SPFT-SQL: Enhancing Large Language Model for Text-to-SQL Parsing by
Self-Play Fine-Tuning

Anonymous ACL submission

Abstract

Despite the significant advancements of self-
play fine-tuning (SPIN), which can transform a
weak large language model (LLM) into a strong
one through competitive interactions between
models of varying capabilities, it still faces chal-
lenges in the Text-to-SQL task. SPIN does not
generate new information, and the large num-
ber of correct SQL queries produced by the
opponent model during self-play reduces the
main model’s ability to generate accurate SQL
queries. To address this challenge, we propose
a new self-play fine-tuning method tailored for
the Text-to-SQL task, called SPFT-SQL. Prior
to self-play, we introduce a validation-based
iterative fine-tuning approach, which synthe-
sizes high-quality fine-tuning data iteratively
based on the database schema and validation
feedback to enhance model performance, while
building a model base with varying capabili-
ties. During the self-play fine-tuning phase,
we propose an error-driven loss method that in-
centivizes incorrect outputs from the opponent
model, enabling the main model to distinguish
between correct SQL and erroneous SQL gener-
ated by the opponent model, thereby improving
its ability to generate correct SQL. Extensive
experiments and in-depth analyses on six open-
source LLMs and five widely used benchmarks
demonstrate that our approach outperforms ex-
isting state-of-the-art (SOTA) methods.

1 Introduction

Text-to-SQL (Qin et al., 2022; Li et al., 2024b) aims
to automatically convert natural language questions
into SQL queries, enabling non-expert users to eas-
ily retrieve information from databases. Recent
studies (Sun et al., 2024; Li et al., 2024a; Pour-
reza and Rafiei, 2024b) have demonstrated that
supervised fine-tuning (SFT) (Ouyang et al., 2022)
can significantly enhance performance on Text-to-
SQL tasks by transforming a general-purpose open-
source LLM into a specialized one. Additionally,

90

87.4

851 83.7 835 835 837

81.5

80 79.0

Execution Accuracy (%)

75

T T T T T T T
Qwen2.5-Coder-7B SFT SPIN CodeS-7B SENSE-7B ROUTE-7B SPFT-SQL

Figure 1: Comparison results on the Spider (Yu et al.,
2018) dataset, the base model of SFT, SPIN (Chen et al.,
2024b), and SPFT-SQL is Qwen2.5-Coder 7B.

SFT-based approaches have gained widespread re-
search attention due to their potential to address
privacy risks and reduce overhead associated with
closed-source LLMs (e.g., GPT-4 (Achiam et al.,
2023)) (Gao et al., 2024; Pourreza and Rafiei,
2024a; Lee et al., 2024). However, a major chal-
lenge for SFT-based methods is the high cost of ac-
quiring Text-to-SQL data, which typically requires
manual expert annotation.

To address this issue, recent efforts (Yang et al.,
2024; Li et al., 2024a; Zhang et al., 2024b) have
proposed data synthesis strategies for generating
Text-to-SQL data and fine-tuning open-source mod-
els, yielding significant performance improvements
(see Figure 1). However, these methods still rely on
closed-source LLLMs, such as GPT-3.5/4 (Achiam
et al., 2023), for data synthesis, raising privacy
concerns. In response, ROUTE (Qin et al., 2025)
introduced a method for synthesizing fine-tuning
data for tasks like Text-to-SQL and Schema Link-
ing using open-source models, improving model
generalization through multi-task supervised fine-
tuning and achieving a new state-of-the-art (SOTA)
performance. However, the limited generation ca-
pacity of open-source models restricts the quality

of synthetic data, which in turn limits model per-
formance.

An alternative approach involves iteratively syn-
thesizing data through self-play fine-tuning (SPIN)
(Chen et al., 2024b; Cheng et al., 2025; Wu et al.,
2024) to transform a weak LLLM into a stronger one.
Self-play, which has been successfully applied in
domains such as reasoning (Cheng et al., 2025),
AlphaGo (Silver et al., 2016), and AlphaZero (Sil-
ver et al., 2017), enables models to compete with
themselves at various stages, enhancing both per-
formance and data synthesis capabilities while over-
coming the limitations of open-source model gen-
eration. In the context of the Text-to-SQL task,
the only prior work (Liu et al., 2022) applied self-
play to multi-turn Text-to-SQL, generating multiple
rounds of intermediate questions and answers for
data augmentation. While this method improved
performance in multi-turn tasks, it is not applica-
ble to single-turn Text-to-SQL, as it only generates
intermediate data based on existing annotated pairs.

This motivates us to conduct a thorough evalua-
tion of SPIN in the Text-to-SQL task, assessing its
potential as an alternative approach. As shown in
Figure 1, applying the existing SPIN method (Chen
et al., 2024b) to Text-to-SQL results in a significant
performance drop, which is much lower than that
of SFT-based methods utilizing existing data syn-
thesis techniques (Qin et al., 2025; Li et al., 2024a;
Yang et al., 2024). A subsequent analysis of failure
cases reveals two key challenges for SPIN in the
Text-to-SQL domain. First, SPIN only synthesizes
SQL queries from existing natural language ques-
tions, without generating new information. This
limitation restricts the model’s ability to improve,
and repeated training leads to overfitting. Second,
the self-play mechanism in SPIN treats all data gen-
erated by the opponent model as incorrect, which
results in many valid SQL queries being discarded
as erroneous, thus hindering the model’s ability to
learn from errors.

To address these challenges, we propose a self-
play fine-tuning method for Text-to-SQL tasks,
called SPFT-SQL. Specifically, prior to self-play,
we introduce a verification-based iterative super-
vised fine-tuning approach that iteratively synthe-
sizes high-quality data for fine-tuning the LLM.
This method randomly selects schemas (e.g., tables
and columns) from the database and combines them
with SQL templates to generate executable SQL
queries. Corresponding natural language questions
(NLQs) are then synthesized using a SQL-to-Text

model. The synthesized NLQ-SQL pairs are used
to fine-tune the Text-to-SQL model, enhancing
its performance. The SQL-to-Text model is sub-
sequently updated with the synthesized data that
passes a validation strategy. During self-play fine-
tuning, the strongest model from the previous stage
serves as the main model, while the weakest model
acts as the opponent. We introduce an error-driven
loss function that penalizes correct SQL queries
generated by the opponent model and incentivizes
the generation of incorrect queries. This mecha-
nism enables the main model to better distinguish
between correct and incorrect results, thus improv-
ing its ability to generate correct SQL queries. In
the next iteration, the newly acquired main model
is incorporated into the next round of supervised
fine-tuning.

The main contributions of this work are as fol-
lows:

* We first evaluated the performance of the
SPIN method on the Text-to-SQL task and
found that the existing SPIN method per-
forms poorly in this context. This prompted
us to propose a new self-play fine-tuning
method specifically designed for the Text-to-
SQL task.

* We propose a validation-based iterative fine-
tuning framework that synthesizes data itera-
tively based on the database schema and im-
proves data quality through validation feed-
back, thereby continuously enhancing model
performance.

* We introduce an error-driven loss that incen-
tivizes the generation of incorrect outputs by
the opponent model during the self-play fine-
tuning phase. This enables the main model
to distinguish between correct SQL and erro-
neous SQL generated by the opponent model,
ultimately improving the main model’s ability
to generate accurate SQL queries.

» Extensive experiments on five datasets and six
open-source LLLMs of varying types and pa-
rameter sizes. The results demonstrate that
our approach not only effectively improves
model performance but also outperforms other
SOTA methods based on open-source mod-
els. Furthermore, after fine-tuning with our
method, small-parameter open-source models
outperform methods based on large-parameter,
closed-source LLM.

Stage 1: Validation-based Iterative Fine-Tuning

~
’ Text-to-SQL Data Synthesis

i

1

1 : j

| _— >
! N !
1

! 1
\

1
SQL Synthesis NLQ :
\ Generation _/ N

-—
-—

SQL Template

o
0}0
o

1 .
\ Schema Processing

Stage 2: Self-Play Fine-Tuning

7
.

Right
Case

SFT SQL-to-Text
a Error

, \ Opponent LLM Main LLM
i +* ot
! A, [| l
: l—,] 1 1
— \‘\D hot
: Evaluation : - -[Self-play Fine-Tuning]
v_ Feedback '

LLM
Case

Figure 2: An overview of SPFT-SQL framework.

2 Related Works

Self-Play Fine-Tuning Self-play (Zhang et al.,
2024a; DiGiovanni and Zell, 2021), where the al-
gorithm learns by competing against itself, has
gained significant attention due to its success in
AlphaGo (Silver et al., 2016) and AlphaZero (Sil-
ver et al., 2017). To transform a weak LLLM into a
stronger one, existing studies (Chen et al., 2024b;
Alami et al., 2024; Yin et al., 2024; Wu et al., 2025)
have proposed introducing self-play mechanisms
into LLMs without requiring additional human-
annotated data. In the text-to-SQL task, there is
only one prior work (Liu et al., 2022) that applies
self-play to text-to-SQL. However, this method
only uses self-play to generate multiple rounds of
intermediate data based on existing annotated data,
which makes it inapplicable to single-turn text-to-
SQL tasks. In contrast to previous studies, our
SPFT-SQL introduces self-play fine-tuning into the
text-to-SQL task by iteratively synthesizing new
text-to-SQL pairs for data augmentation. Further-
more, we propose an error-incentive loss that en-
courages the generation of erroneous outputs by
the opponent model, thereby enhancing the main
model’s ability to generate correct SQL queries.

SFT-based Text-to-SQL To improve the perfor-
mance of open-source LLMs on text-to-SQL tasks,
existing research (Sun et al., 2024; Chen et al.,
2024a; Pourreza and Rafiei, 2024b) has applied su-
pervised fine-tuning on annotated data. However,
a key challenge remains the high cost of human-
annotated data. To reduce this cost, some efforts
(Li et al., 2024a; Yang et al., 2024) have employed
various data synthesis strategies, using LLMs to
generate data for fine-tuning. However, these meth-

ods rely on the general capabilities of closed-source
LLMs, such as GPT-4, which raises privacy con-
cerns. To address this issue, Route (Qin et al., 2025)
proposed a data augmentation approach to improve
generalization using open-source LL.Ms. In con-
trast to previous work, our SPFT-SQL method it-
eratively synthesizes high-quality data through the
self-play mechanism.

3 Methodology

The SPFT-SQL framework consists of two stages:
Verification-Based Iterative Fine-Tuning and Self-
Play Fine-Tuning, as illustrated in Figure 2. In the
first stage, verification-based iterative fine-tuning
continuously generates high-quality data for fine-
tuning, producing various candidate text-to-SQL
models for the subsequent self-play phase. During
self-play fine-tuning, the strongest model from the
previous stage serves as the main model, while the
weakest model functions as the opponent. Using
the proposed error-driven loss, self-play fine-tuning
is applied between the opponent model and the
main model to enhance the main model’s ability
to generate correct SQL queries from a NLQ. This
process is iterated until the model converges.

3.1 Verification-Based Iterative Fine-Tuning

The goal of verification-based iterative fine-tuning
is to generate high-quality data for fine-tuning
while also providing candidate models with varying
capabilities for the next phase. As shown in Figure
2, data synthesized by the Text-to-SQL synthesis
module is used to fine-tune the Text-to-SQL model,
incorporating schema processing. The synthetic
validation data is then verified using the fine-tuned
model, and the correct data is used to fine-tune the

Schema

CREATE TABLE people (people id number,age
number,name text,nationality text,graduation
college text,primary key (people id))..

SQL Template

SELECT DISTINCT col_text_key@ WHERE
col_number_keyl < cell_value

Generate SQL

SELECT DISTINCT nationality FROM people
WHERE age < 30

Generate Question

What are the different nationalities of
people younger than 307?

Figure 3: An example of Text-to-SQL data synthesis.

SQL-to-Text model, enhancing its NLQ generation
ability. Data that fails validation provides SQL tem-
plates for the next iteration. The fine-tuned model
is then used as a candidate LLM for the next self-
play fine-tuning phase. Through this approach, we
achieve positive reinforcement for the SQL-to-Text
model and defect correction for the Text-to-SQL
model, enabling the synthesis of higher-quality data
and enhancing overall model performance.

3.1.1 Text-to-SQL Data Synthesis

The Text-to-SQL fine-tuning data synthesis process
begins by generating the SQL query, followed by
the synthesis of the corresponding NLQ.

SQL Synthesis To generate new SQL queries
based on training data schemas, we employ a
template-based approach as outlined by (Hu et al.,
2023). First, a pool of SQL templates is created
by normalizing schema-related mentions (columns
and values) and removing JOIN phrases. A tem-
plate is then sampled according to the training dis-
tribution, and tables and columns are selected with
constraints to fill the normalized slots within the
template.

To accurately extract the SQL template while
preserving key relationships, we leverage the gen-
eral understanding capabilities of the LLM. The
prompt used for this extraction is defined in Ap-
pendix A.1. As shown in Figure 3, the final tem-
plate maintains the query structure and data types,
allowing it to adapt to various query scenarios. By
omitting the FROM and JOIN clauses, the template
becomes independent of specific table names, yet
it retains essential query structures (e.g., SELECT,
WHERE, GROUP BY, HAVING) to ensure consistency.
Foreign key relationships are denoted using a spe-

cial format (e.g., col_number_key_fk).

Once the template is generated, the method takes
as input the database d and the SQL template
t = (q,c,v), where t consists of the query struc-
ture ¢, the set of columns ¢, and the set of values
v. For columns c; to ¢, in the template, a col-
umn is randomly selected and replaced from those
that match the data types in the database. Dur-
ing the column selection process, if a column z
comes from an already selected table, it is assigned
a weight p = 1; otherwise, the weight is adjusted
based on schema distance and accumulated through
iterations, ensuring that the final column selection
adheres to database schema consistency. After fill-
ing in the columns, corresponding values v; to vy,
are retrieved and randomly filled from the database.
This process leverages the database schema infor-
mation to ensure that both column selection and
value filling respect logical constraints and data
type matching, thereby generating structurally con-
sistent and logically sound SQL statements, as
shown in Figure 3.

NLQ Synthesis To ensure that the synthesized
NLQ aligns with the intent of the SQL query, we
iteratively fine-tune a SQL-to-Text model to gener-
ate the corresponding NLQ based on a given SQL
query. The fine-tuning SQL-NLQ pairs are derived
from the correct data synthesized in the previous
iteration. As self-play progresses, the model’s per-
formance improves, leading to higher-quality syn-
thetic data and, in turn, enhanced performance of
the SQL-to-Text model.

3.1.2 Schema Processing and SFT

To effectively utilize the Text-to-SQL synthetic
data for fine-tuning LLMs, we address the chal-
lenge of capturing implicit patterns between
database schemas and NLQs, which is complicated
by the complexity of database structures. Inspired
by (Li et al., 2024a), we introduce schema process-
ing during SFT, employing three strategies: Struc-
tured Schema Extraction, Context-Aware Value
Matching, and Database Metadata Augmentation.

Structured Schema Extraction filters irrelevant
information by selecting the most relevant tables
and columns, improving the model’s focus on the
database structure. Context-Aware Value Matching
enhances the query-database association by align-
ing query columns with their corresponding val-
ues, ensuring more accurate SQL conditions. Fi-
nally, Database Metadata Augmentation incorpo-

rates metadata such as key relationships, data types,
and annotations, providing richer context for un-
derstanding table relationships and field semantics.
These strategies work together to progressively en-
hance the model’s SQL generation capabilities.

3.1.3 Evaluation Feedback

The fine-tuned Text-to-SQL model is evaluated on
the synthesized validation set Dy, using an SQL
executor I/, and samples are classified based on
execution results:

oo (1)
y— =y, ifE(Y) # E(y)

where 1 represents the generated results of the
fine-tuned Text-to-SQL model on D,,, while y
refers to the ground truth SQL in D,,. To enhance
the generalization ability of SQL-to-Text, y; is
used as training data for the next iteration. This
serves as positive feedback, boosting the model’s
ability to generate diverse question-answer pairs.
For incorrect samples (y_), the SQL templates
from these queries are selected for the next itera-
tion to generate new SQL-question pairs, allowing
the model to correct errors. By combining these
two strategies, a collaborative optimization mech-
anism is established, progressively reducing the
proportion of incorrect samples while improving
the quality of the training data. As the iterative fine-
tuning continues, both the quantity and diversity of
synthetic data increase, leading to improved model
performance.

{ yr =y, ifE(Y) =E(y)

3.2 Self-Play Fine-Tuning

Based on the evaluation accuracy on the synthetic
validation data Dy, constructed in the previous
stage, the model with the highest accuracy is se-
lected as the main model 7,,, and the model with
the lowest accuracy is chosen as the opponent
model m,. The objective of self-play fine-tuning
is to train the main model to distinguish between
correct SQL and incorrect SQL generated by the
opponent model, thereby enhancing its ability to
generate accurate SQL. The detailed procedure is
outlined in Algorithm 1.

In each round of self-play, we first evaluate the
predictions of 7, on the validation data, obtaining
y+ and y_, and use this data to fine-tune m,,. To
enhance the main model’s ability to distinguish
negative samples, we propose an error-driven loss
function that penalizes incorrect SQL generated by

Algorithm 1 Self-Play Fine-Tuning

Input: Candidate model set M =
{mo, 71, ..., mn}, validation dataset D,q,
preference scaling 3, max iterations 7’
Output: Optimized model 7,
fort =1to 7T do

Model Selection:

Tm = arg maxe pm Acc(m, Dyar)

To = arg mingepq Acc(m, Dyar)

Preference Data Generation:

Use 7, to generate preference pairs (y,y—)
on Dval

Model Optimization:

Update , via gradient descent using Equa-
tion (2)

Add optimized 7, to M
end for
Return: 7,

the opponent model.

ESelf—Play (ﬂ'm; 770) = _E(;t,er,y,)NDval [10g g

2

(Slog Fre) o Ty o)

To(Y+|2) 7o(y-|z)
where o represents the logistic function, x is the
natural language question, and [is the regulariza-
tion parameter that controls the learning bias of the
main model.

This loss function reinforces the main model’s
ability to generate correct SQL by comparing the
probability differences between (7,,,) and (7,) for
correct SQL (y4) and incorrect SQL (y_). The first
term, log % , encourages the main model
to have higher confidence in generating correct
SQL than the opponent model. The second term,
log %j\‘;))’ penalizes the main model if its behav-
ior is similar to the opponent model when generat-
ing incorrect SQL. This approach enables the main
model to learn error patterns from the opponent
model and avoid making similar mistakes in SQL
generation.

4 Experiments

4.1 Experiment Setup

Benchmarks To evaluate the effectiveness of
our approach, we conduct experiments on five
Text-to-SQL benchmarks, including the widely

SPIDER SPIDER-Variants BIRD

Methods Dev Test Syn Realistic DK Dev

EX TS EX EX TS EX TS EX EX VES
Prompting with GPT
GPT-4(Achiam et al., 2023) 729 649 76.1 - - - - - 46.4 49.8
DIN-SQL+GPT4(Pourreza and Rafiei, 2024a) 82.8 742 853 - - - - - 50.7 58.8
MAC-SQL+GPT4(Wang et al., 2023) 86.8 - 82.8 - - - - - 59.4 66.2
DAIL-SQL+GPT4(Gao et al., 2024) 83.5 762 86.6 - - - - - 54.8 56.1
MCS-SQL+GPT4(Lee et al., 2024) 89.5 - 89.6 - - - - - 63.4 64.8
Open-Source LLMs
Llama3-8B(Touvron et al., 2023) 723 639 696 603 512 62.0 504 574 392 433
Deepseek-7B(Guo et al., 2024) 67.0 577 694 553 46.0 57.7 459 553 40.1 445
Qwen2.5 Coder-1.5B(Hui et al., 2024) 724 625 723 557 454 604 465 62.0 40.6 433
Qwen2.5 Coder-7B(Hui et al., 2024) 83.5 792 815 698 642 754 709 68.0 51.5 553
Qwen2.5 Coder-14B(Hui et al., 2024) 83.8 78.0 849 743 668 764 69.1 69.7 58.0 62.8
Qwen2.5 Coder-32B(Hui et al., 2024) 79.6 739 823 737 67.6 756 683 71.0 58.1 61.7
Fine-Tuning with Open-Source LLMs
Codes-7B+SFT(Li et al., 2024a) 854 803 835 769 700 829 772 72.0 572 588
Codes-15B+SFT(Li et al., 2024a) 849 794 850 770 674 83.1 756 70.7 585 56.7
ROUTE+LIama3-8B(Qin et al., 2025) 86.0 803 839 774 702 809 72.6 746 573 60.1
ROUTE+Qwen2.5-7B(Qin et al., 2025) 83.6 775 83.7 - - - - - 559 574
ROUTE+Qwen2.5-14B(Qin et al., 2025) 873 809 87.1 - - - - - 60.9 65.2
DTS-SQL+Deepseek 7B
(Pourreza and Rafiei, 2024b) 85.5 - 84.4 - - - - - 55.8 60.3
SENSE-7B(Yin and Neubig, 2017) 83.2 81.7 835 726 649 827 756 719 518 -
SENSE-13B(Yin and Neubig, 2017) 84.1 835 86.6 776 702 84.1 76.6 80.2 55.5 -
Llama3-8B+SFT(Touvron et al., 2023) 795 73.6 809 664 60.1 71.1 628 61.7 51.8 553
Deepseek-7B+SFT(Guo et al., 2024) 786 719 815 648 57,5 693 614 60.7 539 57.1
Qwen2.5 Coder-1.5B+SFT(Hui et al., 2024) 76.8 702 78.0 59.0 51.6 64.8 563 609 443 456
Qwen2.5 Coder-7B+SFT(Hui et al., 2024) 829 79.0 837 683 623 752 69.5 66.5 544 56.1
Qwen2.5 Coder-14B+SFT(Hui et al., 2024) 84.8 79.6 844 684 62.1 744 66.7 703 585 639
Qwen2.5 Coder-32B+SFT(Hui et al., 2024) 852 795 864 772 7T1.1 760 70.1 725 612 66.6
Self-Play Method
SPIN+Llama3-8B(Chen et al., 2024b) 79.8 73.6 802 66.8 60.2 69.3 60.0 619 324 373
SPIN+Deepseek-7B(Chen et al., 2024b) 61.8 515 639 456 358 522 37.6 482 270 29.1
SPIN+Qwen2.5 Coder-1.5B(Chen et al., 2024b) 67.6 60.5 68.5 55.0 464 572 455 540 21.0 22.1
SPIN+Qwen2.5 Coder-7B(Chen et al., 2024b) 780 73.1 790 712 575 63.6 659 61.8 348 37.7
SPIN+Qwen2.5 Coder-14B(Chen et al., 2024b) 823 769 814 72.8 62.0 68.1 66.1 67.8 36.8 41.2
SPFT-SQL+Llama3-8B 83.0 754 864 76.1 69.1 850 77.6 742 60.6 654
SPFT-SQL+Deepseek-7B 823 78.0 86.0 765 70.0 80.3 74.8 72.5 583 64.0
SPFT-SQL+Qwen2.5 Coder-1.5B 79.7 735 823 66.7 594 754 673 673 540 599
SPFT-SQL+Qwen2.5 Coder-7B 872 813 874 751 676 833 756 755 61.0 67.0
SPFT-SQL+Qwen2.5 Coder-14B 87.7 819 89.0 784 713 846 776 770 63.6 689
SPFT-SQL+Qwen2.5 Coder-32B 878 832 89.1 81.7 723 86.2 768 755 652 705

Table 1: Performance of different methods on SPIDER, BIRD, and SPIDER-variants Datasets.

used cross-domain datasets SPIDER (Yu et al.,
2018) and BIRD (Li et al., 2024b), along with
three SPIDER-derived versions: SPIDER-SYN
(Gan et al., 2021a), SPIDER-Realistic (Deng et al.,
2021), and SPIDER-DK (Gan et al., 2021b). SPI-
DER contains 7,000 training samples, 1,034 de-
velopment samples, and 2,147 test samples, cov-
ering 206 databases across 138 domains. BIRD
introduces more complex domain-specific queries,
comprising 12,751 question-SQL pairs from 37 do-
mains, including finance, healthcare, and education.
SPIDER-SYN enhances 20 databases in the SPI-
DER validation set through synonym substitution,
SPIDER-Realistic extracts SQL from 19 databases

to generate more realistic questions, and SPIDER-
DK introduces 535 knowledge-augmented queries
across six databases to improve domain reasoning.

Evaluation Metrics We evaluate model perfor-
mance using execution accuracy (EX)(Yu et al.,
2018) and test-suite accuracy (TS)(Zhong et al.,
2020) on SPIDER and its variants. EX measures
if the generated SQL matches the gold SQL ex-
ecution, while TS verifies its performance across
multiple test cases with database augmentation. For
BIRD, following its official settings, we report EX
and Valid Efficiency Score (VES)(Li et al., 2024b),
which measures SQL execution efficiency.

Models We evaluate the generalizability of our
method using six open-source LLMs, includ-
ing Llama3-8B-Instruct (Touvron et al., 2023),
Deepseek-Coder-7B-Instruct (Guo et al., 2024),
and Qwen2.5-Coder (Hui et al., 2024) in sizes 1.5B,
7B, 14B, and 32B.

Baselines Our baselines are divided into four cat-
egories: prompting methods with GPT-4, prompt-
ing methods with open-source LLMs, fine-tuning-
based methods with open-source LLMs, and self-
play-based methods with open-source LLMs. The
first group includes DIN-SQL (Pourreza and Rafiei,
2024a), MAC-SQL (Wang et al., 2023), DAIL-SQL
(Gao et al., 2024), MCS-SQL (Lee et al., 2024),
and the closed-source LLM GPT-4 (Achiam et al.,
2023). For the open-source LLM baselines, we
use the six LLMs mentioned earlier in a zero-shot
setting. The fine-tuning-based baselines are rep-
resented by specialized LLMs, including CodeS
(Li et al., 2024a), ROUTE (Qin et al., 2025), DTS-
SQL (Pourreza and Rafiei, 2024b), SENSE (Yin
and Neubig, 2017), as well as the six base LLMs
fine-tuned on five training sets using the Llama-
Factory (Zheng et al., 2024) framework. Finally,
for the self-play-based methods, we compare with
SPIN (Chen et al., 2024b) on the five base LLMs,
as the 32B model could not be used for SPIN due
to resource limitations.For fairness, we reproduce
several baselines using open-source repositories
and conduct rigorous evaluations.

4.2 Comparison Results

Table 1 presents the performance of our method
and baselines across various datasets, including the
SPIDER development and test sets, BIRD devel-
opment set, SPIDER-SYN, SPIDER-Realistic, and
SPIDER-DK. Due to time constraints, we were un-
able to provide results for our SPFT-SQL on the
BIRD test set. In nearly all cases, our SPFT-SQL
achieves the best performance. From the results,
it is evident that fine-tuning-based methods signif-
icantly improve the performance of open-source
LLMs. Notably, specialized LLMs (e.g., ROUTE,
SENSE, CodeS) fine-tuned on synthetic data out-
perform those fine-tuned on the original training set
but still do not match the performance of closed-
source LLMs (e.g., GPT-4). This indicates that
the quality of synthetic data remains a limiting fac-
tor. The accuracy of the existing self-play method,
SPIN, is not only lower than fine-tuning-based
methods but also below that of the original model.

g4 866 _ 810 812 o 601 602 _ 603__6L0 603

«
3

5.5 86.1

S

w B ow
S

B L A

75 e E

—- SPIN
SPFT-SQL

.8 8
B3 s 0 o3

Execution Acc.(%)
g

Execution Acc.(%)

—- SPIN
SPFT-SQL

)
S

=
3
>

1 2 3 4 5 6 1 2 3 4 5 6
Iterations Iterations

(a) SPIDER-Dev (b) BIRD-Dev

Figure 4: Comparison of Different Iteration

This is due to SPIN’s failure to generate new data
for the text-to-SQL task, leading to overfitting from
repeated fine-tuning. In contrast, our SPFT-SQL
iteratively synthesizes new data during fine-tuning
and enhances data quality through a verification
feedback mechanism, thereby improving model
performance. As a result, our method not only
improves the performance of self-play on text-to-
SQL tasks but also surpasses specialized LLMs
fine-tuned on synthetic data. Particularly on the
SPIDER test set, our SPFT-SQL outperforms sev-
eral existing prompting-based methods (e.g., DIN-
SQL, DAIL-SQL, and MAC-SQL), achieving an
EX score of 89.1%, significantly narrowing the gap
with GPT-4-based methods.

4.3 Parameter Study

Figure 4 shows the performance of SPIN and
SPFT-SQL across different iteration rounds on the
SPIDER and BIRD development sets, using the
Qwen2.5 Coder-7B model as the base model. Our
findings reveal that as the number of training it-
erations increases, the accuracy of SPIN continu-
ously decreases, indicating that SPIN suffers from
overfitting with more iterations. In contrast, our
method shows a steady improvement in accuracy as
iterations progress, suggesting that it continues to
generate high-quality data, enhancing model perfor-
mance and gradually converging. Detailed experi-
mental results for the other datasets can be found
in Appendix A.3.

4.4 Synthetic Data Study

Synthetic Data Quantity As shown in Figure
5, we evaluated the impact of varying amounts of
synthetic data on model performance at each round
during the Verification-Based Iterative Fine-Tuning
phase, using the Qwen2.5 Coder-7B model. The
results indicate that generating 3,000 data records
yields the best performance. This suggests that
selecting the appropriate amount of synthetic data
during training involves a trade-off: too little data

el
(=}

87.4
89 BEA__ 867 8g6 8¢5
851 7
8L5
80
7%5
S S R S = 738
- oo 38 619
701680
g §
5657 61.0
Sl : 605 595 597
557515 --#- SPIDER-Test
o BIRD-Dev
-4 SPIDER-DK

0 1000 3000 5000 7000 10000

Synthetic Data Quantity

Figure 5: Performance on varing number of synthetic
data each round.

may result in undertraining, while generating ex-
cessive data could incur unnecessary time costs.

Synthetic Data Quality Figure 6 presents the
performance of LLMs fine-tuned on synthetic data
generated by our Verification-Based Iterative Fine-
Tuning (VBI-FT) phase, compared to other meth-
ods, including CodeS, ROUTE, SENSE, and DTS-
SQL, on the SPIDER test set and BIRD develop-
ment set. The results demonstrate that SPFT-SQL
significantly improves model performance by syn-
thesizing higher-quality data. Using the same base
model, SPFT-SQL boosts performance by 3.1%
and 0.9% on the SPIDER test set compared to
ROUTE and DTS-SQL, and by 4.4% and 2% on
the BIRD development set. Compared to SENSE
and CodeS, SPFT-SQL shows notable improve-
ments ranging from 3.3% to 8.4%. This improve-
ment can be attributed to the fact that methods like
ROUTE and DTS-SQL rely on basic open-source
models for data synthesis, which limits the quality
of generated data due to the models’ inherent ca-
pabilities. In contrast, SPFT-SQL overcomes these
limitations by leveraging an iterative evaluation
feedback mechanism, enhancing the quality of syn-
thetic data and, consequently, the performance of
the model.

4.5 Ablation Study

As shown in Table 2, we conducted an ablation
study on the SPIDER and BIRD datasets using
Qwen2.5 Coder-7B as the base LLM. The results
reveal two key findings. First, Verification-Based
Iterative Fine-Tuning (VBI-FT) improved perfor-

[SENSE-7B
[ZJ Codes-7B+SFT

[ROUTE+Qwen2.5-7B 3 VBI-FT+DeepSeck Coder 6.7B
[DTS-SQL+DeepSeck Coder 6.78 EEE VBI-FT+Qwen2.5 Coder 7B

603
868 | 00

s 578

B 572
844 s 558 559
$35 835 837

54

0
5] 518

80 50

SPIDER-Test BIRD-Dev

Accuracy (%)

Figure 6: Performance of LLMs fine-tuned on synthetic
data generated by SPFT-SQL and baselines.

SPIDER Bird-Dev

Dev-EX Dev-TS Test-EX EX VES

Qwen2.5 Coder-7B 83.5 79.2 81.5 51.5 553
SPFT-SQL 87.2 81.3 874 61.0 67.0
w/o VBI-FT 83.9 79.3 83.6 542 575
w/o Self-Play 86.6 80.4 86.8 060.3 65.3

Table 2: The ablation study results on the SPIDER and
the BIRD datasets.

mance by 3.3% to 3.8% in EX on the SPIDER
dataset and by 6.8% on the BIRD dataset, high-
lighting its significance in enhancing core SQL
synthesis abilities. Additionally, the self-play fine-
tuning process resulted in an accuracy boost of
0.6% to 0.8% on both datasets, demonstrating that
self-play enables the model to leverage its intrinsic
capabilities without external supervision. Together,
these findings underscore the effectiveness of both
Verification-Based Iterative Fine-Tuning and self-
play fine-tuning in improving model performance
on text-to-SQL tasks. Additional results for the
SPIDER-variant can be found in Appendix A.4.

5 Conclusion

In this paper, we propose a novel self-play fine-
tuning framework for text-to-SQL tasks, called
SPFT-SQL. SPFT-SQL enhances the capabilities
of open-source models through verification-based
iterative fine-tuning to generate high-quality data
augmentation, while further improving the models’
ability to generate accurate SQL via error-driven
adversarial training in self-play scenarios. Our
work represents the first effective implementation
of the self-play method in text-to-SQL tasks, sig-
nificantly narrowing the performance gap between
open-source and closed-source models. Future re-
search will focus on exploring cross-domain gen-
eralization capabilities and developing efficient ad-
versarial architectures.

Limitations

Although our method has shown promising per-
formance and significant progress across various
aspects, there are several limitations and areas for
further improvement. Firstly, due to resource con-
straints, we were unable to fine-tune the model
on larger architectures, such as a 70B-parameter
model. Secondly, the introduction of data synthesis
and additional evaluation steps increased the com-
putational time; while SFT training for a 7B model
took approximately one hour on the resource con-
figuration of 8*A800 (80G), our method required
about two hours per training iteration under the
same conditions. Nonetheless, our approach still
outperforms SPIN, which requires six hours for
each training round on similar resources.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Reda Alami, Abdalgader Abubaker, Mastane Achab,
Mohamed El Amine Seddik, and Salem Lahlou. 2024.
Investigating regularization of self-play language
models. arXiv preprint arXiv:2404.04291.

Xiaojun Chen, Tianle Wang, Tianhao Qiu, Jianbin Qin,
and Min Yang. 2024a. Open-sql framework: Enhanc-
ing text-to-sql on open-source large language models.
arXiv preprint arXiv:2405.06674.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji,
and Quanquan Gu. 2024b. Self-play fine-tuning con-
verts weak language models to strong language mod-
els. In Forty-first International Conference on Ma-
chine Learning.

Pengyu Cheng, Tianhao Hu, Han Xu, Zhisong Zhang,
Yong Dai, Lei Han, Xiaolong Li, et al. 2025. Self-
playing adversarial language game enhances 1lm rea-
soning. Advances in Neural Information Processing
Systems, 37:126515-126543.

Xiang Deng, Ahmed Hassan, Christopher Meek, Olek-
sandr Polozov, Huan Sun, and Matthew Richardson.
2021. Structure-grounded pretraining for text-to-sql.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1337-1350.

Anthony DiGiovanni and Ethan C Zell. 2021. Survey of
self-play in reinforcement learning. arXiv preprint
arXiv:2107.02850.

Yujian Gan, Xinyun Chen, Qiuping Huang, Matthew
Purver, John R Woodward, Jinxia Xie, and Peng-
sheng Huang. 2021a. Towards robustness of text-to-
sql models against synonym substitution. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 2505-2515.

Yujian Gan, Xinyun Chen, and Matthew Purver. 2021b.
Exploring underexplored limitations of cross-domain
text-to-sql generalization. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 8926-8931.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2024.
Text-to-sql empowered by large language models: A
benchmark evaluation. Proceedings of the VLDB
Endowment, 17(5):1132-1145.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,
Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder:
When the large language model meets programming—
the rise of code intelligence. arXiv preprint
arXiv:2401.14196.

Yiqun Hu, Yiyun Zhao, Jiarong Jiang, Wuwei Lan,
Henghui Zhu, Anuj Chauhan, Alexander Hanbo Li,
Lin Pan, Jun Wang, Chung-Wei Hang, et al. 2023.
Importance of synthesizing high-quality data for text-
to-sql parsing. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 1327-
1343.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. 2024. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186.

Dongjun Lee, Choongwon Park, Jachyuk Kim, and
Heesoo Park. 2024. Mcs-sql: Leveraging multiple
prompts and multiple-choice selection for text-to-sql
generation. arXiv preprint arXiv:2405.07467.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xi-
aokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan,
Cuiping Li, and Hong Chen. 2024a. Codes: Towards
building open-source language models for text-to-sql.
Proceedings of the ACM on Management of Data,
2(3):1-28.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, et al. 2024b. Can llm already serve
as a database interface? a big bench for large-scale
database grounded text-to-sqls. Advances in Neural
Information Processing Systems, 36.

Qi Liu, Zihuiwen Ye, Tao Yu, Phil Blunsom, and Lin-
feng Song. 2022. Augmenting multi-turn text-to-sql
datasets with self-play. In The 2022 Conference on
Empirical Methods in Natural Language Processing.

https://openreview.net/forum?id=O4cHTxW9BS
https://openreview.net/forum?id=O4cHTxW9BS
https://openreview.net/forum?id=O4cHTxW9BS
https://openreview.net/forum?id=O4cHTxW9BS
https://openreview.net/forum?id=O4cHTxW9BS

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730-27744.

Mohammadreza Pourreza and Davood Rafiei. 2024a.
Din-sql: Decomposed in-context learning of text-to-
sql with self-correction. Advances in Neural Infor-
mation Processing Systems, 36.

Mohammadreza Pourreza and Davood Rafiei. 2024b.
Dts-sql: Decomposed text-to-sql with small large
language models. In EMNLP (Findings), pages 8212—
8220.

Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang,
Jinyang Li, Binhua Li, Ruiying Geng, Rongyu Cao,
Jian Sun, Luo Si, et al. 2022. A survey on text-to-sql
parsing: Concepts, methods, and future directions.
arXiv preprint arXiv:2208.13629.

Yang Qin, Chao Chen, Zhihang Fu, Ze Chen, Dezhong
Peng, Peng Hu, and Jieping Ye. 2025. ROUTE: Ro-
bust multitask tuning and collaboration for text-to-
SQL. In The Thirteenth International Conference on
Learning Representations.

David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Ju-
lian Schrittwieser, loannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, et al. 2016. Mastering
the game of go with deep neural networks and tree
search. nature, 529(7587):484—489.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioan-
nis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore
Graepel, et al. 2017. Mastering chess and shogi by
self-play with a general reinforcement learning algo-
rithm. arXiv preprint arXiv:1712.01815.

Ruoxi Sun, Sercan O Arik, Alexandre Muzio, Lesly
Miculicich, Satya Kesav Gundabathula, Pengcheng
Yin, Hanjun Dai, Hootan Nakhost, Rajarishi Sinha,
Zifeng Wang, and Tomas Pfister. 2024. SQL-palLM:
Improved large language model adaptation for text-to-
SQL. Transactions on Machine Learning Research.

Hugo Touvron, Thibaut Lavril, Gautier [zacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang,
Jiaqi Bai, Qian-Wen Zhang, Zhao Yan, and Zhoujun
Li. 2023. Mac-sql: Multi-agent collaboration for
text-to-sql. arXiv preprint arXiv:2312.11242.

Yue Wu, Zhiging Sun, Huizhuo Yuan, Kaixuan Ji, Yim-
ing Yang, and Quanquan Gu. 2024. Self-play pref-
erence optimization for language model alignment.
arXiv preprint arXiv:2405.00675.

10

Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yim-
ing Yang, and Quanquan Gu. 2025. Self-play prefer-
ence optimization for language model alignment. In
The Thirteenth International Conference on Learning
Representations.

Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang
Lin, and Chang Zhou. 2024. Synthesizing text-to-
sql data from weak and strong llms. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 7864-7875.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
arXiv preprint arXiv:1704.01696.

Yueqin Yin, Zhendong Wang, Yujia Xie, Weizhu
Chen, and Mingyuan Zhou. 2024. Self-augmented
preference optimization: Off-policy paradigms
for language model alignment. arXiv preprint
arXiv:2405.20830.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
In 2018 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP 2018, pages 3911-
3921. Association for Computational Linguistics.

Ruize Zhang, Zelai Xu, Chengdong Ma, Chao Yu, Wei-
Wei Tu, Shiyu Huang, Deheng Ye, Wenbo Ding,
Yaodong Yang, and Yu Wang. 2024a. A survey on
self-play methods in reinforcement learning. arXiv
preprint arXiv:2408.01072.

Yi Zhang, Jan Milan Deriu, George Katsogiannis-
Meimarakis, Catherine Kosten, Georgia Koutrika,
and Kurt Stockinger. 2024b. Sciencebenchmark: a
complex real-world benchmark for evaluating natural
language to sql systems. Proceedings of the VLDB
Endowment, 17(4):685-698.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, Zhangchi Feng, and Yonggiang Ma.
2024. Llamafactory: Unified efficient fine-tuning
of 100+ language models. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 3: System Demonstra-
tions), Bangkok, Thailand. Association for Computa-
tional Linguistics.

Ruiqi Zhong, Tao Yu, and Dan Klein. 2020. Semantic
evaluation for text-to-sql with distilled test suites. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 396411.

A Appendix
A.1 Prompt

In this section, we provide the prompts employed
for the methodology described under Template Ex-
traction, which are depicted in Figure 7.

https://aclanthology.org/2024.findings-emnlp.481
https://aclanthology.org/2024.findings-emnlp.481
https://aclanthology.org/2024.findings-emnlp.481
https://openreview.net/forum?id=BAglD6NGy0
https://openreview.net/forum?id=BAglD6NGy0
https://openreview.net/forum?id=BAglD6NGy0
https://openreview.net/forum?id=BAglD6NGy0
https://openreview.net/forum?id=BAglD6NGy0
https://openreview.net/forum?id=rlloVZoKrX
https://openreview.net/forum?id=rlloVZoKrX
https://openreview.net/forum?id=rlloVZoKrX
https://openreview.net/forum?id=rlloVZoKrX
https://openreview.net/forum?id=rlloVZoKrX
https://openreview.net/forum?id=a3PmRgAB5T
https://openreview.net/forum?id=a3PmRgAB5T
https://openreview.net/forum?id=a3PmRgAB5T
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372

Task

Given the following SQL query, generate an SQL template by removing the "FROM" and "JOIN" sections,

ensuring that no table names appear in the template. All other parts of the query, including SELECT, WHERE,
GROUP BY, and HAVING, should remain unchanged. For placeholders, use the following formats:

* col_number_key# for numeric columns,
* col_text_key# for textual columns, and
* cell_value for constant values.

Important Note

If two columns in the SQL query satisfy a foreign key relationship (i.e., one column is a foreign key

referencing another table's primary key), explicitly indicate this relationship in the template using the

placeholder format col_number_key#_fk#, where fk# represents the foreign key reference. For example, if

column_A is a foreign key referencing column_B, replace column_A with col_number_key0 fk1.

Now, apply the same transformation to the SQL query below and please keep FROM and JOIN sections

removed:

Input:

{"sql": "{Input SQL}"}
Schema:

{Database Schema}
Output:

Figure 7: Prompt for extracting standardized SQL templates.

A.2 Comparison with different hardness

To comprehensively evaluate the model perfor-
mance, we adopted methodologies from pertinent
studies (Pourreza and Rafiei, 2024a; Gao et al.,
2024; Qin et al., 2025) and computed the EX score
on the development sets of SPIDER and BIRD. The
results presented in Table 3 and Table 4 demon-
strate that the SPFT-SQL approach excels both in
overall performance and across various difficulty
levels, thereby further validating the efficacy of our
proposed method.

A.3 Comparison of Synthetic Data Quantity

Table 5 presents the experimental results across all
datasets for different amounts of synthetic data.The
experimental results show that the model achieves
the best performance when generating 3,000 syn-
thetic data records. Specifically, it achieves an
accuracy of 87.4% on the SPIDER-Test dataset,
87.2% on the SPIDER-Dev dataset, 61.0% on the
BIRD-Dev dataset. These results indicate that gen-
erating an appropriate amount of synthetic data is
crucial for improving model performance.

When the amount of generated data is relatively
small, the model’s performance improves but does
not reach its optimal state. For example, the ac-

11

curacy on the SPIDER-Realistic dataset is 82.1%,
on the SPIDER-DK dataset is 73.3%, and on the
BIRD-Dev dataset is 59.3%. This suggests that
insufficient data may prevent the model from learn-
ing enough information, thereby limiting its perfor-
mance.

On the other hand, when the amount of generated
data is excessive, the model’s performance declines.
For instance, when generating 5,000 records, the ac-
curacy on the SPIDER-Test dataset drops to 86.7%,
on the SPIDER-Syn dataset to 72.1%, and on the
BIRD-Dev dataset to 60.5%. This could incur un-
necessary time costs.

In conclusion, generating 3,000 synthetic data
records is an ideal choice, as it ensures data qual-
ity while maximizing model performance improve-
ment. This finding emphasizes the importance of
selecting an appropriate amount of synthetic data
during training to avoid compromising the model’s
final performance due to insufficient or excessive
data.

A.4 Ablation Study Results

Table 6 delineates the ablation study results across
all datasets, shedding light on the individual contri-
butions of various components to the overall system

Method Easy Medium Hard Extra All
Prompting with GPT

DIN-SQL+GPT4(Pourreza and Rafiei, 2024a) 92.3 87.4 76.4 62.7 82.8
DAIL-SQL+GPT4(Gao et al., 2024) 91.5 90.1 75.3 62.7 83.6
MCS-SQL+GPT4(Lee et al., 2024) 94.0 93.5 88.5 729 895
Fine-Tuning with Open-Source LLMs

Codes-7B+SFT(Li et al., 2024a) 94.8 91.0 75.3 669 854
Codes-15B+SFT(Li et al., 2024a) 95.6 90.4 782 614 849
SENSE-7B(Yin and Neubig, 2017) 95.2 88.6 759 603 835
ROUTE+Qwen2.5-7B(Qin et al., 2025) 92.8 89.7 770 60.2 83.6
ROUTE+Qwen2.5-14B(Qin et al., 2025) 94.0 93.0 81.6 68.1 873
Self-Play Method

SPIN+Qwen2.5 Coder-14B(Chen et al., 2024b) 91.5 87.7 7477 633 823
SPFT-SQL+Qwen2.5 Coder-1.5B 92.3 83.4 724 584 79.7
SPFT-SQL+Qwen2.5 Coder-7B 96.4 91.9 851 627 872
SPFT-SQL+Qwen2.5 Coder-14B 95.6 94.4 81.6 645 877
SPFT-SQL+Qwen2.5 Coder-32B 96.4 93.5 80.5 67.5 878

Table 3: The performance (EX) comparison with different hardness on the SPIDER-Dev

Method Simple Moderate Challenging All
Prompting with GPT

MAC-SQL+GPT4(Wang et al., 2023) 65.7 52.7 40.3 59.4
MCS-SQL+GPT4(Lee et al., 2024) 70.4 53.1 514 63.4
Fine-Tuning with Open-Source LLMs

Codes-7B+SFT(Li et al., 2024a) 64.6 46.9 40.3 57.2
Codes-15B+SFT(Li et al., 2024a) 65.8 48.8 42.4 58.5
ROUTE+Qwen2.5-7B(Qin et al., 2025) 63.8 45.4 39.6 55.9
ROUTE+Qwen2.5-14B(Qin et al., 2025) 67.7 53.1 42.4 60.9
Self-Play Method

SPIN+Qwen2.5 Coder-14B(Chen et al., 2024b) ~ 45.8 24.1 20.1 36.8
SPFT-SQL+Qwen2.5 Coder-1.5B 61.1 46.5 333 54.0
SPFT-SQL+Qwen2.5 Coder-7B 68.7 51.6 41.7 61.0
SPFT-SQL+Qwen2.5 Coder-14B 68.8 57.6 49.3 63.6
SPFT-SQL+Qwen2.5 Coder-32B 71.2 574 514 65.2

Table 4: The performance (EX) comparison with different hardness on the BIRD-Dev

performance. The implementation of Verification-
Based Iterative Fine-Tuning (VBI-FT) significantly
enhanced the model’s performance, with improve-
ments ranging from 5.2% to 8.3% in EX on the
SPIDER- Variants, highlighting its critical role in
advancing core SQL synthesis capabilities. Fur-
thermore, the self-play fine-tuning process con-
tributed to an accuracy increase of 0.3% to 1.7%
on the SPIDER-Variants, illustrating how self-play
allows the model to optimize its inherent poten-
tial without relying on external supervision. Col-

12

lectively, these results underscore the efficacy of
both Verification-Based Iterative Fine-Tuning and
self-play fine-tuning in boosting the model’s per-
formance on SQL synthesis tasks.

A.5 Comparison of Generated SQLs from
Different Methods

To better illustrate the improvements of our method
over others, we selected two examples from the
SPIDER and BIRD datasets, as shown in Tables 7
and 8. In the first example, both the models fine-

SPIDER SPIDER-Variants BIRD
Quantity Dev Test Syn Realistic DK Dev
EX TS EX EX TS EX TS EX EX VES
0 83.5 79.2 815 698 642 754 709 68.0 515 553
1000 86.5 809 869 768 69.6 82.1 76.6 733 593 62.7
3000 872 813 874 751 676 833 756 755 61.0 67.0
5000 86.3 79.6 86.7 72.1 643 828 756 73.8 60.5 662
7000 86.6 809 86.6 71.8 64.1 821 73.6 73.6 59.2 658
10000 86.0 804 865 724 646 825 736 729 59.7 629
Table 5: Comparison of Synthetic Data Quantity
SPIDER SPIDER-Variants BIRD
Dev Test Syn Realistic DK Dev
EX TS EX EX TS EX TS EX EX VES
Qwen2.5 Coder-7B 83.5 79.2 815 69.8 642 754 709 680 515 553
SPFT-SQL 872 813 874 751 67.6 833 756 755 610 670
w/o VBI-FT 839 793 836 699 o646 750 705 703 542 575
w/o self-play 86.6 804 868 748 66.8 827 744 738 603 653

Table 6: Ablation Study Results

tuned with SFT and SPIN lost the ability to com-
pute ratios, while our method was able to correctly
calculate the formula and select the correct fields.
This is attributed to our VBI-FT method, which
generates high-quality training data during the iter-
ative process, and the guidance provided during the
Self-Play phase, helping the model select the cor-
rect fields and generate accurate SQL queries. In
the second example, both SFT and SPFT achieved
the correct results, while SPIN produced incorrect
values, further demonstrating the issue with the
SPIN self-play mechanism, where the model’s his-
torical outputs are treated as negative samples.

13

Table 7: Comparison of Generated SQLs from Different Methods on the BIRD Dataset

Stage

Details

Data

Question: What is the eligible free or reduced price meal rate for the top 5 schools
in grades 1-12 with the highest free or reduced price meal count of the schools with
the ownership code 667

Gold SQL: SELECT CAST(T1.‘FRPM Count (K-12)* AS REAL)/ T1.‘Enrollment
(K-12)° FROM frpm AS T1 INNER JOIN schools AS T2 ON T1.CDSCode =
T2.CDSCode WHERE T2.SOC = 66 ORDER BY T1.‘FRPM Count (K-12)‘ DESC
LIMIT 5

Original Model

Pred SQL: SELECT frpm.CDSCode, frpm.School Name, frpm.FRPM Count
(K-12), frpm.Enrollment (K-12), (frpm.FRPM Count (K-12) / frpm.Enrollment
(K-12)) AS Eligible FRPM_Rate FROM frpm JOIN schools ON frpm.CDSCode =
schools.CDSCode WHERE schools.OwnershipCode = 66 ORDER BY frpm.FRPM
Count (K-12) DESC LIMIT 5;

Result: Wrong

SFT

Pred SQL: SELECT T2.‘Percent (%) Eligible Free (K-12), T2.‘Percent (%)
Eligible FRPM (K-12)‘ FROM schools AS T1 INNER JOIN frpm AS T2 ON
T1.CDSCode = T2.CDSCode WHERE T1.SOC = 66 ORDER BY T2.‘FRPM
Count (K-12)* DESC LIMIT 5;

Result: Wrong

SPIN

Pred SQL: SELECT "Percent (%) Eligible Free (K-12)", "Percent (%) Eligible
FRPM (K-12)" FROM frpm WHERE "2013-14 CALPADS Fall 1 Certification
Status" = 66 ORDER BY "FRPM Count (K-12)" DESC LIMIT 5;

Result: Wrong

SPFT-SQL

Pred SQL: SELECT cast(frpm. ‘frpm count (k-12)° AS REAL) / frpm. ‘enrollment
(k-12)° FROM frpm INNER JOIN schools ON frpm.cdscode = schools.cdscode
WHERE schools.soc = 66 ORDER BY frpm.‘frpm count (k-12)° DESC LIMIT 5;
Result: Right

14

Table 8: Comparison of Generated SQLs from Different Methods on the SPIDER Dataset

Stage Details

Data Question: Count the number of searches made by buyers.
Gold SQL: SELECT count(*) FROM Users AS T1 JOIN User_Searches AS T2
ON Tl.user_id = T2.user_id WHERE T1.is_buyer = 1;

Original Model Pred SQL: SELECT COUNT (us.search_seq) FROM Users u JOIN User_Searches
us ON u.user_id = us.user_id WHERE u.is_buyer = ’Yes’;
Result: Wrong

SFT Pred SQL: SELECT count(*) FROM users AS T1 JOIN user_searches AS T2 ON
T1.user_id = T2.user_id WHERE T1.is_buyer ="1’
Result: Right

SPIN Pred SQL: SELECT count(*) FROM users AS t1 JOIN user_searches AS t2 ON
tl.user_id = t2.user_id WHERE tl.is_buyer =’t’
Result: Wrong

SPFT-SQL Pred SQL: SELECT count(*) FROM users JOIN user_searches ON users.user_id

= user_searches.user_id WHERE users.is_buyer = 1;
Result: Right

15

	Introduction
	Related Works
	Methodology
	Verification-Based Iterative Fine-Tuning
	Text-to-SQL Data Synthesis
	Schema Processing and SFT
	Evaluation Feedback

	Self-Play Fine-Tuning

	Experiments
	Experiment Setup
	Comparison Results
	Parameter Study
	Synthetic Data Study
	Ablation Study

	Conclusion
	Appendix
	Prompt
	Comparison with different hardness
	Comparison of Synthetic Data Quantity
	Ablation Study Results
	Comparison of Generated SQLs from Different Methods

