapedriza®?, Antonio Torralba', Tamar Rott Shaham'*

IMIT CSAIL  2Universitat Oberta de Catalunya 3Louisiana Tech  “Northeastern University

Abstract

When a vision model performs image recognition, which visual attributes drive its
predictions? Detecting unintended reliance on specific visual features is critical
for ensuring model robustness, preventing overfitting, and avoiding spurious corre-
lations. We introduce an automated framework for detecting such dependencies
in trained vision models. At the core of our method is a self-reflective agent that
systematically generates and tests hypotheses about visual attributes that a model
may rely on. This process is iterative: the agent refines its hypotheses based on
experimental outcomes and uses a self-evaluation protocol to assess whether its
findings accurately explain model behavior. When inconsistencies arise, the agent
self-reflects over its findings and triggers a new cycle of experimentation. We
evaluate our approach on a novel benchmark of 130 models designed to exhibit
diverse visual attribute dependencies across 18 categories. Our results show that the
agent’s performance consistently improves with self-reflection, with a significant
performance increase over non-reflective baselines. We further demonstrate that the
agent identifies real-world visual attribute dependencies in state-of-the-art models,
including CLIP’s vision encoder and the YOLOVS object detector.

1 Introduction

Computer vision models trained on large-scale datasets have achieved remarkable performance across
a broad range of recognition tasks, often surpassing human accuracy on standard benchmarks [He
et al., 2016, Dosovitskiy et al., 2020, Tan and Le, 2019, Russakovsky et al., 2015]. However, strong
benchmark results can obscure underlying vulnerabilities. In particular, models may achieve high
accuracy using prediction strategies that are non-robust or non-generalizable. These include relying
on object-level characteristics such as pose or color [Geirhos et al., 2018], contextual cues like
background scenery or co-occurring objects [Xiao et al., 2021, Alcorn et al., 2019], and demographic
traits of human subjects [Wilson et al., 2019, Wang et al., 2019, Rosenfeld et al., 2018]. Such
visual dependencies may result in overfitting, reduced generalization, and performance disparities in
real-world usage [Hendrycks et al., 2021, Recht et al., 2019, Taori et al., 2020, Wiles et al., 2022].

Existing methods take various approaches to discover visual attributes that drive model predictions.
These include saliency-based methods that highlight input regions associated with a prediction
[Simonyan et al., 2013, Selvaraju et al., 2017, Kindermans et al., 2017], feature visualizations that
map activations to human-interpretable patterns [Olah et al., 2017], and concept-based attribution
methods that evaluate sensitivity to predefined semantic concepts [Kim et al., 2018, Ghorbani et al.,
2019, Mu and Andreas, 2020]. While powerful for visualizing local behaviors, these approaches
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Figure 1: Attribute Reliance Detection. We use a self-reflective agent to produce natural-language
descriptions of the visual attributes that a model relies on to recognize or detect a given concept.
For each target concept (e.g., vase, teacher, or pedestrians), the agent first conducts hypothesis
testing to reach a candidate description and then validates the description’s predictiveness of actual
model behavior through a self-evaluation protocol. The top row shows the agent’s generated explana-
tions. The bottom rows show images predicted to elicit high (green) or low (red) model responses,
along with their actual model scores. Results are shown for different target concepts across an object
recognition model with a controlled attribute reliance (left), CLIP (middle), and YOLOVS (right).

often rely on manual inspection and assume access to a fixed set of predefined concepts, limiting their
ability to scale to modern models with complex behaviors.

In this paper, we introduce a fully automated framework designed to detect visual attribute reliance
in pretrained vision models. Given a pretrained model and a target visual concept (e.g., an image
classifier selective for the object vase), our method identifies specific image features that systemati-
cally influence the model’s predictions, even when these features fall outside the model’s intended
behavior (e.g., the classifier relies on flowers to detect the vase, Fig. 1). At the core of our approach
is a self-reflective agent (implemented with a backbone multimodal LL.M) that treats the task as a
scientific discovery process. Rather than relying on a predefined set of candidate attributes, the agent
autonomously formulates hypotheses about image features that the model might rely on, designs
targeted tests, and updates its beliefs based on observed model behavior. In contrast to previous
interpretability agents [Schwettmann et al., 2023, Rott Shaham et al., 2024], the self-reflective agent
does not stop after generating an initial finding but rather actively evaluates how well it aligns the
model’s behavior on unseen test cases. Importantly, this evaluation is self-contained and does not
require any ground-truth knowledge about the model’s attribute dependencies. Instead, the agent
generates two sets of test images: one where the candidate attribute is present (which is expected
to elicit high prediction scores from the model) and one where the attribute is absent (which is
expected to elicit low prediction scores). When discrepancies arise between the expected and actual
model behaviors, the agent reflects on its assumptions, identifies gaps or inconsistencies in its current
understanding, and initiates a new hypothesis-testing loop. We show that the agent’s ability to reason
about attribute reliance significantly improves with self-reflection rounds (see Sec. 5).

To quantitatively evaluate our method, we introduce a novel benchmark of 130 object recognition
models, each constructed with a well-defined intended behavior and an explicitly injected attribute
dependency. The benchmark spans 18 types of visual reliances, inspired by vulnerabilities known
to exist in vision models [Dreyer et al., 2023, Geirhos et al., 2018, 2020, Buolamwini and Gebru,
2018, Xiao et al., 2021, Wang et al., 2019, Singh et al., 2020]. These include object-level attributes
(e.g., color, material), contextual dependencies (e.g., background, co-occurring object state), and
demographic associations. Together with an automated evaluation protocol, this benchmark provides
a controlled environment for evaluating visual attribute reliance detection methods.

Our method is model-agnostic and can be applied to any vision model that assigns scores to input
images. To demonstrate its versatility, we evaluate it on both our controlled benchmark and state-
of-the-art pretrained models. Across a range of visual reliance types, our experiments show that
our self-reflective agent consistently outperforms non-reflective baselines. Moreover, it successfully



uncovers previously unreported attribute dependencies in pretrained models (Fig. 1). For example,
it identifies that the CLIP-ViT vision encoder [Radford et al., 2021] recognizes teachers based on
classroom backgrounds and that YOLOvVS [Jocher et al., 2023], trained for object detection for
autonomous driving, relies on the presence of crosswalks to detect pedestrians. These findings
highlight the efficacy of our method as a scalable tool for detecting hidden dependencies in pretrained
models deployed in real-world scenarios.

2 Related Work

Revealing Visual Attribute Reliance in Vision Models. Prior work has explored methods to
uncover the visual cues that drive model predictions. One common strategy is to manipulate input
features to isolate model sensitivities, such as shape or spectral biases in classifiers [Gavrikov and
Keuper, 2024], or attribute preferences in face recognition systems [Liang et al., 2023]. Other works
rely on interpretability tools to identify potential dependencies—for example, extracting keywords
from captions of misclassified images [Kim et al., 2024], or using feature visualizations to reveal
facial attribute reliance [Teotia et al., 2022]. However, most of these methods target specific types
of biases and rely on predefined concept sets or human inspection. In contrast, our framework
introduces a unified, flexible approach that can detect a broad range of attribute reliances without
prior assumptions about the relevant features.

Interpretability and Automated Analysis. Initial work on interpretability automation produced
textual descriptions of internal model features, using keywords [Bau et al., 2017], programs [Mu and
Andreas, 2020], or natural language summaries [Hernandez et al., 2021, Bills et al., 2023, Gandelsman
et al., 2023]. While informative, these descriptions are typically correlational, lacking behavioral
validation [Huang et al., 2023, Schwettmann et al., 2023, Hausladen et al., 2024]. More recent work
introduces agents that actively probe models. For instance, the Automated Interpretability Agent
(AIA) [Schwettmann et al., 2023] used a language model to analyze black-box systems via a single
pass over the input space. The Multimodal Automated Interpretability Agent (MAIA) [Rott Shaham
et al., 2024] extended this approach by incorporating iterative experimentation and multimodal tools,
enabling more detailed analysis of model internals. Our work builds on this direction by focusing
specifically on discovering visual attribute reliances and introducing a self-reflection mechanism that
allows the agent to revise faulty hypotheses based on experimental evidence, leading to more accurate
and robust conclusions.

Benchmarks for Visual Attribute Reliance Detection. Standardized benchmarks for evaluating
visual attribute reliance remain limited. Prior evaluations often use models trained on datasets with
known biases, such as WaterBirds [Wah et al., 2011] or CelebA [Liu et al., 2015], using label
co-occurrence as a proxy for ground truth [Sagawa et al., 2020]. For generative settings, OpenBias
[D’Inca et al., 2024] proposes biases via LLMs, generates images from biased prompts, and assesses
reliance using VQA models. However, OpenBias is not applicable to predictive models and cannot
conduct controlled interventions. We introduce a suite of 130 vision models with explicitly injected
attribute reliances across 18 categories, providing fine-grained control over attribute type and strength.
This allows rigorous, scalable evaluation of reliance detection methods in a predictive setting.

Agent-Based Reasoning and Self-Reflective Systems. A growing body of work explores how
agents can improve reasoning through reflection, feedback, and interaction. Methods like SELF-
Refine [Madaan et al.], Reflexion [Shinn et al., 2023], and ReAct [Yao et al., 2023] introduce
multi-step loops in which agents revise their outputs via self-critique. Similarly, Du et al. [Du et al.,
2023] show that multi-agent debate improves factual consistency and reasoning in language models.
Our agent uses a task-specific self-evaluation protocol, enabling it to assess whether its conclusions
align with actual model behavior. This integration of behavioral validation with self-reflection allows
our agent to autonomously revise hypotheses and close the interpretability loop.

3 Self-Reflective Automated Interpretability Agent

Our framework is designed to automatically discover visual attributes that a pretrained model relies
on to perform its task. Our approach consists of two main stages. (i) Hypothesis-Testing stage,
in which an autonomous agent is provided with a subject model (e.g., an image classifier) and a
target concept to explore (e.g., vase). The agent is tasked with discovering visual attributes in
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Figure 2: Attribute reliance detection through hypothesis testing and self-reflection. To discover
features that drive model prediction, SAIA starts by formulating and testing a range of hypothe-
ses. After reaching a conclusion (e.g., the model favors suit in corporate settings), it performs
self-evaluation by testing the model responses on images with and without this feature. When
inconsistencies between the conclusion and model behavior are observed (e.g., some non-corporate
images yield high scores, while some corporate images yield lower scores), SAIA updates its prior
beliefs according to these discrepancies and test alternative hypothesized explanations.

the input image that the subject model relies on to perform recognition tasks. The agent proposes
candidate attributes that may influence the model’s behavior, designs targeted experiments to test
its hypotheses, and iteratively refines them based on observed results. This cycle continues until the
agent converges to a stable explanation of the model’s reliance. (ii) Self-Reflection Stage, in which
the agent uses a self-evaluation tool to score its explanation. This is done by quantifying how well
the agent’s explanation matches the behavior of the model in new input images. If the explanation
fails to generalize or reveals inconsistencies, the agent reflects on its prior explanation in light of the
evaluation evidence and launches a new hypothesis-testing stage. Both stages are demonstrated in
Fig. 2 and together form our Self-reflective Automated Interpretability Agent (SAIA).

3.1 Hypothesis-Testing Stage

In this stage, SAIA iteratively refines hypotheses about the attribute sensitivities of the subject model.
Inspired by MAIA [Rott Shaham et al., 2024], we design SAIA to operate in a scientific loop: it
begins by proposing candidate attributes that the subject model might rely on, designs multiple
experiments involving generating and editing images to test these hypotheses (e.g. edit an image with
a suit to change its color), observes the resulting model’s behavior (e.g. measure the subject model
scores across these experiments) and updates its beliefs accordingly. This cycle continues until SATA
converges on an initial conclusion about the model’s sensitivity to image features.

Agent actions SAIA interacts with the subject model through a set of predefined actions imple-
mented as Python functions. These actions include: (i) querying the subject model with a given
input image to observe its prediction score; (ii) retrieving the set of images that achieve the highest
output responses from a fixed dataset, to identify inputs that strongly trigger the target concept;
(iii) generating new images using a text-to-image model; (iv) editing existing images to manipulate
specific attributes; (v) summarizing visual information across one or more images into text, to infer
shared features; and (vi) displaying function which enables SAIA to log images, text, or other results
in a notebook available throughout the experiment. SAIA designs experiments by composing multiple
actions together through Python scripts. It then observes the experiment results—a combination of
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Figure 3: Self-reflection stage. SAIA initiates a hypothesis-testing experiment. After testing multiple
candidate hypotheses (see Fig. 2), SAIA draws an inital conclusion (e.g., teddy bear are detected
based on appearing in educational settings). SAIA then uses a self-evaluation protocol that generates
synthetic images via a text-to-image model and computes the subject model’s scores on these images.
The self-evaluation protocol compares the predicted and actual model scores, triggering another
round of hypothesis testing if results deviate from expectations. In this example, SAIA observes
that the highest scores correlate with direct child interaction rather than generic educational settings,
leading to refined future hypotheses.

text and images—and decides whether to continue with more experiments or to output a conclu-
sion. We implement SAIA with a Claude-Sonnet-3.5 backbone. Please refer to Appendix A for
implementation details, full prompts, and APIL

3.2 Self-Reflective Stage

Once the hypothesis testing stage is complete and SAIA reports its conclusion for the initial hypothesis-
testing stage, we initiate a self-reflection stage. In this stage, the conclusion from the hypothesis
testing stage is scored using a self-evaluation protocol. This protocol is completely unsupervised
and does not require any ground-truth labels or external information. Instead, it measures how well
the detected reliance matches the actual behavior of the subject model. If SAIA’s detected reliance
sufficiently matches the model’s behavior, it terminates the experiments and returns the current
conclusion. Otherwise, if inconsistencies between SAIA’s conclusion and the model behavior are
found, the information collected from the self-evaluation stage is returned to SAIA, which reflects over
its previous conclusion and initiates another hypothesis-testing round. This process is demonstrated
in Fig. 3.

Self-Evaluation protocol Self-evaluation serves two key purposes: (i) to assess whether the current
explanation matches the model’s behavior, and (ii) to guide further experimentation if it does not.
The process begins by querying a separate language model instance (we use Claude-Sonnet-3.5)
to generate two diverse sets of image prompts, that according to SAIA’s description are predicted to
elicit high and low detection scores, respectively. The first set, termed the “predicted high-scoring
images”, contains instances of images with the target concept (e.g., teddy bear) along with the
detected reliance attribute (e.g., educational settings) that SAIA detected the model to be selective for.
The second set, the “predicted low-scoring images”, contains instances of the target concept, but with
the absence of the detected attribute. This prompt generation strategy emphasizes attribute-controlled
diversity, where each prompt in the high or low-scoring group keeps the core attribute constant while
allowing other visual factors to vary. These prompts are then used as inputs to a text-to-image model
(we use Flux. 1-dev Labs [2024]) that generates the corresponding images, which are then fed to
the subject model, and the output scores are recorded. If SAIA’s explanation is accurate, the model
should exhibit systematically higher scores on the “predicted high-scoring” images and lower scores
on the “predicted low-scoring” set.



Behavior-matching protocols of this kind have been shown to be effective in other evaluation
settings, particularly for the task of producing textual labels of neurons’ behavior in pretrained
models [Rott Shaham et al., 2024, Kopf et al., 2024, Huang et al., 2023]. In domains where ground-
truth explanations are unavailable, they provide a way to validate hypotheses through behavioral
consistency. We repurpose this evaluation method as a basis for self-reflection: SAIA uses it to
validate its own conclusions, determine whether further experimentation is necessary, and reflect on
its own findings based on measured model behavior.

Agent self-reflection After observing the model’s responses to the “predicted high-scoring” and
“predicted low-scoring” images, SAIA reflects on whether the results align with its expectations. If
the mean scores between the two groups are not sufficiently separated based on an empirically set
threshold (i.e. the conclusion is not sufficiently discriminative), SAIA may decide that its current
conclusion is incomplete or inaccurate. It then analyzes which visual attributes within the generated
images might explain these discrepancies. In doing so, SAIA updates its hypothesis — either by
narrowing the original explanation (e.g., refining “educational settings” to “child interaction”) or by
generating alternative hypotheses altogether. This reflective process closes the experimental loop and
allows SAIA to reinitiate the hypothesis-testing stage with better-informed guidance.

In practice, we cap the total number of agent rounds (hypothesis-testing followed by self-reflection)
to 10. If no hypothesis meets the self-evaluation threshold by that point, SAIA returns the hypothesis
that achieved the best alignment between predicted and actual model behavior, typically the most
recent one. Empirically, SAIA converges well before reaching this cap — in most runs, it stops after
just 2-4 rounds. This behavior is visualized in Figure 5a, which shows that the predictiveness score
(see definition in Sec. 5.1) generally improves monotonically across rounds, providing a natural
convergence signal. Please refer to Appendix A.2 for the full self-reflection instructions.

4 A Benchmark of Models with Controlled Attribute Reliance

To evaluate the capabilities of SAIA, we constructed a benchmark of 130 unique object recognition
models that exhibit 18 diverse types of visual attribute reliance. All simulated behaviors are inspired by
known vulnerabilities of vision models [Dreyer et al., 2023, Geirhos et al., 2018, 2020, Buolamwini
and Gebru, 2018, Xiao et al., 2021, Wang et al., 2019, Singh et al., 2020], and mimic spurious
correlations between the target object and image attributes such as object color, background context,
co-occurring object state, or demographic cues. To assess the generalizability of our method, the
benchmark also includes a subset of models with counterfactual attribute reliance that are intentionally
rare or unnatural in real-world pretrained models (e.g., a suit detector responds more strongly when
a women wear the suit). Each benchmark model includes an input parameter that controls the strength
of the injected reliance, allowing for precise control over model behavior. Importantly, because these
models are explicitly engineered with a known intended behavior, they serve as a controlled testbed
for evaluating and comparing feature reliance detection methods.

4.1 Simulating attribute dependencies

Figure 4 illustrates a simulated attribute reliance scenario. Given a target object class ¢ (e.g. bird)
and an intended injected attribute reliance ¢ (e.g. setting; beach), we simulate a model C; ; that
detects ¢ under the condition ¢. Each benchmark model is composed of two components; an object
detector O; and an attribute condition detector .4;, which modulates the output of O, based on the
presence or absence of the specified attribute. To compute the final output of the model C; ; on an
input image img, we first pass the image through the object detector O;. If the target object class is
not detected, the model returns a low random baseline score. If the object is detected, the image is
then evaluated by the attribute condition detector A;. If the attribute condition is satisfied, the original
subject model score Oy (img) is returned, simulating full model response. Otherwise, the subject
model score is discounted by a multiplication factor of «, simulating attenuated confidence due to the
missing attribute. The scalar « € [0, 1] controls the magnitude of the injected reliance: higher values
of a simulate stronger reliance on the attribute. Please refer to Appendix B.2 for empirical evaluation
of reliance magnitude as a function of . In all the benchmark models, we use Grounding DINO [Liu
et al., 2023] as the object detector O, and SigLIP [Zhai et al., 2023] as the attribute condition detector
A;, which in practice is guided by a textual description of the injected attribute condition ¢. For
demographic attribute dependencies, FairFace [Karkkainen and Joo, 2021] is used for A; instead
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Figure 4: Simulating visual feature reliance. We simulate feature reliance by modulating object
recognition scores based on the presence of specific visual attributes (e.g., a bird detector that relies
on the presence of beach background). Given an input image and object category ¢, O; produces
a object recognition score for object presence. If the object is not detected, a low random score is
assigned as the final model score of the image. If the object is detected, we simulate an attribute
dependency (e.g., presence of a “beach background” for bird detection) through the procedure
described in Sec. 4.1. If the condition is satisfied, the final model score equals O;(img) recognition
score. Otherwise, the score is discounted by a factor « to represent the model’s weaker response in
the case that the attribute condition is not met.

of SigLIP (see implementation details below). Notably, this model composition approach is highly
flexible—one could engineer any object-condition pairing to construct an object detection model
with a desired attribute reliance.

4.2 Attribute Condition Categories

We categorize the attribute conditions used to inject reliance into four groups: object attributes, context
attributes, demographic attributes, and counterfactual demographic attributes. These categories reflect
different types of visual dependencies observed (or intentionally constructed) in our benchmark
models, and guide the choice of attribute detector A used in each case. Please see the full list of
constructed models in Appendix B.

Object attributes These attribute dependencies relate to visual properties of the object itself. We
include reliance on object color and material, using SigLIP as A for zero-shot classification of
object-specific attributes (e.g. SigLIP is guided with the prompt a red bus to inject a color reliance
to a bus detector). A color-reliant system returns the full score from O, only if the object has a
specific color, otherwise the response is discounted; similarly, a material-reliant model will have a
full response only if the object is of the intended material (e.g., vases made of ceramic).

Context attributes These dependencies reflect properties of the object’s surrounding context. We
simulate reliance on the specific setting of the object (e.g. keyboard only if it is being typed)
and object background (e.g. car only if it is in an urban environment). Here as well, we use
SigLIP-guided text for detecting the intended attribute.

Demographic attributes These dependencies are based on the age or gender of people interacting
with the target object. We use FairFace as A to detect demographic attributes and construct systems
relying on these (e.g., an apron detector that relies on the apron to be worn by women, and a glasses
detector that relies on the glasses to be worn by older individuals).

Counterfactual demographic attributes To test whether SAIA can discover atypical or out-of-
distribution dependencies, we include models with counterfactual demographic reliance (e.g., an
apron detector that activates only when worn by men, or a glasses detector that prefers younger
wearers), which rarely co-occurs in real-world data. These systems allow us to test whether SAIA
can detect unexpected or counterintuitive reliance patterns that do not follow natural co-occurrence
statistics. This distinction allows us to assess both SAIA’s ability to uncover realistic demographic
biases and its robustness to rare or previously unknown dependencies.
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Figure 5: Predictiveness Score over Self-Reflection Rounds. (a) We plot the average predictiveness
score over all models in the benchmark for a harsh reliance magnitude of a = 0.9, as well as a softer
reliance magnitude of o = 0.5. We see a steady increase in the predictiveness scores of SAIA’s
conclusions over rounds for both discount factors, approaching their respective theoretical upper
bounds as given by the ground truth baseline. As expected, the scores for softer reliance models
(o = 0.5) are consistently lower than those of the stronger reliance models (o = 0.9), illustrating
that subtler attribute reliances are more challenging to detect. SAIA outperforms all nonreflective
baselines (MAIA, Milan, and Multi-Agent) by a significant margin for both reliance magnitude values.
(b) We compare the predictiveness scores of SAIA’s reliance descriptions over factual models with
more intuitive demographic attribute reliances against counterfactual reliances on object-demographic
associations that are not commonly observed. Although SAIA’s descriptions of the counterfactual
models achieve lower predictiveness scores, the performance still reliably improves over increased
rounds of self-reflection for both « settings.

5 Experiments

We evaluate the performance of SAIA on both our synthetic benchmark models and on pretrained
vision models widely used in practical settings. Examples of attribute reliance discovered by SAIA,
as well as evaluation results, are shown in Figures 1, 2, 3, and 7.

5.1 Evaluation protocol

We quantitatively evaluate the accuracy of the detected attribute reliances generated by SAIA and
compare its performance to four different baselines.

Predictiveness score Following Kopf et al. [2024], Schwettmann et al. [2023], we quantify how
well a candidate reliance description matches model behavior. Similar to the self-evaluation score,
given a candidate explanation, we start by generating 10 synthetic images that are expected to elicit
high model scores and 10 that are expected to elicit low scores. We then pass these images through
the model and record its actual responses. Each image is assigned a binary prediction label (high or
low predicted response), and we threshold the model’s scores to obtain a binary outcome (high or
low measured response). The predictiveness score is computed as the proportion of images where
the predicted label matches the model’s actual binary output. This reflects how well the explanation
predicts individual model responses.

LLM as a Judge We use a language model as a judge [Zheng et al., 2023] in a two-alternative
forced choice (2AFC) setting. Given a ground-truth explanation of a benchmark model and two
candidate explanations, one produced by SAIA and one from a baseline, the LLM judge is asked to
choose which candidate better matches the ground-truth description. For each description pair, we
repeat the test 10 times, and report the average preference rate for SAIA’s descriptions.

Baselines We compare SAIA against the following alternatives: (i) Milan-style reliance detection:
Following Milan [Hernandez et al., 2021], this approach avoids iterative experimentation and detects
the reliance based on a precomputed set of image exemplars that maximize the model’s scores.
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Figure 7: Detected feature reliance in CLIP and YOLO. SAIA identifies visual attribute dependen-
cies in state-of-the-art pretrained models that have not been previously documented. For each concept
(e.g., scientist, wine glass, biker), SAIA infers an attribute reliance through a natural-language
explanation and tests it by comparing predicted high and low-scoring images (scores are normalized
for clarity). The examples reveal that CLIP-ViT relies on traditional laboratory settings to recognize
scientists, while YOLOvVS favors 45-degree and rear views for detecting bikers.
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Figure 6: 2AFC evaluation. We use a language
model (GPT-4) as a judge. Given a ground-truth
description, the LLM compares two candidate ex-
planations: one generated by SAIA and one from a
competitive baseline (MAIA, Milan, or Multiagent).
The LLM selects the candidate it finds most semanti-
cally similar to the ground truth. We report average

5.2 Evaluating Benchmark Models ¢
preference rate for SAIA in the table.

Self-reflection enhances reliance detection

As showed in Fig. 5a, predictiveness scores steadily improve over the course of self-reflection
rounds, suggesting that SAIA’s explanations become increasingly aligned with the model’s actual
behavior. Notably, performance exceeds the MILAN one-shot baseline, a MAIA-style agent, and the
non-reflective multiagent system, indicating that self-reflection offers a distinct advantage.

Robust performance across different degrees of model reliance Figure 5a shows consistent
performance gains for both strong (o = 0.9) and weak (o = 0.5) reliance settings, demonstrating
that SAIA is effective across a range of dependency strengths. While stronger dependencies lead to
higher absolute scores, the relative improvement from self-reflection remains significant even in more
ambiguous scenarios. The same trend is seen in the 2AFC test (Fig. 6), where the final conclusion
from SAIA is more frequently preferred over the baselines for the stronger reliance.

SAIA discovers counterfactual feature reliances In addition to recovering realistic dependencies,
SAIA successfully identifies counterfactual attribute reliances (Fig. 5b). This indicates that SAIA is
capable of discovering surprising or non-intuitive patterns of reliance, rather than simply mirroring
familiar dataset biases.



5.3 Revealing attribute reliance in pretrained vision models

We deploy SAIA to detect attribute reliances in two pre-trained vision models: the CLIP-ViT image
encoder [Radford et al., 2021] trained to align image and text representations, and the YOLOvS
model [Jocher et al., 2023] trained for object detection in autonomous driving settings. With CLIP,
we perform object recognition by measuring the cosine similarity of the image with a target prompt
(e.g., “A picture of a scientist”). For YOLOv8 we measure the detection score of the target object
class. Figures | and 7 show that SAIA can generate natural-language descriptions of attribute reliance
in various contexts. The generated descriptions are shown to be predictive of model behavior, as
model scores increase when the reliance is satisfied and decrease when it is absent. Surprisingly,
SAIA reveals dependencies that were never observed before, such as the reliance of clip on traditional
laboratory settings when detecting scientist, and YOLOv8 dependency on bikers’ poses. We
note that SAIA’s goal is to surface such dependencies rather than to assess their desirability or harm,
allowing practitioners to make informed judgments based on specific downstream use cases.

5.4 Revealing compositional visual reliance

Vision models can rely on combinations of multiple attributes to detect certain concepts. To evaluate
SAIA’s performance in such settings, we created ten additional synthetic benchmark models that each
exhibit two attribute reliances. Five models depend on the simultaneous presence of both attributes
(e.g., a bench detector that relies on benches that are wooden AND in beach settings), while the other
five exhibit high confidence if either attribute is present (e.g., wooden benches OR benches in beach
settings). Model details are provided in Table 6 of the Appendix.

For models requiring both attributes simultaneously (AND logic), SAIA successfully identified both
dependencies in 80% of cases, whereas MAIA (the non-self-reflective baseline) failed to detect both
attributes in any case. This performance gap stems from SAIA’s self-evaluation protocol, which
rigorously tests multi-attribute hypotheses by constructing positive exemplars containing all relevant
attributes and negative exemplars containing none or only a subset of candidate attributes. For models
relying on at least one of two attributes (OR logic), both methods struggle more significantly. SATA
recovered both dependencies in only 20% of synthetic models, while MATA again failed to detect both
dependencies. This difficulty likely arises from terminating the process once one attribute is found.
Future extensions could address this limitation with a hierarchical or tree-structured experimental
design that explicitly enforces multi-reliance exploration. See Appendix C.2 for further results and
analysis of these experiments.

Overall, these findings demonstrate that self-reflection enhances SAIA’s robustness and compositional
reasoning, leading to more reliable explanations even when multiple visual dependencies are involved.
Beyond multi-attribute detection, the self-reflective stage also improves performance across broader
experimental settings. One limitation of agentic interpretability methods is that relying on external
tools introduces errors stemming from tool inconsistencies or biases. A key distinction in our
framework is the inclusion of a self-reflection loop, which help to mitigate such artifacts. Please refer
to Appendix C.3 for experimental details and analysis.

6 Conclusion

We introduced SAIA, a self-reflective agent for discovering attribute reliance in pretrained vision
models. Treating interpretability as a scientific discovery process, SAIA autonomously generates
hypotheses, tests them through synthetic image generation and editing, and refines its conclusions
via a self-evaluation loop. Our experiments on controlled benchmarks and real-world models as
CLIP and YOLOvVS8 show that SATA outperforms non-reflective baselines and uncovers both expected
and previously unreported attribute dependencies. While the method provides a scalable framework
for behavioral model auditing, its performance depends on the quality of generated images, which
can limit robustness for rare or out-of-distribution concepts. Moreover, the agent’s backbone model
inherits known priors and biases that may constrain the hypothesis space and introduce confirmation
bias—TIikely explaining the reduced performance on counterfactual demographic models, though
self-reflection still improves predictive reliability. Despite these challenges, self-reflective agents
mark a promising step toward transparent and automated model auditing, and their effectiveness will
continue to grow with advances in image generation and agent reasoning.
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Appendix

A SAIA Implementation

A.1 Hypothesis loop instructions

You will get an access to a classifier in the final layer of a deep neural network that is sensitive
to the presence of <concept> within photo-realistic images. Your overall task is to reveal biases
in the classifier’s behavior. That is, your task is to find specific features for which the classifier
tends to have relatively higher confidence scores, but only covers partial aspect of the <concept>
class, or specific features for which the classifier tends to have relatively lower confidence
scores although <concept> is still present.

Try to identify and explain the cause of biases in the network. These biases could reflect
real-world biases or they could be spurious. Some bias categories include:

1. Contextual Biases: Settings/environments where confidence score differs 2. Demographic
Biases: Variations across race, gender, age, etc. 3. Technical Biases: Lighting, angle, scale, or
quality dependencies 4. Spurious Biases: Correlations between classes and spurious features
To do that, you are provided with a library of Python functions to run experiments on each
unit (inside the "System" class), given the functions provided in the "Tools" class. Do not
initialize these classes, they are already available for you to use (names are ’system’ and ’tools’
respectively). Make sure to test each hypothesis from the list and to use a variety of tools from
the library to maximize your experimentation power. At each experiment step, write Python
code that will conduct your experiment on the model, using the following format:

[CODE]: write Python code using your knowledge of Python and

the System and Tools class for running experiments. You must

display values if you want to see them. They will not be displayed
automatically.

Include only a single instance of experiment implementation at each step. Your code will be
executed and the results will be displayed. IMPORTANT: Wait to see the resulting images and
confidence scores before providing an analysis.

Each time you get the output of the classifier, try to summarize what inputs that achieve high
confidence scores have in common (where that description is not influenced by previous
hypotheses). Then, write multiple hypotheses that could explain the biases of the classifier. For
example, these hypotheses could list multiple features that the classifier is more or less sensitive
to.

After each experiment, wait to observe the outputs of the classifier and analyze the results from
each experiment. [ANALYSIS]: Let’s break this down step by step. The experiments imply
that...

Based on these conclusions, write a list of initial hypotheses about the classifier biases in the
format: [HYPOTHESIS LIST]: Hypothesis; : <hypothesis;> ... Hypothesis,,: <hypothesis,,>
Now, write additional experiments to test them. Test the effects of both local and global
differences in images using the different tools in the library. If you are unsure about the
results of the previous experiment, you can also rerun it, or rerun a modified version of it with
additional tools.

Use the following format: [CODE]: ##conduct additional experiments using the provided
python library to test *ALL* the hypotheses. Test different and specific aspects of each
hypothesis using all of the tools in the library. Write code to run the experiment in the same
format provided above. Include only a single instance of experiment implementation. Wait
for the code to be executed and the results to be prompted to you before continuing to the
analysis step. [ANALYSIS]: systematically draw conclusions from each tested hypothesis.
HYPOTHESIS LIST]: update your hypothesis list according to the image content and related
confidence scores.

Continue running experiments until you prove or disprove all of your hypotheses. Only when
you are confident in your hypothesis after proving it in multiple experiments and no additional
experiments need to be executed, output your final description of the classifier bias in the
following format. Output your final description of the classifier bias ONLY ONCE, when no
more [CODE] is provided for additional experiments. DO NOT write any code in the round you
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want to output your final bias description and bias label:

BIAS DESCRIPTION

: <description of bias>

In addition, output a one-sentence summary of the bias description in the following format:
[BIAS DESCRIPTION]: <succinct one-sentence summary of bias description>

Examples Example 1 [BIAS LABEL]: The classifier should classify dogs, but it has a
bias to prefer white dogs. =======

Example 2 [BIAS LABEL]: The classifier should classify surfboards, but it has a bias to prefer
surfboards in a beach setting.

Remember: - Document all images and their confidence scores by using the display function -
Wait for experiments to execute and results to be shown to you before drawing any conclusions
or revising any hypotheses - Verify findings with multiple approaches - DO NOT use any
functions other than the ones provided

You should maintain a systematic approach while being creative in hypothesis generation and
testing. Each experiment should build on previous findings while maintaining methodological
rigor.
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A.2 Self-reflection instructions

You will get an access to a classifier in the final layer of a deep neural network that is sensitive
to the presence of 0 within photo-realistic images. Your overall task is to reveal biases in the
classifier’s behavior. That is, your task is to find specific features for which the classifier tends to
have relatively higher confidence scores, but only covers partial aspect of the O class, or specific
features for which the classifier tends to have relatively lower confidence scores although 0 is
still present.

Try to identify and explain the cause of biases in the network. These biases could reflect
real-world biases or they could be spurious. Some bias categories include:

1. Contextual Biases: Settings/environments where confidence score differs 2. Demographic
Biases: Variations across race, gender, age, etc. 3. Technical Biases: Lighting, angle, scale, or
quality dependencies 4. Spurious Biases: Correlations between classes and spurious features
A fellow scientist has proposed the following hypothesis about this classifier’s bias:
HYPOTHESIS: "BIAS"

We have conducted experiments on three sets of relevant images to help you assess this hypothe-
sis:

1. [DATASET EXEMPLARS]: 10 real-world images achieving highest classifier confidence
score - These represent the classifier’s "natural" high-confidence score patterns - Each includes
confidence score and classification (HIGH/MODERATE/LOW)

2. [POSITIVE EXAMPLES]: 10 synthetic images designed to test the bias hypothesis -
Expected to trigger high confidence score based on the hypothesis - Includes generation prompt,
confidence score, and classification (HIGH/MODERATE/LOW)

3. [NEGATIVE EXAMPLES]: 10 synthetic images as hypothesis controls - Expected to trigger
low confidence score based on the hypothesis - Includes generation prompt, confidence score,
and classification (HIGH/MODERATE/LOW)

ANALYSIS GUIDELINES:

1. High Confidence Score Pattern Analysis: - Group all high-activating images together, regard-
less of which set they’re from - Identify common visual elements across these high-confidence
score cases - Extract shared prompt elements that consistently produce high confidence scores -
Note cases where similar prompts produced different confidence score levels

2. Cross-Reference with Exemplars: - Compare high-activating synthetic images to exemplar
patterns - Identify prompt elements that successfully replicate exemplar features - Note any
systematic differences between synthetic and exemplar cases

3. Confidence Assessment: - Evaluate consistency of prompt-to-confidence score relationships
- Identify which prompt patterns reliably produce high confidence scores - Note any context-
dependent variations in prompt effectiveness

Based on these experimental results and analysis, generate a comprehensive list of possible
biases to explore with further experimentation. Present your hypotheses in the following format:
[HYPOTHESIS LIST]: Hypothesis; :< hypothesis; > ...Hypothesis, :< hypothesis, >
Strong hypotheses should explain both intended and unintended high-confidence score patterns
while identifying reliable prompt elements that trigger the classifier.
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A.3 Image generation for self-evaluation

You will get access to a classifier in the final layer of a deep neural network that detects the
presence of 0 within photo-realistic images for autonomous driving. Your task is to validate a
hypothesis about the classifier’s biases. A researcher has concluded:

HYPOTHESIS: <BIAS>

Generate two sets of image prompts: 1. 10 prompts for images containing 0 that should trigger
HIGH classifier confidence score based on the hypothesis 2. 10 prompts for images containing
0 that should trigger LOW classifier confidence score based on the hypothesis

If the hypothesis suggests multiple bias scenarios, distribute the prompts to cover all cases.
Make sure each image only tests ONE bias scenario at a time so different possible sources of
bias do not confound.

Return your results in this exact format:

<POSITIVE PROMPTS> 1. [First high-confidence score prompt] 2. [Second high-confidence
score prompt] ... 10. [Tenth high-confidence score prompt] </POSITIVE PROMPTS>
<NEGATIVE PROMPTS> 1. [First low-confidence score prompt] 2. [Second low-confidence
score prompt] ... 10. [Tenth low-confidence score prompt] </NEGATIVE PROMPTS>
Remember to start the positive examples with the opening tag <POSITIVE PROMPTS> and
end the positive examples with closing tag </POSITIVE PROMPTS>. Remember to start the
negative examples with opening tag <NEGATIVE PROMPTS> and end the negative examples
with closing tag </NEGATIVE PROMPTS>.
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A.4 SAIA API and implementation details

SAIA’s APl is based on that of MAIA Rott Shaham et al. [2024] with a few important modifications:
(i) SAIA is able to define experiments in free-form code blocks, where initially MAIA had to define
all its code within a function (execute_command) that was then executed by the codebase. This
allows SAIA to both write multiple blocks of code per experiment and to access variables defined
in previous experiments. (ii) SAIA is now able to log and display any text/images generated during
its experiments in the format of its choosing with a single, flexible function (display), whereas
MAIA had to rely on individual tools to display their own results in predetermined formats. (iii)
SAIA can use more recent VLLMs, particularly Claude-3.5-sonnet, where the original codebase used
gpt-4-vision-preview.

A.5 Agent tools
To support experimentation and interpretability analysis, we provide a Tools class with utilities for:

* Text-to-image generation from prompts via pretrained diffusion models.
* Prompt-based image editing to create controlled counterfactuals.

* Image summarization that identifies common semantic or non-semantic features across a
set of images.

* Region-based image descriptions that generate textual descriptions of highlighted activa-
tion regions.

* Exemplar retrieval for a given classifier unit, returning representative images and their
scores.

A.6 Supported backbone models.

SAIA ships with a small self-contained toolkit that lets us run end-to-end vision experiments (image
generation, editing, and logging) through a single, uniform interface.

¢ Text-to-Image Generation:

— Flux Image Generator Labs [2024]

— DALL-E 3 OpenAl [2023] (OpenAl API) (used for the evaluation)
* Image Editing:

— InstructDiffusion (Stable Diffusion variant with instruction tuning) Geng et al. [2023]
» Image Description and Summarization:

— GPT-40 OpenAl [2024], used via API to describe image regions and summarize visual
commonalities across images.

A.7 Interface and Logging.

All generated or edited images are stored in Base64 format for transmission and display. The
framework logs each experiment (prompt, image, activation, description) and supports export as an
interactive HTML report for reproducibility.

Overall, the toolkit enables SAIA to generate or edit images for hypothesis testing, score them
different models, analyse the outcomes, and package the entire run into a report, making each
experiment swift, scalable, and fully reproducible. For a comprehensive overview of hardware
requirements, see Table 1.

A.8 Resources

All our experiments were conducted on a single NVIDIA RTX 3090 (24 GB) GPU. SAIA’s backbone
(Claude-3.5-sonnet) was used through Anthropic API, and the prompt generator for self-reflection
(GPT4o0) and the evaluator modern in the 2AFC experiment (GPT4) were accessed through Open-
AI API. An experiment with 10 rounds of hypothesis testing followed by self-reflection costs
approximately $3 and takes about 10-20 minutes per round. Note that most experiments are concluded
before 10 rounds, so this is an upper bound.
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Model (Inference) Peak VRAM | (GB) #Params | (M)

SAM ViT-H ~7.0 632
Grounding DINO Swin-T ~0.45 174
SigLIP So400m (P14/384) ~2.1 878
CLIP ViT-L/14 (OpenAl) ~2.04 428
FairFace ResNet-34 ~0.06 21.8
YOLOv8-m (Ultralytics) ~0.07 25.9
Stable Diffusion 3.5 Medium (FP16) ~9-10 2500
FLUX.dev (12B, 4-bit + offload) ~10-11 12000
InstructPix2Pix (SD-1.5 base) ~6-7 890
Instruction Diffusion ~10 1000
RetinaFace MobileNetV3 ~0.02 1.7
Average Experiment ~19.5-20.5 -

Table 1: Peak GPU memory and parameter scale of all models used at inference time.

20



A.9 API prompt

class System:
win
A Python class containing the vision model and the specific classifier to
interact with.

Attributes
classifier_num : int
The unit number of the classifier.
layer : string
The name of the layer where the classifier is located.
model_name : string
The name of the vision model.
model : nn.Module
The loaded PyTorch model.

Methods
call_classifier(image_list: List[torch.Tensor]) -> Tuplel[List[int], List[str]l]
Returns the classifier confidence score for each image in the input
image_list as well as the original image (encoded into a Base64 string)

wan

def __init__(self, classifier_num: int, layer: str, model_name: str, device:
str):
W
Initializes a classifier object by specifying its number and layer location
and the vision model that the classifier belongs to.
Parameters

classifier_num : int

The unit number of the classifier.
layer : str

The name of the layer where the classifier is located.
model_name : str

The name of the vision model that the classifier is part of.
device : str

The computational device (’cpu’ or ’cuda’).

wun

self.classifier_num = classifier_num
self.layer = layer
self.device = torch.device(f"cuda:{device}" if torch.cuda.is_available()

else "cpu")

def call_classifier(self, image_list: List[torch.Tensor]) -> Tuplel[List[float],
List[strll:
The function returns the classifiers maximum confidence score (in float
format) for each of the images in the list as well as the original
image (encoded into a Base64 string).

Parameters
image_list : List[torch.Tensor]
The input image

Returns
Tuple[List [int], List[str]]
For each image in image_list returns the confidence score of the
classifier on that image, and the original image encoded into a
Base64 string.
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Examples

>>> # test the confidence score of the classifier for the prompt
standing on the grass"

>>> prompt = ["a dog standing on the grass"]

>>> image = tools.text2image (prompt)

>>> score_list, image_list = system.call_classifier(image)

>>> for score, image in zip(score_list, image_list):

>>> tools.display(image, f"Confidence Score: {scorel}")

>>> # test the confidence score of the classifier for the prompt
standing on the grass" and maintain robustness to noise

>>> prompts = ["a dog standing on the grass"]*5

>>> images = tools.text2image (prompts)

>>> score_list, image_list = system.call_classifier (images)

>>> tools.display(image_list[0], f"Confidence Score: {statistics
score_list)}")

>>>

>>> # test the confidence score of the classifier for the prompt
landscape with a tree and river"

>>> # for the same image but with different seasons:

>>> prompts = ["a landscape with a tree and a river"]#*3

>>> original_images = tools.text2image (prompts)

>>> edits = ["make it autumn","make it spring","make it winter"]

>>> all_images, all_prompts = tools.edit_images(original_images,

>>> score_list, image_list = system.call_classifier(all_images)

"a dog

"a dog

.mean (

edits)

>>> for score, image, prompt in zip(score_list, image_list, all_prompts):
>>> tools.display(image, f"Prompt: {prompt}\nConfidence Score: {scorel}"

)

nwun

class Tools:

waun

A Python class containing tools to interact with the units implemented in the

system class,
in order to run experiments on it.

Attributes
text2image_model_name : str

The name of the text-to-image model.
text2image_model : any

The loaded text-to-image model.
images_per_prompt : int

Number of images to generate per prompt.
path2save : str

Path for saving output images.
threshold : any

Confidence score threshold for classifier analysis.
device : torch.device

The device (CPU/GPU) used for computations.
experiment_log: str

A log of all the experiments, including the code and the output

classifier

analysis.
exemplars : Dict

A dictionary containing the exemplar images for each unit.
exemplars_scores : Dict

A dictionary containing the confidence scores for each exemplar
exemplars_thresholds : Dict

A dictionary containing the threshold values for each unit.
results_list : List

A list of the results from the classifier analysis.

from the

image .
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Methods
dataset_exemplars (system: System)->List[Tuplel[int, str]]
This experiment provides good coverage of the behavior observed on a
very large dataset of images and therefore represents the typical
behavior of the classifier on real images. This function characterizes the
prototypical behavior of the classifier by computing its confidence score
on
all images in the ImageNet dataset and returning the 15 highest confidence
scores and the images that produced them in Base64 encoded string format.
edit_images (self, base_images: List[str], editing_prompts: List[str]) -> Tuplel
List [List[str]], List[str]l]
This function enables localized testing of specific hypotheses about how
variations on the content of a single image affect classifier confidence
scores.
Gets a list of input images in Base64 encoded string format and a list of
corresponding editing instructions, then edits each provided image based on
the
instructions given in the prompt using a text-based image editing model.
The
function returns a list of images in Base64 encoded string format and list
of the
relevant prompts. This function is very useful for testing the causality of
the
classifier in a controlled way, or example by testing how the classifier
confidence
score is affected by changing one aspect of the image. IMPORTANT: Do not
use negative

terminology such as "remove ...", try to use terminology like "replace
with ..."
or "change the color of ... to ..."

text2image (prompt_list: str) -> List[str]
Gets a list of text prompts as an input and generates an image for each
prompt using a text to image model. The function returns a
list of images in Base64 encoded string format.
summarize_images (self, image_list: List[str]) -> str:
This function is useful to summarize the mutual visual concept that
appears in a set of images. It gets a list of images at input and
describes what is common to all of them.
describe_images (synthetic_image_list: List[str], synthetic_image_title:List[str
1) -> str
Provides impartial descriptions of images. Do not use this function on
dataset exemplars. Gets a list of images and generates a textual
description of the semantic content of each of them.
The function is blind to the current hypotheses list and
therefore provides an unbiased description of the visual content.
display(self, *args: Union[str, Image.Imagel):
This function is your way of displaying experiment data. You must call
this on results/variables that you wish to view in order to view them.

wun

def init__(self, path2save: str, device: str, DatasetExemplars:

DatasetExemplars = None, images_per_prompt=1, text2image_model_name=’sd’)

waun

Initializes the Tools object.

Parameters

path2save : str

Path for saving output images.
device : str

The computational device (’cpu’ or ’cuda’).
DatasetExemplars : object

an object from the class DatasetExemplars
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images_per_prompt : int

Number of images to generate per prompt.
text2image_model_name : str

The name of the text-to-image model.

wun

dataset_exemplars (self, system: System) -> List[Tuple[float, str]l]

wun

This method finds images from the ImageNet dataset that produce the highest
confidence scores for a specific classifier.

It returns both the confidence scores and the corresponding exemplar images
that were used to generate these confidence scores.

This experiment is performed on real images and will provide a good
approximation of the classifier behavior.

Parameters
system : System
The system representing the specific classifier and layer within the
neural network.
The system should have ’layer’ and ’classifier_num’ attributes, so the
dataset_exemplars function
can return the exemplar confidence scores and images for that specific
classifier.

Returns

For each exemplar image, stores a tuple containing two elements:
- The first element is the confidence score for the specified
classifier.
- The second element is the exemplar images (as Base64 encoded strings)
corresponding to the confidence score.

Example

>>> exemplar_data = tools.dataset_exemplars(system)

>>> for score, image in exemplar_data:

>>> tools.display(image, f"Confidence Score: {scorel}")

wun

edit_images (self,

base_images: List[str],

editing_prompts: List[str]) -> Tuple[List[List[str]], List[str

11:

W
Generates or uses provided base images, then edits each base image with a
corresponding editing prompt. Accepts either text prompts or Base64
encoded strings as sources for the base images.

The function returns a list containing lists of images (original and edited

>
interleaved) in Base64 encoded string format, and a list of the relevant
prompts (original source string and editing prompt, interleaved).

Parameters

base_images : List[str]
A list of images as Base64 encoded strings. These images are to be
edited by the prompts in editing_prompts.

editing_prompts : List[str]
A list of instructions for how to edit the base images derived from
‘base_images ‘. Must be the same length as ‘base_images ‘.
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Tuple[List [List[str]], List([strl]
- all_images: A list where elements alternate between:
- A list of Base64 strings for the original image(s) from a source.
- A list of Base64 strings for the edited image(s) from that source

Example: [[origl_imgl, origl_img2], [editl_imgl, editl_img2], [
orig2_imgl], [edit2_imgil]l, ...]
- all_prompts: A list where elements alternate between:
- The original source string (text prompt or Base64) used.
- The editing prompt used.
Example: [sourcel, editl, source2, edit2, ...]
The order in ‘all_images ¢ corresponds to the order in ‘all_prompts ‘.

Raises
ValueError

If the lengths of ‘base_images‘ and ‘editing_prompts ¢

are not equal.

Examples

>>> # test the confidence score of the classifier for the prompt "a
landscape with a tree and river"

>>> # for the same image but with different seasons:

>>> prompts = ["a landscape with a tree and a river"]#*3

>>> original_images = tools.text2image (prompts)

>>> edits = ["make it autumn","make it spring","make it winter"]

>>> all_images, all_prompts = tools.edit_images (original_images, edits)

>>> score_list, image_list = system.call_classifier(all_images)

>>> for score, image, prompt in zip(score_list, image_list, all_prompts):

>>> tools.display(image, f"Prompt: {prompt}\nConfidence Score: {scorel}"
)

>>>

>>> # test the confidence score of the classifier on the highest scoring
dataset exemplar
>>> # under different conditions

>>> exemplar_data = tools.dataset_exemplars(system)

>>> highest_scoring_exemplar = exemplar_data[0][1]

>>> edits = ["make it night","make it daytime","make it snowing"]

>>> all_images, all_prompts = tools.edit_images([highest_scoring_exemplar]*
len(edits), edits)

>>> score_list, image_list = system.call_classifier(all_images)

>>> for score, image, prompt in zip(score_list, image_list, all_prompts):

>>> tools.display(image, f"Prompt: {prompt}\nConfidence Score: {scorel}"
)

wun

text2image (self, prompt_list: List[str]) -> List[List[strl]:

wun

Takes a list of text prompts and generates images_per_prompt images for
each using a

text to image model. The function returns a list of a list of
images_per_prompt images

for each prompt.

Parameters
prompt_list : List[str]
A list of text prompts for image generation.

Returns
List [List [strl]
A list of a list of images_per_prompt images in Base64 encoded string
format for
each input prompts.

25




def

Examples

>>> # Generate images from a list of prompts

>>> prompt_list = [ a dog standing on the grass ,

>>> a dog sitting on a couch ,

>>> a dog running through a field ]
>>> images = tools.text2image(prompt_list)

>>> score_list, image_list = system.call_classifier (images)
>>> for score, image in zip(score_list, image_list):

>>> tools.display(image, f"Confidence Score: {scorel}")

wun

display (self, *args: Union[str, Image.Imagel):

waun

Displays a series of images and/or text in the chat, similar to a Jupyter
notebook.

Parameters

xargs : Union[str, Image.Imagel
The content to be displayed in the chat. Can be multiple strings or
Image objects.

>>> # Display a single image

>>> prompt = ["a dog standing on the grass"]

>>> images = tools.text2image (prompt)

>>> score_list, image_list = system.call_classifier (images)
>>> for score, image in zip(score_list, image_list):

>>> tools.display(image, f"Confidence Score: {scorel}")
>>>

>>> # Display a single image from a list

>>> prompts = ["a dog standing on the grass"]*5

>>> images = tools.text2image (prompts)

>>> score_list, image_list = system.call_classifier(images)

>>> tools.display(image_list[0], f"Confidence Score: {statistics.mean(
score_list)}")

>>>

>>> # Display a list of images

>>> prompt_list = [ a dog standing on the grass ,

>>> a dog sitting on a couch ,

>>> a dog running through a field ]
>>> images = tools.text2image (prompt_list)

>>> score_list, image_list = system.call_classifier (images)
>>> for score, image in zip(score_list, image_list):

>>> tools.display(image, f"Confidence Score: {scorel}")

wun

summarize_images (self, image_list: List[str]) -> str:

wun

Gets a list of images and describes what is common to all of them.

Parameters

image_list : list
A list of images in Base64 encoded string format.
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>>> # Summarize a classifier’s dataset exemplars

>>> exemplars = [exemplar for _, exemplar in tools.dataset_exemplars(system
)] # Get exemplars
>>> summarization = tools.summarize_images (exemplars)

>>> tools.display(summarization)

wun

describe_images (self, image_list: List[str], image_title:List[str]) -> str:
wun

Generates textual descriptions for a list of images, focusing

specifically on highlighted regions. The final descriptions are
concatenated and returned as a single string, with each description
associated with the corresponding image title.

Parameters
image_list : List[str]

A list of images in Base64 encoded string format.
image_title : List([str]

A list of titles for each image in the image_list.

A concatenated string of descriptions for each image, where each
description

is associated with the images title and focuses on the highlighted
regions

in the image.

>>> prompt_list = ["a dog standing on the grass",

>>> "a dog sitting on a couch",

>>> "a dog running through a field"]

>>> images = tools.text2image (prompt_list)

>>> score_list, image_list = system.call_classifier (images)

>>> descriptions = tools.describe_images(image_list, prompt_list)
>>> tools.display(descriptions)
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B Benchmark models

B.1 Systems specification

We provide below the full list of objects and categories used for our benchmark.

Gender Age

Female Male Young Old
1 Apron (“kitchen") Tie Laptop Glasses
2 Umbrella Beer Cell phone Book
3 Scarf Skateboard  Skateboard Hat
4 Cat Suit Bicycle Tie
5 Book Laptop Teddy bear  Wine glass
6 Handbag motorcycle
7 Wine glass surfboard
8 Hair drier Frisbee
9 Teddy bear Guitar
10 Dress Cap

Table 2: Feature categories and corresponding objects associated with gender and age stereotypes.

Color Material
Red Green Blue Black White Wooden  Ceramic
1 Bus Bus Bus Bus Bus Table Vase
2  Umbrella Umbrella Umbrella Umbrella Umbrella Chair Bowl
3 Tie Tie Tie Tie Tie Bench Cup
4 Kite Kite Kite Kite Kite
5 Frisbee Frisbee Frisbee Frisbee Frisbee

Table 3: Feature categories and corresponding objects associated with color and material properties.

Setting State

Kitchen Living Room Office Wilderness ~ City ~ Beach Misc.
1 Table Table Table Bird Bird Bird Airplane (Flying)
2 Chair Chair Chair Car Car Car Bicycle (Ridden)
3 Cat Cat Cat Dog Dog Dog Clock (Analog)
4 Dog Dog Dog Horse Horse Horse  Keyboard (Typing)
5 Vase Vase Vase Bench Bench  Bench Kite (Flying)
6  Wine glass Wine glass Wine glass Umbrella (Open)
7

Vase (With flowers)

Table 4: Feature categories and corresponding objects associated with different settings and states.
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Gender Age

Female Male Young Old
1 Tie Apron Glasses Laptop
2 Beer Umbrella Book Cell phone
3 Skateboard Scarf Hat Skateboard
4 Suit Cat Tie Bicycle
5 Laptop Book Wine glass  Teddy bear
6 motorcycle  Handbag
7 surfboard ~ Wine glass
8 Frisbee Hair drier
9 Guitar Teddy bear
10 Cap Dress

Table 5: Feature categories and corresponding objects with flipped gender and age associations.

B.2 Dependency strength versus discount factor

We investigate how a discount factor o € [0, 1] of our synthetic model attenuates the score of the
synthetic model henever a predefined attribute condition is not satisfied. Figure 8 shows the mean
classification accuracy for six attribute groups: AGE, COLOR, GENDER, SETTING, SIZE, and STATE.

* No discount («=1.0). Baseline accuracies for all groups remain high (> 0.73).

* Small discount (0 < o < 0.3). Accuracy drops slightly (under five percentage points),
indicating that mild penalties leave decisions largely intact.

* Medium discount (0.3 < o < 0.5). Accuracy decreases almost linearly—GENDER is most
robust, while SIZE and SETTING degrade faster.

» High-extreme discount (o: > 0.5). A sharp collapse occurs; COLOR and SIZE fall below
0.20 at =~ 0.7, and all groups eventually saturate between 0.05 and 0.25.
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Figure 8: Mean accuracy versus discount factor « for six attribute groups.
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C Results

C.1 Additional Analysis

Figures 9a and 9b report the average self-evaluation scores across ten rounds of self-reflection,
under discount factors of a=0.5 and o=0.9, respectively. We observe a consistent upward trend in
performance across all six attribute categories—GENDER, AGE, COLOR, STATE, and SETTING. This
trend holds across both mild and severe reliance scenarios, suggesting that the iterative refinement
process is effective in improving the quality of SAIA’s hypotheses and explanations. While early
rounds exhibit fluctuations (especially at a=0.5), later rounds show stabilization and convergence
toward higher evaluation scores. The improvement is more pronounced under the lighter discounting
condition (a=0.5), where SAIA starts from lower scores but achieves a comparable gain. It also
noticable that for a disambiguate attribute dependency (a=0.5) more self-reflection rounds are
necessary, whereas with («=0.9) a saturation is achieved earlier. This demonstrates that self-reflection
enables SAIA to recover explanatory accuracy even in challenging scenarios.
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Figure 9: Average self-evaluation scores across ten rounds of self-reflection under different discount
factors broken down by reliance attribute category.

C.2 Multiple feature reliances

For the models that rely on the presence of both attributes simultaneously (Table 7), we found that
SAIA is be able to accurately uncover both reliances for four out of the five systems, while MAIA
was not able to detect both reliances correctly in any of the systems. For the models that rely on the
presence of at least one of the two attributes (Table 8, SAIA was only able to recover both reliances
for a single model, while MAIA was again not able to detect both reliances for any. While SATA
outperforms MAIA on multi-attribute reliance systems overall, both are less effective that detecting
multi-attribute reliances in this second setting. Qualitatively, we notice that for these models, during
the hypothesis testing phase, it is more challenging for the agent to isolate the reliance attributes,
sometimes identifying other co-occuring attributes instead. For example, for the bench detector that
relies on benches that are wooden OR in beach settings, SAIA concludes that the classifier is biased
toward “traditional park benches with backrests in natural settings,” presumably because traditional
park benches are often wooden.

C.3 Text-to-image tool robustness

Text-to-image (T2I) models can carry societal and representational biases. This is a general limitation
of agentic interpretability methods that rely on T2I models for generating stimuli. To quantify SAIA’s
robustness to T2I errors, we conducted two experiments:

Random failure: In 50% of T2I calls, we replaced SAIA’s prompt with an empty string, resulting
in the model generating unrelated content that ignored the intended experimental manipulation. We
found that in 80% of these corrupted trials, SAIA successfully noticed the issue, either during the
hypothesis-testing stage or self-reflection, and responded by revising its approach or ignoring the
incorrect images.
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Target Concept Attribute 1 Attribute 2

bus Color: Red Setting: City
tie Gender: Male Setting: Office
bench Material: Wooden  Setting: Beach
vase State: With flowers  Setting: Home
apron Gender: Female Setting: Kitchen

Table 6: Target concept and attribute reliances pairs for the systems with multiple attribute reliances.
Each system that relies on the presence of both attributes simultaneously will detect the Target
Concept with high confidence if both Attribute 1 AND Attribute 2 are present in the image.
Each system that relies on the presence of at least one attribute will detect the Target Concept
with high confidence if either Attribute 1 OR Attribute 2 are present in the image.

No Reliances Detected One Reliance Detected Both Reliances Detected
MAIA 20% 80% 0%
SATA 0% 20% 80%

Table 7: MAIA and SAIA success rates on the multi-attribute reliant systems that rely on the presence
of both attributes simultaneously.

Injected bias: We attack the prompts generated by SAIA in experiments on a tie detector system that
relies on the presence of a man. We attack the T2I model by systematically replacing instances of
the phrase “a person” with “a man” 2% of the time for z = [0, 25, 50, 75, 100], and “a woman” the
remaining (100 — x)% of the time to simulate a controlled gender bias in the T2I. We found that SAIA
was robust to attack and able to detect the correct reliance in all simulated bias ratios. Interestingly,
SAIA required more iterations when the T2I model was biased toward generating images of men
(i.e. when the bias of the T2I matched the model’s feature reliance). We noticed this phenomenon in
the base T2I model as well, which almost always generates a man when prompted with “a person
wearing a tie.” This is another motivating factor for including the study on counterfactual demographic
attribute reliant systems (e.g. a tie detector that relies on the presence of a woman)—such systems
are out of distribution for not only the multimodal LLM backbone but tools like the T2I as well.

Interestingly, when SAIA notices such unaligned behavior, it usually uses a different experimental
design to get the intended behavior (e.g. if the T2I tool doesn’t follow the prompt correctly, it uses
the editing tool the edit one of the dataset exemplars to achieve the desired stimuli) or ignores the
incorrect images and focuses its analysis on the successful generations.

C.4 Diversity of Hypotheses

We measured the diversity of SAIA’s hypotheses by computing the average pairwise similarity
between hypotheses generated across all rounds of SAIA for each synthetic benchmark model.
Specifically:

* For each system, we parsed all hypotheses produced across rounds.

* We computed the average cosine similarity between the CLIP text embedding of all pairs of
hypotheses for that system.

* We then averaged these values across all systems to obtain an overall similarity score.

To contextualize this result, we constructed a baseline using the ground-truth descriptions of all
130 synthetic benchmark models (which vary in both object class and attribute dependence). We
computed the average pairwise cosine similarity between these ground-truth descriptions and between
SAIA’s hypotheses and found that the similarity score for SAIA’s hypotheses was 0.073 compared to
0.094 for the baseline. The lower similarity score for SAIA’s hypotheses indicates greater diversity
than the baseline, suggesting that SAIA explores a wide range of explanations.
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No Reliances Detected One Reliance Detected Both Reliances Detected
MAIA 60% 40% 0%
SATA 60% 20% 20%

Table 8: MAIA and SAIA success rates on the multi-attribute reliant systems that rely on the presence
of at least one attribute.

C.5 Validation of CLIP and YOLOvS Reliances on Real Images

We used SAIA’s discovered explanations (e.g., reliance on classroom settings to detect the concept
of teacher or pose to detect the concept of biker) to select real images that either contained or
lacked the relevant attributes. We then measured the model’s responses and found that the same
attribute dependencies were reflected in all the real-world image scores, providing strong support for
the alignment between synthetic and real domains. The

CLIP Concepts YOLO Concepts
teacher scientist wine glass biker pedestrian
Generated images 0.22/0.17  0.22/0.16 0.27/0.21 0.35/0.32  0.54/0.33
Real images 0.25/0.23 0.21/0.17 0.21/020 0.18/0.03  0.49/0.07

Table 9: Raw average positive/negative exemplar score pairs for target CLIP and YOLO concepts for
which SAIA discovered attribute reliances, evaluated on both generated and real images.

a) Teacher Scientist

Higher Scoring

Lower Scoring

o
-

Higher Scoring

Lower Scoring

Figure 10: Real images that elicit high (green) and low (red) scores from the (a) CLIP and (b) YOLO
classifiers across different object categories. Each triplet shows the top and bottom scoring examples
per class for CLIP and YOLOVS.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, we systematically support all claims made in the abstract introduction in
the following sections of the main paper and appendix.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we perform a detailed analysis of the limitations of the work in Section 6.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper does not involve theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, we discuss the implementation details of the self-reflective agent in
Section 3 and SM, the benchmark of models in Section 4 and SM, and the experiments and
evaluations in Section 5 with additional experimental results in SM.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The code and model benchmark will be made available upon acceptance.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimentation setup and results are discussed in detail in Section 5 and
SM.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Confidence intervals are shown for both the 2AFC test and the ground truth
predictiveness scores.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The GPU and API resources required to reproduce the experiments are de-
scribed in SM.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the authors have reviewed the NeurIPS Code of Ethics and the research
conducted in the paper conforms with the NeurIPS Code of Ethics in every respect.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Both potential positive and negative societal impacts of the work are discussed
in Section 6.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The work presented in the paper does not pose significant risks for misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All creators or original owners of assets are properly cited throughout the
work.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code and model benchmark documentation will be released upon accep-
tance.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The usage of LLMs as the backbone to the self-reflective agent is described
in Section 3, and the usage of LL.M-as-a-judge for an external evaluation is described in
Section 5.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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