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Abstract

Watermarking AI-generated text is critical for001
combating misuse. Yet recent theoretical work002
argues that any watermark can be erased via003
random walk attacks that perturb text while004
preserving quality. However, such attacks rely005
on two key assumptions: (1) rapid mixing (wa-006
termarks dissolve quickly under perturbations)007
and (2) reliable quality preservation (automated008
quality oracles perfectly guide edits). Through009
large-scale experiments and human-validated010
assessments, we find mixing is slow: 100%011
of perturbed texts retain traces of their origin012
after hundreds of edits, defying rapid mixing.013
Oracles falter, as state-of-the-art quality detec-014
tors misjudge edits (77% accuracy), compound-015
ing errors during attacks. Ultimately, attacks016
underperform: automated walks remove wa-017
termarks just 26% of the time – dropping to018
10% under human quality review. These find-019
ings challenge the inevitability of watermark020
removal. Instead, practical barriers – slow mix-021
ing and imperfect quality control – reveal water-022
marking to be far more robust than theoretical023
models suggest. The gap between idealized at-024
tacks and real-world feasibility underscores the025
need for stronger watermarking methods and026
more realistic attack models.1027

1 Introduction028

The rapid proliferation of generative AI has cre-029

ated an urgent need for mechanisms to authenti-030

cate machine-generated content. Watermarking –031

embedding statistical signals into AI outputs to032

verify provenance – serves as a vital safeguard033

against misinformation, IP theft, and academic034

fraud. While traditional methods employ visual035

patterns (e.g., pixel-level changes in images), statis-036

tical watermarking for text encodes imperceptible037

signals at lexical or semantic levels through spe-038

cially selected patterns of tokens (Liu et al., 2024b).039

1Code and datasets released upon acceptance.

However, recent work by Zhang et al. (2024) (“Wa- 040

termarks in the Sand,” WITS) challenges the vi- 041

ability of watermarking, asserting that any such 042

scheme can be defeated without degrading output 043

quality through a simple random walk attack (see 044

also, e.g., Kirchenbauer et al. (2024); Kuditipudi 045

et al. (2024); Krishna et al. (2023)). This impossi- 046

bility result threatens to undermine the accountabil- 047

ity and security of generative AI, leaving no viable 048

path to enforce ethical standards or trace misuse. 049

The text-based WITS attack employs two pri- 050

mary components: (1) a perturbation oracle P that 051

iteratively modifies text, and (2) a quality oracle 052

Q to ensure that the edits are reasonable. These 053

induce a random walk on a (potentially enormous) 054

graph G, where nodes represent possible texts y 055

and edges denote size-bounded perturbations (e.g., 056

single-word swaps or paraphrases). Under cer- 057

tain assumptions, the random walk converges to 058

a stationary distribution – a stable equilibrium over 059

nodes that remains unchanged under further per- 060

turbations. Crucially, this stationary distribution is 061

a function of P and therefore independent of any 062

particular watermarking scheme. As the random 063

walk approaches this equilibrium, the likelihood 064

of encountering a Q-approved unwatermarked text 065

increases. Notably, the WITS attack prioritizes 066

quality equivalence over semantic equivalence: it 067

seeks unwatermarked texts that score similarly un- 068

der Q , even if their meaning diverges significantly 069

from the original. 070

While elegant in theory, the WITS argument 071

relies on two key assumptions (KA) that warrant 072

further scrutiny. Specifically, WITS assumes that: 073

KA1. The transition probabilities assigned to 074

quality-preserving perturbations are high 075

enough to ensure rapid mixing. Formally, 076

this means that the second-largest eigenvalue 077

(in absolute value) of the transition matrix is 078

sufficiently close to zero to ensure rapid mix- 079

ing ((Zhang et al., 2024), Theorem 5). 080
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KA2. The quality oracle Q can reliably pre-081

serve output quality throughout the attack.082

But if Q is unreliable – either by admitting083

low-quality outputs or by blocking valid edits –084

the attack either fails to escape the watermark085

or produces low-quality outputs that are no086

longer competitive with the original.087

Taken together, KA1 is concerned with attack088

efficiency and KA2 further requires that the results089

remain meaningfully close to the initial text quality.090

To investigate whether these assumptions hold in091

practice, we designed analyses carefully tailored092

to study each assumption. For KA1, acquiring the093

eigenvalues of the transition matrix is infeasible094

due to its intractable size. Instead, we approximate095

mixing behavior by testing whether random walks096

retain memory of their starting states. If the ran-097

dom walk efficiently mixes, perturbed texts should098

lose memory of their starting points, making them099

indistinguishable from those originating elsewhere100

in the graph. Conversely, if stationary mixing is101

slow, initial states should remain identifiable even102

after many perturbations.103

For KA2, we crafted a dataset of perturba-104

tions annotated with human quality judgments and105

benchmarked a variety of automated oracles to de-106

termine their reliability. We then used the best107

oracle to guide the random-walk attacks and cross-108

checked the quality of the final perturbed texts to109

fairly estimate the robustness of several representa-110

tive watermarking schemes – KGW (Kirchenbauer111

et al., 2023), SIR (Liu et al., 2024a), and Adap-112

tive (Liu and Bu, 2024). Our approach therefore113

addresses three primary research questions:114

RQ1. Can stationary distributions for watermark-115

ing be reached under practical constraints?116

Even after hundreds of perturbations, starting117

states remain 100% distinguishable, strongly118

suggesting that stationary distributions are not119

within efficient reach.120

RQ2. Are LLM-based quality oracles sophisti-121

cated enough to guide a random-walk attack?122

The top-performing oracle attained an F1-123

score of 77.4%, leaving significant room for124

errors to accumulate during the attack. This125

suggests that current generative oracles do not126

conform to the widely held belief that “verifi-127

cation is easier than generation.”128

RQ3. How effective are random-walk attacks in129

breaking watermarks when controlling for130

quality? Our improved random-walk attacks –131

whether operating on a word, span, sentence,132

or document level – succeeded in erasing the 133

watermarks only 26.1% of the time on average. 134

After humans reviewed the perturbed texts to 135

determine if quality was truly preserved, suc- 136

cess dropped to an average 10.5%. 137

Overall, our findings demonstrate a disconnect 138

between theoretical assumptions and practical re- 139

alities. These findings highlight the trade-offs ad- 140

versaries face: preserving quality necessitates min- 141

imal edits, but escaping detection requires riskier 142

perturbations that compromise output quality. By 143

bridging theoretical critique with empirical vali- 144

dation, this work challenges the inevitability of 145

strong watermarking’s failure and offers a path 146

forward for developing robust watermarking tech- 147

niques grounded in real-world constraints. 148

2 Background 149

In this section, we outline the main objects and 150

assumptions that underpin our analysis, following 151

(Zhang et al., 2024). For formal definitions and 152

more details, refer to Appendix A. 153

Let M be a generative model mapping prompts 154

x ∈ X to outputs y ∈ Y according to a probability 155

distribution. Let Q : X ×Y → [0, 1] be a function 156

that returns a quality score for y as a response to 157

prompt x. We assume that the adversary has oracle 158

access to Q. Notice that the watermarked model 159

can be used as the quality oracle since we are not 160

editing y using Q, whether or not this is sufficient 161

to approximate Q is the content of KA2. 162

Let P : X × Y → Y be a randomized perturba- 163

tion oracle that generates an alternative response 164

y′ from an original response y for the same prompt 165

x. For the attack to succeed, P must preserve 166

the quality of y with constant nonzero probabil- 167

ity ϵpert ∈ (0, 1] (Definition A.1). 168

Starting from a watermarked response y0, we 169

iteratively apply P to generate mutations by setting 170

yi = P(x, yi−1). To maintain high quality, each 171

mutation must satisfy Q(x, yi) ≥ q (for some q ∈ 172

[0, 1]); otherwise, it is rejected. 173

We now formalize the graph G≥q
x underlying the 174

random walk induced by this process as the graph 175

whose nodes are the output space of M when given 176

x as input such that Q(x, y) ≥ q, and whose edges 177

are all pairs (y, y′) such that Pr
[
y′ = P(x, y)

]
> 178

0, with the weight of the edge given by Pr
[
y′ = 179

P(x, y)
]

(Definition A.5). 180

To ensure the success of the WITS attack, we 181

need to impose mixing assumptions on the random 182
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walk, irreducibility (Definition A.3) and aperiodic-183

ity (Definition A.4). Together, these assumptions184

ensure that the random walk converges to a unique185

stationary distribution π⃗ (Definition A.2). In partic-186

ular, after a sufficient number of steps, the proba-187

bility of being at any node becomes independent of188

the initial state. This is critical for the WITS attack189

analysis: irreducibility guarantees that the random190

walk is not trapped within a single connected com-191

ponent, and aperiodicity prevents cyclic behavior192

that could hinder convergence. Given the enor-193

mous size of G, aperiodicity is expected to hold.194

We discuss the irreducibility assumption further in195

Section 5.196

We now define the mixing time of an irreducible197

and aperiodic graph:198

Definition 2.1 ((Zhang et al., 2024), Definition199

9). Let G = (V, E) be an irreducible and aperi-200

odic weighted directed graph with transition ma-201

trix P⃗ . For any ϵdist ∈ (0, 1], the ϵdist-mixing time202

tmin(ϵdist) of P⃗ is the smallest t such that for every203

starting distribution p0 ∈ Rn, we have204

|pt − π⃗| =
∣∣∣(P⃗⊤)t · p0 − π⃗

∣∣∣ ≤ ϵdist,205

where pt denotes the distribution over the vertices206

after t steps.207

After tmin(ϵdist) steps, with probability at least208

1 − ϵdist, a sample drawn from the random walk209

behaves as if drawn from the stationary distribution210

– i.e. independent of the original watermarked text.211

Moreover, the mixing time tmin(ϵdist) can be212

bounded in terms of the second largest eigenvalue213

g (in absolute value) of P⃗ and the minimum sta-214

tionary probability πmin = min{π⃗(1), . . . , π⃗(n)}215

tmin(ϵdist) ≤ O

(
1

1− g
· log

(
1

πmin · ϵdist

))
.216

In practice, particularly for prompts with high en-217

tropy where the number of acceptable outputs (and218

hence the size of P⃗ ) is extremely large, estimating219

g and thus tmin(ϵdist) becomes challenging. This220

difficulty directly relates to KA1 and underscores221

the adversary’s challenge in determining when to222

halt the random walk. This is discussed further in223

Appendix H.224

It is important to note that for an attack to be225

considered successful, the adversary A must be226

significantly weaker than the model M. Otherwise,227

A could simply ignore the watermarked output y228

and generate a fresh answer to x, thereby trivially229

bypassing the watermark. Also notice that the step 230

size of P directly impacts the mixing time of the 231

random walk, which motivates the choice of our 232

perturbation oracles. 233

At a high level, Theorem 2 in (Zhang et al., 234

2024) proves that if these mixing conditions are 235

satisfied, the random walk attack breaks any water- 236

marking scheme with running time proportional to 237
1

1−g . Moreover, the attacker can control the trade- 238

off between quality of the final unwatermarked text 239

and the probability of removing the watermark. 240

3 Evaluation Setup 241

We now describe the main components of our eval- 242

uation: the watermarking schemes, the dataset, the 243

automated quality metrics, and the perturbation ora- 244

cles. We defer quality-oracle details to RQ2, where 245

we benchmark and justify using InternLM as our 246

primary Q in our attacks. 247

Watermarkers. We evaluate three widely used 248

watermarking schemes W: KGW (Kirchenbauer 249

et al., 2023), SIR (Liu et al., 2024a), and Adap- 250

tive (Liu and Bu, 2024). Each embeds signals 251

into generated text to enable authorship attribu- 252

tion. KGW utilizes a “red-green” list of tokens 253

determined by the rolling hash of the previous k 254

tokens (typically k = 3 to 5). The logit scores 255

for “green” tokens are boosted slightly to promote 256

their selection. SIR follows a similar structure but 257

instead relies on the semantic embeddings of pre- 258

ceding tokens, making it a form of “semantic” wa- 259

termarking. Adaptive restricts its modifications 260

to tokens in high-entropy regions to preserve text 261

quality while still embedding a watermark. Be- 262

cause SIR and Adaptive each incorporate semantic 263

context, both qualify as semantic watermarking 264

schemes designed to resist attacks that preserve 265

meaning through paraphrase. We note that these 266

watermarking schemes produce detection scores 267

on different scales: some, such as Adaptive, use a 268

0–100 scale, whereas KGW and SIR compute a z- 269

statistic. Additional details about the watermarkers 270

can be found in Appendix B.1. 271

Dataset. As noted in Section 2, the number of 272

valid responses to a prompt (i.e., its entropy) in- 273

fluences the structure of the perturbation graph G. 274

To systematically investigate the relationship be- 275

tween entropy and attack success, we constructed 276

a dataset for RQ1 and RQ3 featuring entropy- 277

controlled prompts in three domains relevant to au- 278
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thorial accountability: education, journalism, and279

creative writing.280

For each domain, we designed a series of281

prompts with increasing specificity. For instance, a282

broad request might be “Write a 500-word news ar-283

ticle,” while a more constrained one could read284

“Write a 500-word news article about a global285

climate summit”(see Appendix B.2 for more de-286

tails). We used the Llama-3.1-70B-Instruct287

model (denoted as M) to generate three water-288

marked texts per prompt for each of the three wa-289

termarking schemes, resulting in 270 watermarked290

texts. To provide a baseline, we also generated 90291

unwatermarked texts from the same model. In ad-292

dition, we included unwatermarked outputs from293

GPT-4o to represent scenarios with higher quality294

text that adversaries might favor. For each water-295

marking scheme, we computed the mean water-296

mark detection score and its standard deviation on297

the unwatermarked texts to establish a reference298

range against which we measure whether a per-299

turbed text remains distinguishable.300

Automatic Quality Metrics. We automatically301

evaluated text quality with several metrics. First,302

we used InternLM (Cai et al., 2024) as a reward303

model to acquire a numerical quality score. We304

used GPT-2 (Radford et al., 2019) to calculate per-305

plexity, with lower values indicating higher fluency306

and predictability. In addition, we counted the num-307

ber of grammatical errors using a standard grammar308

checker (languagetool, 2023), and we computed the309

unique bigrams in each text to assess lexical diver-310

sity. Table 5 in Appendix B.3 summarizes these311

metrics for both unwatermarked and watermarked312

texts before attack.313

Perturbation Oracles Our perturbation oracles,314

denoted as P, apply adversarial edits at dif-315

ferent levels of granularity. WordMutator and316

EntropyWordMutator replace individual tokens,317

with the latter concentrating on high-entropy to-318

kens that are most likely to carry stronger wa-319

termark signals. SpanMutator, which is the pri-320

mary text-based perturbation approach used by321

Zhang et al. (2024), masks n = 6 contiguous to-322

kens and refills them using T5-XL (Raffel et al.,323

2019). SentenceMutator paraphrases a single324

sentence at each step with Llama-3.1-8B, while325

DocumentMutator, Document1StepMutator, and326

Document2StepMutator attempt a full-document327

paraphrase, either in one pass or in multiple passes.328

We allow a sufficient number of steps (e.g., 1000329

for token-level edits and 100 for document-level 330

edits) to maximize the opportunity for watermark 331

removal. Further technical details on each P are 332

provided in Appendix B.4. 333

4 Analysis 334

We now empirically examine the WITS assump- 335

tions by asking: (RQ1) whether the random- 336

walk attacks reach a stationary distribution, (RQ2) 337

whether LLM-based quality oracles reliably guide 338

the attack, and (RQ3) how often watermark re- 339

moval preserves text quality. 340

4.1 RQ1. Can Stationary Distributions Be 341

Reached Under Practical Constraints? 342

WITS posits that repeated perturbations rapidly 343

decouple a text from its starting state, eventually 344

sampling from a stationary distribution. If mix- 345

ing is slow, however, watermark removal becomes 346

impractical in real-world applications. Although 347

the second-largest eigenvalue (g) of the transition 348

matrix provides a formal measure of mixing speed, 349

computing g directly is infeasible due to the high 350

dimensionality of G. Instead, we measure whether 351

the final texts can be traced back to their initial 352

forms. If this tracing remains accurate even after 353

many perturbations, it suggests that the random 354

walk has not mixed sufficiently. 355

To approximate mixing, we propose a novel 356

lineage distinguisher test. First, we choose two 357

initial responses for each prompt. We then run 358

a random-walk attack, perturbing one starting 359

text until a P-specific step budget is used up 360

(e.g., 1000 steps for WordMutator). Periodically 361

sampled texts along this walk are then classified 362

by Llama-3.1-70B-Instruct, which attempts to 363

identify their true origin. Since well-mixed texts 364

should be indistinguishable from random samples 365

in G, classification accuracy should collapse to 366

chance if a stationary distribution is reached. 367

4.1.1 Results 368

Table 1 summarizes results of a multi-stage clas- 369

sification approach designed to balance accuracy 370

and cost. We first use Llama-3.1-70B-Instruct 371

with a zero-shot prompt in a best-of-2 (see Ap- 372

pendix C for details). If Llama-3 produces a tied 373

result (considered a failure), we escalate to the 374

stronger (but more expensive) GPT-4o (OpenAI, 375

2024b). Any remaining cases are then passed to 376

o3-mini-high (OpenAI, 2025). At no point were 377

both trials wrong in a best-of-2. Across all tests, 378
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P Oracle Steps Tests Llama-3.1-70B GPT-4o o3-mini-high

Word 1000 720 0 0 0
EntropyWord 1000 720 0 0 0
Span 250 720 12 1 0
Sentence 150 720 38 3 0
Document 100 421 2 0 0
Document1Step 100 576 0 0 0
Document2Step 100 678 1 0 0

Total / Failed Tests 4555 53 4 0

Cumulative Distinguished (%) 98.84 99.91 100

Table 1: Summary of failed distinguisher tests per P, along with the step budget and total tests. Classification
is first performed by Llama-3.1-70B, followed by GPT-4o on its failures, then o3-mini-high on any remaining
cases. The overall 100% success rate indicates that the attacked texts never lose memory of their starting points,
contradicting KA1 and suggesting that a stationary distribution is not reached in practice.

Llama-3.1-70B-Instruct alone achieves 98.84%379

accuracy. GPT-4o correctly resolves nearly all of380

the remaining 53 failures, and o3-mini-high suc-381

ceeds on the last four, yielding a final 100% suc-382

cess rate. This consistently high distinguishability383

shows that random walks do not adequately mix384

within the allotted steps, thus contradicting KA1385

and indicating that the attacked texts remain too386

similar to their originals for watermark removal to387

rely on a converged stationary distribution.388

4.2 RQ2. Are LLM-based quality oracles389

sophisticated enough to guide a390

random-walk attack?391

A core assumption of WITS-style attacks is that ver-392

ifying output quality is at least as easy as generating393

content ((Zhang et al., 2024), §4.1.2). This assump-394

tion aligns with the common belief that recognizing395

high-quality work – whether in music, cinema, or396

literature – is simpler than creating it. However,397

this premise has not been rigorously tested in the398

context of generative LLMs. If Q is unreliable –399

either by approving degraded outputs or blocking400

valid transformations – the attack stalls or yields401

low-quality text. To examine this assumption sys-402

tematically, we built and benchmarked a variety403

of LLM-based oracles, measuring their ability to404

preserve quality while guiding watermark removal.405

The Sandcastles Benchmark. We created the406

Sandcastles dataset to evaluate oracle reliabil-407

ity by sampling 100 diverse prompts from408

arena-human-preference-55k (Chiang et al.,409

2024), generating watermarked responses, and ap-410

plying up to 20 iterative perturbations. At the 1st,411

10th, and 20th steps, we collected human annota-412

tions comparing the perturbed text to its original.413

To ensure unbiased evaluation, annotators were pre-414

sented with two texts, A and B, without knowing415

which had been perturbed. They provided ternary 416

preference judgments, selecting either A, B, or tie. 417

For oracle training and evaluation, we binarized 418

judgments: preferences for the perturbed text or 419

a tie were labeled as "Quality Preserved," while 420

preferences for the original were labeled as "De- 421

graded." This simplification provides a clearer eval- 422

uation signal while preserving human preference 423

patterns. The final dataset includes 795 anno- 424

tated perturbations, with additional statistics in Ap- 425

pendix E.2. 426

Constructing and Evaluating Oracles. As 427

a baseline, we followed the WITS sugges- 428

tion to reuse the watermarking model M 429

(Llama-3.1-70B-Instruct) as a quality oracle. 430

After initial trials revealed positional biases and in- 431

consistencies with human judgments, we explored 432

several improvements. We ran oracle queries 433

multiple times with flipped text orders, explic- 434

itly explained that the task involved assessing 435

mutation quality (MutationOracle), and supple- 436

mented prompts with a changelog of all edits 437

(DiffOracle). We then fine-tuned the strongest 438

of these oracles on the Sandcastles training set 439

(MutationOracle+FT, DiffOracle+FT). In paral- 440

lel, we evaluated six reward models from the Re- 441

wardBench leaderboard,2 each producing contin- 442

uous scores that we thresholded (e.g., a 0.46 de- 443

viation from the original in InternLMOracle) to 444

classify outputs as high-quality or degraded. Fi- 445

nally, even though cost concerns make large pro- 446

prietary models impractical for full attacks, we 447

tested GPT-4-Turbo, GPT-4o, and a fine-tuned ver- 448

sion GPT-4o+FT to gauge whether more power- 449

ful models offer significant improvements. Ad- 450

2https://huggingface.co/spaces/allenai/
reward-bench
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Oracle Model QP Prec. Overall F1

MutationOracle Llama-3.1-70B-Instruct (Dubey et al., 2024) 84.62 66.93
Prometheus2Absolute GPT-4-Turbo (OpenAI, 2024a) 76.15 67.55
InternLMOracle internlm2-20b-reward (Cai et al., 2024) 65.69 69.84
DiffOracle Llama-3.1-70B-Instruct (Dubey et al., 2024) 71.74 70.85
DiffOracle+FT Llama-3.1-70B-Instruct + Fine-tuning 69.07 76.94
MutationOracle+FT GPT-4o (OpenAI, 2024b) + Fine-tuning 74.51 77.38

Table 2: Performance of selected quality oracles on human-annotated data (full results in Appendix E.1). QP
Precision measures accuracy in preserving high-quality outputs, while Overall F1 reflects general classification
performance. Despite fine-tuning, no oracle fully aligns with human judgments, challenging KA1 and limiting their
reliability in guiding random-walk attacks.

ditional details on these oracle variants appear in451

Appendix E.1.452

We report both Quality Preserved (QP) Precision453

and Overall F1 to assess oracle performance. High454

QP Precision reduces false-positive approvals of455

degraded texts, a critical safeguard against cumula-456

tive quality erosion during multiple perturbations.457

The Overall F1 captures an oracle’s overall ability458

to classify text quality accurately.459

4.2.1 Results460

Table 2 summarizes each oracle’s runtime, return461

type, and performance. Our results show that462

current LLM-based quality oracles remain incon-463

sistent, limiting the feasibility of using them to464

guide watermark removal attacks. Even the best-465

performing oracle (GPT-4o+FT) attains an Over-466

all F1 of only 77.4%, implying that nearly one467

in five perturbations is misclassified. Fine-tuning468

and the use of powerful models like GPT-4o and469

GPT-4-Turbo do reduce errors somewhat, but not470

to a level sufficient for reliably guiding multi-step471

attacks. This misclassification compounds over re-472

peated perturbations, forcing adversaries to either473

accept noticeable quality loss or proceed with low474

attack efficiency.475

Among locally hosted models, the most ro-476

bust approaches used difference-aware or mutation-477

aware prompts – DiffOracle (QP Precision:478

70.9%) and MutationOracle (QP F1: 66.9%).479

Even after fine-tuning, however, these oracles480

still frequently labeled degraded outputs as high-481

quality. Moreover, high-scoring reward models482

from RewardBench (e.g., INFORMOracle at 95.1,483

SkyworkOracle at 94.3) often performed worse484

than simpler approaches, suggesting that generic485

reward tuning does not align well with the nuances486

of watermark-focused attacks. Collectively, these487

errors highlight a key limitation: LLM-based veri-488

fication is not as reliable as assumed. We discuss489

potential causes for this limitations in Section 5.490

Extended Comparison. While GPT-4o+FT 491

achieves the best results overall, its high cost 492

makes it impractical for many-step attacks. We 493

therefore ran a human evaluation comparing two 494

locally hosted oracles – the best boolean-based 495

(DiffOracle+FT) and the best floating-point 496

(InternLMOracle) – in a 150-step attack using 497

SentenceMutator, which induced the most 498

mixing in RQ1. Human judges found that 499

InternLMOracle preserved quality in 47.78% of 500

samples, compared to 40.0% for DiffOracle+FT 501

(Table 12). Bayesian analysis indicated an 85.08% 502

probability that InternLMOracle is genuinely 503

superior (Appendix E.4), leading us to select 504

InternLMOracle for further experiments despite 505

its remaining error rate. 506

4.3 RQ3. How effective are random walk 507

attacks in breaking watermarks when 508

controlling for quality? 509

Attack Methodology. We apply various pertur- 510

bation oracles to texts watermarked by KGW, SIR, 511

or Adaptive. At each step, a candidate edit is 512

proposed and accepted only if our quality oracle 513

(InternLMOracle) labels it as high-quality. We 514

track watermark detection scores and terminate 515

when a fixed number of mutation steps is reached 516

(details in Appendix G). An attack is deemed suc- 517

cessful if the final detection score is less than 518

µuw + 2σuw, where µuw and σuw are, respectively, 519

the mean and standard deviation of unwatermarked 520

texts’ detection scores. Under the assumption that 521

scores follow a normal distribution, being below 522

this threshold places the text in a region where 523

fewer than 2.3% of unwatermarked samples lie 524

above it, making it highly unlikely to be flagged 525

as watermarked. We define the attack success rate 526

(ASR) as the proportion of final texts that satisfy 527

this criterion. We record two key states along each 528

attack trace: (1) smin, corresponding to the lowest 529

watermark score achieved (as if an attacker had real- 530
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W P Oracle µw0 µwt ASRmin ASRfin Reviewed QP ¬QP Q-ASRfin

Adaptive Word 99.27 70.37 0.00 0.00 0 0 0 0.00
Adaptive EntropyWord 99.27 82.45 0.00 0.00 0 0 0 0.00
Adaptive Span 99.27 67.21 1.54 1.54 2 2 0 1.54
Adaptive Sentence 99.27 59.93 35.34 19.21 20 8 12 7.68
Adaptive Document 99.27 58.55 48.78 45.24 20 8 12 18.10
Adaptive Document1Step 99.27 70.94 1.16 1.16 2 2 0 1.16
Adaptive Document2Step 99.27 73.39 5.33 4.71 8 5 3 2.94

SIR Word 5.32 1.74 78.22 57.89 20 1 19 2.89
SIR EntropyWord 5.32 3.30 39.68 27.54 20 0 20 0.00
SIR Span 5.32 1.57 60.71 37.40 20 5 15 9.35
SIR Sentence 5.32 0.52 87.65 74.71 20 13 7 48.56
SIR Document 5.32 0.93 61.54 46.09 20 6 14 13.83
SIR Document1Step 5.32 2.54 14.04 14.04 12 11 1 12.87
SIR Document2Step 5.32 3.07 68.09 49.06 20 12 8 29.44

KGW Word 0.28 0.17 47.54 20.00 20 4 16 4.00
KGW EntropyWord 0.28 0.22 3.45 0.56 1 0 1 0.00
KGW Span 0.28 0.20 38.46 32.35 20 14 6 22.65
KGW Sentence 0.28 0.14 89.47 56.52 20 7 13 19.78
KGW Document 0.28 0.18 62.50 44.44 20 8 12 17.78
KGW Document1Step 0.28 0.27 12.66 8.54 14 7 7 4.27
KGW Document2Step 0.28 0.18 9.09 7.78 10 4 6 3.11

Averages (%) 36.44 26.13 40.48 59.52 10.47

Table 3: Attack success rates (ASR) across different perturbation strategies. Human review reveals an average of
59.52% of successfully attacked texts have degraded quality. µw0 represents the initial watermark score at step 0,
while µwt represents the final watermark score after t mutation steps.“min” refers to the point where the watermark
score is at its lowest during the attack while “fin” refers to score at the final step of the attack. “Reviewed” indicates
the number of human-reviewed examples where the watermark was broken. QP and ¬QP represent the number of
cases where human reviewers judged the attacked text as quality-preserving or degraded, respectively. Q-ASRfin is
the re-estimated attack success after controling for quality, calculated as ASRfin × (QP/Reviewed).

time detector feedback), and (2) sfin, produced531

when the perturbation budget is exhausted without532

direct detector feedback. This distinction clarifies533

how close attacks can come to fully erasing the534

watermark under ideal versus practical conditions.535

Quality Evaluation. Since automatic metrics536

can overlook subtle forms of degradation, we also537

ran a human evaluation using 10 volunteer anno-538

tators, primarily with STEM backgrounds, but no539

specialized linguistic expertise. Each annotator540

compared a watermarked text with its final attacked541

version, randomly labeled as text_A or text_B,542

and chose whether one was superior or if they were543

equivalent. Instructions (Appendix F) emphasized544

fluency, style, coherence, and prompt relevance.545

We gathered up to 20 successfully attacked texts546

per watermark-oracle pairing, then determined how547

often annotators judged the attacked text to be at548

least as good as the original. This proportion was549

used to adjust the baseline Q-ASRfin value, giving550

a more realistic estimate of attack success.551

4.3.1 Results552

Table 3 shows that watermarks remain highly re-553

sistant to random-walk attacks, especially under554

quality constraints. Across all perturbation strate-555

gies, final attack success rates (ASRfin) are low at 556

26.1% on average, with Adaptive proving the most 557

robust. After human review, adjusted success rates 558

(Q-ASRfin) drop by an average of 59.52%, with no 559

fairly evaluated attack succeeding more than half 560

the time. 561

The effectiveness of attacks varies by pertur- 562

bation type. Document-level edits perform best 563

against Adaptive and KGW, while sentence-level 564

perturbations show the highest success against 565

SIR and KGW. Yet, even sentence-level muta- 566

tions fail in most cases when quality is consid- 567

ered. Adaptive remains resistant to all strategies, 568

especially entropy-controlled and word-level muta- 569

tions, where no attack succeeds (Q-ASRmin = 0.00). 570

Word-level perturbations generally fail across all 571

watermarking schemes. 572

Overall, these findings highlight a major limita- 573

tion for adversaries: while watermark removal is 574

theoretically possible, preserving quality remains 575

a significant obstacle. Even under ideal conditions 576

– full perturbation budgets and access to detection 577

feedback – successful attacks often fail to maintain 578

human-perceived text quality. 579

7



5 Discussion580

The Tricky Irreducibility Assumption. An-581

other core assumption underlying the WITS frame-582

work that is difficult to evaluate empirically is that583

P induces an irreducible graph G≥q
x . In other584

words, in theory, any high-quality text state is reach-585

able from any starting point via a sequence of edits586

that all remain above the quality threshold q. How-587

ever, this assumption is highly nontrivial, especially588

considering (a) the inherent limitations of P, (b)589

the fact that edits are often local, and (c) the possi-590

bility that some transitions may necessarily involve591

brief dips below the threshold.592

To see why irreducibility might fail in practice,593

consider two high-quality responses to a prompt594

asking for a story: assume that one is Star Wars and595

another is The Lord of the Rings (LOTR). For one596

to transform into the other while remaining above597

the threshold, there would need to be a sequence of598

high-quality intermediate texts that blend elements599

of both franchises. If our threshold q is stringent600

– say, requiring not just correct language but also601

stylistic consistency and thematic clarity – then602

many “blend” stages would likely be muddled or603

incoherent, causing the text to fall below q.604

Hence, it is reasonable to suspect that the high-605

quality subgraph might contain distinct “islands”606

that cannot reach one another without temporarily607

leaving G≥q
x . In fact, when humans write – one608

character at a time – they invariably pass through609

numerous low-quality states (partial words, half-610

formed sentences) before arriving at any one of the611

various ways of saying something of quality. Local612

edit operators, such as those that insert or delete613

single tokens or small chunks of text, face a similar614

risk: even a small disruption can degrade quality if615

the threshold is strict.616

That said, irreducibility might still be recov-617

ered if we loosen our assumptions. For instance,618

we might allow momentary dips in quality dur-619

ing transitions so long as the process does not620

“get stuck” below q; or we could permit larger,621

more context-aware edits that can leap more622

cleanly between stylistic domains. In practice,623

these motivations led to the development of the624

Document2StepMutator, which aims to ensure625

that modifications are localized enough to avoid626

substantial quality degradation, yet also sufficiently627

broad to permit meaningful jumps. This design628

tries to strike a balance between remaining “near”629

high-quality states most of the time and retaining630

enough flexibility to move across different regions 631

of the text space – ideally preventing the formation 632

of disconnected “islands” of high-quality text. 633

Why do LLMs Struggle to Verify? While hu- 634

mans intuitively find verification easier than gen- 635

eration, this asymmetry may actually reverse for 636

LLMs due to their probabilistic architecture and 637

training paradigms. The core tension arises from 638

LLMs’ design as next-token predictors (Brown 639

et al., 2020), which optimizes them for fluency 640

over factual accuracy or logical rigor (Bender et al., 641

2021; Lin et al., 2021). Though techniques like 642

chain-of-thought prompting (Wei et al., 2022) can 643

simulate self-checking, the models remain funda- 644

mentally tuned to generate plausible continuations 645

– not to verify them. 646

Compounding this, LLMs lack exposure to the 647

iterative critique processes that shape human judg- 648

ment. Trained on polished outputs (Dodge et al., 649

2021), they rarely encounter explicit revisions (e.g., 650

drafts with margin notes like "this plot point con- 651

tradicts Chapter 3") that teach cause-effect relation- 652

ships between quality and text structure (Stiennon 653

et al., 2020). Consequently, their "critiques" often 654

reduce to surface-level heuristics (e.g., associating 655

complex syntax with professionalism) rather than 656

principled reasoning. 657

Whether verification is inherently harder for 658

LLMs may hinge on whether “quality” is reducible 659

to “likelihood.” If not, their adeptness at generating 660

fluent text may paradoxically hamper verification, 661

as polished outputs mask subtle shortcomings (Ben- 662

der et al., 2021), creating a hall-of-mirrors effect 663

where plausibility is mistaken for truth. 664

6 Conclusion 665

Our findings reveal that watermark removal via 666

random-walk attacks is far less certain than theoret- 667

ical work suggests. Slow mixing and imperfect 668

quality verification create significant real-world 669

barriers. These insights invite deeper investiga- 670

tion: evolving watermark schemes could exploit 671

the difficulty of consistent, high-quality edits, while 672

attackers must grapple with the costs and risks of 673

large-scale text manipulation. Our study also high- 674

lights the need for quality measures that align with 675

human judgment, not surface features. Addressing 676

these challenges – mixing speed, oracle reliability, 677

and quality standards – will ensure watermarking 678

remains viable against sophisticated attacks. 679
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Limitations680

While our findings highlight practical barriers to681

random-walk attacks, several limitations constrain682

their generalizability. First, we focus on three wa-683

termarking schemes (KGW, SIR, Adaptive) and684

specific perturbation oracles. Other schemes (Pan685

et al., 2024; Ren et al., 2024) and attack methods,686

especially those with advanced error-correction687

or alternative pathways (e.g., Rastogi and Pruthi688

(2024)), may yield different results.689

Second, while human verification is critical to690

assessing attack success – a factor often overlooked691

in prior work – our findings rely on a small, po-692

tentially non-representative group of annotators.693

Broader user studies, richer datasets, and more694

diverse oracle designs are needed to validate our695

conclusions across varied scenarios, though such696

efforts would require significant resources.697

Third, our analyses rely on LLM-based oracles698

fine-tuned for quality judgment, which still mis-699

classify 20% of edits. Future breakthroughs in text700

evaluation – such as low-cost reasoning models701

(DeepSeek-AI et al., 2025) or specialized reward702

functions – could improve verification accuracy to703

the levels required to sustain viable attacks.704

Finally, while we tested hundreds of perturba-705

tions, resource constraints limited exploration of706

arbitrarily large edit sequences. In theory, infinite707

steps might approach WITS’s stationary distribu-708

tion, but our results reveal substantial practical bar-709

riers. Computational costs further hinder scalabil-710

ity: DocumentMutator (based on DIPPER (Krishna711

et al., 2023)) took 213 seconds per attack step, ren-712

dering large-scale edits impractical.713
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A Appendix: Formal Definitions952

In this section, we provide formal definitions of objects mentioned in Section 2 and elaborate on some953

definitions. As with the background section, most of these are directly from (Zhang et al., 2024). Let us954

begin by providing formal definitions of objects mentioned in Section 2.955

Definition A.1 (ϵpert-Preserving Perturbation Oracle, (Zhang et al., 2024), Definition 6). Let P : X ×Y →956

Y be a randomized oracle that, given (x, y), outputs a new response y′. The oracle P is said to be ϵpert-957

preserving if for every x ∈ X and y ∈ Y ,958

Pr
[
Q
(
x,P(x, y)

)
≥ Q(x, y)

]
≥ ϵpert.959

Definition A.2 ((Zhang et al., 2024), Definition 8). Let G = (V,E) be a weighted directed graph, and P⃗960

be the transition matrix of G. We say that π⃗ ∈ Rn is a stationary distribution for P⃗ if: P⃗⊤ · π⃗ = π⃗.961

Definition A.3. A weighted directed graph G = (V, E) is irreducible if for any pair of vertices u, v ∈ V ,962

there exists a directed path from u to v with non-zero weight. In other words, there exists some t ≥ 1963

such that P⃗ t(i, j) > 0.964

Definition A.4. A weighted directed graph G = (V, E) is aperiodic if the greatest common divisor of the965

lengths of all directed cycles in G is 1.966

Let us now formally define the (hierarchically ordered) graph representations of P based on a prompt967

x ∈ X and the quality threshold q ∈ [0, 1].968

Definition A.5 ((Zhang et al., 2024), Definition 7). Fix an arbitrary prompt x ∈ X and consider the graph969

Gx = (Vx, Ex) whose vertex set is the output space of M (i.e., Vx = Y) and whose edge set Ex consists970

of all pairs (y, y′) such that971

Pr
[
y′ = P(x, y)

]
> 0.972

We assign weights w : Ex → [0, 1] to the edges by defining973

w(y, y′) = Pr
[
y′ = P(x, y)

]
.974

Note that while the vertices of the graph are determined by the prompt x ∈ X and the watermarking975

model M, the edges and their weights are determined solely by P. Let us now incorporate quality into the976

graph representation. Let G≥q
x be the subgraph of Gx given by977

V≥q
x = {y ∈ Y | Q(x, y) ≥ q},978

E≥q
x = {(y, y′) ∈ Y × Y | Q(x, y) ≥ q,Q(x, y′) ≥ q,Pr

[
y′ = P(x, y)

]
> 0},979

Notice that we can carry the same weight assignment to this subgraph. Iteratively applying P on this980

graph and rejecting low-quality mutations produces a random walk where981

P⃗(y,y′) = Pr
[
y′ = P(x, y)

]
.982

Before presenting the WITS impossibility result, we formally define watermarking schemes and related983

notions.984

Definition A.6 ((Zhang et al., 2024), Definition 3). LetM = {Mi : X → Y } be a class of generative985

models with key space K. A secret-key watermarking scheme forM consists of two efficient algorithms:986

• Watermark(M): A randomized algorithm that, given a model M ∈M, outputs a secret key k ∈ K987

and a corresponding watermarked model Mk : X → Y .988

• Detectk(x, y): A deterministic algorithm that, given a secret key k ∈ K, a prompt x ∈ X , and an989

output y ∈ Y , returns a bit b ∈ {0, 1} indicating whether the watermark is present (b = 1) or absent990

(b = 0).991
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We now define the false-positive rate ϵpos of a watermarking scheme. Notice that if we sample y
$←− π⃗, 992

we expect that y is unwatermarked with probability ϵpos. Since for every good watermarking scheme we 993

need ϵpos to be very small, this implies that outputs sampled from π⃗ will be unwatermarked with high 994

probability, i.e. with probability approximately 1− ϵpos. 995

Definition A.7 ((Zhang et al., 2024), Definition 4). A watermarking scheme Π has a false positive ϵpos-rate 996

if, for every model M ∈ {Mi : X → Y }, for every prompt x ∈ X , and for every output y ∈ Y , 997

Pr[Detectk(x, y) = 1] ≤ ϵpos. 998

Let us now define what it means for an adversary to break a watermarking scheme Π. Notice that one 999

might consider weaker notions of breaking a watermarking scheme, but they will be implied by the WITS 1000

result. 1001

Definition A.8 ((Zhang et al., 2024), Definition 5). Let Π = (Watermark,Detect) be a watermarking 1002

scheme for a class of generative models M = {Mi : X → Y } with associated quality function 1003

Q : X × Y → [0, 1]. We say that an adversary A ϵ-breaks Π if for every M ∈ M, for every prompt 1004

x ∈ X , we have: 1005

Pr
[
Detectk(x, y′) = 0 and Q(x, y′) ≥ Q(x, y) : y

$←−Mk(x), y
′ $←− A(x, y)

]
≥ ϵ 1006

where the probability is taken over (k,Mk) output by Watermark(M) and the random coins of A. 1007

We now introduce an additional technical definition that enables the attacker to trade off between output 1008

quality and attack success probability. Let v ∈ [0, 100] denote the desired quality percentile. In other 1009

words, the attacker aims to produce an unwatermarked output whose quality falls within the top v-th 1010

percentile among all responses generated by M on a given prompt x. To formalize this, define the set of 1011

achievable quality scores as 1012

QM,x =
{
q : Pr[Q(x,Mk(x)) = q : (k,Mk)

$←−Watermark(M)] > 0
}

1013

and let qM,x denote the v-th percentile of QM,x. We then define the overall minimum quality threshold as 1014

qmin = min
M∈M, x∈X

{qM,x} . 1015

We now state the WITS impossibility result. 1016

Theorem 1 ((Zhang et al., 2024), Theorem 6). Let Π = (Watermark,Detect) be a watermarking scheme 1017

for a class of generative modelsM = {Mi : X → Y} with an associated quality function Q : X × Y → 1018

[0, 1]. Let P : X × Y → Y be a perturbation oracle (defined over the same prompt space X and 1019

output space Y as the classM) with the same associated quality function Q : X × Y → [0, 1] as Π. 1020

For every non-watermarked model M ∈ M, for every prompt x ∈ X , for every quality q ∈ qmin, 1021

let π⃗x,q be the unique stationary distribution of the transition matrix P⃗x,q of G≥q
x . Let nx,q = |V≥q

x |, 1022

π
(x,q)
min = min{π⃗x,q(1), . . . , π⃗x,q(nx,q)} and g be the second largest eigenvalue of P⃗x,q in terms of absolute 1023

value. Let terr > 0 be a tunable parameter. Let tx,q be the ϵdist-mixing time of P⃗x,q, defined as follows: 1024

tx,q = ω

(
1

1− g
· log

(
1

π
(x,q)
min · ϵdist

))
1025

Assume the following holds: 1026

1. The watermarking scheme Π has a false positive ϵpos-rate; 1027

2. The perturbation oracle P is ϵpert-preserving; 1028

3. For every non-watermarked model M ∈M, for every prompt x ∈ X , for every quality q ∈ [qmin, 1], 1029

the q-quality x-prompt graph representation G≥q
x of P is irreducible and aperiodic. 1030
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Then, there exists an oracle-aided universal adversary AP(·,·),Q(·,·) that ϵ-breaks Π by submitting at1031

most t queries to P where1032

ϵ =
(
1− v

100

)
(1− ϵpos)(1− ϵdist)

(
1−

t−terr−1∑
k=0

(
t

k

)
(ϵpert)

k(1− ϵpert)
t−k

)
,1033

and1034

t = max
x∈X ,q∈[qmin,1]

{tx,q}+ terr.1035

By carefully tuning the parameter terr and running the attack long enough so that ϵdist becomes negligibly1036

small, the adversary can achieve a success probability close to1037 (
1− v

100

)
(1− ϵpos).1038

For example, targeting the median quality output (i.e., setting v = 50) restricts the adversary’s success1039

probability to roughly half of the maximum achievable rate.1040

B Appendix: Evaluation Setup1041

B.1 Watermark Details1042

For KGW and SIR, we use the implementations contained within the MarkLLM package3 (Pan et al., 2024)1043

with their default configurations. For Adaptive, we used the author’s implementation4 and due to initially1044

poor results, experimented heavily with different configurations to find one that best balanced initial1045

quality and detectability for Llama-3.1-70B-Instruct. The three tunable parameters we explored were1046

alpha, which thresholds the amount of token entropy required to watermark it; delta, which controls the1047

strength of boosting for watermarked tokens; and delta_0, which is the strength for watermarking the1048

first M = 50 tokens, which are always watermarked. Our analysis lead us to use alpha = 2.0, delta =1049

1.5, delta_0 = 1.0. Despite this extensive search, we still encountered intermittent issues with controlling1050

for generation length. Since all texts were capped at a maximum of 1024 tokens due to fixed input sizes1051

for various embedding models, some Adaptive responses were truncated mid-sentence, contributing to1052

their unusually high number of grammatical errors as seen in Table 5.1053

By plotting the distributions for each quality metric in Figures 1 through 4, we noticed that Adaptive1054

and SIR were vulnerable to producing highly distorted text with numerous quality issues. For example,1055

a single Adaptive generation contained over 250 grammatical issues, largely due to inexplicable letter1056

case alterations (e.g. “Over ThE nexT FEw dAYs, maggie partICIpaTed EnThusiasticALly I-n All ThE1057

acTivities OffeRed aT WIllOW crEeEk...”). We did not regenerate bad responses because the distortions1058

were a natural consequence of the watermarking algorithm itself, and regenerating them would obscure an1059

important challenge to their real-world use. If the algorithm produces highly distorted text in some cases,1060

then an attack is actually more likely to repair quality, rather than merely preserving it. At least some1061

cases in our study fit this profile and the attack should be fairly credited even if it generally does not work1062

for texts that start at a higher standard of quality.1063

3https://github.com/THU-BPM/MarkLLM
4https://github.com/yepengliu/adaptive-text-watermark
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Figure 1: InternLM Quality Distribution by Watermarking Scheme W

Figure 2: Perplexity Distribution by Watermarking Scheme W
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Figure 3: Unique Bigrams Distribution by Watermarking Scheme W

Figure 4: Grammar Errors Distribution by Watermarking Scheme W
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B.2 Entropy-Controlled Prompt Dataset 1064

To systematically evaluate the impact of response entropy on watermark robustness, we curated a dataset 1065

featuring increasingly specific prompts across three domains: creative writing, education, and journal- 1066

ism. For each domain, we start with a broad, high-entropy prompt and progressively add constraints to 1067

reduce entropy. Below, we illustrate this progression with representative prompts at entropy level 1 (least 1068

constrained), 5, and 10 (most constrained). 1069

Entropy Level Prompt

Creative Writing
1 Write a 500-word story.
5 Write a 500-word story about Evan, an American tourist, who falls for Emilie, a barista,

during a spring festival in Paris.
10 Write a 500-word story about Evan, an American tourist, who falls for Emilie, a barista,

during a spring festival in Paris. They bond over their love for Claude Monet’s
’Impression, Sunrise’ and the Hotel de Sully’s architecture, leading to walks along the
Seine. Their connection deepens amid shared laughter and explorations of Le Marais.
As the festival lights dance on the river, Evan shares his feelings with Emilie under
the starlit sky, promising to cherish the moments they’ve shared.

Education
1 Write a 500-word essay about the importance of space exploration.
5 Write a 500-word essay about the importance of space exploration, its role in advancing

human knowledge, and its potential to address global challenges like climate change
and resource scarcity, with a focus on technologies developed for space missions.

10 Write a 500-word essay about the importance of space exploration, its role in advancing
human knowledge, and its potential to address global challenges like climate change
and resource scarcity, with a focus on technologies developed for space missions,
their applications on Earth, the possibility of colonizing other planets like Mars,
the ethical considerations of interplanetary exploration, and the cultural significance
of humanity becoming an interstellar species.

Journalism
1 Write a 500-word news article.
5 Write a 500-word news article about a global climate summit where world leaders are

discussing strategies to combat climate change, with a focus on renewable energy
investments and carbon reduction targets, highlighting a groundbreaking agreement
between the US and China.

10 Write a 500-word news article about a global climate summit where world leaders are
discussing strategies to combat climate change, with a focus on renewable energy
investments and carbon reduction targets, highlighting a groundbreaking agreement
between the US and China, featuring perspectives from small island nations affected
by rising sea levels, addressing protests outside the summit calling for stronger
climate justice measures, covering a controversial speech by a major oil industry
representative, analyzing the summit’s key outcomes and challenges, and placing it in
the broader context of international efforts to achieve net-zero emissions by 2050.

Table 4: Representative entropy-controlled prompts across three domains: creative writing, education, and journalism.
Entropy increases by adding specificity, progressively constraining the response space.
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B.3 Dataset Statistics1070

Unwatermarked Watermarkered
GPT-4o Llama-3.1 Adaptive SIR KGW

Mean Watermarked Score (µw) – – 99.27 0.28 5.32
Mean Unwatermarked Score (µuw) – – 49.43 0.08 -0.83
Unwatermarked Standard Deviation (σuw) – – 3.37 0.07 1.05
Breakpoint (Score ≤ µuw + 2σuw) – – 56.16 0.21 1.27

Quality Score 1.85 0.27 0.45 0.16 0.43
Perplexity 18.39 9.38 63.32 8.87 9.56
Grammar Errors 2.20 3.69 16.21 4.24 2.86
Unique Bigrams Diversity 574.06 494.59 603.64 479.90 512.44

Mean Word Count 637.93 633.00 646.62 675.47 666.84
Generation Time (s) 15.24 274.27 671.75 335.12 292.24
Detection Time (s) – – 240.77 5.78 0.15

Table 5: Summary statistics for unwatermarked and watermarked text across different watermarking schemes,
highlighting detection scores, automatic quality metrics, and runtime statistics.
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B.4 Perturbation Oracle Details 1071

The perturbation oracles P define the mechanism by which adversarial modifications are applied to 1072

watermarked text. These oracles generate perturbations of varying granularity, from token-level edits to 1073

full-document paraphrasing, enabling a systematic analysis of their impact on watermark robustness. Since 1074

prior work, including Zhang et al. (2024), has not accounted for how different perturbation strategies affect 1075

attack success, we explore a diverse set of perturbation oracles to quantify their relative effectiveness. 1076

• WordMutator: Randomly replaces individual tokens by masking and filling them using RoBERTa 1077

(Liu et al., 2019). 1078

• EntropyWordMutator: Similar to WordMutator, but uses GPT-Neo-2.7B (Black et al., 2021) to 1079

target high-entropy tokens for replacement as they are most likely to carry watermark signals. 1080

• SpanMutator: Randomly masks six contiguous tokens at a time and fills them using T5-XL (Raffel 1081

et al., 2019). This is the only text-based perturbation oracle used in the WITS attack (Zhang et al., 1082

2024). 1083

• SentenceMutator: Randomly selects a sentence and paraphrases it creatively using Llama-3.1-8B 1084

(Dubey et al., 2024), introducing higher-level semantic shifts. 1085

• DocumentMutator: Uses the DIPPER paraphrase model (Krishna et al., 2023) to paraphrase multiple 1086

sections of the document simultaneously. 1087

• Document1StepMutator: Re-generates the entire document from scratch using Llama-3.1-8B, 1088

producing the most extreme form of perturbation while preserving meaning, quality, and formatting. 1089

• Document2StepMutator: Performs a two-step transformation, first selecting a random sentence and 1090

paraphrasing it creatively with Llama-3.1-8B, then performs a global consistency editing to ensure 1091

that the remaining text is consistent with the edited sentence. 1092

These perturbation oracles serve two key purposes in our study: (1) they enable us to analyze how 1093

the size of the perturbation affects movement within the perturbation graph G; and (2) they allow 1094

us to determine whether specific perturbation oracles are more effective at breaking watermarks. By 1095

systematically evaluating these oracles, we aim to establish whether certain perturbation strategies 1096

inherently favor watermark removal and whether prior work has underestimated their impact on attack 1097

success. 1098

To ensure sufficient opportunity for watermark removal, we allow a large number of perturbation 1099

steps, proportional to the average number of words edited per step. For example, WordMutator is given 1100

1000 steps, while DocumentMutator is given 100. Additionally, we note that each perturbation oracle 1101

was carefully calibrated to balance subtle modifications with sufficient impact on watermark signals, 1102

ensuring reproducibility by fixing random elements such as token selection and sampling temperature. 1103

Table 6 reveals a clear trade-off: while fine-grained oracles tend to preserve fluency, coarse-grained 1104

methods introduce larger variations – a difference that is partly mitigated by the consistency editing in the 1105

Document2StepMutator. 1106

P Steps Edits PPL ↓ Gram Err ↓ Approval ↑ Blocked ↓ QScore ↑ Time (s) ↓
Word 1000 1.8 40.4 10.2 0.80 0 -0.0688 0.10
EntropyWord 1000 1.1 16.8 9.2 0.82 0 -0.0949 0.28
Span 250 8.7 27.2 7.8 0.67 0 -0.0746 0.77
Sentence 150 31.3 21.0 4.6 0.74 0 0.2065 0.94
Document 100 216.0 11.2 9.1 0.36 0.12 -0.3151 213.12
Document1Step 100 138.2 10.6 2.1 0.42 0.12 0.0536 29.61
Document2Step 100 105.2 14.9 5.2 0.54 0.03 0.2089 34.78

Table 6: Performance metrics for each perturbation oracle. The columns report the number of attack steps, average
edits per step, average text perplexity (PPL), average number of grammar errors, average Q approval rate, average
rate at which Q blocks every perturbation for a given prompt, average InternLM quality score (QScore), and average
runtime per perturbation step in seconds. Emboldened values denote the best performance per metric.
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C Appendix: Distinguisher Prompt1107

Designing a distinguisher requires careful consideration, as failures can be difficult to attribute to either1108

implementation flaws or inherent limitations due to sufficient mixing. To address this challenge, we dedi-1109

cated significant effort to prompt engineering, developing 12 different distinguishers and systematically1110

benchmarking their performance. Somewhat unexpectedly, one of the simplest approaches proved to be1111

the most effective, and we describe it below.1112

An important implementation detail is ensuring that our distinguisher does not pass tests due to random1113

chance (as there are only 2 options it must choose between). Each test consists, on average, of 101114

periodically sampled texts throughout the random walk. The test is considered a failure if even one1115

sample fails, ensuring that the distinguisher can accurately deduce the origin throughout the entire attack.1116

Additionally, we find that when the distinguisher fails, it almost always selects response A as the origin.1117

We believe this to be due to positional bias. To combat this, every sample is distinguished as a best-of-2,1118

where the second trial swaps response A and response B. The sample is considered a failure if either trial1119

fails, minimizing the chance that the distinguisher succeeds by guessing. We remark that in every instance1120

where the distinguisher failed, the best-of-2 was a tie, and zero samples (out of 57650) were incorrectly1121

distinguished in both trials. This suggests the model was sometimes unable to overcome positional bias,1122

but was never directly wrong. In these cases, we defer the final verdict to a stronger model, ultimately1123

resulting in 100% accuracy.1124

The following Python code defines the main method of SimpleDistinguisher, implemented with1125

guidance (Lundberg et al., 2022) to support constrained decoding. This function is designed to analyze1126

response similarity while leveraging a predefined persona. The persona guides the AI model in determining1127

whether a given perturbed response (P) originated from one of two original responses (A or B).1128

1 persona = \1129
2 """1130
3 You are an expert in analyzing the similarity of responses.1131
4 You specialize in detecting whether one response has been derived from another by1132

carefully analyzing the content and structure of the text.1133
5 Your expertise in linguistic analysis allows you to distinguish which responses are1134

the most closely related.1135
6 Your goal is to provide a clear , concise , and accurate assessment of the provided1136

instructions.1137
7 """1138
81139
9 @guidance1140

10 def distinguish(lm, persona , ** kwargs):1141
11 if persona:1142
12 with system ():1143
13 lm += f"{ persona }"1144
14 with user():1145
15 lm += f"""1146
16 ### Task Description:1147
17 1. Read the following 3 responses. They are labelled "A", "B", and "P".1148
18 2. "A" and "B" are original responses , and "P" was generated by perturbing1149

one of the original responses.1150
19 3. Identify which of the original responses the perturbed story was derived1151

from.1152
201153
21 Original response A:1154
22 {kwargs ["A"]}1155
231156
24 Original response B:1157
25 {kwargs ["B"]}1158
261159
27 Perturbed response P:1160
28 {kwargs ["P"]}1161
29 """1162
30 with assistant ():1163
31 lm += f"""\1164
32 I believe the perturbed response P was derived from original response {1165

select (["A", "B"], name=" choice ")}.1166
33 """1167
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34 return lm 1168

Listing 1: Distinguisher Prompt Template

C.1 A Challenging Distinguisher Example 1169

As an example of the data used with the prompt above, we present an example that was particularly 1170

challenging for our distinguishers. After 108 sentence-level perturbations, GPT-4o was unable to accurately 1171

distinguish the origin. With around 30 seconds of reasoning, o3-mini-high correctly distinguished the 1172

origin, but had to correct itself while reasoning. We remark that the final section on NASA’s Artemis 1173

program makes distinguishing this example trivial for humans, suggesting that our distinguishers are 1174

significantly weaker than humans. The perturbed text, along with the two original responses, are provided 1175

below with some key phrases in bold. 1176

Perturbed Text (GPT-4o Failed to Distinguish) 1177

Venturing into space is a groundbreaking endeavor that unlocks a multitude of benefits, ex- 1178

tending far beyond the realms of scientific discovery and territorial growth. Space exploration, 1179

frequently overlooked, is a catalyst for scientific progress, driving the development of pioneering 1180

technologies and addressing humanity’s most pressing challenges directly, making it a pursuit of 1181

paramount importance that warrants greater acknowledgment and support. This essay examines 1182

the importance of space exploration, its potential to broaden our understanding, and its ability 1183

to contribute to resolving critical global challenges like environmental decay and resource 1184

exhaustion. Understanding the cosmos is vital, as it allows us to grasp the intricate mechanisms 1185

governing the universe and our place within it, ultimately expanding our comprehension of 1186

reality itself. Exploring the vastness of the universe reveals a profound comprehension of the 1187

fundamental laws that shape reality, the origin of life, and the intricate chronology of cosmic 1188

evolution that has spanned eons of time. Delving deeper into our environment not only quenches 1189

our innate desire for knowledge but also empowers us to make more informed choices about the 1190

planet’s destiny, thereby shaping our relationship with the world that surrounds us. The pursuit 1191

of space exploration has far-reaching consequences, resulting in numerous groundbreaking 1192

discoveries that cumulatively contribute to a significant improvement in global well-being, man- 1193

ifesting in a multitude of tangible advantages. The rapid evolution of technology, encompassing 1194

satellite communication, GPS, and medical imaging, has significantly influenced our daily 1195

routines, work, and relationships, transforming the way we interact and live our lives. Advances 1196

in technology have not only bridged the world but have also led to better health outcomes world- 1197

wide, significantly impacting our daily lives and perceptions. Beyond its contributions to science 1198

and technology, space exploration provides a distinctive vantage point for understanding the 1199

Earth and its interconnected systems. Viewing our planet from space offers a comprehensive 1200

understanding of the interconnectedness of Earth’s atmospheric, oceanic, and terrestrial systems, 1201

showcasing a cohesive entity that surpasses its individual components in complexity and unity. 1202

Understanding the effects of human actions on the environment is crucial for tackling pressing 1203

global issues, such as climate change, which is becoming more apparent with each passing day. 1204

Satellite imagery has been instrumental in tracking climate shifts, monitoring the growth of our 1205

oceans, and forecasting extreme weather events, all of which are crucial for comprehending 1206

the intricate dynamics of our planet’s ever-changing environment. Creating a resilient and 1207

lasting future demands a sophisticated understanding of climate change’s multifaceted impacts 1208

and the strategic application of targeted solutions to minimize its effects with accuracy and 1209

efficiency. One of the most significant benefits of space exploration is its potential to alleviate 1210

the consequences of dwindling resources on Earth. As the global population grows, the need 1211

for fundamental resources like food, water, and power is escalating, necessitating a significant 1212

boost in production to meet the rising demand. Exploring space can reveal previously unknown 1213

sources of essential materials, including minerals and water, which can be exploited to satisfy 1214
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the growing need for these vital resources. By 2024, NASA’s Artemis mission seeks to create a1215

self-sustaining lunar community, ultimately paving the way for a permanent human settlement1216

on the Moon that enables ongoing exploration and habitation. This expedition may reveal1217

new helium-3 deposits, a scarce isotope that could serve as a fuel for nuclear fusion reactions,1218

offering a potential source of power. Ultimately, space exploration is crucial for expanding1219

our understanding of the universe, fostering groundbreaking technological advancements, and1220

tackling pressing global issues such as environmental degradation and resource depletion. Ven-1221

turing into the unknown reaches of space not only expands our comprehension of the cosmos,1222

but also paves the way for groundbreaking discoveries that, in turn, significantly influence our1223

daily lives and overall well-being. Satellite imaging provides a distinct viewpoint, allowing1224

us to comprehend the intricacies of the obstacles we encounter and tackle them with greater1225

success. As we venture deeper into the cosmos, we may stumble upon innovative answers to1226

humanity’s most critical challenges, thereby ensuring a thriving and sustainable world for future1227

generations to inherit.1228

Original Response A1229

Space exploration is an essential endeavor for humanity, offering numerous benefits that extend1230

beyond the realm of scientific discovery. While some may view it as a luxury or a frivolous1231

pursuit, the reality is that space exploration plays a vital role in advancing human knowledge,1232

driving technological innovation, and addressing some of the most pressing global challenges we1233

face today. In this essay, we will explore the importance of space exploration, its contributions1234

to human understanding, and its potential to help mitigate global crises like climate change and1235

resource scarcity. One of the primary reasons space exploration is essential is that it allows us to1236

expand our understanding of the universe and our place within it. By exploring the cosmos,1237

we gain valuable insights into the fundamental laws of physics, the origins of life, and the1238

evolution of the universe. This knowledge not only satisfies our innate curiosity but also informs1239

our understanding of the world around us, enabling us to make more informed decisions about1240

our planet and its resources. Furthermore, space exploration drives technological innovation,1241

which has numerous spin-off benefits for society. The development of new technologies, such1242

as satellite communications, GPS, and medical imaging, has transformed the way we live, work,1243

and interact with one another. These innovations have also improved our daily lives, from1244

enabling global connectivity to enhancing healthcare outcomes. In addition to its scientific and1245

technological benefits, space exploration also offers a unique perspective on the Earth and its1246

systems. By studying the Earth from space, we gain a deeper understanding of the complex1247

interactions between our atmosphere, oceans, and landmasses. This knowledge is essential1248

for addressing global challenges like climate change, where the impacts of human activity on1249

the planet are becoming increasingly evident. Space-based observations have played a critical1250

role in monitoring climate change, tracking sea-level rise, and predicting weather patterns.1251

These insights are essential for developing effective strategies to mitigate the effects of climate1252

change and ensure a sustainable future. Another significant benefit of space exploration is its1253

potential to address resource scarcity. As the global population continues to grow, the demand1254

for resources like food, water, and energy is increasing. Space exploration offers a unique1255

opportunity to identify new sources of resources, such as minerals and water, that can help meet1256

this demand. For example, NASA’s Artemis program aims to return humans to the Moon1257

by 2024, with the long-term goal of establishing a sustainable presence on the lunar surface.1258

This mission could potentially unlock new resources, such as helium-3, a rare isotope that could1259

be used as fuel for nuclear fusion. In conclusion, space exploration is essential for advancing1260

human knowledge, driving technological innovation, and addressing global challenges like1261

climate change and resource scarcity. By exploring the cosmos, we gain valuable insights into1262

the universe and our place within it, while also developing new technologies that improve our1263

daily lives. Furthermore, space-based observations offer a unique perspective on the Earth and1264

its systems, enabling us to better understand and address the complex challenges we face. As1265

22



we continue to explore the vast expanse of space, we may uncover new solutions to some of 1266

humanity’s most pressing problems, ensuring a sustainable and prosperous future for generations 1267

to come. 1268

Original Response B 1269

Space exploration is an essential endeavor for humanity, offering numerous benefits that extend 1270

beyond the realm of scientific discovery. It plays a vital role in advancing human knowledge, 1271

driving technological innovations, and addressing pressing global challenges such as climate 1272

change and resource scarcity. In this essay, we will explore the significance of space exploration 1273

and its potential to shape the future of our planet and beyond. The pursuit of space exploration 1274

is often viewed as a costly and ambitious endeavor, but it is essential to recognize the significant 1275

contributions it makes to our understanding of the universe and the world we inhabit. By 1276

venturing into space, we gain insights into the fundamental laws of physics, the origins of life, 1277

and the evolution of the cosmos. These discoveries not only expand our scientific knowledge 1278

but also inspire new generations of scientists, engineers, and innovators. Furthermore, space 1279

exploration has led to numerous technological innovations that have transformed various aspects 1280

of our daily lives. From the development of GPS and telecommunications to medical imaging 1281

and weather forecasting, the spin-off benefits of space exploration have been substantial. These 1282

innovations have improved the quality of life for millions of people around the world and have 1283

also generated significant economic benefits. In addition to its scientific and technological 1284

benefits, space exploration also offers a unique opportunity to address pressing global 1285

challenges. For instance, the study of Earth from space provides critical insights into the 1286

health of our planet and the impacts of climate change. Satellite imaging and remote sensing 1287

technologies have enabled scientists to monitor deforestation, track ocean currents, and detect 1288

changes in global temperature patterns. This information is essential for developing effective 1289

strategies to mitigate the effects of climate change and promote sustainable development. 1290

Another significant benefit of space exploration is its potential to provide new resources and 1291

opportunities for economic growth. As the world’s population continues to grow, the demand 1292

for resources such as food, water, and energy will increase. Space exploration offers a way to 1293

address this challenge by accessing new sources of resources, such as asteroid mining and lunar 1294

helium-3 extraction. These resources could provide a clean and sustainable source of energy, 1295

reducing our reliance on fossil fuels and mitigating the impacts of climate change. Finally, 1296

space exploration offers a unique opportunity for international cooperation and diplomacy. In an 1297

era marked by increasing global tensions and conflict, space exploration provides a shared goal 1298

that can bring nations together. Collaborative efforts such as the International Space Station and 1299

the Artemis program have demonstrated the potential for space exploration to foster global 1300

cooperation and understanding. In conclusion, space exploration is essential for advancing 1301

human knowledge, driving technological innovations, and addressing pressing global challenges. 1302

Its significance extends beyond the realm of scientific discovery, offering numerous benefits that 1303

have the potential to shape the future of our planet and beyond. As we continue to explore the 1304

vastness of space, we must recognize the importance of investing in this endeavor and working 1305

together to address the challenges that lie ahead. By doing so, we can ensure that the benefits 1306

of space exploration are shared by all and that the next generation of scientists, engineers, and 1307

innovators is inspired to reach for the stars. 1308

D Extended Distinguisher Study 1309

In addition to the main RQ1 result, we designed an even more challenging evaluation setting to test 1310

whether sufficient mixing could obscure the lineage of perturbed texts. Specifically, we focus on the 1311

strongest P, SentenceMutator, as it previously demonstrated the highest capacity to evade detection 1312

by Llama-3.1-70B. To amplify its effect, we increase the perturbation budget from 150 to 500 steps, 1313

allowing the random walk significantly more opportunities to approach the stationary distribution. 1314
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Additionally, we constrain the attack to texts generated from the lowest-entropy prompts, ensuring that1315

candidate parent texts are highly similar to one another. This combination of (1) the strongest perturbation1316

oracle, (2) an extended attack budget, and (3) a highly confounded candidate pool creates the most1317

difficult setting for lineage attribution. If mixing is truly effective under these conditions, we would expect1318

distinguishability to approach random chance.1319

We find that although the task was more challenging, with more failures on average, o3-mini-high1320

still had no issues in distinguishing the origin in each test.1321

P Oracle Steps Tests Llama-3.1-70B GPT-4o o3-mini-high

Sentence 500 54 13 3 0

Cumulative Distinguished (%) 75.9 94.4 100

Table 7: Summary of failed distinguisher tests on the most challenging settings. Classification is first performed
by Llama-3.1-70B, followed by GPT-4o on its failures, then o3-mini-high on any remaining cases. The overall
100% success rate indicates that the attacked texts never lose memory of their starting points, contradicting KA1
and suggesting that a stationary distribution is not reached in practice.

D.1 Breakdown by Domain and Entropy1322

We find domain to be significant in distinguishability, but surprisingly, not entropy.1323

Domain Failed Distinguishes (Main) Failed Distinguishes (Challenge)

Journalism 6/1458 0/18
Creative Writing 7/1560 6/18
Education 40/1537 7/18

Table 8: Domain distribution for tests which Llama-3.1-70B failed to distinguish.

Entropy Failed Distinguishes (Main) Failed Distinguishes (Challenge)

1 7/462 N/A
2 4/457 N/A
3 8/468 N/A
4 9/462 N/A
5 3/450 N/A
6 1/468 N/A
7 6/450 N/A
8 2/438 N/A
9 5/456 N/A

10 8/444 13/54

Table 9: Entropy distribution for tests which Llama-3.1-70B failed to distinguish.
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E Appendix: Quality Oracles 1324

E.1 Oracle Details 1325

The quality oracles determine whether the perturbations introduced by various P preserve the original 1326

text’s quality. Each oracle operates by querying an LLM with a prompt and some continuation text using 1327

different strategies to assess preservation of meaning, fluency, and coherence. The quality decision is 1328

based on whether the mutated text is judged to be as good as or better than the original. All oracle queries 1329

include the original prompt to provide context for evaluation. 1330

We implement and evaluate eight distinct quality oracles using guidance (Lundberg et al., 2022) to 1331

support constrained decoding for ranking, scoring, and preference based assessments. 1332

• RankOracle: Q is prompted to rank the two responses in terms of preference, and the order of texts 1333

is then reversed in a second query. If the mutated text is preferred in both cases, quality is considered 1334

preserved. 1335

• SoloOracle: Q is prompted twice, independently grading each text on a numerical scale. If the 1336

mutated text receives a score equal to or higher than the original, its quality is considered preserved. 1337

• JointOracle: Similar to SoloOracle, but Q assigns numerical scores to both texts in the same 1338

prompt. The order is flipped in a second query. If the mutated text scores equal to or higher in both 1339

cases, quality is preserved. 1340

• RelativeOracle: Q is prompted to select the better response or declare a tie, repeating the query 1341

with the order reversed. If the mutated text is chosen in both cases or a tie is declared, quality is 1342

preserved. 1343

• BinaryOracle: Q is asked a direct yes/no question: “Is the mutated text just as good or better than 1344

the original?” If the response is “yes”, quality is preserved. 1345

• MutationOracle: Similar to BinaryOracle, but the prompt explicitly states that the mutated text is 1346

a modification of the original. The query is repeated with the order reversed. If both responses are 1347

“yes”, quality is preserved. 1348

• ExampleOracle: Similar to BinaryOracle, but includes an example (1-shot prompting) before 1349

presenting the actual texts. If the response is “yes”, quality is preserved. 1350

• DiffOracle: Q is provided with the original text, mutated text, and a computed diff between them. 1351

It is asked whether these changes are acceptable. If the response is “yes”, quality is preserved. 1352

These oracles serve as key components in our evaluation framework, allowing us to systematically 1353

assess how to best approximate human judgments of quality. By incorporating multiple prompting 1354

strategies, we ensure robustness in our analysis of watermark perturbation effectiveness. 1355

E.2 Sandcastle Dataset Statistics 1356

Since absolute quality scoring is difficult for humans (Chiang et al., 2024), we formulated the annotation 1357

task as pairwise preference judgments with a tie option. Several coauthors, following standardized 1358

guidelines, compared perturbed texts to their originals, unaware of which was which. Table 10 shows the 1359

class distribution, where we merged "Attacked Better" and "Tie" into a Quality Preserved (QP) category 1360

to support binary classification. 1361

Quality Preserved Quality Degraded
Split Attacked Better Tie Original Better Total

Train 12 238 306 556
Test 1 103 135 239

Total 13 341 441 795

Table 10: Distribution of human quality assessments by split for the Sandcastles dataset. The table details counts
for cases where attacked outputs were rated as "Attacked Better" or "Tie" (grouped under Quality Preserved (QP))
versus "Original Better", along with overall totals for both training and test sets.
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E.3 Full Oracle Results1362

Table 11 provides a detailed comparison of quality oracles, including inference time, QP Precision, Overall1363

F1, and RewardBench scores where available. Despite fine-tuning, no oracle fully aligns with human1364

judgments, and high RewardBench scores do not guarantee strong performance in our setting. Proprietary1365

models like GPT-4o with fine-tuning perform best but are impractical for large-scale attacks. Locally1366

hosted models (MutationOracle, DiffOracle) offer a viable alternative but still misclassify degraded1367

outputs. These results highlight the challenges of using LLM-based oracles for reliable watermark attack1368

guidance.1369

Oracle Model Type Time (s) QP Prec. Overall F1 RB Score

SkyworkOracle Skywork-Reward-Gemma-2-27B-v0.2 (Liu et al., 2024c) FLOAT 2.22 43.51 26.39 94.3
RankOracle Llama-3.1-70B-Instruct (Dubey et al., 2024) BOOL 4.33 50.00 37.09 –
SoloOracle Llama-3.1-70B-Instruct (Dubey et al., 2024) INT 2.23 49.49 39.86 –
JointOracle Llama-3.1-70B-Instruct (Dubey et al., 2024) INT 3.62 53.85 40.85 –
INFORMOracle INF-ORM-Llama3.1-70B (Minghao, 2024) FLOAT 5.81 65.63 54.40 95.1
QRMOracle QRM-Gemma-2-27B (Dorka, 2024) FLOAT 3.28 50.68 56.98 94.4
RelativeOracle Llama-3.1-70B-Instruct (Dubey et al., 2024) CLASS 2.76 79.59 63.07 –
ExampleOracle Llama-3.1-70B-Instruct (Dubey et al., 2024) BOOL 1.33 79.59 63.07 –
BinaryOracle Llama-3.1-70B-Instruct (Dubey et al., 2024) BOOL 1.27 61.90 63.82 –
ArmoRMOracle ArmoRM-Llama3-8B-v0.1 (Wang et al., 2024) FLOAT 0.33 65.71 64.26 90.4
OffsetBiasOracle Llama-3-OffsetBias-RM-8B (Park et al., 2024) FLOAT 0.32 62.22 65.30 89.6
Prometheus2Absolute prometheus-8x7b-v2.0 (Kim et al., 2024) FLOAT 7.28 74.78 66.73 74.5
Prometheus2Relative prometheus-8x7b-v2.0 (Kim et al., 2024) BOOL 7.36 74.78 66.73 74.5
Prometheus2Absolute GPT-4o (OpenAI, 2024b) INT 7.93 76.70 66.87 –
MutationOracle Llama-3.1-70B-Instruct (Dubey et al., 2024) BOOL 2.74 84.62 66.93 –
Prometheus2Relative GPT-4o (OpenAI, 2024b) BOOL 7.73 77.23 67.05 –
Prometheus2Relative GPT-4-Turbo (OpenAI, 2024a) BOOL 11.94 75.00 67.27 –
Prometheus2Absolute GPT-4-Turbo (OpenAI, 2024a) INT 12.46 76.15 67.55 –
InternLMOracle internlm2-20b-reward (Cai et al., 2024) FLOAT 0.86 65.69 69.84 90.6
DiffOracle Llama-3.1-70B-Instruct (Dubey et al., 2024) BOOL 1.83 71.74 70.85 –
MutationOracle+FT Llama-3.1-70B-Instruct + Fine-tuning BOOL 3.25 81.18 71.83 –
DiffOracle+FT Llama-3.1-70B-Instruct + Fine-tuning BOOL 1.80 69.07 76.94 –
DiffOracle+FT GPT-4o (OpenAI, 2024b) + Fine-tuning BOOL 0.46 75.51 77.32 –
MutationOracle+FT GPT-4o (OpenAI, 2024b) + Fine-tuning BOOL 0.84 74.51 77.38 –

Table 11: Overview of oracle performance on our human-annotated test set. For each oracle we report average
inference time, Quality-Preserved (QP) Precision, Overall F1, and RewardBench (RB) Score when available.
Despite fine-tuning on human judgements, no oracle perfectly capture human quality assessments, and high RB
Scores did not predict strong performance in our evaluation setting.
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E.4 InternLM vs DiffOracle 1370

We compared the proportion of cases where humans agreed that the quality of generated outputs was 1371

preserved. The results, summarized in Table 12, show that InternLMOracle had a higher agreement rate 1372

(47.78%) than DiffOracle+FT (40.0%). 1373

Oracle Agree QP Disagree QP

DiffOracle 40.00 60.00
InternLM 47.78 52.22

Table 12: Comparison of human agreement rates on quality preservation (QP) percentages between DiffOracle and
InternLM. InternLM shows a higher agreement rate, suggesting it aligns better with human judgments.

To quantify the probability that InternLMOracle is genuinely the better oracle, we adopt a Bayesian 1374

approach, modeling the probability of agreement for each oracle as a Beta distribution: 1375

pA ∼ Beta(A+ 1, NA −A+ 1),

pB ∼ Beta(B + 1, NB −B + 1)
1376

where A and B are the counts of human agreement for DiffOracle+FT and InternLMOracle, respec- 1377

tively, and NA and NB are the total evaluations for each oracle. 1378

Using a Monte Carlo simulation with 100,000 samples, we estimate: 1379

P (pB > pA) ≈ 85.08% 1380

indicating that InternLMOracle has an 85.08% probability of being the better judge in preserving 1381

quality according to human evaluators. Given this high confidence, we justify the use of InternLMOracle 1382

as the preferred oracle for further evaluations5. 1383

F Appendix: Human Annotation Details 1384

Annotators were provided with the following instructions when reviewing: 1385

• Determine which is a better response to the prompt: text A, text B, or tie. 1386

• Judge quality based on content, style, cohesion, and prompt relevance. 1387

• Note: Formatting is not especially important for quality (e.g. paragraph breaks should be ignored). 1388

These guidelines ensured that evaluations focused on meaningful quality differences rather than 1389

superficial formatting artifacts. 1390

5This surprising reversal of performance may be attributable to DiffOracle+FT managing too much noise in the changelog
of edits when attacks exceed 20 steps (the maximum attack length present in the Sandcastles dataset).
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G Appendix: Extended Attack Results Analysis1391

Table 13 provides a detailed breakdown of attack performance, including automated quality metrics,1392

revealing several notable patterns. One interesting finding is that, in some cases, attacks appear to “improve”1393

certain quality metrics, such as perplexity and grammar error rates. This effect is most pronounced for the1394

Adaptive watermark, where the average perplexity and grammar errors decrease post-attack. However,1395

this improvement is largely driven by a few low-quality outliers in the original watermarked dataset,1396

rather than a systematic enhancement of text fluency. Despite these reductions in surface-level errors, the1397

InternLM quality score consistently drops, indicating that attacks tend to reduce overall coherence and1398

relevance, even when fluency-related metrics superficially improve.1399

Another trend is that unique bigram diversity (µdt) increases slightly in many cases, particularly for1400

sentence- and document-level attacks. This suggests that perturbations introduce more varied word1401

sequences, potentially disrupting structured patterns imposed by watermarking. However, this increase is1402

relatively small, meaning that while attacks may inject lexical diversity, they do not necessarily enhance1403

the text in a meaningful way. Instead, the most aggressive perturbation strategies—particularly sentence-1404

and document-level attacks—cause the largest drops in the InternLM quality score, reinforcing the idea1405

that these attacks are the most disruptive to text coherence. While they achieve the highest watermark1406

removal rates, they also tend to introduce noticeable degradation, making the resulting text less natural1407

and readable.1408

By contrast, perturbation strategies that fail to effectively break watermarks, such as word-level and1409

entropy-based edits, also have minimal impact on quality metrics. This suggests that these finer-grained1410

mutations are too minor to erase watermark signals while also being too weak to meaningfully degrade1411

text fluency. More broadly, the average attack success rate remains relatively low even before enforcing1412

quality constraints, with ASRfin at only 26.13%. After accounting for quality degradation, this drops1413

further to just 10.47%, confirming that successfully removing watermarks without compromising text1414

quality remains a substantial challenge for adversaries.1415
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Figure 5: Attack success rate (ASR) vs. detection threshold for the Adaptive watermarking scheme. Each curve
represents a different perturbation oracle, with thresholds measured in standard deviations above the unwatermarked
mean.

G.1 Attack Success Rate vs. Detection Threshold1416

Figures 7, 6, and 5 plot the final attack success rate (ASR) for each perturbation oracle under the1417

KGW, SIR, and Adaptive watermarking schemes, respectively. The horizontal axis represents detection1418

thresholds measured in standard deviations above the mean detection score for unwatermarked text (i.e.,1419

0σ, 1σ, 2σ, or 3σ). A higher threshold allows more texts to be considered “unwatermarked,” so ASR1420

generally increases as we move to the right. The vertical axis indicates the fraction of attacked texts that1421

fall below each threshold once all permitted mutations have been applied.1422

Each curve corresponds to a specific mutator—Word, EntropyWord, Span, Sentence, Document,1423

Document1Step, or Document2Step—with line style distinguishing smin (dotted) from sfin (solid). In1424

general, token-level P (Word, EntropyWord, Span) make smaller, more localized edits, while document-1425

level P (Document, Document1Step, Document2Step) can restructure larger portions of text. Comparing1426

these curves reveals which P achieve higher ASR for each watermarking scheme and how sensitive those1427

results are to stricter or looser detection thresholds.1428

Overall, two main patterns emerge. First, as the detection threshold increases, more perturbed texts1429

evade being flagged, causing the ASR curves to rise. Second, the extent of this rise varies across both1430

watermarking schemes and P: some methods prove more effective at evading detection for KGW or SIR,1431

whereas Adaptive typically shows lower ASR across thresholds. This aligns with our broader observation1432

that larger, more context-aware edits (Document-based P) often outperform smaller, token-level edits, but1433

still rarely achieve high success rates without risking noticeable quality degradation.1434
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Figure 6: Attack success rate (ASR) vs. detection threshold for the SIR watermarking scheme. The plot shows the
fraction of attacked texts falling below various thresholds (in standard deviations above the unwatermarked mean)
for multiple perturbation oracles.

Figure 7: Attack success rate (ASR) vs. detection threshold for the KGW watermarking scheme. Different curves
correspond to various perturbation oracles, with the detection threshold defined as standard deviations above the
mean detection score of unwatermarked texts.

31



H Appendix: What factors contributed to attack inefficiency?1435

The efficiency of the WITS attack against private watermarking schemes is hampered by two interrelated1436

challenges. First, the attack relies on a random walk that must approach its stationary distribution, with the1437

mixing time critically dependent on the second-largest eigenvalue, g, of the transition matrix P⃗ . Not only1438

is computing g exactly infeasible, but even approximating it is extremely difficult. In practice, the size1439

and complexity of P⃗—which depends on factors such as the mutator, prompt, and quality barrier—make1440

computing any information about P⃗ computationally intractable. As a result, the attacker must rely on1441

upper bounds for g to estimate the mixing time, a strategy that introduces significant uncertainty into the1442

overall attack duration. Notice that this isn’t an issue for public watermarking schemes since the attacker1443

can stop as soon as the watermark is removed.1444

Second, attempts to accelerate the mixing process—such as by increasing the step size of the pertur-1445

bation oracle—risk degrading the quality of the text. As quality decreases, so does the success rate of1446

mutations (i.e., the effective constant ϵpert no longer holds), which in turn negates the benefits of improved1447

mixing by requiring even more iterations to produce acceptable outputs.1448

In essence, there is a fundamental tension between reducing the mixing time to achieve attack efficiency1449

and maintaining the quality of the attacked text. A more refined theoretical analysis that balances these1450

competing factors is necessary to fully understand the capabilities of the WITS attack. We leave this1451

compelling direction for future work.1452

Figures 8, 9, 10, and 11 below illustrate the rolling success rate of mutations across various watermarking1453

schemes and mutator types, thereby supporting our first claim. In these computations, the window size is1454

defined as one-tenth of the total number of mutator steps (e.g., for the Sentence Mutator, 150/10 = 151455

steps).1456

Notably, P characterized by larger step sizes exhibit lower success rates. Furthermore, the plots reveal1457

a modest correlation between the mutation success rate and the entropy level: prompts with lower entropy1458

tend to have reduced success rates. This phenomenon may be attributable to the fact that lower-entropy1459

prompts are generally longer, thereby increasing the difficulty of generating a mutated response that1460

maintains high quality. Consequently, any interpretation of this correlation should be approached with1461

caution.1462
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Figure 8: Rolling success rate for GPT-4o generations, which are unwatermarked.
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Figure 9: Rolling success rate for the KGW watermark.
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Figure 10: Rolling success rate for the SIR watermark.
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Figure 11: Rolling success rate for the Adaptive watermark.
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