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ABSTRACT

Consistency models (CMs) are a powerful class of diffusion-based generative mod-
els optimized for fast sampling. Most existing CMs are trained using discretized
timesteps, which introduce additional hyperparameters and are prone to discretiza-
tion errors. While continuous-time formulations can mitigate these issues, their
success has been limited by training instability. To address this, we propose a
simplified theoretical framework that unifies previous parameterizations of diffu-
sion models and CMs, identifying the root causes of instability. Based on this
analysis, we introduce key improvements in diffusion process parameterization,
network architecture, and training objectives. These changes enable us to train
continuous-time CMs at an unprecedented scale, reaching 1.5B parameters on
ImageNet 512×512. Our proposed training algorithm, using only two sampling
steps, achieves FID scores of 2.06 on CIFAR-10, 1.48 on ImageNet 64×64, and
1.88 on ImageNet 512×512, narrowing the gap in FID scores with the best existing
diffusion models to within 10%.

1 INTRODUCTION
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Figure 1: Sample quality vs. effective sam-
pling compute (billion parameters × number
of function evaluations during sampling). We
compare the sample quality of different mod-
els on ImageNet 512×512, measured by FID
(↓). Our 2-step sCM achieves sample quality
comparable to the best previous generative
models while using less than 10% of the ef-
fective sampling compute.

Diffusion models (Sohl-Dickstein et al., 2015; Song &
Ermon, 2019; Ho et al., 2020; Song et al., 2021b) have
revolutionized generative AI, achieving remarkable results
in image (Rombach et al., 2022; Ramesh et al., 2022; Ho
et al., 2022), 3D (Poole et al., 2022; Wang et al., 2024; Liu
et al., 2023b), audio (Liu et al., 2023a; Evans et al., 2024),
and video generation (Blattmann et al., 2023; Brooks et al.,
2024). Despite their success, a significant drawback is
their slow sampling speed, often requiring dozens to hun-
dreds of steps to generate a single sample. Various diffu-
sion distillation techniques have been proposed, includ-
ing direct distillation (Luhman & Luhman, 2021; Zheng
et al., 2023b), adversarial distillation (Wang et al., 2022;
Sauer et al., 2023), progressive distillation (Salimans &
Ho, 2022), and variational score distillation (VSD) (Wang
et al., 2024; Yin et al., 2024b;a; Luo et al., 2024; Xie et al.,
2024b; Salimans et al., 2024). However, these methods
come with challenges: direct distillation incurs extensive
computational cost due to the need for numerous diffu-
sion model samples; adversarial distillation introduces
complexities associated with GAN training; progressive
distillation requires multiple training stages and is less effective for one or two-step generation; and
VSD can produce overly smooth samples with limited diversity and struggles at high guidance levels.

Consistency models (CMs) (Song et al., 2023; Song & Dhariwal, 2023) offer significant advantages
in addressing these issues. They eliminate the need for supervision from diffusion model samples,
avoiding the computational cost of generating synthetic datasets. CMs also bypass adversarial training,
sidestepping its inherent difficulties. Aside from distillation, CMs can be trained from scratch with
consistency training (CT), without relying on pre-trained diffusion models. Previous work (Song
& Dhariwal, 2023; Geng et al., 2024; Luo et al., 2023; Xie et al., 2024a) has demonstrated the
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Figure 2: Selected 2-step samples from a continuous-time consistency model trained on ImageNet 512×512.

effectiveness of CMs in few-step generation, especially in one or two steps. However, these results are
all based on discrete-time CMs, which introduces discretization errors and requires careful scheduling
of the timestep grid, potentially leading to suboptimal sample quality. In contrast, continuous-time
CMs avoid these issues but have faced challenges with training instability (Song et al., 2023; Song &
Dhariwal, 2023; Geng et al., 2024).

In this work, we introduce techniques to simplify, stabilize, and scale up the training of continuous-
time CMs. Our first contribution is TrigFlow, a new formulation that unifies EDM (Karras et al., 2022;
2024) and Flow Matching (Peluchetti, 2022; Lipman et al., 2022; Liu et al., 2022; Albergo et al.,
2023; Heitz et al., 2023), significantly simplifying the formulation of diffusion models, the associated
probability flow ODE and CMs. Building on this foundation, we analyze the root causes of instability
in CM training and propose a complete recipe for mitigation. Our approach includes improved
time-conditioning and adaptive group normalization within the network architecture. Additionally,
we re-formulate the training objective for continuous-time CMs, incorporating adaptive weighting
and normalization of key terms, and progressive annealing for stable and scalable training.

With these improvements, we elevate the performance of consistency models in both consistency
training and distillation, achieving comparable or better results compared to previous discrete-time
formulations. Our models, referred to as sCMs, demonstrate success across various datasets and
model sizes. We train sCMs on CIFAR-10, ImageNet 64×64, and ImageNet 512×512, reaching
an unprecedented scale with 1.5 billion parameters—the largest CMs trained to date (samples in
Figure 2). We show that sCMs scale effectively with increased compute, achieving better sample
quality in a predictable way. Moreover, when measured against state-of-the-art diffusion models,
which require significantly more sampling compute, sCMs narrow the FID gap to within 10% using
two-step generation. In addition, we provide a rigorous justification for the advantages of continuous-
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time CMs over discrete-time variants by demonstrating that sample quality improves as the gap
between adjacent timesteps narrows to approach the continuous-time limit. Furthermore, we examine
the differences between sCMs and VSD, finding that sCMs produce more diverse samples and are
more compatible with guidance, whereas VSD tends to struggle at higher guidance levels.

2 PRELIMINARIES

2.1 DIFFUSION MODELS

Given a training dataset, let pd denote its underlying data distribution and σd its standard deviation.
Diffusion models generate samples by learning to reverse a noising process that progressively perturbs
a data sample x0 ∼ pd into a noisy version xt = αtx0 + σtz, where z ∼ N (0, I) is standard
Gaussian noise. This perturbation increases with t ∈ [0, T ], where larger t indicates greater noise.

We consider two recent formulations for diffusion models.

EDM (Karras et al., 2022; 2024). The noising process simply sets αt = 1 and σt = t, with the
training objective given by Ex0,z,t

[
w(t)

∥∥fDM
θ (xt, t)− x0

∥∥2
2

]
, where w(t) is a weighting function.

The diffusion model is parameterized as fDM
θ (xt, t) = cskip(t)xt + cout(t)Fθ(cin(t)xt, cnoise(t)),

where Fθ is a neural network with parameters θ, and cskip, cout, cin, and cnoise are manually designed
coefficients that ensure the training objective has the unit variance across timesteps at initialization.
For sampling, EDM solves the probability flow ODE (PF-ODE) (Song et al., 2021b), defined by
dxt
dt = [xt − fDM

θ (xt, t)]/t, starting from xT ∼ N (0, T 2I) and stopping at x0.

Flow Matching. The noising process uses differentiable coefficients αt and σt, with time derivatives
denoted by α′

t and σ′
t (typically, αt = 1 − t and σt = t). The training objective is given by

Ex0,z,t

[
w(t) ∥Fθ(xt, t)− (α′

tx0 + σ′
tz)∥

2
2

]
, where w(t) is a weighting function and Fθ is a neural

network parameterized by θ. The sampling procedure begins at t = 1 with x1 ∼ N (0, I) and solves
the probability flow ODE (PF-ODE), defined by dxt

dt = Fθ(xt, t), from t = 1 to t = 0.

2.2 CONSISTENCY MODELS

←
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Figure 3: Discrete-time CMs (top & middle)
vs. continuous-time CMs (bottom). Discrete-
time CMs suffer from discretization errors
from numerical ODE solvers, causing impre-
cise predictions during training. In contrast,
continuous-time CMs stay on the ODE trajec-
tory by following its tangent direction with
infinitesimal steps.

A consistency model (CM) (Song et al., 2023; Song &
Dhariwal, 2023) is a neural network fθ(xt, t) trained to
map the noisy input xt directly to the corresponding clean
data x0 in one step, by following the sampling trajectory
of the PF-ODE starting at xt. A valid fθ must satisfy
the boundary condition, fθ(x, 0) ≡ x. One way to meet
this condition is to parameterize the consistency model as
fθ(xt, t) = cskip(t)xt+cout(t)Fθ(cin(t)xt, cnoise(t)) with
cskip(0) = 1 and cout(0) = 0. CMs are trained to have con-
sistent outputs at adjacent time steps. Depending on how
nearby time steps are selected, there are two categories of
consistency models, as described below.

Discrete-time CMs. The training objective is defined at
two adjacent time steps with finite distance:

Ext,t [w(t)d(fθ(xt, t),fθ−(xt−∆t, t−∆t))] , (1)

where θ− denotes stopgrad(θ), w(t) is the weighting
function, ∆t > 0 is the distance between adjacent time
steps, and d(·, ·) is a metric function; common choices
are ℓ2 loss d(x,y) = ∥x − y∥22, Pseudo-Huber loss
d(x,y) =

√
∥x− y∥22 + c2−c for c > 0 (Song & Dhari-

wal, 2023), and LPIPS loss (Zhang et al., 2018). Discrete-
time CMs are sensitive to the choice of ∆t, and therefore
require manually designed annealing schedules (Song & Dhariwal, 2023; Geng et al., 2024) for fast
convergence. The noisy sample xt−∆t at the preceding time step t−∆t is often obtained from xt
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by solving the PF-ODE with numerical ODE solvers using step size ∆t, which can cause additional
discretization errors.

Continuous-time CMs. When using d(x,y) = ∥x− y∥22 and taking the limit ∆t→ 0, Song et al.
(2023, Remark 10) show that the gradient of Eq. (1) with respect to θ converges to

∇θExt,t

[
w(t)f⊤

θ (xt, t)
dfθ−(xt, t)

dt

]
, (2)

where dfθ− (xt,t)

dt = ∇xtfθ−(xt, t)
dxt
dt + ∂tfθ−(xt, t) is the tangent of fθ− at (xt, t) along the

trajectory of the PF-ODE dxt
dt . Notably, continuous-time CMs do not rely on ODE solvers, which

avoids discretization errors and offers more accurate supervision signals during training. However,
previous work (Song et al., 2023; Geng et al., 2024) found that training continuous-time CMs, or
even discrete-time CMs with an extremely small ∆t, suffers from severe instability in optimization.
This greatly limits the empirical performance and adoption of continuous-time CMs.

Consistency Distillation and Consistency Training. Both discrete-time and continuous-time CMs
can be trained using either consistency distillation (CD) or consistency training (CT). In consistency
distillation, a CM is trained by distilling knowledge from a pretrained diffusion model. This diffusion
model provides the PF-ODE, which can be directly plugged into Eq. (2) for training continuous-time
CMs. Furthermore, by numerically solving the PF-ODE to obtain xt−∆t from xt, one can also train
discrete-time CMs via Eq. (1). Consistency training (CT), by contrast, trains CMs from scratch
without the need for pretrained diffusion models, which establishes CMs as a standalone family of
generative models in their own right. Specifically, CT approximates xt−∆t in discrete-time CMs as
xt−∆t = αt−∆tx0+σt−∆tz, reusing the same data x0 and noise z when sampling xt = αtx0+σtz.
In the continuous-time limit, as ∆t→ 0, this approach yields an unbiased estimate of the PF-ODE
dxt
dt → α′

tx0 + σ′
tz, leading to an unbiased estimate of Eq. (2) for training continuous-time CMs.

3 SIMPLIFYING CONTINUOUS-TIME CONSISTENCY MODELS

Previous consistency models (CMs) adopt the model parameterization and diffusion process for-
mulation in EDM (Karras et al., 2022). Specifically, the CM is parameterized as fθ(xt, t) =
cskip(t)xt + cout(t)Fθ(cin(t)xt, cnoise(t)), where Fθ is a neural network with parameters θ. The
coefficients cskip(t), cout(t), cin(t) are fixed to ensure that the variance of the diffusion objective is
equalized across all time steps at initialization, and cnoise(t) is a transformation of t for better time
conditioning. Since EDM diffusion process is variance-exploding (Song et al., 2021b), meaning
that xt = x0 + tz, we can derive that cskip(t) = σ2

d/(t
2 + σ2

d), cout(t) = σd · t/
√
σ2
d + t2, and

cin(t) = 1/
√
t2 + σ2

d (see Appendix B.6 in Karras et al. (2022)). Although these coefficients are
important for training efficiency, their complex arithmetic relationships with t and σd complicate
theoretical analyses of CMs.

To simplify EDM and subsequently CMs, we propose TrigFlow, a formulation of diffusion models that
keep the EDM properties but satisfy cskip(t) = cos(t), cout(t) = −σd sin(t), and cin(t) ≡ 1/σd (proof
in Appendix B). TrigFlow is a special case of flow matching (also known as stochastic interpolants
or rectified flows) and v-prediction parameterization (Salimans & Ho, 2022). It closely resembles
the trigonometric interpolant proposed by Albergo & Vanden-Eijnden (2023); Albergo et al. (2023);
Ma et al. (2024), but is modified to account for σd, the standard deviation of the data distribution pd.
Since TrigFlow is a special case of flow matching and simultaneously satisfies EDM principles, it
combines the advantages of both formulations while allowing the diffusion process, diffusion model
parameterization, the PF-ODE, the diffusion training objective, and the CM parameterization to all
have simple expressions, as provided below.

Diffusion Process. Given x0 ∼ pd(x0) and z ∼ N (0, σ2
dI), the noisy sample is defined as

xt = cos(t)x0 + sin(t)z for t ∈ [0, π2 ]. As a special case, the prior sample xπ
2
∼ N (0, σ2

dI).

Diffusion Models and PF-ODE. We parameterize the diffusion model as fDM
θ (xt, t) =

Fθ(xt/σd, cnoise(t)), where Fθ is a neural network with parameters θ, and cnoise(t) is a transfor-
mation of t to facilitate time conditioning. The corresponding PF-ODE is given by

dxt
dt

= σdFθ

(
xt
σd
, cnoise(t)

)
. (3)
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Diffusion Objective. In TrigFlow, the diffusion model is trained by minimizing

LDiff(θ) = Ex0,z,t

[∥∥∥∥σdFθ (xt
σd
, cnoise (t)

)
− vt

∥∥∥∥2
2

]
, (4)

where vt = cos(t)z − sin(t)x0 is the training target.

Consistency Models. As mentioned in Sec. 2.2, a valid CM must satisfy the boundary condition
fθ(x, 0) ≡ x. To enforce this condition, we parameterize the CM as the single-step solution of the
PF-ODE in Eq. (3) using the first-order ODE solver (see Appendix B.1 for derivations). Specifically,
CMs in TrigFlow take the form of

fθ(xt, t) = cos(t)xt − sin(t)σdFθ

(
xt
σd
, cnoise(t)

)
, (5)

where cnoise(t) is a time transformation for which we defer the discussion to Sec. 4.1.

4 STABILIZING CONTINUOUS-TIME CONSISTENCY MODELS

Training continuous-time CMs has been highly unstable (Song et al., 2023; Geng et al., 2024). As a
result, they perform significantly worse compared to discrete-time CMs in prior works. To address
this issue, we build upon the TrigFlow framework and introduce several theoretically motivated im-
provements to stabilize continuous-time CMs, with a focus on parameterization, network architecture,
and training objectives.

4.1 PARAMETERIZATION AND NETWORK ARCHITECTURE

Key to the training of continuous-time CMs is Eq. (2), which depends on the tangent function
dfθ− (xt,t)

dt . Under the TrigFlow formulation, this tangent function is given by

dfθ−(xt, t)

dt
= − cos(t)

(
σdFθ−

(
xt
σd
, t

)
− dxt

dt

)
− sin(t)

xt + σd
dFθ−

(
xt
σd
, t
)

dt

 , (6)

where dxt
dt represents the PF-ODE, which is either estimated using a pretrained diffusion model in

consistency distillation, or using an unbiased estimator calculated from noise and clean samples in
consistency training.

To stabilize training, it is necessary to ensure the tangent function in Eq. (6) is stable across different
time steps. Empirically, we found that σdFθ− , the PF-ODE dxt

dt , and the noisy sample xt are all
relatively stable. The only term left in the tangent function now is sin(t)dFθ−dt = sin(t)∇xtFθ−

dxt
dt +

sin(t)∂tFθ− . After further analysis, we found∇xtFθ−
dxt
dt is typically well-conditioned, so instability

originates from the time-derivative sin(t)∂tFθ− , which can be decomposed according to

sin(t)∂tFθ− = sin(t)
∂cnoise(t)

∂t
· ∂emb(cnoise)

∂cnoise
· ∂Fθ−

∂emb(cnoise)
, (7)

where emb(·) refers to the time embeddings, typically in the form of either positional embeddings (Ho
et al., 2020; Vaswani, 2017) or Fourier embeddings (Song et al., 2021b; Tancik et al., 2020) in the
literature of diffusion models and CMs.

Below we describe improvements to stabilize each component from Eq. (7) in turns.

Identity Time Transformation (cnoise(t) = t). Most existing CMs use the EDM formulation,
which can be directly translated to the TrigFlow formulation as described in Appendix B.2. In
particular, the time transformation becomes cnoise(t) ∝ log(σd tan t). Straightforward derivation
shows that with this cnoise(t), sin(t) · ∂tcnoise(t) = 1/ cos(t) blows up whenever t→ π

2 . To mitigate
numerical instability, we propose to use cnoise(t) = t as the default time transformation.

Positional Time Embeddings. For general time embeddings in the form of emb(c) = sin(s · 2πω ·
c+ ϕ), we have ∂cemb(c) = s · 2πω cos(s · 2πω · c+ ϕ). With larger Fourier scale s, this derivative
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Figure 4: Stability of different formulations. We show the norms of both terms in
df
θ−
dt

= ∇xfθ− · dxt
dt

+
∂tfθ− for diffusion models trained with the EDM (cnoise(t) = log(σd tan(t))) and TrigFlow (cnoise(t) = t)
formulations using different time embeddings. We observe that large Fourier scales in Fourier embeddings cause
instabilities. In addition, the EDM formulation suffers from numerical issues when t → π

2
, while TrigFlow

(using positional embeddings) has stable partial derivatives for both xt and t.
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Figure 5: Comparing different training objectives for consistency distillation. The diffusion models are
EDM2 (Karras et al., 2024) pretrained on ImageNet 512×512. (a) 1-step and 2-step sampling of continuous-
time CMs trained by using raw tangents

df
θ−
dt

, clipped tangents clip(
df
θ−
dt

,−1, 1) and normalized tangents

(
df
θ−
dt

)/(∥df
θ−
dt

∥+ 0.1). (b) Quality of 1-step and 2-step samples from continuous-time CMs trained w/ and
w/o adaptive weighting, both are w/ tangent normalization. (c) Quality of 1-step samples from continuous-time
CMs vs. discrete-time CMs using varying number of time steps (N ), trained using all techniques in Sec. 4.

has greater magnitudes and oscillates more vibrantly, causing worse instability. To avoid this, we use
positional embeddings, which amounts to s ≈ 0.02 in Fourier embeddings. This analysis provides a
principled explanation for the observations in Song & Dhariwal (2023).

Adaptive Double Normalization. Song & Dhariwal (2023) found that the AdaGN layer (Dhariwal &
Nichol, 2021), defined as y = norm(x)⊙ s(t) + b(t), negatively causes CM training to diverge. Our
modification is adaptive double normalization, defined as y = norm(x)⊙pnorm(s(t))+pnorm(b(t)),
where pnorm(·) denotes pixel normalization (Karras, 2017). Empirically we find it retains the
expressive power of AdaGN for diffusion training but removes its instability in CM training.

As shown in Figure 4, we visualize how our techniques stabilize the time-derivates for CMs trained
on CIFAR-10. Empirically, we find that these improvements help stabilize the training dynamics of
CMs without hurting diffusion model training (see Appendix G).

4.2 TRAINING OBJECTIVES

Using the TrigFlow formulation in Sec. 3 and techniques proposed in Sec. 4.1, the gradient of
continuous-time CM training in Eq. (2) becomes

∇θExt,t

[
− w(t)σd sin(t)F⊤

θ

(
xt
σd
, t

)
dfθ−(xt, t)

dt

]
.

Below we propose additional techniques to explicitly control this gradient for improved stability.

Tangent Normalization. As discussed in Sec. 4.1, most gradient variance in CM training comes
from the tangent function dfθ−

dt . We propose to explicitly normalize the tangent function by replacing
dfθ−
dt with dfθ−

dt /(∥dfθ−dt ∥ + c), where we empirically set c = 0.1. Alternatively, we can clip the
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Figure 6: sCD scales commensurately with teacher diffusion models. We plot the (a) FID and (b) FID ratio
against the teacher diffusion model (at the same model size) on ImageNet 64×64 and 512×512. sCD scales
better than sCT, and has a constant offset in the FID ratio across all model sizes, implying that sCD has the same
scaling property of the teacher diffusion model. Furthermore, the offset diminishes with more sampling steps.
tangent within [−1, 1], which also caps its variance. Our results in Figure 5(a) demonstrate that either
normalization or clipping leads to substantial improvements for the training of continuous-time CMs.

Adaptive Weighting. Previous works (Song & Dhariwal, 2023; Geng et al., 2024) design weighting
functions w(t) manually for CM training, which can be suboptimal for different data distributions
and network architectures. Following EDM2 (Karras et al., 2024), we propose to train an adaptive
weighting function alongside the CM, which not only eases the burden of hyperparameter tuning
but also outperforms manually designed weighting functions with better empirical performance and
negligible training overhead. Key to our approach is the observation that∇θE[F⊤

θ y] = 1
2∇θE[∥Fθ−

Fθ− + y∥22], where y is an arbitrary vector independent of θ. When training continuous-time CMs
using Eq. (2), we have y = −w(t)σd sin(t)

dfθ−
dt . This observation allows us to convert Eq. (2) into

the gradient of an MSE objective. We can therefore use the same approach in Karras et al. (2024) to
train an adaptive weighting function that minimizes the variance of MSE losses across time steps
(details in Appendix D). In practice, we find that integrating a prior weighting w(t) = 1

σd tan(t)

further reduces training variance. By incorporating the prior weighting, we train both the network Fθ
and the adaptive weighting function wϕ(t) by minimizing

LsCM(θ, ϕ) :=Ext,t

[
ewϕ(t)

D

∥∥∥∥Fθ (xt
σd
, t

)
− Fθ−

(
xt
σd
, t

)
− cos(t)

dfθ−(xt, t)

dt

∥∥∥∥2
2

− wϕ(t)

]
, (8)

where D is the dimensionality of x0, and we sample tan(t) from a log-Normal proposal distribu-
tion (Karras et al., 2022), that is, eσd tan(t) ∼ N (Pmean, P

2
std) (details in Appendix G).

Diffusion Finetuning and Tangent Warmup. For consistency distillation, we find that finetuning
the CM from a pretrained diffusion model can speed up convergence, which is consistent with
Song et al. (2023); Geng et al. (2024). Recall that in Eq. (6), the tangent dfθ−

dt can be decomposed
into two parts: the first term cos(t)(σdFθ− − dxt

dt ) is relatively stable, whereas the second term
sin(t)(xt + σd

dFθ−
dt ) may cause instability. We introduce an optional technique named as tangent

warmup by replacing the coefficient sin(t) with r · sin(t), where r linearly increases from 0 to 1 over
the first 10k training iterations. We find that the tangent normalization does not affect sample quality
but may reduce some gradient spikes during training.

With all techniques in place, the stability of both discrete-time and continuous-time CM training
substantially improves. We provide detailed algorithms for discrete-time CMs in Appendix E,
and train continuous-time CMs and discrete-time CMs with the same setting. As demonstrated in
Figure 5(c), increasing the number of discretization steps N in discrete-time CMs improves sample
quality by reducing discretization errors, but degrades once N becomes too large (after N > 1024)
to suffer from numerical precision issues. By contrast, continuous-time CMs significantly outperform
discrete-time CMs across all N ’s which provides strong justification for choosing continuous-time
CMs over discrete-time counterparts. We call our model sCM (s for simple, stable, and scalable),
and provide detailed pseudo-code for sCM training in Appendix A.

5 SCALING UP CONTINUOUS-TIME CONSISTENCY MODELS

Below we test all the improvements proposed in previous sections by training large-scale sCMs on a
variety of challenging datasets.
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Figure 7: sCD has higher diversity compared to VSD: Sample quality comparison of the EDM2 (Karras
et al., 2024) diffusion model, VSD (Wang et al., 2024; Yin et al., 2024b), sCD, and the combination of VSD and
sCD, across varying guidance scales. All models are of EDM2-M size and trained on ImageNet 512×512.

Table 1: Sample quality on unconditional CIFAR-10 and class-conditional ImageNet 64× 64.

Unconditional CIFAR-10
METHOD NFE (↓) FID (↓)

Diffusion models & Fast Samplers

Score SDE (deep) (Song et al., 2021b) 2000 2.20
EDM (Karras et al., 2022) 35 2.01
Flow Matching (Lipman et al., 2022) 142 6.35
OT-CFM (Tong et al., 2023) 1000 3.57
DPM-Solver (Lu et al., 2022a) 10 4.70
DPM-Solver++ (Lu et al., 2022b) 10 2.91
DPM-Solver-v3 (Zheng et al., 2023c) 10 2.51

Joint Training

Diffusion GAN (Xiao et al., 2022) 4 3.75
Diffusion StyleGAN (Wang et al., 2022) 1 3.19
StyleGAN-XL (Sauer et al., 2022) 1 1.52
CTM (Kim et al., 2023) 1 1.87
Diff-Instruct (Luo et al., 2024) 1 4.53
DMD (Yin et al., 2024b) 1 3.77
SiD (Zhou et al., 2024) 1 1.92

Diffusion Distillation

DFNO (LPIPS) (Zheng et al., 2023b) 1 3.78
2-Rectified Flow (Liu et al., 2022) 1 4.85
PID (LPIPS) (Tee et al., 2024) 1 3.92
Consistency-FM (Yang et al., 2024) 2 5.34
PD (Salimans & Ho, 2022) 1 8.34

2 5.58
TRACT (Berthelot et al., 2023) 1 3.78

2 3.32
CD (LPIPS) (Song et al., 2023) 1 3.55

2 2.93
sCD (ours) 1 3.66

2 2.52

Consistency Training

iCT (Song & Dhariwal, 2023) 1 2.83
2 2.46

iCT-deep (Song & Dhariwal, 2023) 1 2.51
2 2.24

ECT (Geng et al., 2024) 1 3.60
2 2.11

sCT (ours) 1 2.85
2 2.06

Class-Conditional ImageNet 64×64
METHOD NFE (↓) FID (↓)

Diffusion models & Fast Samplers

ADM (Dhariwal & Nichol, 2021) 250 2.07
RIN (Jabri et al., 2022) 1000 1.23
DPM-Solver (Lu et al., 2022a) 20 3.42
EDM (Heun) (Karras et al., 2022) 79 2.44
EDM2 (Heun) (Karras et al., 2024) 63 1.33

Joint Training

StyleGAN-XL (Sauer et al., 2022) 1 1.52
Diff-Instruct (Luo et al., 2024) 1 5.57
EMD (Xie et al., 2024b) 1 2.20
DMD (Yin et al., 2024b) 1 2.62
DMD2 (Yin et al., 2024a) 1 1.28
SiD (Zhou et al., 2024) 1 1.52
CTM (Kim et al., 2023) 1 1.92

2 1.73
Moment Matching (Salimans et al., 2024) 1 3.00

2 3.86

Diffusion Distillation

DFNO (LPIPS) (Zheng et al., 2023b) 1 7.83
PID (LPIPS) (Tee et al., 2024) 1 9.49
TRACT (Berthelot et al., 2023) 1 7.43

2 4.97
PD (Salimans & Ho, 2022) 1 10.70

(reimpl. from Heek et al. (2024)) 2 4.70
CD (LPIPS) (Song et al., 2023) 1 6.20

2 4.70
MultiStep-CD (Heek et al., 2024) 1 3.20

2 1.90
sCD (ours) 1 2.44

2 1.66

Consistency Training

iCT (Song & Dhariwal, 2023) 1 4.02
2 3.20

iCT-deep (Song & Dhariwal, 2023) 1 3.25
2 2.77

ECT (Geng et al., 2024) 1 2.49
2 1.67

sCT (ours) 1 2.04
2 1.48

5.1 TANGENT COMPUTATION IN LARGE-SCALE MODELS

The common setting for training large-scale diffusion models includes using half-precision (FP16)
and Flash Attention (Dao et al., 2022; Dao, 2023). As training continuous-time CMs requires
computing the tangent dfθ−

dt accurately, we need to improve numerical precision and also support
memory-efficient attention computation, as detailed below.

JVP Rearrangement. Computing dfθ−
dt involves calculating dFθ−

dt = ∇xtFθ− · dxtdt + ∂tFθ− ,
which can be efficiently obtained via the Jacobian-vector product (JVP) for Fθ−( ·

σd
, ·) with the input
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Table 2: Sample quality on class-conditional ImageNet 512× 512. †Our reimplemented teacher diffusion model
based on EDM2 (Karras et al., 2024) but with modifications in Sec. 4.1.

METHOD NFE (↓) FID (↓) #Params

Diffusion models

ADM-G (Dhariwal & Nichol, 2021) 250×2 7.72 559M
RIN (Jabri et al., 2022) 1000 3.95 320M
U-ViT-H/4 (Bao et al., 2023) 250×2 4.05 501M
DiT-XL/2 (Peebles & Xie, 2023) 250×2 3.04 675M
SimDiff (Hoogeboom et al., 2023) 512×2 3.02 2B
VDM++ (Kingma & Gao, 2024) 512×2 2.65 2B
DiffiT (Hatamizadeh et al., 2023) 250×2 2.67 561M
DiMR-XL/3R (Liu et al., 2024) 250×2 2.89 525M
DIFFUSSM-XL (Yan et al., 2024) 250×2 3.41 673M
DiM-H (Teng et al., 2024) 250×2 3.78 860M
U-DiT (Tian et al., 2024b) 250 15.39 204M
SiT-XL (Ma et al., 2024) 250×2 2.62 675M
Large-DiT (Alpha-VLLM, 2024) 250×2 2.52 3B
MaskDiT (Zheng et al., 2023a) 79×2 2.50 736M
DiS-H/2 (Fei et al., 2024a) 250×2 2.88 900M
DRWKV-H/2 (Fei et al., 2024b) 250×2 2.95 779M
EDM2-S (Karras et al., 2024) 63×2 2.23 280M
EDM2-M (Karras et al., 2024) 63×2 2.01 498M
EDM2-L (Karras et al., 2024) 63×2 1.88 778M
EDM2-XL (Karras et al., 2024) 63×2 1.85 1.1B
EDM2-XXL (Karras et al., 2024) 63×2 1.81 1.5B

GANs & Masked Models

BigGAN (Brock, 2018) 1 8.43 160M
StyleGAN-XL (Sauer et al., 2022) 1×2 2.41 168M
VQGAN (Esser et al., 2021) 1024 26.52 227M
MaskGIT (Chang et al., 2022) 12 7.32 227M
MAGVIT-v2 (Yu et al., 2023) 64×2 1.91 307M
MAR (Li et al., 2024) 64×2 1.73 481M
VAR-d36-s (Tian et al., 2024a) 10×2 2.63 2.3B

METHOD NFE (↓) FID (↓) #Params
†Teacher Diffusion Model

EDM2-S (Karras et al., 2024) 63×2 2.29 280M
EDM2-M (Karras et al., 2024) 63×2 2.00 498M
EDM2-L (Karras et al., 2024) 63×2 1.87 778M
EDM2-XL (Karras et al., 2024) 63×2 1.80 1.1B
EDM2-XXL (Karras et al., 2024) 63×2 1.73 1.5B

Consistency Training (sCT, ours)

sCT-S (ours) 1 10.13 280M
2 9.86 280M

sCT-M (ours) 1 5.84 498M
2 5.53 498M

sCT-L (ours) 1 5.15 778M
2 4.65 778M

sCT-XL (ours) 1 4.33 1.1B
2 3.73 1.1B

sCT-XXL (ours) 1 4.29 1.5B
2 3.76 1.5B

Consistency Distillation (sCD, ours)

sCD-S 1 3.07 280M
2 2.50 280M

sCD-M 1 2.75 498M
2 2.26 498M

sCD-L 1 2.55 778M
2 2.04 778M

sCD-XL 1 2.40 1.1B
2 1.93 1.1B

sCD-XXL 1 2.28 1.5B
2 1.88 1.5B

vector (xt, t) and the tangent vector (dxtdt , 1). However, we empirically find that the tangent may
overflow in intermediate layers when t is near 0 or π2 . To improve numerical precision, we propose
to rearrange the computation of the tangent. Specifically, since the objective in Eq. (8) contains
cos(t)

dfθ−
dt and dfθ−

dt is proportional to sin(t)
dFθ−
dt , we can compute the JVP as:

cos(t) sin(t)
dFθ−

dt
=
(
∇ xt

σd

Fθ−
)
·
(
cos(t) sin(t)

dxt
dt

)
+ ∂tFθ− · (cos(t) sin(t)σd),

which is the JVP for Fθ−(·, ·) with the input (xtσd , t) and the tangent (cos(t) sin(t)dxtdt ,

cos(t) sin(t)σd). This rearrangement greatly alleviates the overflow issues in the intermediate
layers, resulting in more stable training in FP16.

JVP of Flash Attention. Flash Attention (Dao et al., 2022; Dao, 2023) is widely used for attention
computation in large-scale model training, providing both GPU memory savings and faster training.
However, Flash Attention does not compute the Jacobian-vector product (JVP). To fill this gap, we
propose a similar algorithm (detailed in Appendix F) that efficiently computes both softmax self-
attention and its JVP in a single forward pass in the style of Flash Attention, significantly reducing
GPU memory usage for JVP computation in attention layers.

5.2 EXPERIMENTS

To test our improvements, we employ both consistency training (referred to as sCT) and consistency
distillation (referred to as sCD) to train and scale continuous-time CMs on CIFAR-10 (Krizhevsky,
2009), ImageNet 64×64 and ImageNet 512×512 (Deng et al., 2009). We benchmark the sample
quality using FID (Heusel et al., 2017). We follow the settings of Score SDE (Song et al., 2021b)
on CIFAR10 and EDM2 (Karras et al., 2024) on both ImageNet 64×64 and ImageNet 512×512,
while changing the parameterization and architecture according to Section 4.1. We adopt the method
proposed by Song et al. (2023) for two-step sampling of both sCT and sCD, using a fixed intermediate
time step t = 1.1. For sCD models on ImageNet 512×512, since the teacher diffusion model relies
on classifier-free guidance (CFG) (Ho & Salimans, 2021), we incorporate an additional input s into
the model Fθ to represent the guidance scale (Meng et al., 2023). We train the model with sCD
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by uniformly sampling s ∈ [1, 2] and applying the corresponding CFG to the teacher model during
distillation (more details are provided in Appendix G). For sCT models, we do not test CFG since it
is incompatible with consistency training.

Training compute of sCM. We use the same batch size as the teacher diffusion model across all
datasets. The effective compute per training iteration of sCD is approximately twice that of the teacher
model. We observe that the quality of two-step samples from sCD converges rapidly, achieving
results comparable to the teacher diffusion model using less than 20% of the teacher training compute.
In practice, we can obtain high-quality samples after only 20k finetuning iterations with sCD.

Benchmarks. In Tables 1 and 2, we compare our results with previous methods by benchmarking
the FIDs and the number of function evaluations (NFEs). First, sCM outperforms all previous
few-step methods that do not rely on joint training with another network and is on par with, or even
exceeds, the best results achieved with adversarial training. Notably, the 1-step FID of sCD-XXL
on ImageNet 512×512 surpasses that of StyleGAN-XL (Sauer et al., 2022) and VAR (Tian et al.,
2024a). Furthermore, the two-step FID of sCD-XXL outperforms all generative models except
diffusion and is comparable with the best diffusion models that require 63 sequential steps. Second,
the two-step sCM model significantly narrows the FID gap with the teacher diffusion model to within
10%, achieving FIDs of 2.06 on CIFAR-10 (compared to the teacher FID of 2.01), 1.48 on ImageNet
64×64 (teacher FID of 1.33), and 1.88 on ImageNet 512×512 (teacher FID of 1.73). Additionally,
we observe that sCT is more effective at smaller scales but suffers from increased variance at larger
scales, while sCD shows consistent performance across both small and large scales.

Scaling study. Based on our improved training techniques, we successfully scale continuous-time
CMs without training instability. We train various sizes of sCMs using EDM2 configurations (S, M,
L, XL, XXL) on ImageNet 64×64 and 512×512, and evaluate FID under optimal guidance scales, as
shown in Fig. 6. First, as model FLOPs increase, both sCT and sCD show improved sample quality,
showing that both methods benefit from scaling. Second, compared to sCD, sCT is more compute
efficient at smaller resolutions but less efficient at larger resolutions. Third, sCD scales predictably for
a given dataset, maintaining a consistent relative difference in FIDs across model sizes. This suggests
that the FID of sCD decreases at the same rate as the teacher diffusion model, and therefore sCD is
as scalable as the teacher diffusion model. As the FID of the teacher diffusion model decreases with
scaling, the absolute difference in FID between sCD and the teacher model also diminishes. Finally,
the relative difference in FIDs decreases with more sampling steps, and the sample quality of the
two-step sCD becomes on par with that of the teacher diffusion model.

Comparison with VSD. Variational score distillation (VSD) (Wang et al., 2024; Yin et al., 2024b)
and its multi-step generalization (Xie et al., 2024b; Salimans et al., 2024) represent another diffusion
distillation technique that has demonstrated scalability on high-resolution images (Yin et al., 2024a).
We apply one-step VSD from time T to 0 to finetune a teacher diffusion model using the EDM2-M
configuration and tune both the weighting functions and proposal distributions for fair comparisons.
As shown in Figure 7, we compare sCD, VSD, a combination of sCD and VSD (by simply adding
the two losses), and the teacher diffusion model by sweeping over the guidance scale. We observe
that VSD has artifacts similar to those from applying large guidance scales in diffusion models: it
increases fidelity (as evidenced by higher precision scores) while decreasing diversity (as shown by
lower recall scores). This effect becomes more pronounced with increased guidance scales, ultimately
causing severe mode collapse. In contrast, the precision and recall scores from two-step sCD are
comparable with those of the teacher diffusion model, resulting in better FID scores than VSD.

6 CONCLUSION

Our improved formulations, architectures, and training objectives have simplified and stabilized the
training of continuous-time consistency models, enabling smooth scaling up to 1.5 billion parameters
on ImageNet 512×512. We ablated the impact of TrigFlow formulation, tangent normalization, and
adaptive weighting, confirming their effectiveness. Combining these improvements, our method
demonstrated predictable scalability across datasets and model sizes, outperforming other few-step
sampling approaches at large scales. Notably, we narrowed the FID gap with the teacher model to
within 10% using two-step generation, compared to state-of-the-art diffusion models that require
significantly more sampling steps.
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DISCUSSIONS AND LIMITATIONS

sCT is less effective than sCD in latent spaces. As listed in Tables 1 and 2, sCT consistently
outperforms sCD on CIFAR-10 and ImageNet 64×64 but is less effective than sCD across different
model scales on ImageNet 512×512. We believe the higher training variance of CT is the main issue,
particularly in the complex latent spaces defined by the pretrained encoder. We hypothesize that the
current encoder/decoder may not be optimal for consistency models. Theoretically, since the ground
truth mapping in consistency models aims to transform a Gaussian distribution into a multimodal data
distribution with potentially disconnected supports, its tangent can become ill-conditioned at boundary
points, resulting in worse optimization dynamics. If we could develop a better encoder/decoder to
create a more well-conditioned ground truth mapping in the latent space, the training of consistency
models would likely become significantly easier.

Computation costs of sCM. As Jacobian-vector product can be efficiently computed using forward-
mode automatic differentiation, which requires the same memory and compute as a standard forward
pass without saving intermediate activations. This is significantly cheaper than backpropagation,
which relies on reverse-mode automatic differentiation. Consequently, our continuous-time consis-
tency models require similar compute and memory to train when compared to their discrete-time
counterparts, which perform two forward passes at each iteration.

Limitations. Despite large improvements in FID scores, our method can still produce images with
noticeable artifacts. These artifacts are commonly observed when training generative models on the
ImageNet dataset with class labels, whereas training on larger datasets with caption conditions may
significantly alleviate this issue. Furthermore, our 2-step sCM still shows a small gap compared
to state-of-the-art diffusion models, which we believe may be further reduced by incorporating our
proposed techniques into multi-step consistency models (Heek et al., 2024). Additionally, since FID
scores do not capture all semantic details, further validation is needed to determine whether our
method can scale effectively to image or video generation tasks that require larger resolutions and fine
details. Besides, ensuring the training stability of sCM requires several significant modifications of
the network architecture, thus sCM may be not suitable for some architectures designed for diffusion
models. Moreover, our best performing method sCD still highly relies on the performance of a
pretrained diffusion models, which restricts the architecture family and potentially limits the few-step
generation performance. Addressing these quality issues might require new sampling strategies or
enhanced architectures to maintain high fidelity even with limited sampling steps.

APPENDIX

We include additional derivations, experimental details, and results in the appendix. The detailed
training algorithm for sCM, covering both sCT and sCD, is provided in Appendix A. We present a
comprehensive discussion of the TrigFlow framework in Appendix B, including detailed derivations
(Appendix B.1) and its connections with other parameterization (Appendix B.2). We introduce a
new algorithm called adaptive variational score distillation in Appendix C, which eliminates the
need for manually designed training weighting. Furthermore, we elaborate on a general framework
for adaptive training weighting in Appendix D, applicable to diffusion models, consistency models,
and variational score distillation. As our improvements discussed in Sec. 4 are also applicable for
discrete-time consistency models, we provide detailed derivations and the training algorithm for
discrete-time consistency models in Appendix E, incorporating all the improved techniques of sCM.
We also provide a complete description of the Jacobian-vector product algorithm for Flash Attention
in Appendix F. Finally, all experimental settings and evaluation results are listed in Appendix G,
along with additional samples generated by our sCD-XXL model trained on ImageNet at 512×512
resolution in Appendix H.

A TRAINING ALGORITHM OF SCM

We provide the detailed algorithm of sCM in Algorithm 1, where we refer to consistency training of
sCM as sCT and consistency distillation of sCM as sCD.
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Algorithm 1 Simplified and Stabilized Continuous-time Consistency Models (sCM).

Input: dataset D with std. σd, pretrained diffusion model Fpretrain with parameter θpretrain, model
Fθ, weighting wϕ, learning rate η, proposal (Pmean, Pstd), constant c, warmup iteration H .
Init: θ ← θpretrain, Iters← 0.
repeat

x0 ∼ D, z ∼ N (0, σ2
dI), τ ∼ N (Pmean, P

2
std), t← arctan( e

τ

σd
), xt ← cos(t)x0 + sin(t)z

dxt
dt ← cos(t)z − sin(t)x0 if consistency training else dxt

dt ← σdFpretrain(
xt
σd
, t)

r ← min(1, Iters/H) ▷ Tangent warmup
g ← − cos2(t)(σdFθ− − dxt

dt )− r · cos(t) sin(t)(xt + σd
dFθ−
dt ) ▷ JVP rearrangement

g ← g/(∥g∥+ c) ▷ Tangent normalization
L(θ, ϕ)← ewϕ(t)

D ∥Fθ(xtσd , t)− Fθ−(
xt
σd
, t)− g∥22 − wϕ(t) ▷ Adaptive weighting

(θ, ϕ)← (θ, ϕ)− η∇θ,ϕL(θ, ϕ)
Iters← Iters + 1

until convergence

B TRIGFLOW: A SIMPLE FRAMEWORK UNIFYING EDM, FLOW MATCHING
AND VELOCITY PREDICTION

B.1 DERIVATIONS

Denote the standard deviation of the data distribution pd as σd. We consider a general forward
diffusion process at time t ∈ [0, T ] with xt = αtx0 + σtz for the data sample x0 ∼ pd and the
noise sample z ∼ N (0, σ2

dI) (note that the variance of z is the same as that of the data x0)1, where
αt > 0, σt > 0 are noise schedules such that αt/σt is monotonically decreasing w.r.t. t, with
α0 = 1, σ0 = 0. The general training loss for diffusion model can always be rewritten as

LDiff(θ) = Ex0,z,t

[
w(t) ∥Dθ(xt, t)− x0∥22

]
, (9)

where different diffusion model formulation contains four different parts:

1. Parameterization of Dθ, such as score function (Song & Ermon, 2019; Song et al., 2021b),
noise prediction model (Song & Ermon, 2019; Song et al., 2021b; Ho et al., 2020), data
prediction model (Ho et al., 2020; Kingma et al., 2021; Salimans & Ho, 2022), velocity pre-
diction model (Salimans & Ho, 2022), EDM (Karras et al., 2022) and flow matching (Lipman
et al., 2022; Liu et al., 2022; Albergo et al., 2023).

2. Noise schedule for αt and σt, such as variance preserving process (Ho et al., 2020; Song
et al., 2021b), variance exploding process (Song et al., 2021b; Karras et al., 2022), cosine
schedule (Nichol & Dhariwal, 2021), and conditional optimal transport path (Lipman et al.,
2022).

3. Weighting function for w(t), such as uniform weighting (Ho et al., 2020; Nichol & Dhariwal,
2021; Karras et al., 2022), weighting by functions of signal-to-noise-ratio (SNR) (Salimans
& Ho, 2022), monotonic weighting (Kingma & Gao, 2024) and adaptive weighting (Karras
et al., 2024).

4. Proposal distribution for t, such as uniform distribution within [0, T ] (Ho et al., 2020; Song
et al., 2021b), log-normal distribution (Karras et al., 2022), SNR sampler (Esser et al., 2024),
and adaptive importance sampler (Song et al., 2021a; Kingma et al., 2021).

Below we show that, under the unit variance principle proposed in EDM (Karras et al., 2022), we can
obtain a general but simple framework for all the above four parts, which can equivalently reproduce
all previous diffusion models.

1For any diffusion process with xt = α′
tx0 + σ′

tϵ where ϵ ∼ N (0, I), we can always equivalently convert
it to xt = α′

tx0 +
σ′
t

σd
· (σdϵ) and let z := σdϵ, αt := α′

t, σt :=
σ′
t

σd
. So the assumption for z ∼ N (0, σ2

dI)

does not result in any loss of generality.
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Step 1: General EDM parameterization. We consider the parameterization for Dθ as the same
principle in EDM (Karras et al., 2022) by

Dθ(xt, t) = cskip(t)xt + cout(t)Fθ(cin(t)xt, cnoise(t)), (10)

and thus the training objective becomes

LDiff = Ex0,z,t

[
w(t)c2out(t)

∥∥∥∥Fθ(cin(t)xt, cnoise(t))−
(1− cskip(t)αt)x0 − cskip(t)σtz

cout(t)

∥∥∥∥2
2

]
. (11)

To ensure the input data of Fθ has unit variance, we should ensure Var[cin(t)xt] = 1 by letting

cin(t) =
1

σd
√
α2
t + σ2

t

. (12)

To ensure the training target of Fθ has unit variance, we have

c2out(t) = σ2
d(1− cskip(t)αt)

2 + σ2
dc

2
skip(t)σ

2
t . (13)

To reduce the error amplification from Fθ to Dθ, we should ensure cout(t) to be as small as possible,
which means we should take cskip(t) by letting ∂cout

∂cskip
= 0, which results in

cskip(t) =
αt

α2
t + σ2

t

, cout(t) = ±
σdσt√
α2
t + σ2

t

. (14)

Though equivalent, we choose cout(t) = − σdσt√
α2
t+σ

2
t

which can simplify some derivations below.

In summary, the parameterization and objective for the general diffusion noise schedule are

Dθ(xt, t) =
αt

α2
t + σ2

t

xt −
σt√

α2
t + σ2

t

σdFθ

(
xt

σd
√
α2
t + σ2

t

, cnoise(t)

)
, (15)

LDiff = Ex0,z,t

w(t) σ2
t

α2
t + σ2

t

∥∥∥∥∥σdFθ
(

xt

σd
√
α2
t + σ2

t

, cnoise(t)

)
− αtz − σtx0√

α2
t + σ2

t

∥∥∥∥∥
2

2

 . (16)

Step 2: All noise schedules can be equivalently transformed. One nice property of the unit
variance principle is that the αt, σt in both the parameterization and the objective are homogenous,
which means we can always assume α2

t +σ
2
t = 1 without loss of generality. To see this, we can apply

a simple change-of-variable of α̂t = αt√
α2
t+σ

2
t

, σ̂t = σt√
α2
t+σ

2
t

and x̂t =
xt√
α2
t+σ

2
t

= α̂tx0 + σ̂tz,

thus we have

Dθ(xt, t) = α̂tx̂t − σ̂tσdFθ
(
x̂t
σd
, cnoise(t)

)
, (17)

LDiff = Ex0,z,t

[
w(t)σ̂2

t

∥∥∥∥σdFθ ( x̂t
σd
, cnoise(t)

)
− (α̂tz − σ̂tx0)

∥∥∥∥2
2

]
. (18)

As for the sampling procedure, according to DPM-Solver++ (Lu et al., 2022b), the exact solution of
diffusion ODE from time s to time t satisfies

xt =
σt
σs

xs + σt

∫ λt

λs

eλDθ(xλ, λ)dλ, (19)

where λt = log αt
σt

, so the sampling procedure is also homogenous for αt, σt. To see this, we can use
the fact that xt

σt
= x̂t

σ̂t
and λt = log α̂t

σ̂t
:= λ̂t, thus the above equation is equivalent to

x̂t =
σ̂t
σ̂s

x̂s + σ̂t

∫ λ̂t

λ̂s

eλ̂D̂θ(x̂λ̂, λ̂)dλ̂, (20)

which is exactly the sampling procedure of the diffusion process x̂t, which means noise schedules
of diffusion models won’t affect the performance of sampling. In other words, for any diffusion
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process (αt, σt,xt) at time t, we can always divide them by
√
α2
t + σ2

t to obtain the diffusion
process (α̂t, σ̂t, x̂t) with α̂2

t + σ̂2
t = 1 and all the parameterization, training objective and sampling

procedure can be equivalently transformed. The only difference is the corresponding training
weighting w(t)σ2

dσ̂
2
t in Eq. (18), which we will discuss in the next step.

A straightforward corollary is that the “optimal transport path” (Lipman et al., 2022) in flow matching
with αt = 1 − t, σt = t can be equivalently converted to other noise schedules. The reason of its
better empirical performance is essentially due to the different weighting during training and the
lack of advanced diffusion sampler such as DPM-Solver series (Lu et al., 2022a;b) during sampling,
not the “straight path” (Lipman et al., 2022) itself. By converting the diffusion process to the space
satisfying

√
α̂2
t + σ̂2

t = 1, the path connection x0 and z has consistent variance which matches the
unit-variance design principles of EDM.

Step 3: Unified framework by TrigFlow. As we showed in the previous step, we can always
assume α̂2

t + σ̂2
t = 1. An equivalent change-of-variable of such constraint is to define

t̂ := arctan

(
σ̂t
α̂t

)
= arctan

(
σt
αt

)
, (21)

so t̂ ∈ [0, π2 ] is a monotonically increasing function of t ∈ [0, T ], thus there exists a one-one mapping
between t and t̂ to convert the proposal distribution p(t) to the distribution of t̂, denoted as p

(
t̂
)
. As

α̂t = cos
(
t̂
)
, σ̂t = sin

(
t̂
)
, the training objective in Eq. (18) is equivalent to

LDiff = Ex0,z


∫ π

2

0

p
(
t̂
)
w
(
t̂
)
sin2

(
t̂
)︸ ︷︷ ︸

training weighting

∥∥∥∥∥∥∥∥∥σdFθ
(
x̂t̂
σd
, cnoise

(
t̂
))
− (cos

(
t̂
)
z − sin

(
t̂
)
x0)︸ ︷︷ ︸

independent from αt and σt

∥∥∥∥∥∥∥∥∥
2

2

dt̂

 .
(22)

Therefore, we can always put the influence of different noise schedules into the training weighting of
the integral for t̂ from 0 to π

2 , while the ℓ2 norm loss at each t̂ is independent from the choices of αt
and σt. As we equivalently convert the noise schedules by trigonometric functions, we name such
framework for diffusion models as TrigFlow.

For simplicity and with a slight abuse of notation, we omit the t̂ and denote the whole training
weighting as a single w(t), we summarize the diffusion process, parameterization, training objective
and samplers of TrigFlow as follows.

Diffusion Process. x0 ∼ pd(x0), z ∼ N (0, σ2
dI), xt = cos(t)x0 + sin(t)z for t ∈ [0, π2 ].

Parameterization.

Dθ(xt, t) = cos(t)xt − sin(t)σdFθ

(
xt
σd
, cnoise(t)

)
, (23)

where cnoise(t) is the conditioning input of the noise levels for Fθ, which can be arbitrary one-one
mapping of t. Moreover, the parameterized diffusion ODE is defined by

dxt
dt

= σdFθ

(
xt
σd
, cnoise(t)

)
. (24)

Training Objective.

LDiff(θ) = Ex0,z

[∫ π
2

0

w(t)

∥∥∥∥σdFθ (xt
σd
, cnoise (t)

)
− (cos(t)z − sin(t)x0)

∥∥∥∥2
2

dt

]
, (25)

where w(t) is the training weighting, which we will discuss in details in Appendix D.

As for the sampling procedure, although we can directly solve the diffusion ODE in Eq. (24) by
Euler’s or Heun’s solvers as in flow matching (Lipman et al., 2022), the parameterization for σdFθ
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may be not the optimal parameterization for reducing the discreteization errors. As proved in DPM-
Solver-v3 (Zheng et al., 2023c), the optimal parameterization should cancel all the linearity of the
ODE, and the data prediction model Dθ is an effective approximation of such parameterization. Thus,
we can also apply DDIM, DPM-Solver and DPM-Solver++ for TrigFlow by rewriting the coefficients
into the TrigFlow notation, as listed below.

1st-order Sampler by DDIM. Starting from xs at time s, the solution xt at time t is

xt = cos(s− t)xt − sin(s− t)σdFθ
(
xs
σd
, cnoise(s)

)
(26)

One good property of TrigFlow is that the 1st-order sampler can naturally support zero-SNR sam-
pling (Lin et al., 2024) by letting s = π

2 without any numerical issues.

2nd-order Sampler by DPM-Solver. Starting from xs at time s, by reusing a previous solution
xs′ at time s′, the solution xt at time t is

xt = cos(s− t)xs− sin(s− t)σdFθ
(
xs
σd
, cnoise(s)

)
− sin(s− t)

2rs cos(s)
(ϵθ(xs′ , s

′)− ϵθ(xs, s)) , (27)

where ϵθ(xt, t) = sin(t)xt + cos(t)σdFθ

(
xt
σd
, cnoise(t)

)
is the noise prediction model, and rs =

log tan(s)−log tan(s′)
log tan(s)−log tan(t) .

2nd-order Sampler by DPM-Solver++. Starting from xs at time s, by reusing a previous solution
xs′ at time s′, the solution xt at time t is

xt = cos(s−t)xs−sin(s−t)σdFθ
(
xs
σd
, cnoise(s)

)
+
sin(s− t)
2rs sin(s)

(Dθ(xs′ , s
′)−D(xs, s)) , (28)

where rs =
log tan(s)−log tan(s′)
log tan(s)−log tan(t) .

B.2 RELATIONSHIP WITH OTHER PARAMETERIZATION

As previous diffusion models define the forward process with xt′ = αt′x0+σt′ϵ = αt′x0+
σt′
σd

(σdϵ)

for ϵ ∼ N (0, I), we can obtain the relationship between t′ and TrigFlow time steps t ∈ [0, π2 ] by

t = arctan

(
σt′

σdαt′

)
, xt =

σd√
α2
t′σ

2
d + σ2

t′

xt′ . (29)

Thus, we can always translate the notation from previous noise schedules to TrigFlow notations.
Moreover, below we show that TrigFlow unifies different current frameworks for training diffusion
models, including EDM, flow matching and velocity prediction.

EDM. As our derivations closely follow the unit variance principle proposed in EDM (Karras
et al., 2022), our parameterization can be equivalently converted to EDM notations. Specifically, the
transformation between TrigFlow (xt, t) and EDM (xσ, σ) is

t = arctan

(
σ

σd

)
, xt = cos(t)xσ. (30)

The reason why TrigFlow notation is much simpler than EDM is just because we define the end point
of the diffusion process as z ∼ N (0, σ2

dI) with the same variance as the data distribution. Thus,
the unit variance principle can ensure that all the intermediate xt does not need to multiply other
coefficients as in EDM.

Flow Matching. Flow matching (Lipman et al., 2022; Liu et al., 2022; Albergo et al., 2023;
Kornilov et al., 2024) defines a stochastic path between two samples x0 from data distribution and
z from a tractable distribution which is usually some Gaussian distribution. For a general path
xt = αtx0 + σtz with α0 = 1, αT = 0, σ0 = 0, σT = 1, the conditional probability path is

vt =
dαt
dt

x0 +
dσt
dt

z, (31)
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and it learns a parameterized model vθ(xt, t) by minimizing

Ex0,z,t

[
w(t) ∥vθ(xt, t)− vt∥22

]
, (32)

and the final probability flow ODE is defined by

dxt
dt

= vθ(xt, t). (33)

As TrigFlow uses αt = cos(t) and σt = sin(t), it is easy to see that the training objective and the
diffusion ODE of TrigFlow are also the same as flow matching with vθ(xt, t) = σdFθ(

xt
σd
, cnoise(t)).

To the best of our knowledge, TrigFlow is the first framework that unifies EDM and flow matching
for training diffusion models.

Velocity Prediction. The velocity prediction parameterization (Salimans & Ho, 2022) trains a
parameterization network with the target αtz − σtx0. As TrigFlow uses αt = cos(t), σt = sin(t), it
is easy to see that the training target in TrigFlow is also the velocity.

Discussions on SNR. Another good property of TrigFlow is that it can define a data-variance-
invariant SNR. Specifically, previous diffusion models define the SNR at time t as SNR(t) = α2

t

σ2
t

for
xt = αtx0 + σtϵ with ϵ ∼ N (0, I). However, such definition ignores the influence of the variance
of x0: if we rescale the data x0 by a constant, then such SNR doesn’t get rescaled correspondingly,
which is not reasonable in practice. Instead, in TrigFlow we can define the SNR by

ˆSNR(t) =
α2
tσ

2
d

σ2
t

=
1

tan2(t)
, (34)

which is data-variance-invariant and also simple.

C ADAPTIVE VARIATIONAL SCORE DISTILLATION IN TRIGFLOW
FRAMEWORK

In this section, we propose the detailed derivation for variational score distillation (VSD) in TrigFlow
framework and an improved objective with adaptive weighting.

C.1 DERIVATIONS

Assume we have samples x0 ∈ RD from data distribution pd with standard deviation σd, and define a
corresponding forward diffusion process {pt}Tt=0 starting at p0 = pd and ending at pT ≈ N (0, σ̂2I),
with pt0(xt|x0) = N (xt|αtx0, σ

2
t I). Variational score distillation (VSD) (Wang et al., 2024; Yin

et al., 2024b;a) trains a generator gθ : RD → RD aiming to map noise samples z ∼ N (0, σ̂2I) to
the data distribution, by minimizing

min
θ

Et
[
w(t)DKL

(
qθt ∥ pt

)]
= Et,z,ϵ

[
w(t)

(
log qθt (αtgθ(z) + σtϵ)− log pt(αtgθ(z) + σtϵ)

)]
,

where ϵ ∼ N (0, I), qθt is the diffused distribution at time t with the same forward diffusion process
as pt while starting at qθ0 as the distribution of gθ(z), w(t) is an ad-hoc training weighting (Poole
et al., 2022; Wang et al., 2024; Yin et al., 2024b), and t follows a proposal distribution such as
uniform distribution. It is proved that the optimum of qθt satisfies q0 = pd (Wang et al., 2024) and
thus the distribution of the generator matches the data distribution.

22



Published as a conference paper at ICLR 2025

Moreover, by denoting xθt := αtgθ(z) + σtϵ and taking the gradient w.r.t. θ, we have

∇θEt
[
w(t)DKL

(
qθt ∥ pt

)]
= Et,z,ϵ

[
w(t)∇θ

(
log qθt (x

θ
t )− log pt(x

θ
t )
)]

= Et,z,ϵ
[
w(t)

(
∂θ log q

θ
t (xt) +

(
∇xt log q

θ
t (xt)−∇xt log pt(xt)

) ∂xθt
∂θ

)]
= Et,xt

[
w(t)∂θ log q

θ
t (xt)

]︸ ︷︷ ︸
=0

+Et,z,ϵ
[
w(t)

(
∇xt log q

θ
t (xt)−∇xt log pt(xt)

) αt∂gθ(z)
∂θ

]

= Et,z,ϵ
[
αtw(t)

(
∇xt log q

θ
t (xt)−∇xt log pt(xt)

) ∂gθ(z)
∂θ

]
.

Therefore, we need to approximate the score functions ∇xt log q
θ
t (xt) for the generator and

∇xt log pt(xt) for the data distribution. VSD trains a diffusion model for samples from gθ(z)
to approximate ∇xt log q

θ
t (xt) and uses a pretrained diffusion model to approximate∇xt log pt(xt).

In this work, we train the diffusion model in TrigFlow framework, with αt = cos(t), σt = σd sin(t),
σ̂ = σd, T = π

2 . Specifically, assume we have a pretrained diffusion model Fpretrain parameterized by
TrigFlow, and we train another diffusion model Fϕ to approximate the diffused generator distribution,
by

min
ϕ

Ez,z′,t

[
w(t)

∥∥∥∥σdFϕ(xt
σd
, t

)
− vt

∥∥∥∥2
2

]
,

where xt = cos(t)x0 + sin(t)z, vt = cos(t)z − sin(t)x0, z ∼ N (0, σ2
dI), x0 = gθ(z

′) with
z′ ∼ N (0, σ2

dI). Moreover, the relationship between the ground truth diffusion model FDiff(xt, t)
and the score function∇xt log pt(xt) is

σdFDiff(xt, t) = E[vt|xt] =
1

tan(t)
xt −

1

sin(t)
Ex0|xt [x0] ,

∇xt log pt(xt) = Ex0|xt

[
−xt − cos(t)x0

σ2
d sin

2(t)

]
= −cos(t)σdFDiff + sin(t)xt

σ2
d sin(t)

.

Thus, we train the generator gθ by the following gradient w.r.t. θ:

Et,z,z′

[
cos2(t)

σd sin(t)
w(t)

(
Fpretrain

(
xt
σd
, t

)
− Fϕ

(
xt
σd
, t

))
∂gθ(z

′)

∂θ

]
,

which is equivalent to the gradient of the following objective:

Et,z,z′

[
cos2(t)

σd sin(t)
w(t)

∥∥∥∥gθ(z′)− gθ−(z
′) + Fpretrain

(
xt
σd
, t

)
− Fϕ

(
xt
σd
, t

)∥∥∥∥2
2

]
,

where gθ−(z
′) is the same as gθ(z′) but stops the gradient for θ. Note that the weighting functions

used in previous works (Wang et al., 2024; Yin et al., 2024b) is proportional to sin2(t)
cos(t) , thus the prior

weighting is proportional to sin(t) cos(t), which has a U-shape similar to the log-normal distribution
used in Karras et al. (2022). Thus, we can instead use a log-normal proposal distribution and apply
the adaptive weighting by training another weighting network wψ(t). We refer to Appendix D for
detailed discussions about the learnable adaptive weighting. Thus we can obtain the training objective,
as listed below.

C.2 TRAINING OBJECTIVE

Training Objective of Adaptive Variational Score Distillation (aVSD).

min
ϕ
LDiff(ϕ) := Ez,z′,t

[
w(t)

∥∥∥∥σdFϕ(xt
σd
, t

)
− vt

∥∥∥∥2
2

]
,

min
θ,ψ
LVSD(θ, ψ) := Et,z,z′

[
ewψ(t)

D

∥∥∥∥gθ(z′)− gθ−(z
′) + Fpretrain

(
xt
σd
, t

)
−Fϕ

(
xt
σd
, t

)∥∥∥∥2
2

−wψ(t)

]
.
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And we also choose a proportional distribution of t for estimating LVSD(θ, ψ) by log(tan(t)σd) ∼
N (Pmean, P

2
std) and tune these two hyperparameters (note that they may be different from the proposal

distribution for training LDiff(ϕ), as detailed in Appendix G.

In addition, for consistency models fθ(xt, t), we choose z′ ∼ N (0, σ2
dI) and gθ(z

′) := fθ(z
′, π2 ) =

−σdFθ( z′

σd
, π2 ), and thus the corresponding objective is

min
θ,ψ

Et,z,z′

[
ewψ(t)

D

∥∥∥∥σdFθ( z′

σd
,
π

2

)
−σdFθ−

(
z′

σd
,
π

2

)
−Fpretrain

(
xt
σd
, t

)
+Fϕ

(
xt
σd
, t

)∥∥∥∥2
2

− wψ(t)

]
.

D ADAPTIVE WEIGHTING FOR DIFFUSION MODELS, CONSISTENCY MODELS
AND VARIATIONAL SCORE DISTILLATION

We first list the objectives of diffusion models, consistency models and variational score distillation
(VSD). For diffusion models, as shown in Eq. (25), the gradient of the objective is

∇θLDiff(θ) = ∇θEt,x0,zw(t)
[
∥σdFθ − vt∥22

]
= ∇θEt,x0,z

[
w(t)σdF

⊤
θ (σdFθ− − vt)

]
,

where Fθ− is the same as Fθ but stops the gradient w.r.t. θ. For VSD, the gradient of the objective is

∇θLDiff(θ) = ∇θEt,z,z′
[
w(t)gθ(z

′)⊤(Fpretrain − Fϕ)
]
.

And for continuous-time CMs parameterized by TrigFlow, the objective is

∇θLCM(θ) = ∇θEt,x0,z

[
−w(t) sin(t)f⊤

θ

dfθ−

dt

]
,

where fθ− is the same as fθ but stops the gradient w.r.t. θ. Interestingly, all these objectives can be
rewritten into a form of inner product between a neural network and a target function which has the
same dimension (denoted as D) as the output of the neural network. Specifically, assume the neural
network is Fθ parameterized by θ, we study the following objective:

min
θ

Et
[
F⊤
θ y
]
,

where we do not compute the gradients w.r.t. θ for y. In such case, the gradient will be equivalent to

∇θEt
[
∥Fθ − Fθ− + y∥22

]
,

where Fθ− is the same as Fθ but stops the gradient w.r.t. θ. In such case, we can balance the gradient
variance w.r.t. t by training an adaptive weighting network wϕ(t) to estimate the loss norm, i.e.,
minimizing

min
ϕ

Et
[
ewϕ(t)

D
∥Fθ − Fθ− + y∥22 − wϕ(t)

]
.

This is the adaptive weighting proposed by EDM2 (Karras et al., 2024), which balances the loss
variance across different time steps, inspired by the uncertainty estimation of Sener & Koltun (2018).
By taking the partial derivative w.r.t. w in the above equation, it is easy to verify that the optimal
w∗(t) satisfies

ew
∗(t)

D
E
[
∥Fθ − Fθ− + y∥22

]
≡ 1.

Therefore, the adaptive weighting reduces the loss variance across different time steps. In such case,
all we need to do is to choose

1. A prior weighting λ(t) for y, which may be helpful for further reducing the variance of y.
Then the objective becomes

min
θ,ϕ

Et
[
ewϕ(t)

D
∥Fθ − Fθ− + λ(t)y∥22 − wϕ(t)

]
.

e.g., for diffusion models and VSD, since the target is either y = F−vt or y = Fpretrain−Fϕ
which are stable across different time steps, we can simply choose λ(t) = 1; while for
consistency models, the target y = sin(t)dfdt may have huge variance, we choose λ(t) =

1
σd tan(t) to reduce the variance of λ(t)y, which empirically is critical for better performance.
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2. A proposal distribution for sampling the training t, which determines which part of t we
should focus on more. For diffusion models, we generally need to focus on the intermediate
time steps since both the clean data and pure noise cannot provide precise training signals.
Thus, the common choice is to choose a normal distribution over the log-SNR of time steps,
which is proposed by Karras et al. (2022) and also known as log-normal distribution.

In this way, we do not need to manually choose the weighting functions, significantly reducing the
tuning complexity of training diffusion models, CMs and VSD.

E DISCRETE-TIME CONSISTENCY MODELS WITH IMPROVED TRAINING
OBJECTIVES

Note that the improvements proposed in Sec. 4 can also be applied to discrete-time consistency
models (CMs). In this section, we discuss the improved version of discrete-time CMs for consistency
distillation.

E.1 PARAMETERIZATION AND TRAINING OBJECTIVE

Parameterization. We also parameterize the CM by TrigFlow:

fθ(xt, t) = cos(t)xt − σd sin(t)Fθ
(
xt
σd
, t

)
.

And we denote the pretrained teacher diffusion model as dxt
dt = Fpretrain(

xt
σd
, t).

Reference sample by DDIM. Assume we sample x0 ∼ pd, z ∼ N (0, σ2
dI), and xt = cos(t)x0 +

sin(t)z, we need a reference sample xt′ at time t′ < t to guide the training of the CM, which can be
obtained by one-step DDIM from t to t′:

xt′ = cos(t− t′)xt − σd sin(t− t′)Fpretrain

(
xt
σd
, t

)
.

Thus, the output of the consistency model at time t′ is

fθ−(xt′ , t
′) = cos(t′) cos(t−t′)xt−σd cos(t′) sin(t−t′)Fpretrain

(
xt
σd
, t

)
−σd sin(t′)Fθ−

(
xt′

σd
, t′
)
.

(35)

Original objective of discrete-time CMs. The consistency model at time t can be rewritten into

fθ−(xt, t) = cos(t)xt − σd sin(t)Fθ−
(
xt
σd
, t

)
= (cos(t′) cos(t− t′)− sin(t′) sin(t− t′))xt

− σd(sin(t− t′) cos(t′) + cos(t− t′) sin(t′))Fθ−
(
xt
σd
, t

) (36)

Therefore, by computing the difference between Eq. (35) and Eq. (36), we define

∆θ−(xt, t, t
′) :=

fθ−(xt, t)− fθ−(xt′ , t
′)

sin(t− t′)

= − cos(t′)
(
σdFθ−

(
xt
σd
, t

)
− σdFpretrain

(
xt
σd
, t

)
︸ ︷︷ ︸

dxt
dt

)

− sin(t′)
(
xt +

σd cos(t− t′)Fθ−
(

xt
σd
, t
)
− σdFθ−

(
xt′
σd
, t′
)

sin(t− t′)︸ ︷︷ ︸
≈σd

dF
θ−
dt

)
.

(37)
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Comparing to Eq. (6), it is easy to see that limt′→t∆θ−(xt, t, t
′) =

dfθ−
dt (xt, t). Moreover, when

using d(x,y) = ∥x− y∥22, and ∆t = t− t′, the training objective of discrete-time CMs in Eq. (1)
becomes

Ext,t

[
w(t)∥fθ(xt, t)− fθ−(xt−∆t, t−∆t)∥22

]
,

which has the gradient of

Ext,t

[
w(t)∇θf⊤

θ (xt, t) (fθ−(xt, t)− fθ−(xt−∆t, t−∆t))
]

= ∇θExt,t

[
−w(t) sin(t− t′)f⊤

θ (xt, t)∆θ−(xt, t, t
′)
]

= ∇θExt,t

[
w(t) sin(t− t′) sin(t)F⊤

θ (xt, t)∆θ−(xt, t, t
′)
] (38)

Adaptive weighting for discrete-time CMs. Inspired by the continuous-time consistency models,
we can also apply the adaptive weighting technique into discrete-time training objectives in Eq. (38).
Specifically, since ∆θ−(xt, t, t

′) is a first-order approximation of dfθ−
dt (xt, t), we can directly replace

the tangent in Eq. (8) with ∆θ−(xt, t, t
′), and obtain the improved objective of discrete-time CMs by:

LsCM(θ, ϕ) :=Ext,t

[
ewϕ(t)

D

∥∥∥∥Fθ (xt
σd
, t

)
− Fθ−

(
xt
σd
, t

)
− cos(t)∆θ−(xt, t, t

′)

∥∥∥∥2
2

− wϕ(t)

]
,

(39)
where wϕ(t) is the adaptive weighting network.

Tangent normalization for discrete-time CMs. We apply the simliar tangent normalization method
as continuous-time CMs by defining

gθ−(xt, t, t
′) :=

cos(t)∆θ−(xt, t, t
′)

∥ cos(t)∆θ−(xt, t, t′)∥+ c
,

where c > 0 is a hyperparameter, and then the objective in Eq. (39) becomes

LsCM(θ, ϕ) :=Ext,t

[
ewϕ(t)

D

∥∥∥∥Fθ (xt
σd
, t

)
− Fθ−

(
xt
σd
, t

)
− gθ−(xt, t, t

′)

∥∥∥∥2
2

− wϕ(t)

]
,

Tangent warmup for discrete-time CMs. We replace the ∆θ−(xt, t, t
′) with the warmup version:

∆θ−(xt, t, t
′, r) = − cos(t′)

(
σdFθ−

(
xt
σd
, t

)
− σdFpretrain

(
xt
σd
, t

))

− r · sin(t′)

xt +
σd cos(t− t′)Fθ−

(
xt
σd
, t
)
− σdFθ−

(
xt′
σd
, t′
)

sin(t− t′)

 ,

where r linearly increases from 0 to 1 over the first 10k training iterations.

We provide the detailed algorithm of discrete-time sCM (dsCM) in Algorithm 2, where we refer to
consistency distillation of discrete-time sCM as dsCD.

Algorithm 2 Simplified and Stabilized Discrete-time Consistency Distillation (dsCD).

Input: dataset D with std. σd, pretrained diffusion model Fpretrain with parameter θpretrain, model
Fθ, weighting wϕ, learning rate η, proposal (Pmean, Pstd), constant c, warmup iteration H .
Init: θ ← θpretrain, Iters← 0.
repeat

x0 ∼ D, z ∼ N (0, σ2
dI), τ ∼ N (Pmean, P

2
std), t← arctan( e

τ

σd
), xt ← cos(t)x0 + sin(t)z

xt′ ← cos(t− t′)xt − σd sin(t− t′)Fpretrain

(
xt
σd
, t
)

r ← min(1, Iters/H) ▷ Tangent warmup
g ← cos(t)∆θ−(xt, t, t

′, r) ▷ JVP rearrangement
g ← g/(∥g∥+ c) ▷ Tangent normalization
L(θ, ϕ)← ewϕ(t)

D ∥Fθ(xtσd , t)− Fθ−(
xt
σd
, t)− g∥22 − wϕ(t) ▷ Adaptive weighting

(θ, ϕ)← (θ, ϕ)− η∇θ,ϕL(θ, ϕ)
Iters← Iters + 1

until convergence
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E.2 EXPERIMENTS OF DISCRETE-TIME SCM

We use the algorithm in Algorithm 2 to train discrete-time sCM, where we split [0, π2 ] into N

intervals by EDM sampling spacing. Specifically, we first obtain the EDM time step by σi = (σ
1/ρ
min +

i
M (σ

1/ρ
max − σ1/ρ

min ))
ρ with ρ = 7, σmin = 0.002 and σmax = 80, and then obtain ti = arctan(σi/σd)

and set t0 = 0. During training, we sample t with a discrete categorical distribution that splits the
log-normal proposal distribution as used in continuous-time sCM, similar to Song & Dhariwal (2023).

As demonstrated in Figure 5(c), increasing the number of discretization steps N in discrete-time CMs
improves sample quality by reducing discretization errors, but obviously degrades once N becomes
too large (after N > 1024) to suffer from numerical precision issues. By contrast, continuous-time
CMs significantly outperform discrete-time CMs across all N ’s which provides strong justification
for choosing continuous-time CMs over discrete-time counterparts.

E.3 COMPARISON WITH ECT

We compare the 1-step sampling FID scores at different training iterations between ECT (Geng et al.,
2024) and sCT on CIFAR-10. As shown in Table 3, our proposed sCT significantly outperforms ECT
during the training, demonstrating the effectiveness of the compute efficiency and faster convergence
of sCT.

For fair comparison, we use the same network architecture with ECT on CIFAR-10, which is the
DDPM++ network proposed by Ho et al. (2020) and does not have AdaGN layer, and use the same
dropout rate of 0.20 as ECT, and use the same batch size (128) as ECT (which is different from our
default setting of 512 in our reported results in Table 1). We choose Pmean = −1.0 and Pstd = 1.8 for
sCT, and use TrigFlow parameterization (with cnoise = t). All the other hyperparameters are the same
as the experiments in Table 1.

Table 3: Sample quality measured by FID score (↓) of ECT (Geng et al., 2024) and sCT at different training
iterations on CIFAR-10.

Training Iterations 100k 200k 400k
ECT 4.54 3.86 3.60
sCT (ours) 3.97 3.51 3.09

F JACOBIAN-VECTOR PRODUCT OF FLASH ATTENTION

The attention operator (Vaswani, 2017) needs to compute y = softmax(x)V where x ∈ R1×L,V ∈
RL×D,y ∈ R1×D. Flash Attention (Dao et al., 2022; Dao, 2023) computes the output by maintaining
three variables m(x) ∈ R, ℓ(x) ∈ R, and f(x) with the same dimension as x. The computation is
done recursively: for each block, we have

m(x) = max(ex), ℓ(x) =
∑
i

ex
(i)−m(x), f(x) = ex−m(x)V ,

and for combining two blocks x = [x(a),x(b)], we merge their corresponding m, ℓ,f by

m(x) = max
(
x(a),x(b)

)
, ℓ(x) = em(x(a))−m(x)ℓ(x(a)) + em(x(b))−m(x)ℓ(x(b)),

f(x) =
[
em(x(a))−m(x)f(x(a)), em(x(b))−m(x)f(x(b))

]
, y =

f(x)

ℓ(x)
.

However, to the best of knowledge, there does not exist an algorithm for computing the Jacobian-
Vector product of the attention operator in the Flash Attention style for faster computation and
memory saving. We propose a recursive algorithm for the JVP computation of Flash Attention below.

Denote p := softmax(x). Denote the tangent vector for x ∈ R1×L,p ∈ R1×L,V ∈ RL×D,y ∈
R1×D as tx ∈ R1×L, tp ∈ R1×L, tV ∈ RL×D, ty ∈ R1×D, correspondingly. The JVP for attention
is computing (x, tx), (V , tV )→ (y, ty), which is

ty = tpV + ptV︸︷︷︸
softmax(x)tV

, where tpV = (p⊙ tx)︸ ︷︷ ︸
1×L

V − (pt⊤x )︸ ︷︷ ︸
1×1

· (pV )︸ ︷︷ ︸
y

.
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Notably, the computation for both ptV and pV can be done by the standard Flash Attention with the
value matrices V and tV . Thus, to compute ty , we only need to maintain a vector g(x) := (p⊙tx)V
and a scalar µ(x) := pt⊤x during the Flash Attention computation loop. Moreover, since we do not
know p during the loop, we can reuse the intermediate m, ℓ,f in Flash Attention. Specifically, for
each block,

g(x) =
(
ex−m(x) ⊙ tx

)
V , µ(x) =

∑
i

ex
(i)−m(x)t(i)x ,

and for combining two blocks x = [x(a),x(b)], we merge their corresponding g and µ by

g(x) =
[
em(x(a))−m(x)g(x(a)), em(x(b))−m(x)g(x(b))

]
,

µ(x) = em(x(a))−m(x)µ(x(a)) + em(x(b))−m(x)µ(x(b)),

and after obtaining m, ℓ,f , g, µ for the row vector x, the final result of tpV is

tpV =
g(x)

ℓ(x)
− µ(x)

ℓ(x)
· y.

Therefore, we can use a single loop to obtain both the output y and the JVP output ty , which accesses
the memory for the attention matrices only once and avoids saving the intermediate activations, thus
saving the GPU memory.

G EXPERIMENT SETTINGS AND RESULTS

G.1 TRIGFLOW FOR DIFFUSION MODELS

We train the teacher diffusion models on CIFAR-10, ImageNet 64×64 and ImageNet 512×512 with
the proposed improvements of parameterization and architecture, including TrigFlow parameteriza-
tion, positional time embedding and adaptive double normalization layer. We list the detailed settings
below.

CIFAR-10. Our architecture is based on the Score SDE (Song et al., 2021b) architecture (DDPM++).
We use the same settings of EDM (Karras et al., 2022): dropout rate is 0.13, batch size is 512, number
of training iterations is 400k, learning rate is 0.001, Adam ϵ = 10−8, β1 = 0.9, β2 = 0.999. We use
2nd-order single-step DPM-Solver (Lu et al., 2022a) (DPM-Solver-2S) with Heun’s intermediate
time step with 18 steps (NFE=35), which is exactly equivalent to EDM Heun’s sampler. We obtain
FID of 2.15 for the teacher model.

ImageNet 64×64. We preprocess the ImageNet dataset following Dhariwal & Nichol (2021) by

1. Resize the shorter width / height to 64× 64 resolution with bicubic interpolation.
2. Center crop the image.
3. Disable data augmentation such as horizontal flipping.

Except for the TrigFlow parameterization, positional time embedding and adaptive double normaliza-
tion layer, we follow exactly the same setting in EDM2 config G (Karras et al., 2024) to train models
with sizes of S, M, L, and XL, while the only difference is that we use Adam ϵ = 10−11.

ImageNet 512×512. We preprocess the ImageNet dataset following Dhariwal & Nichol (2021) and
Karras et al. (2024) by

1. Resize the shorter width / height to 512× 512 resolution with bicubic interpolation.
2. Center crop the image.
3. Disable data augmentation such as horizontal flipping.
4. Encode the images into latents by stable diffusion VAE2 (Rombach et al., 2022; Janner

et al., 2022), and rescale the latents by channel mean µc = [1.56,−0.695, 0.483, 0.729] and
channel std σc = [5.27, 5.91, 4.21, 4.31]. We keep the σd = 0.5 as in EDM2 (Karras et al.,
2024), so for each latent we substract µc and multiply it by σd/σc.

2https://huggingface.co/stabilityai/sd-vae-ft-mse
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When sampling from the model, we redo the scaling of the generated latents and then run the VAE
decoder. Notably, our channel mean and channel std are different from those in EDM2 (Karras et al.,
2024). It is because when training the VAE, the images are normalized to [−1, 1] before passing to
the encoder. However, the channel mean and std used in EDM2 assumes the input images are in
[0, 1] range, which mismatches the training phase of the VAE. We empirically find that it is hard to
distinguish the reconstructed samples by human eyes of these two different normalization, while it has
non-ignorable influence for training diffusion models evaluated by FID. After fixing this mismatch,
our diffusion model slightly outperforms the results of EDM2 at larger scales (XL and XXL). More
results are provided in Table 6.

Except for the TrigFlow parameterization, positional time embedding and adaptive double normaliza-
tion layer, we follow exactly the same setting in EDM2 config G (Karras et al., 2024) to train models
with sizes of S, M, L, XL and XXL, while the only difference is that we use Adam ϵ = 10−11. We
enable label dropout with rate 0.1 to support classifier-free guidance. We use 2nd-order single-step
DPM-Solver (Lu et al., 2022a) (DPM-Solver-2S) with Heun’s intermediate time step with 32 steps
(NFE=63), which is exactly equivalent to EDM Heun’s sampler. We find that the optimal guidance
scale for classifier-free guidance and the optimal EMA rate are also the same as EDM2 for all model
sizes.

G.2 CONTINUOUS-TIME CONSISTENCY MODELS

In all experiments, we use c = 0.1 for tangent normalization, and use H = 10000 for tangent
warmup. We always use the same batch size as the teacher diffusion training, which is different from
Song & Dhariwal (2023). During sampling, we start at tmax = arctan

(
σmax
σd

)
with σmax = 80 such

that it matches the starting time of EDM (Karras et al., 2022) and EDM2 (Karras et al., 2024). For
2-step sampling, we use the algorithm in Song et al. (2023) with an intermediate t = 1.1 for all the
experiments. We always initialize the CM from the EMA parameters of the teacher diffusion model.
For sCD, we always use the Fpretrain of the teacher diffusion model with its EMA parameters during
distillation.

We empirically find that the proposal distribution should have small Pmean, i.e. close to the clean
data, to ensure the training stability and improve the final performance. Intuitively, this is because the
training signal of CMs only come from the clean data, so we need to reduce the training error for t
near to 0 to further reduce the accumulation errors.

CIFAR-10. For both sCT and sCD, we initialize from the teacher diffusion model trained with the
settings in Appendix G.1, and use RAdam optimizer (Liu et al., 2019) with learning rate of 0.0001,
β1 = 0.9, β2 = 0.99, ϵ = 10−8, and without learning rate schedulers. proposal distribution of
Pmean = −1.0, Pstd = 1.4. For the attention layers, we use the implementation in (Karras et al., 2022)
which naturally supports JVP by PyTorch (Paszke et al., 2019) auto-grad. We use EMA half-life of
0.5 Mimg (Karras et al., 2022). We use dropout rate of 0.20 for sCT and disable dropout for sCD.

ImageNet 64×64. We only enable dropout at the resolutions equal to or less than 16, following
Simple Diffusion (Hoogeboom et al., 2023) and iCT (Song & Dhariwal, 2023). We multiply the
learning rate of the teacher diffusion model by 0.01 for both sCT and sCD. We train the model with
half precision (FP16), and use the flash attention jvp proposed in Appendix F for computing the
tangents of flash attention layers. Other training settings are the same as the teacher diffusion models.
More details of training and sampling are provided in Table 4 and Table 8. During sampling, we
always use EMA length σrel = 0.05 for sampling from CMs.

ImageNet 512×512. We only enable dropout at the resolutions equal to or less than 16, following
Simple Diffusion (Hoogeboom et al., 2023) and iCT (Song & Dhariwal, 2023). We multiply the
learning rate of the teacher diffusion model by 0.01 for both sCT and sCD. We train the model with
half precision (FP16), and use the flash attention jvp proposed in Appendix F for computing the
tangents of flash attention layers. Other training settings are the same as the teacher diffusion models.
More details of training and sampling are provided in Table 5 and Table 6. During sampling, we
always use EMA length σrel = 0.05 for sampling from CMs.

We add an additional input in Fθ(
xt
σd
, t, s) where s represents the CFG guidance scale of the teacher

model, where s is embedded by positioinal embedding layer and an additional linear layer, and the
embedding is added to the embedding of t, similar to the label conditioning. During training, we
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Table 4: Training settings of all models and training algorithms on ImageNet 64×64 dataset.

Model Size
S M L XL

Model details
Batch size 2048 2048 2048 2048
Channel multiplier 192 256 320 384
Time embedding layer positional positional positional positional
noise conditioning cnoise(t) t t t t
adaptive double normalization ✓ ✓ ✓ ✓
Learning rate decay (tref) 35000 35000 35000 35000
Adam β1 0.9 0.9 0.9 0.9
Adam β2 0.99 0.99 0.99 0.99
Adam ϵ 1.0e-11 1.0e-11 1.0e-11 1.0e-11
Model capacity (Mparams) 280.2 497.8 777.6 1119.4
Training details of diffusion models (TrigFlow)
Training iterations 1048k 1486k 761k 540k
Learning rate max (αref) 1.0e-2 9.0e-3 8.0e-3 7.0e-3
Dropout probability 0% 10% 10% 10%
Proposal Pmean -0.8 -0.8 -0.8 -0.8
Proposal Pstd. 1.6 1.6 1.6 1.6
Shared details of consistency models
Learning rate max (αref) 1.0e-4 9.0e-5 8.0e-5 7.0e-5
Proposal Pmean -1.0 -1.0 -1.0 -1.0
Proposal Pstd. 1.6 1.6 1.6 1.6
Tangent normalization constant (c) 0.1 0.1 0.1 0.1
Tangent warm up iterations 10k 10k 10k 10k
EMA length (σrel) of pretrained diffusion 0.075 0.06 0.04 0.04
Training details of sCT
Training iterations 400k 400k 400k 400k
Dropout probability for resolution ≤ 16 45% 45% 45% 45%
Training details of sCD
Training iterations 400k 400k 400k 400k
Dropout probability for resolution ≤ 16 0% 0% 0% 0%

uniformly sample s ∈ [1, 2] and apply CFG with guidance scale s to the teacher diffusion model to
get Fpretrain.

VSD experiments. We do not use EMA for Fϕ in VSD, instead we always use the original model
for Fϕ for stabilizing the training. The learning rate of Fϕ is the same as the learning rate of CMs.
More details and results are provided in Tables 5 to 7.
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Table 5: Training settings of all models and training algorithms on ImageNet 512×512 dataset.

Model Size
S M L XL XXL

Model details
Batch size 2048 2048 2048 2048 2048
Channel multiplier 192 256 320 384 448
Time embedding layer positional positional positional positional positional
noise conditioning cnoise(t) t t t t t
adaptive double normalization ✓ ✓ ✓ ✓ ✓
Learning rate decay (tref) 70000 70000 70000 70000 70000
Adam β1 0.9 0.9 0.9 0.9 0.9
Adam β2 0.99 0.99 0.99 0.99 0.99
Adam ϵ 1.0e-11 1.0e-11 1.0e-11 1.0e-11 1.0e-11
Model capacity (Mparams) 280.2 497.8 777.6 1119.4 1523.4
Training details of diffusion models (TrigFlow)
Training iterations 1048k 1048k 696k 598k 376k
Learning rate max (αref) 1.0e-2 9.0e-3 8.0e-3 7.0e-3 6.5e-3
Dropout probability 0% 10% 10% 10% 10%
Proposal Pmean -0.4 -0.4 -0.4 -0.4 -0.4
Proposal Pstd. 1.0 1.0 1.0 1.0 1.0
Shared details of consistency models
Learning rate max (αref) 1.0e-4 9.0e-5 8.0e-5 7.0e-5 6.5e-5
Proposal Pmean -0.8 -0.8 -0.8 -0.8 -0.8
Proposal Pstd. 1.6 1.6 1.6 1.6 1.6
Tangent normalization constant (c) 0.1 0.1 0.1 0.1 0.1
Tangent warm up iterations 10k 10k 10k 10k 10k
EMA length (σrel) of pretrained diffusion 0.025 0.03 0.015 0.02 0.015
Training details of sCT
Training iterations 100k 100k 100k 100k 100k
Dropout probability for resolution ≤ 16 25% 35% 35% 35% 35%
Training details of sCD
Training iterations 200k 200k 200k 200k 200k
Dropout probability for resolution ≤ 16 0% 10% 10% 10% 10%
Maximum of CFG scale 2.0 2.0 2.0 2.0 2.0
Training details of sCD with adaptive VSD
Training iterations 20k 20k 20k 20k 20k
Learning rate max (αref) for Fϕ 1.0e-4 9.0e-5 8.0e-5 7.0e-5 6.5e-5
Dropout probability for Fϕ 0% 10% 10% 10% 10%
Proposal Pmean for LDiff(ϕ) -0.8 -0.8 -0.8 -0.8 -0.8
Proposal Pstd. for LDiff(ϕ) 1.6 1.6 1.6 1.6 1.6
Number of updating of ϕ per updating of θ 1 1 1 1 1
One-step sampling starting time tmax arctan( 80σd ) arctan( 80σd ) arctan( 80σd ) arctan( 80σd ) arctan( 80σd )

Proposal Pmean for LVSD(θ) 0.4 0.4 0.4 0.4 0.4
Proposal Pstd. for LVSD(θ) 2.0 2.0 2.0 2.0 2.0
Loss weighting λVSD for LVSD 1.0 1.0 1.0 1.0 1.0
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Table 6: Evaluation of sample quality of different models on ImageNet 512×512 dataset. Results of EDM2 (Kar-
ras et al., 2024) are with EDM parameterization and the original AdaGN layer. †The FDDINOv2in EDM2 are
obtained by tuned EMA rate, which is different from our EMA rates that are tuned for FID scores.

Model Size
S M L XL XXL

Sampling by diffusion models (NFE = 126)
EMA length (σrel) 0.025 0.030 0.015 0.020 0.015
Guidance scale for FID 1.4 1.2 1.2 1.2 1.2
†Guidance scale for FDDINOv2 2.0 1.8 1.8 1.8 1.8
FID (TrigFlow) 2.29 2.00 1.87 1.80 1.73
FID (EDM2) 2.23 2.01 1.88 1.85 1.81
FDDINOv2(TrigFlow) 52.08 43.33 39.23 36.73 35.93
†FDDINOv2(EDM2) with σrel for FDDINOv2 52.32 41.98 38.20 35.67 33.09
Sampling by consistency models trained with sCT
Intermediate time tmid in 2-step sampling 1.1 1.1 1.1 1.1 1.1
1-step FID 10.13 5.84 5.15 4.33 4.29
2-step FID 9.86 5.53 4.65 3.73 3.76
1-step FDDINOv2 278.35 192.13 169.98 147.06 146.31
2-step FDDINOv2 244.41 160.66 135.80 114.65 112.69
Sampling by consistency models trained with sCD
Intermediate time tmid in 2-step sampling 1.1 1.1 1.1 1.1 1.1
Guidance scale for FID, 1-step sampling 1.5 1.3 1.3 1.3 1.3
Guidance scale for FID, 2-step sampling 1.4 1.2 1.2 1.2 1.2
Guidance scale for FDDINOv2, 1-step sampling 2.0 2.0 2.0 2.0 2.0
Guidance scale for FDDINOv2, 2-step sampling 2.0 2.0 1.9 1.9 1.9
1-step FID 3.07 2.75 2.55 2.40 2.28
2-step FID 2.50 2.26 2.04 1.93 1.88
1-step FDDINOv2 104.22 83.78 76.10 70.30 67.80
2-step FDDINOv2 71.15 55.70 50.63 46.66 44.97
Sampling by consistency models trained with multistep sCD
Guidance scale for FID 1.4 1.2 1.2 1.15 1.15
Guidance scale for FDDINOv2 2.0 2.0 2.0 1.9 1.9
FID, M = 2 2.79 2.51 2.32 2.29 2.16
FID, M = 4 2.78 2.46 2.28 2.22 2.10
FID, M = 8 2.49 2.24 2.04 2.02 1.90
FID, M = 16 2.34 2.18 1.99 1.90 1.82
FDDINOv2, M = 2 76.29 60.47 54.91 51.91 50.70
FDDINOv2, M = 4 72.01 56.38 50.99 47.61 46.78
FDDINOv2, M = 8 60.13 49.46 44.87 41.26 40.56
FDDINOv2, M = 16 55.89 46.94 42.55 39.30 38.55
Sampling by consistency models trained with sCD + adaptive VSD
Intermediate time tmid in 2-step sampling 1.1 1.1 1.1 1.1 1.1
Guidance scale for FID, 1-step sampling 1.2 1.0 1.0 1.0 1.0
Guidance scale for FID, 2-step sampling 1.2 1.0 1.0 1.0 1.0
Guidance scale for FDDINOv2, 1-step sampling 1.7 1.5 1.6 1.5 1.5
Guidance scale for FDDINOv2, 2-step sampling 1.7 1.5 1.6 1.5 1.5
1-step FID 3.37 2.67 2.26 2.39 2.16
2-step FID 2.70 2.29 1.99 2.01 1.89
1-step FDDINOv2 72.12 54.81 50.46 48.11 45.54
2-step FDDINOv2 69.00 53.53 48.54 46.61 43.93
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Table 7: Ablation of adaptive VSD and sCD on ImageNet 512×512 dataset with model size M.

Method
VSD sCD sCD + VSD

EMA length (σrel) 0.05 0.05 0.05
Guidance scale for FID, 1-step sampling 1.1 1.3 1.0
Guidance scale for FID, 2-step sampling \ 1.2 1.0
Guidance scale for FDDINOv2, 1-step sampling 1.4 2.0 1.5
Guidance scale for FDDINOv2, 2-step sampling \ 2.0 1.5
1-step FID 3.02 2.75 2.67
2-step FID \ 2.26 2.29
1-step FDDINOv2 57.19 83.78 54.81
2-step FDDINOv2 \ 55.70 53.53

Table 8: Evaluation of sample quality of different models on ImageNet 64×64 dataset.

Model Size
S M L XL

Sampling by diffusion models (NFE=63)
EMA length (σrel) 0.075 0.06 0.04 0.04
FID (TrigFlow) 1.70 1.55 1.44 1.38
Sampling by consistency models trained with sCT
Intermediate time tmid in 2-step sampling 1.1 1.1 1.1 1.1
1-step FID 3.23 2.25 2.08 2.04
2-step FID 2.93 1.81 1.57 1.48
Sampling by consistency models trained with sCD
Intermediate time tmid in 2-step sampling 1.1 1.1 1.1 1.1
1-step FID 2.97 2.79 2.43 2.44
2-step FID 2.07 1.89 1.70 1.66
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Figure 8: Uncurated 1-step samples generated by our sCD-XXL trained on ImageNet 512×512.
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Figure 9: Uncurated 2-step samples generated by our sCD-XXL trained on ImageNet 512×512.
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Figure 10: Uncurated 1-step samples generated by our sCD-XXL trained on ImageNet 512×512.
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Figure 11: Uncurated 2-step samples generated by our sCD-XXL trained on ImageNet 512×512.
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Figure 12: Uncurated 1-step samples generated by our sCD-XXL trained on ImageNet 512×512.
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Figure 13: Uncurated 2-step samples generated by our sCD-XXL trained on ImageNet 512×512.
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