
SPFT-SQL: Enhancing Large Language Model for Text-to-SQL Parsing by
Self-Play Fine-Tuning

Anonymous ACL submission

Abstract

Despite the significant advancements of self-001
play fine-tuning (SPIN), which can transform a002
weak large language model (LLM) into a strong003
one through competitive interactions between004
models of varying capabilities, it still faces chal-005
lenges in the Text-to-SQL task. SPIN does not006
generate new information, and the large num-007
ber of correct SQL queries produced by the008
opponent model during self-play reduces the009
main model’s ability to generate accurate SQL010
queries. To address this challenge, we propose011
a new self-play fine-tuning method tailored for012
the Text-to-SQL task, called SPFT-SQL. Prior013
to self-play, we introduce a validation-based014
iterative fine-tuning approach, which synthe-015
sizes high-quality fine-tuning data iteratively016
based on the database schema and validation017
feedback to enhance model performance, while018
building a model base with varying capabili-019
ties. During the self-play fine-tuning phase,020
we propose an error-driven loss method that in-021
centivizes incorrect outputs from the opponent022
model, enabling the main model to distinguish023
between correct SQL and erroneous SQL gener-024
ated by the opponent model, thereby improving025
its ability to generate correct SQL. Extensive026
experiments and in-depth analyses on six open-027
source LLMs and five widely used benchmarks028
demonstrate that our approach outperforms ex-029
isting state-of-the-art (SOTA) methods.030

1 Introduction031

Text-to-SQL (Qin et al., 2022; Li et al., 2024b) aims032

to automatically convert natural language questions033

into SQL queries, enabling non-expert users to eas-034

ily retrieve information from databases. Recent035

studies (Sun et al., 2024; Li et al., 2024a; Pour-036

reza and Rafiei, 2024b) have demonstrated that037

supervised fine-tuning (SFT) (Ouyang et al., 2022)038

can significantly enhance performance on Text-to-039

SQL tasks by transforming a general-purpose open-040

source LLM into a specialized one. Additionally,041

Qwen2.5-Coder-7B SFT SPIN CodeS-7B SENSE-7B ROUTE-7B SPFT-SQL
75

80

85

90

Ex
ec

ut
io

n
A

cc
ur

ac
y

(%
)

81.5

83.7

79.0

83.5 83.5 83.7

87.4

Figure 1: Comparison results on the Spider (Yu et al.,
2018) dataset, the base model of SFT, SPIN (Chen et al.,
2024b), and SPFT-SQL is Qwen2.5-Coder 7B.

SFT-based approaches have gained widespread re- 042

search attention due to their potential to address 043

privacy risks and reduce overhead associated with 044

closed-source LLMs (e.g., GPT-4 (Achiam et al., 045

2023)) (Gao et al., 2024; Pourreza and Rafiei, 046

2024a; Lee et al., 2024). However, a major chal- 047

lenge for SFT-based methods is the high cost of ac- 048

quiring Text-to-SQL data, which typically requires 049

manual expert annotation. 050

To address this issue, recent efforts (Yang et al., 051

2024; Li et al., 2024a; Zhang et al., 2024b) have 052

proposed data synthesis strategies for generating 053

Text-to-SQL data and fine-tuning open-source mod- 054

els, yielding significant performance improvements 055

(see Figure 1). However, these methods still rely on 056

closed-source LLMs, such as GPT-3.5/4 (Achiam 057

et al., 2023), for data synthesis, raising privacy 058

concerns. In response, ROUTE (Qin et al., 2025) 059

introduced a method for synthesizing fine-tuning 060

data for tasks like Text-to-SQL and Schema Link- 061

ing using open-source models, improving model 062

generalization through multi-task supervised fine- 063

tuning and achieving a new state-of-the-art (SOTA) 064

performance. However, the limited generation ca- 065

pacity of open-source models restricts the quality 066

1

of synthetic data, which in turn limits model per-067

formance.068

An alternative approach involves iteratively syn-069

thesizing data through self-play fine-tuning (SPIN)070

(Chen et al., 2024b; Cheng et al., 2025; Wu et al.,071

2024) to transform a weak LLM into a stronger one.072

Self-play, which has been successfully applied in073

domains such as reasoning (Cheng et al., 2025),074

AlphaGo (Silver et al., 2016), and AlphaZero (Sil-075

ver et al., 2017), enables models to compete with076

themselves at various stages, enhancing both per-077

formance and data synthesis capabilities while over-078

coming the limitations of open-source model gen-079

eration. In the context of the Text-to-SQL task,080

the only prior work (Liu et al., 2022) applied self-081

play to multi-turn Text-to-SQL, generating multiple082

rounds of intermediate questions and answers for083

data augmentation. While this method improved084

performance in multi-turn tasks, it is not applica-085

ble to single-turn Text-to-SQL, as it only generates086

intermediate data based on existing annotated pairs.087

This motivates us to conduct a thorough evalua-088

tion of SPIN in the Text-to-SQL task, assessing its089

potential as an alternative approach. As shown in090

Figure 1, applying the existing SPIN method (Chen091

et al., 2024b) to Text-to-SQL results in a significant092

performance drop, which is much lower than that093

of SFT-based methods utilizing existing data syn-094

thesis techniques (Qin et al., 2025; Li et al., 2024a;095

Yang et al., 2024). A subsequent analysis of failure096

cases reveals two key challenges for SPIN in the097

Text-to-SQL domain. First, SPIN only synthesizes098

SQL queries from existing natural language ques-099

tions, without generating new information. This100

limitation restricts the model’s ability to improve,101

and repeated training leads to overfitting. Second,102

the self-play mechanism in SPIN treats all data gen-103

erated by the opponent model as incorrect, which104

results in many valid SQL queries being discarded105

as erroneous, thus hindering the model’s ability to106

learn from errors.107

To address these challenges, we propose a self-108

play fine-tuning method for Text-to-SQL tasks,109

called SPFT-SQL. Specifically, prior to self-play,110

we introduce a verification-based iterative super-111

vised fine-tuning approach that iteratively synthe-112

sizes high-quality data for fine-tuning the LLM.113

This method randomly selects schemas (e.g., tables114

and columns) from the database and combines them115

with SQL templates to generate executable SQL116

queries. Corresponding natural language questions117

(NLQs) are then synthesized using a SQL-to-Text118

model. The synthesized NLQ-SQL pairs are used 119

to fine-tune the Text-to-SQL model, enhancing 120

its performance. The SQL-to-Text model is sub- 121

sequently updated with the synthesized data that 122

passes a validation strategy. During self-play fine- 123

tuning, the strongest model from the previous stage 124

serves as the main model, while the weakest model 125

acts as the opponent. We introduce an error-driven 126

loss function that penalizes correct SQL queries 127

generated by the opponent model and incentivizes 128

the generation of incorrect queries. This mecha- 129

nism enables the main model to better distinguish 130

between correct and incorrect results, thus improv- 131

ing its ability to generate correct SQL queries. In 132

the next iteration, the newly acquired main model 133

is incorporated into the next round of supervised 134

fine-tuning. 135

The main contributions of this work are as fol- 136

lows: 137

• We first evaluated the performance of the 138

SPIN method on the Text-to-SQL task and 139

found that the existing SPIN method per- 140

forms poorly in this context. This prompted 141

us to propose a new self-play fine-tuning 142

method specifically designed for the Text-to- 143

SQL task. 144

• We propose a validation-based iterative fine- 145

tuning framework that synthesizes data itera- 146

tively based on the database schema and im- 147

proves data quality through validation feed- 148

back, thereby continuously enhancing model 149

performance. 150

• We introduce an error-driven loss that incen- 151

tivizes the generation of incorrect outputs by 152

the opponent model during the self-play fine- 153

tuning phase. This enables the main model 154

to distinguish between correct SQL and erro- 155

neous SQL generated by the opponent model, 156

ultimately improving the main model’s ability 157

to generate accurate SQL queries. 158

• Extensive experiments on five datasets and six 159

open-source LLMs of varying types and pa- 160

rameter sizes. The results demonstrate that 161

our approach not only effectively improves 162

model performance but also outperforms other 163

SOTA methods based on open-source mod- 164

els. Furthermore, after fine-tuning with our 165

method, small-parameter open-source models 166

outperform methods based on large-parameter, 167

closed-source LLM. 168

2

Right
Case

Error
Case

Text-to-SQL Data Synthesis

Stage 1: Validation-based Iterative Fine-Tuning Stage 2: Self-Play Fine-Tuning

SFT Text-to-SQL
LLM

Database

SFT SQL-to-Text
LLM

Schema

SQL Template

SQL Synthesis NLQ
Generation

Opponent LLM Main LLM

Candidate Text-to-SQL LLMs

StrongestWeakest

Self-play Fine-TuningEvaluation
Feedback

Schema Processing

Figure 2: An overview of SPFT-SQL framework.

2 Related Works169

Self-Play Fine-Tuning Self-play (Zhang et al.,170

2024a; DiGiovanni and Zell, 2021), where the al-171

gorithm learns by competing against itself, has172

gained significant attention due to its success in173

AlphaGo (Silver et al., 2016) and AlphaZero (Sil-174

ver et al., 2017). To transform a weak LLM into a175

stronger one, existing studies (Chen et al., 2024b;176

Alami et al., 2024; Yin et al., 2024; Wu et al., 2025)177

have proposed introducing self-play mechanisms178

into LLMs without requiring additional human-179

annotated data. In the text-to-SQL task, there is180

only one prior work (Liu et al., 2022) that applies181

self-play to text-to-SQL. However, this method182

only uses self-play to generate multiple rounds of183

intermediate data based on existing annotated data,184

which makes it inapplicable to single-turn text-to-185

SQL tasks. In contrast to previous studies, our186

SPFT-SQL introduces self-play fine-tuning into the187

text-to-SQL task by iteratively synthesizing new188

text-to-SQL pairs for data augmentation. Further-189

more, we propose an error-incentive loss that en-190

courages the generation of erroneous outputs by191

the opponent model, thereby enhancing the main192

model’s ability to generate correct SQL queries.193

SFT-based Text-to-SQL To improve the perfor-194

mance of open-source LLMs on text-to-SQL tasks,195

existing research (Sun et al., 2024; Chen et al.,196

2024a; Pourreza and Rafiei, 2024b) has applied su-197

pervised fine-tuning on annotated data. However,198

a key challenge remains the high cost of human-199

annotated data. To reduce this cost, some efforts200

(Li et al., 2024a; Yang et al., 2024) have employed201

various data synthesis strategies, using LLMs to202

generate data for fine-tuning. However, these meth-203

ods rely on the general capabilities of closed-source 204

LLMs, such as GPT-4, which raises privacy con- 205

cerns. To address this issue, Route (Qin et al., 2025) 206

proposed a data augmentation approach to improve 207

generalization using open-source LLMs. In con- 208

trast to previous work, our SPFT-SQL method it- 209

eratively synthesizes high-quality data through the 210

self-play mechanism. 211

3 Methodology 212

The SPFT-SQL framework consists of two stages: 213

Verification-Based Iterative Fine-Tuning and Self- 214

Play Fine-Tuning, as illustrated in Figure 2. In the 215

first stage, verification-based iterative fine-tuning 216

continuously generates high-quality data for fine- 217

tuning, producing various candidate text-to-SQL 218

models for the subsequent self-play phase. During 219

self-play fine-tuning, the strongest model from the 220

previous stage serves as the main model, while the 221

weakest model functions as the opponent. Using 222

the proposed error-driven loss, self-play fine-tuning 223

is applied between the opponent model and the 224

main model to enhance the main model’s ability 225

to generate correct SQL queries from a NLQ. This 226

process is iterated until the model converges. 227

3.1 Verification-Based Iterative Fine-Tuning 228

The goal of verification-based iterative fine-tuning 229

is to generate high-quality data for fine-tuning 230

while also providing candidate models with varying 231

capabilities for the next phase. As shown in Figure 232

2, data synthesized by the Text-to-SQL synthesis 233

module is used to fine-tune the Text-to-SQL model, 234

incorporating schema processing. The synthetic 235

validation data is then verified using the fine-tuned 236

model, and the correct data is used to fine-tune the 237

3

Schema
CREATE TABLE people (people id number,age
number,name text,nationality text,graduation
college text,primary key (people id))…

SQLTemplate
SELECT DISTINCT col_text_key0 WHERE
col_number_key1 < cell_value

Generate SQL
SELECT DISTINCT nationality FROM people
WHERE age < 30

Generate Question
What are the different nationalities of
people younger than 30?

Figure 3: An example of Text-to-SQL data synthesis.

SQL-to-Text model, enhancing its NLQ generation238

ability. Data that fails validation provides SQL tem-239

plates for the next iteration. The fine-tuned model240

is then used as a candidate LLM for the next self-241

play fine-tuning phase. Through this approach, we242

achieve positive reinforcement for the SQL-to-Text243

model and defect correction for the Text-to-SQL244

model, enabling the synthesis of higher-quality data245

and enhancing overall model performance.246

3.1.1 Text-to-SQL Data Synthesis247

The Text-to-SQL fine-tuning data synthesis process248

begins by generating the SQL query, followed by249

the synthesis of the corresponding NLQ.250

SQL Synthesis To generate new SQL queries251

based on training data schemas, we employ a252

template-based approach as outlined by (Hu et al.,253

2023). First, a pool of SQL templates is created254

by normalizing schema-related mentions (columns255

and values) and removing JOIN phrases. A tem-256

plate is then sampled according to the training dis-257

tribution, and tables and columns are selected with258

constraints to fill the normalized slots within the259

template.260

To accurately extract the SQL template while261

preserving key relationships, we leverage the gen-262

eral understanding capabilities of the LLM. The263

prompt used for this extraction is defined in Ap-264

pendix A.1. As shown in Figure 3, the final tem-265

plate maintains the query structure and data types,266

allowing it to adapt to various query scenarios. By267

omitting the FROM and JOIN clauses, the template268

becomes independent of specific table names, yet269

it retains essential query structures (e.g., SELECT,270

WHERE, GROUP BY, HAVING) to ensure consistency.271

Foreign key relationships are denoted using a spe-272

cial format (e.g., col_number_key_fk). 273

Once the template is generated, the method takes 274

as input the database d and the SQL template 275

t = (q, c, v), where t consists of the query struc- 276

ture q, the set of columns c, and the set of values 277

v. For columns c1 to cm in the template, a col- 278

umn is randomly selected and replaced from those 279

that match the data types in the database. Dur- 280

ing the column selection process, if a column z 281

comes from an already selected table, it is assigned 282

a weight p = 1; otherwise, the weight is adjusted 283

based on schema distance and accumulated through 284

iterations, ensuring that the final column selection 285

adheres to database schema consistency. After fill- 286

ing in the columns, corresponding values v1 to vn 287

are retrieved and randomly filled from the database. 288

This process leverages the database schema infor- 289

mation to ensure that both column selection and 290

value filling respect logical constraints and data 291

type matching, thereby generating structurally con- 292

sistent and logically sound SQL statements, as 293

shown in Figure 3. 294

NLQ Synthesis To ensure that the synthesized 295

NLQ aligns with the intent of the SQL query, we 296

iteratively fine-tune a SQL-to-Text model to gener- 297

ate the corresponding NLQ based on a given SQL 298

query. The fine-tuning SQL-NLQ pairs are derived 299

from the correct data synthesized in the previous 300

iteration. As self-play progresses, the model’s per- 301

formance improves, leading to higher-quality syn- 302

thetic data and, in turn, enhanced performance of 303

the SQL-to-Text model. 304

3.1.2 Schema Processing and SFT 305

To effectively utilize the Text-to-SQL synthetic 306

data for fine-tuning LLMs, we address the chal- 307

lenge of capturing implicit patterns between 308

database schemas and NLQs, which is complicated 309

by the complexity of database structures. Inspired 310

by (Li et al., 2024a), we introduce schema process- 311

ing during SFT, employing three strategies: Struc- 312

tured Schema Extraction, Context-Aware Value 313

Matching, and Database Metadata Augmentation. 314

Structured Schema Extraction filters irrelevant 315

information by selecting the most relevant tables 316

and columns, improving the model’s focus on the 317

database structure. Context-Aware Value Matching 318

enhances the query-database association by align- 319

ing query columns with their corresponding val- 320

ues, ensuring more accurate SQL conditions. Fi- 321

nally, Database Metadata Augmentation incorpo- 322

4

rates metadata such as key relationships, data types,323

and annotations, providing richer context for un-324

derstanding table relationships and field semantics.325

These strategies work together to progressively en-326

hance the model’s SQL generation capabilities.327

3.1.3 Evaluation Feedback328

The fine-tuned Text-to-SQL model is evaluated on329

the synthesized validation set Dval using an SQL330

executor E, and samples are classified based on331

execution results:332 {
y+ = y′, if E(y′) = E(y)

y− = y′, if E(y′) ̸= E(y)
(1)333

where y′ represents the generated results of the334

fine-tuned Text-to-SQL model on Dval, while y335

refers to the ground truth SQL in Dval. To enhance336

the generalization ability of SQL-to-Text, y+ is337

used as training data for the next iteration. This338

serves as positive feedback, boosting the model’s339

ability to generate diverse question-answer pairs.340

For incorrect samples (y−), the SQL templates341

from these queries are selected for the next itera-342

tion to generate new SQL-question pairs, allowing343

the model to correct errors. By combining these344

two strategies, a collaborative optimization mech-345

anism is established, progressively reducing the346

proportion of incorrect samples while improving347

the quality of the training data. As the iterative fine-348

tuning continues, both the quantity and diversity of349

synthetic data increase, leading to improved model350

performance.351

3.2 Self-Play Fine-Tuning352

Based on the evaluation accuracy on the synthetic353

validation data Dval constructed in the previous354

stage, the model with the highest accuracy is se-355

lected as the main model πm, and the model with356

the lowest accuracy is chosen as the opponent357

model πo. The objective of self-play fine-tuning358

is to train the main model to distinguish between359

correct SQL and incorrect SQL generated by the360

opponent model, thereby enhancing its ability to361

generate accurate SQL. The detailed procedure is362

outlined in Algorithm 1.363

In each round of self-play, we first evaluate the364

predictions of πo on the validation data, obtaining365

y+ and y−, and use this data to fine-tune πm. To366

enhance the main model’s ability to distinguish367

negative samples, we propose an error-driven loss368

function that penalizes incorrect SQL generated by369

Algorithm 1 Self-Play Fine-Tuning

Input: Candidate model set M =
{π0, π1, ..., πn}, validation dataset Dval,
preference scaling β, max iterations T
Output: Optimized model πm
for t = 1 to T do

Model Selection:
πm = argmaxπ∈M Acc(π,Dval)
πo = argminπ∈M Acc(π,Dval)
Preference Data Generation:
Use πo to generate preference pairs (y+, y−)

on Dval

Model Optimization:
Update πm via gradient descent using Equa-

tion (2)
Add optimized πm to M

end for
Return: πm

the opponent model. 370

LSelf-Play(πm;πo) = −E(x,y+,y−)∼Dval

[
log σ

(2)

371

(
β log

πm(y+|x)
πo(y+|x)

− β log
πm(y−|x)
πo(y−|x)

)]
372

where σ represents the logistic function, x is the 373

natural language question, and β is the regulariza- 374

tion parameter that controls the learning bias of the 375

main model. 376

This loss function reinforces the main model’s 377

ability to generate correct SQL by comparing the 378

probability differences between (πm) and (πo) for 379

correct SQL (y+) and incorrect SQL (y−). The first 380

term, log πm(y+|x)
πo(y+|x) , encourages the main model 381

to have higher confidence in generating correct 382

SQL than the opponent model. The second term, 383

log πm(y−|x)
πo(y−|x) , penalizes the main model if its behav- 384

ior is similar to the opponent model when generat- 385

ing incorrect SQL. This approach enables the main 386

model to learn error patterns from the opponent 387

model and avoid making similar mistakes in SQL 388

generation. 389

4 Experiments 390

4.1 Experiment Setup 391

Benchmarks To evaluate the effectiveness of 392

our approach, we conduct experiments on five 393

Text-to-SQL benchmarks, including the widely 394

5

SPIDER SPIDER-Variants BIRD
Methods Dev Test Syn Realistic DK Dev

EX TS EX EX TS EX TS EX EX VES

Prompting with GPT
GPT-4(Achiam et al., 2023) 72.9 64.9 76.1 - - - - - 46.4 49.8
DIN-SQL+GPT4(Pourreza and Rafiei, 2024a) 82.8 74.2 85.3 - - - - - 50.7 58.8
MAC-SQL+GPT4(Wang et al., 2023) 86.8 - 82.8 - - - - - 59.4 66.2
DAIL-SQL+GPT4(Gao et al., 2024) 83.5 76.2 86.6 - - - - - 54.8 56.1
MCS-SQL+GPT4(Lee et al., 2024) 89.5 - 89.6 - - - - - 63.4 64.8

Open-Source LLMs
Llama3-8B(Touvron et al., 2023) 72.3 63.9 69.6 60.3 51.2 62.0 50.4 57.4 39.2 43.3
Deepseek-7B(Guo et al., 2024) 67.0 57.7 69.4 55.3 46.0 57.7 45.9 55.3 40.1 44.5
Qwen2.5 Coder-1.5B(Hui et al., 2024) 72.4 62.5 72.3 55.7 45.4 60.4 46.5 62.0 40.6 43.3
Qwen2.5 Coder-7B(Hui et al., 2024) 83.5 79.2 81.5 69.8 64.2 75.4 70.9 68.0 51.5 55.3
Qwen2.5 Coder-14B(Hui et al., 2024) 83.8 78.0 84.9 74.3 66.8 76.4 69.1 69.7 58.0 62.8
Qwen2.5 Coder-32B(Hui et al., 2024) 79.6 73.9 82.3 73.7 67.6 75.6 68.3 71.0 58.1 61.7

Fine-Tuning with Open-Source LLMs
Codes-7B+SFT(Li et al., 2024a) 85.4 80.3 83.5 76.9 70.0 82.9 77.2 72.0 57.2 58.8
Codes-15B+SFT(Li et al., 2024a) 84.9 79.4 85.0 77.0 67.4 83.1 75.6 70.7 58.5 56.7
ROUTE+Llama3-8B(Qin et al., 2025) 86.0 80.3 83.9 77.4 70.2 80.9 72.6 74.6 57.3 60.1
ROUTE+Qwen2.5-7B(Qin et al., 2025) 83.6 77.5 83.7 - - - - - 55.9 57.4
ROUTE+Qwen2.5-14B(Qin et al., 2025) 87.3 80.9 87.1 - - - - - 60.9 65.2
DTS-SQL+Deepseek 7B
(Pourreza and Rafiei, 2024b) 85.5 - 84.4 - - - - - 55.8 60.3
SENSE-7B(Yin and Neubig, 2017) 83.2 81.7 83.5 72.6 64.9 82.7 75.6 77.9 51.8 -
SENSE-13B(Yin and Neubig, 2017) 84.1 83.5 86.6 77.6 70.2 84.1 76.6 80.2 55.5 -
Llama3-8B+SFT(Touvron et al., 2023) 79.5 73.6 80.9 66.4 60.1 71.1 62.8 61.7 51.8 55.3
Deepseek-7B+SFT(Guo et al., 2024) 78.6 71.9 81.5 64.8 57.5 69.3 61.4 60.7 53.9 57.1
Qwen2.5 Coder-1.5B+SFT(Hui et al., 2024) 76.8 70.2 78.0 59.0 51.6 64.8 56.3 60.9 44.3 45.6
Qwen2.5 Coder-7B+SFT(Hui et al., 2024) 82.9 79.0 83.7 68.3 62.3 75.2 69.5 66.5 54.4 56.1
Qwen2.5 Coder-14B+SFT(Hui et al., 2024) 84.8 79.6 84.4 68.4 62.1 74.4 66.7 70.3 58.5 63.9
Qwen2.5 Coder-32B+SFT(Hui et al., 2024) 85.2 79.5 86.4 77.2 71.1 76.0 70.1 72.5 61.2 66.6

Self-Play Method
SPIN+Llama3-8B(Chen et al., 2024b) 79.8 73.6 80.2 66.8 60.2 69.3 60.0 61.9 32.4 37.3
SPIN+Deepseek-7B(Chen et al., 2024b) 61.8 51.5 63.9 45.6 35.8 52.2 37.6 48.2 27.0 29.1
SPIN+Qwen2.5 Coder-1.5B(Chen et al., 2024b) 67.6 60.5 68.5 55.0 46.4 57.2 45.5 54.0 21.0 22.1
SPIN+Qwen2.5 Coder-7B(Chen et al., 2024b) 78.0 73.1 79.0 71.2 57.5 63.6 65.9 61.8 34.8 37.7
SPIN+Qwen2.5 Coder-14B(Chen et al., 2024b) 82.3 76.9 81.4 72.8 62.0 68.1 66.1 67.8 36.8 41.2
SPFT-SQL+Llama3-8B 83.0 75.4 86.4 76.1 69.1 85.0 77.6 74.2 60.6 65.4
SPFT-SQL+Deepseek-7B 82.3 78.0 86.0 76.5 70.0 80.3 74.8 72.5 58.3 64.0
SPFT-SQL+Qwen2.5 Coder-1.5B 79.7 73.5 82.3 66.7 59.4 75.4 67.3 67.3 54.0 59.9
SPFT-SQL+Qwen2.5 Coder-7B 87.2 81.3 87.4 75.1 67.6 83.3 75.6 75.5 61.0 67.0
SPFT-SQL+Qwen2.5 Coder-14B 87.7 81.9 89.0 78.4 71.3 84.6 77.6 77.0 63.6 68.9
SPFT-SQL+Qwen2.5 Coder-32B 87.8 83.2 89.1 81.7 72.3 86.2 76.8 75.5 65.2 70.5

Table 1: Performance of different methods on SPIDER, BIRD, and SPIDER-variants Datasets.

used cross-domain datasets SPIDER (Yu et al.,395

2018) and BIRD (Li et al., 2024b), along with396

three SPIDER-derived versions: SPIDER-SYN397

(Gan et al., 2021a), SPIDER-Realistic (Deng et al.,398

2021), and SPIDER-DK (Gan et al., 2021b). SPI-399

DER contains 7,000 training samples, 1,034 de-400

velopment samples, and 2,147 test samples, cov-401

ering 206 databases across 138 domains. BIRD402

introduces more complex domain-specific queries,403

comprising 12,751 question-SQL pairs from 37 do-404

mains, including finance, healthcare, and education.405

SPIDER-SYN enhances 20 databases in the SPI-406

DER validation set through synonym substitution,407

SPIDER-Realistic extracts SQL from 19 databases408

to generate more realistic questions, and SPIDER- 409

DK introduces 535 knowledge-augmented queries 410

across six databases to improve domain reasoning. 411

Evaluation Metrics We evaluate model perfor- 412

mance using execution accuracy (EX)(Yu et al., 413

2018) and test-suite accuracy (TS)(Zhong et al., 414

2020) on SPIDER and its variants. EX measures 415

if the generated SQL matches the gold SQL ex- 416

ecution, while TS verifies its performance across 417

multiple test cases with database augmentation. For 418

BIRD, following its official settings, we report EX 419

and Valid Efficiency Score (VES)(Li et al., 2024b), 420

which measures SQL execution efficiency. 421

6

Models We evaluate the generalizability of our422

method using six open-source LLMs, includ-423

ing Llama3-8B-Instruct (Touvron et al., 2023),424

Deepseek-Coder-7B-Instruct (Guo et al., 2024),425

and Qwen2.5-Coder (Hui et al., 2024) in sizes 1.5B,426

7B, 14B, and 32B.427

Baselines Our baselines are divided into four cat-428

egories: prompting methods with GPT-4, prompt-429

ing methods with open-source LLMs, fine-tuning-430

based methods with open-source LLMs, and self-431

play-based methods with open-source LLMs. The432

first group includes DIN-SQL (Pourreza and Rafiei,433

2024a), MAC-SQL (Wang et al., 2023), DAIL-SQL434

(Gao et al., 2024), MCS-SQL (Lee et al., 2024),435

and the closed-source LLM GPT-4 (Achiam et al.,436

2023). For the open-source LLM baselines, we437

use the six LLMs mentioned earlier in a zero-shot438

setting. The fine-tuning-based baselines are rep-439

resented by specialized LLMs, including CodeS440

(Li et al., 2024a), ROUTE (Qin et al., 2025), DTS-441

SQL (Pourreza and Rafiei, 2024b), SENSE (Yin442

and Neubig, 2017), as well as the six base LLMs443

fine-tuned on five training sets using the Llama-444

Factory (Zheng et al., 2024) framework. Finally,445

for the self-play-based methods, we compare with446

SPIN (Chen et al., 2024b) on the five base LLMs,447

as the 32B model could not be used for SPIN due448

to resource limitations.For fairness, we reproduce449

several baselines using open-source repositories450

and conduct rigorous evaluations.451

4.2 Comparison Results452

Table 1 presents the performance of our method453

and baselines across various datasets, including the454

SPIDER development and test sets, BIRD devel-455

opment set, SPIDER-SYN, SPIDER-Realistic, and456

SPIDER-DK. Due to time constraints, we were un-457

able to provide results for our SPFT-SQL on the458

BIRD test set. In nearly all cases, our SPFT-SQL459

achieves the best performance. From the results,460

it is evident that fine-tuning-based methods signif-461

icantly improve the performance of open-source462

LLMs. Notably, specialized LLMs (e.g., ROUTE,463

SENSE, CodeS) fine-tuned on synthetic data out-464

perform those fine-tuned on the original training set465

but still do not match the performance of closed-466

source LLMs (e.g., GPT-4). This indicates that467

the quality of synthetic data remains a limiting fac-468

tor. The accuracy of the existing self-play method,469

SPIN, is not only lower than fine-tuning-based470

methods but also below that of the original model.471

1 2 3 4 5 6
Iterations

70

75

80

85

Ex
ec

ut
io

n
A

cc
.(%

)

76.9
78.0

76.7
75.3

76.9
75.5

85.5 86.1 86.4 86.6 87.0 87.2

(a) SPIDER-Dev

SPIN
SPFT-SQL

1 2 3 4 5 6
Iterations

10

20

30

40

50

60

Ex
ec

ut
io

n
A

cc
.(%

)

34.8 34.5 32.5 32.2 30.9 31.9

60.0 60.1 60.2 60.3 61.0 60.3

(b) BIRD-Dev

SPIN
SPFT-SQL

Figure 4: Comparison of Different Iteration

This is due to SPIN’s failure to generate new data 472

for the text-to-SQL task, leading to overfitting from 473

repeated fine-tuning. In contrast, our SPFT-SQL 474

iteratively synthesizes new data during fine-tuning 475

and enhances data quality through a verification 476

feedback mechanism, thereby improving model 477

performance. As a result, our method not only 478

improves the performance of self-play on text-to- 479

SQL tasks but also surpasses specialized LLMs 480

fine-tuned on synthetic data. Particularly on the 481

SPIDER test set, our SPFT-SQL outperforms sev- 482

eral existing prompting-based methods (e.g., DIN- 483

SQL, DAIL-SQL, and MAC-SQL), achieving an 484

EX score of 89.1%, significantly narrowing the gap 485

with GPT-4-based methods. 486

4.3 Parameter Study 487

Figure 4 shows the performance of SPIN and 488

SPFT-SQL across different iteration rounds on the 489

SPIDER and BIRD development sets, using the 490

Qwen2.5 Coder-7B model as the base model. Our 491

findings reveal that as the number of training it- 492

erations increases, the accuracy of SPIN continu- 493

ously decreases, indicating that SPIN suffers from 494

overfitting with more iterations. In contrast, our 495

method shows a steady improvement in accuracy as 496

iterations progress, suggesting that it continues to 497

generate high-quality data, enhancing model perfor- 498

mance and gradually converging. Detailed experi- 499

mental results for the other datasets can be found 500

in Appendix A.3. 501

4.4 Synthetic Data Study 502

Synthetic Data Quantity As shown in Figure 503

5, we evaluated the impact of varying amounts of 504

synthetic data on model performance at each round 505

during the Verification-Based Iterative Fine-Tuning 506

phase, using the Qwen2.5 Coder-7B model. The 507

results indicate that generating 3,000 data records 508

yields the best performance. This suggests that 509

selecting the appropriate amount of synthetic data 510

during training involves a trade-off: too little data 511

7

0 1000 3000 5000 7000 10000
Synthetic Data Quantity

45

50

55

60

65

70

75

80

85

90
A

cc
ur

ac
y

(%
)

81.5

86.9 87.4 86.7 86.6 86.5

51.5

59.3
61.0 60.5 59.2 59.7

68.0

73.3
75.5

73.8 73.6 72.9

SPIDER-Test
BIRD-Dev
SPIDER-DK

Figure 5: Performance on varing number of synthetic
data each round.

may result in undertraining, while generating ex-512

cessive data could incur unnecessary time costs.513

Synthetic Data Quality Figure 6 presents the514

performance of LLMs fine-tuned on synthetic data515

generated by our Verification-Based Iterative Fine-516

Tuning (VBI-FT) phase, compared to other meth-517

ods, including CodeS, ROUTE, SENSE, and DTS-518

SQL, on the SPIDER test set and BIRD develop-519

ment set. The results demonstrate that SPFT-SQL520

significantly improves model performance by syn-521

thesizing higher-quality data. Using the same base522

model, SPFT-SQL boosts performance by 3.1%523

and 0.9% on the SPIDER test set compared to524

ROUTE and DTS-SQL, and by 4.4% and 2% on525

the BIRD development set. Compared to SENSE526

and CodeS, SPFT-SQL shows notable improve-527

ments ranging from 3.3% to 8.4%. This improve-528

ment can be attributed to the fact that methods like529

ROUTE and DTS-SQL rely on basic open-source530

models for data synthesis, which limits the quality531

of generated data due to the models’ inherent ca-532

pabilities. In contrast, SPFT-SQL overcomes these533

limitations by leveraging an iterative evaluation534

feedback mechanism, enhancing the quality of syn-535

thetic data and, consequently, the performance of536

the model.537

4.5 Ablation Study538

As shown in Table 2, we conducted an ablation539

study on the SPIDER and BIRD datasets using540

Qwen2.5 Coder-7B as the base LLM. The results541

reveal two key findings. First, Verification-Based542

Iterative Fine-Tuning (VBI-FT) improved perfor-543

80

82

84

86

88

A
cc

ur
ac

y
(%

)

83.5 83.5 83.7
84.4

85.3

86.8

SPIDER-Test
50

52

54

56

58

60

51.8

55.8 55.9

57.2
57.8

60.3

BIRD-Dev

SENSE-7B
Codes-7B+SFT

ROUTE+Qwen2.5-7B
DTS-SQL+DeepSeek Coder 6.7B

VBI-FT+DeepSeek Coder 6.7B
VBI-FT+Qwen2.5 Coder 7B

Figure 6: Performance of LLMs fine-tuned on synthetic
data generated by SPFT-SQL and baselines.

SPIDER Bird-Dev

Dev-EX Dev-TS Test-EX EX VES

Qwen2.5 Coder-7B 83.5 79.2 81.5 51.5 55.3
SPFT-SQL 87.2 81.3 87.4 61.0 67.0
w/o VBI-FT 83.9 79.3 83.6 54.2 57.5
w/o Self-Play 86.6 80.4 86.8 60.3 65.3

Table 2: The ablation study results on the SPIDER and
the BIRD datasets.

mance by 3.3% to 3.8% in EX on the SPIDER 544

dataset and by 6.8% on the BIRD dataset, high- 545

lighting its significance in enhancing core SQL 546

synthesis abilities. Additionally, the self-play fine- 547

tuning process resulted in an accuracy boost of 548

0.6% to 0.8% on both datasets, demonstrating that 549

self-play enables the model to leverage its intrinsic 550

capabilities without external supervision. Together, 551

these findings underscore the effectiveness of both 552

Verification-Based Iterative Fine-Tuning and self- 553

play fine-tuning in improving model performance 554

on text-to-SQL tasks. Additional results for the 555

SPIDER-variant can be found in Appendix A.4. 556

5 Conclusion 557

In this paper, we propose a novel self-play fine- 558

tuning framework for text-to-SQL tasks, called 559

SPFT-SQL. SPFT-SQL enhances the capabilities 560

of open-source models through verification-based 561

iterative fine-tuning to generate high-quality data 562

augmentation, while further improving the models’ 563

ability to generate accurate SQL via error-driven 564

adversarial training in self-play scenarios. Our 565

work represents the first effective implementation 566

of the self-play method in text-to-SQL tasks, sig- 567

nificantly narrowing the performance gap between 568

open-source and closed-source models. Future re- 569

search will focus on exploring cross-domain gen- 570

eralization capabilities and developing efficient ad- 571

versarial architectures. 572

8

Limitations573

Although our method has shown promising per-574

formance and significant progress across various575

aspects, there are several limitations and areas for576

further improvement. Firstly, due to resource con-577

straints, we were unable to fine-tune the model578

on larger architectures, such as a 70B-parameter579

model. Secondly, the introduction of data synthesis580

and additional evaluation steps increased the com-581

putational time; while SFT training for a 7B model582

took approximately one hour on the resource con-583

figuration of 8*A800 (80G), our method required584

about two hours per training iteration under the585

same conditions. Nonetheless, our approach still586

outperforms SPIN, which requires six hours for587

each training round on similar resources.588

References589

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama590
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,591
Diogo Almeida, Janko Altenschmidt, Sam Altman,592
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.593
arXiv preprint arXiv:2303.08774.594

Reda Alami, Abdalgader Abubaker, Mastane Achab,595
Mohamed El Amine Seddik, and Salem Lahlou. 2024.596
Investigating regularization of self-play language597
models. arXiv preprint arXiv:2404.04291.598

Xiaojun Chen, Tianle Wang, Tianhao Qiu, Jianbin Qin,599
and Min Yang. 2024a. Open-sql framework: Enhanc-600
ing text-to-sql on open-source large language models.601
arXiv preprint arXiv:2405.06674.602

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji,603
and Quanquan Gu. 2024b. Self-play fine-tuning con-604
verts weak language models to strong language mod-605
els. In Forty-first International Conference on Ma-606
chine Learning.607

Pengyu Cheng, Tianhao Hu, Han Xu, Zhisong Zhang,608
Yong Dai, Lei Han, Xiaolong Li, et al. 2025. Self-609
playing adversarial language game enhances llm rea-610
soning. Advances in Neural Information Processing611
Systems, 37:126515–126543.612

Xiang Deng, Ahmed Hassan, Christopher Meek, Olek-613
sandr Polozov, Huan Sun, and Matthew Richardson.614
2021. Structure-grounded pretraining for text-to-sql.615
In Proceedings of the 2021 Conference of the North616
American Chapter of the Association for Computa-617
tional Linguistics: Human Language Technologies,618
pages 1337–1350.619

Anthony DiGiovanni and Ethan C Zell. 2021. Survey of620
self-play in reinforcement learning. arXiv preprint621
arXiv:2107.02850.622

Yujian Gan, Xinyun Chen, Qiuping Huang, Matthew 623
Purver, John R Woodward, Jinxia Xie, and Peng- 624
sheng Huang. 2021a. Towards robustness of text-to- 625
sql models against synonym substitution. In Proceed- 626
ings of the 59th Annual Meeting of the Association for 627
Computational Linguistics and the 11th International 628
Joint Conference on Natural Language Processing 629
(Volume 1: Long Papers), pages 2505–2515. 630

Yujian Gan, Xinyun Chen, and Matthew Purver. 2021b. 631
Exploring underexplored limitations of cross-domain 632
text-to-sql generalization. In Proceedings of the 2021 633
Conference on Empirical Methods in Natural Lan- 634
guage Processing, pages 8926–8931. 635

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, 636
Yichen Qian, Bolin Ding, and Jingren Zhou. 2024. 637
Text-to-sql empowered by large language models: A 638
benchmark evaluation. Proceedings of the VLDB 639
Endowment, 17(5):1132–1145. 640

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, 641
Kai Dong, Wentao Zhang, Guanting Chen, Xiao 642
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder: 643
When the large language model meets programming– 644
the rise of code intelligence. arXiv preprint 645
arXiv:2401.14196. 646

Yiqun Hu, Yiyun Zhao, Jiarong Jiang, Wuwei Lan, 647
Henghui Zhu, Anuj Chauhan, Alexander Hanbo Li, 648
Lin Pan, Jun Wang, Chung-Wei Hang, et al. 2023. 649
Importance of synthesizing high-quality data for text- 650
to-sql parsing. In Findings of the Association for 651
Computational Linguistics: ACL 2023, pages 1327– 652
1343. 653

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day- 654
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang, 655
Bowen Yu, Keming Lu, et al. 2024. Qwen2. 5-coder 656
technical report. arXiv preprint arXiv:2409.12186. 657

Dongjun Lee, Choongwon Park, Jaehyuk Kim, and 658
Heesoo Park. 2024. Mcs-sql: Leveraging multiple 659
prompts and multiple-choice selection for text-to-sql 660
generation. arXiv preprint arXiv:2405.07467. 661

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xi- 662
aokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan, 663
Cuiping Li, and Hong Chen. 2024a. Codes: Towards 664
building open-source language models for text-to-sql. 665
Proceedings of the ACM on Management of Data, 666
2(3):1–28. 667

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua 668
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying 669
Geng, Nan Huo, et al. 2024b. Can llm already serve 670
as a database interface? a big bench for large-scale 671
database grounded text-to-sqls. Advances in Neural 672
Information Processing Systems, 36. 673

Qi Liu, Zihuiwen Ye, Tao Yu, Phil Blunsom, and Lin- 674
feng Song. 2022. Augmenting multi-turn text-to-sql 675
datasets with self-play. In The 2022 Conference on 676
Empirical Methods in Natural Language Processing. 677

9

https://openreview.net/forum?id=O4cHTxW9BS
https://openreview.net/forum?id=O4cHTxW9BS
https://openreview.net/forum?id=O4cHTxW9BS
https://openreview.net/forum?id=O4cHTxW9BS
https://openreview.net/forum?id=O4cHTxW9BS

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,678
Carroll Wainwright, Pamela Mishkin, Chong Zhang,679
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.680
2022. Training language models to follow instruc-681
tions with human feedback. Advances in neural in-682
formation processing systems, 35:27730–27744.683

Mohammadreza Pourreza and Davood Rafiei. 2024a.684
Din-sql: Decomposed in-context learning of text-to-685
sql with self-correction. Advances in Neural Infor-686
mation Processing Systems, 36.687

Mohammadreza Pourreza and Davood Rafiei. 2024b.688
Dts-sql: Decomposed text-to-sql with small large689
language models. In EMNLP (Findings), pages 8212–690
8220.691

Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang,692
Jinyang Li, Binhua Li, Ruiying Geng, Rongyu Cao,693
Jian Sun, Luo Si, et al. 2022. A survey on text-to-sql694
parsing: Concepts, methods, and future directions.695
arXiv preprint arXiv:2208.13629.696

Yang Qin, Chao Chen, Zhihang Fu, Ze Chen, Dezhong697
Peng, Peng Hu, and Jieping Ye. 2025. ROUTE: Ro-698
bust multitask tuning and collaboration for text-to-699
SQL. In The Thirteenth International Conference on700
Learning Representations.701

David Silver, Aja Huang, Chris J Maddison, Arthur702
Guez, Laurent Sifre, George Van Den Driessche, Ju-703
lian Schrittwieser, Ioannis Antonoglou, Veda Pan-704
neershelvam, Marc Lanctot, et al. 2016. Mastering705
the game of go with deep neural networks and tree706
search. nature, 529(7587):484–489.707

David Silver, Thomas Hubert, Julian Schrittwieser, Ioan-708
nis Antonoglou, Matthew Lai, Arthur Guez, Marc709
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore710
Graepel, et al. 2017. Mastering chess and shogi by711
self-play with a general reinforcement learning algo-712
rithm. arXiv preprint arXiv:1712.01815.713

Ruoxi Sun, Sercan O Arik, Alexandre Muzio, Lesly714
Miculicich, Satya Kesav Gundabathula, Pengcheng715
Yin, Hanjun Dai, Hootan Nakhost, Rajarishi Sinha,716
Zifeng Wang, and Tomas Pfister. 2024. SQL-paLM:717
Improved large language model adaptation for text-to-718
SQL. Transactions on Machine Learning Research.719

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier720
Martinet, Marie-Anne Lachaux, Timothée Lacroix,721
Baptiste Rozière, Naman Goyal, Eric Hambro,722
Faisal Azhar, et al. 2023. Llama: Open and effi-723
cient foundation language models. arXiv preprint724
arXiv:2302.13971.725

Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang,726
Jiaqi Bai, Qian-Wen Zhang, Zhao Yan, and Zhoujun727
Li. 2023. Mac-sql: Multi-agent collaboration for728
text-to-sql. arXiv preprint arXiv:2312.11242.729

Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yim-730
ing Yang, and Quanquan Gu. 2024. Self-play pref-731
erence optimization for language model alignment.732
arXiv preprint arXiv:2405.00675.733

Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yim- 734
ing Yang, and Quanquan Gu. 2025. Self-play prefer- 735
ence optimization for language model alignment. In 736
The Thirteenth International Conference on Learning 737
Representations. 738

Jiaxi Yang, Binyuan Hui, Min Yang, Jian Yang, Junyang 739
Lin, and Chang Zhou. 2024. Synthesizing text-to- 740
sql data from weak and strong llms. In Proceedings 741
of the 62nd Annual Meeting of the Association for 742
Computational Linguistics (Volume 1: Long Papers), 743
pages 7864–7875. 744

Pengcheng Yin and Graham Neubig. 2017. A syntactic 745
neural model for general-purpose code generation. 746
arXiv preprint arXiv:1704.01696. 747

Yueqin Yin, Zhendong Wang, Yujia Xie, Weizhu 748
Chen, and Mingyuan Zhou. 2024. Self-augmented 749
preference optimization: Off-policy paradigms 750
for language model alignment. arXiv preprint 751
arXiv:2405.20830. 752

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, 753
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn- 754
ing Yao, Shanelle Roman, et al. 2018. Spider: A 755
large-scale human-labeled dataset for complex and 756
cross-domain semantic parsing and text-to-sql task. 757
In 2018 Conference on Empirical Methods in Natu- 758
ral Language Processing, EMNLP 2018, pages 3911– 759
3921. Association for Computational Linguistics. 760

Ruize Zhang, Zelai Xu, Chengdong Ma, Chao Yu, Wei- 761
Wei Tu, Shiyu Huang, Deheng Ye, Wenbo Ding, 762
Yaodong Yang, and Yu Wang. 2024a. A survey on 763
self-play methods in reinforcement learning. arXiv 764
preprint arXiv:2408.01072. 765

Yi Zhang, Jan Milan Deriu, George Katsogiannis- 766
Meimarakis, Catherine Kosten, Georgia Koutrika, 767
and Kurt Stockinger. 2024b. Sciencebenchmark: a 768
complex real-world benchmark for evaluating natural 769
language to sql systems. Proceedings of the VLDB 770
Endowment, 17(4):685–698. 771

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan 772
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma. 773
2024. Llamafactory: Unified efficient fine-tuning 774
of 100+ language models. In Proceedings of the 775
62nd Annual Meeting of the Association for Compu- 776
tational Linguistics (Volume 3: System Demonstra- 777
tions), Bangkok, Thailand. Association for Computa- 778
tional Linguistics. 779

Ruiqi Zhong, Tao Yu, and Dan Klein. 2020. Semantic 780
evaluation for text-to-sql with distilled test suites. In 781
Proceedings of the 2020 Conference on Empirical 782
Methods in Natural Language Processing (EMNLP), 783
pages 396–411. 784

A Appendix 785

A.1 Prompt 786

In this section, we provide the prompts employed 787

for the methodology described under Template Ex- 788

traction, which are depicted in Figure 7. 789

10

https://aclanthology.org/2024.findings-emnlp.481
https://aclanthology.org/2024.findings-emnlp.481
https://aclanthology.org/2024.findings-emnlp.481
https://openreview.net/forum?id=BAglD6NGy0
https://openreview.net/forum?id=BAglD6NGy0
https://openreview.net/forum?id=BAglD6NGy0
https://openreview.net/forum?id=BAglD6NGy0
https://openreview.net/forum?id=BAglD6NGy0
https://openreview.net/forum?id=rlloVZoKrX
https://openreview.net/forum?id=rlloVZoKrX
https://openreview.net/forum?id=rlloVZoKrX
https://openreview.net/forum?id=rlloVZoKrX
https://openreview.net/forum?id=rlloVZoKrX
https://openreview.net/forum?id=a3PmRgAB5T
https://openreview.net/forum?id=a3PmRgAB5T
https://openreview.net/forum?id=a3PmRgAB5T
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372

Task
Given the following SQL query, generate an SQL template by removing the "FROM" and "JOIN" sections,
ensuring that no table names appear in the template. All other parts of the query, including SELECT, WHERE,
GROUP BY, and HAVING, should remain unchanged. For placeholders, use the following formats:
• col_number_key# for numeric columns,
• col_text_key# for textual columns, and
• cell_value for constant values.
Important Note
If two columns in the SQL query satisfy a foreign key relationship (i.e., one column is a foreign key
referencing another table's primary key), explicitly indicate this relationship in the template using the
placeholder format col_number_key#_fk#, where fk# represents the foreign key reference. For example, if
column_A is a foreign key referencing column_B, replace column_A with col_number_key0_fk1.
Now, apply the same transformation to the SQL query below and please keep FROM and JOIN sections
removed:
Input:
{"sql": "{Input SQL}"}
Schema:
{Database Schema}
Output:

Figure 7: Prompt for extracting standardized SQL templates.

A.2 Comparison with different hardness790

To comprehensively evaluate the model perfor-791

mance, we adopted methodologies from pertinent792

studies (Pourreza and Rafiei, 2024a; Gao et al.,793

2024; Qin et al., 2025) and computed the EX score794

on the development sets of SPIDER and BIRD. The795

results presented in Table 3 and Table 4 demon-796

strate that the SPFT-SQL approach excels both in797

overall performance and across various difficulty798

levels, thereby further validating the efficacy of our799

proposed method.800

A.3 Comparison of Synthetic Data Quantity801

Table 5 presents the experimental results across all802

datasets for different amounts of synthetic data.The803

experimental results show that the model achieves804

the best performance when generating 3,000 syn-805

thetic data records. Specifically, it achieves an806

accuracy of 87.4% on the SPIDER-Test dataset,807

87.2% on the SPIDER-Dev dataset, 61.0% on the808

BIRD-Dev dataset. These results indicate that gen-809

erating an appropriate amount of synthetic data is810

crucial for improving model performance.811

When the amount of generated data is relatively812

small, the model’s performance improves but does813

not reach its optimal state. For example, the ac-814

curacy on the SPIDER-Realistic dataset is 82.1%, 815

on the SPIDER-DK dataset is 73.3%, and on the 816

BIRD-Dev dataset is 59.3%. This suggests that 817

insufficient data may prevent the model from learn- 818

ing enough information, thereby limiting its perfor- 819

mance. 820

On the other hand, when the amount of generated 821

data is excessive, the model’s performance declines. 822

For instance, when generating 5,000 records, the ac- 823

curacy on the SPIDER-Test dataset drops to 86.7%, 824

on the SPIDER-Syn dataset to 72.1%, and on the 825

BIRD-Dev dataset to 60.5%. This could incur un- 826

necessary time costs. 827

In conclusion, generating 3,000 synthetic data 828

records is an ideal choice, as it ensures data qual- 829

ity while maximizing model performance improve- 830

ment. This finding emphasizes the importance of 831

selecting an appropriate amount of synthetic data 832

during training to avoid compromising the model’s 833

final performance due to insufficient or excessive 834

data. 835

A.4 Ablation Study Results 836

Table 6 delineates the ablation study results across 837

all datasets, shedding light on the individual contri- 838

butions of various components to the overall system 839

11

Method Easy Medium Hard Extra All

Prompting with GPT
DIN-SQL+GPT4(Pourreza and Rafiei, 2024a) 92.3 87.4 76.4 62.7 82.8
DAIL-SQL+GPT4(Gao et al., 2024) 91.5 90.1 75.3 62.7 83.6
MCS-SQL+GPT4(Lee et al., 2024) 94.0 93.5 88.5 72.9 89.5

Fine-Tuning with Open-Source LLMs
Codes-7B+SFT(Li et al., 2024a) 94.8 91.0 75.3 66.9 85.4
Codes-15B+SFT(Li et al., 2024a) 95.6 90.4 78.2 61.4 84.9
SENSE-7B(Yin and Neubig, 2017) 95.2 88.6 75.9 60.3 83.5
ROUTE+Qwen2.5-7B(Qin et al., 2025) 92.8 89.7 77.0 60.2 83.6
ROUTE+Qwen2.5-14B(Qin et al., 2025) 94.0 93.0 81.6 68.1 87.3

Self-Play Method
SPIN+Qwen2.5 Coder-14B(Chen et al., 2024b) 91.5 87.7 74.7 63.3 82.3
SPFT-SQL+Qwen2.5 Coder-1.5B 92.3 83.4 72.4 58.4 79.7
SPFT-SQL+Qwen2.5 Coder-7B 96.4 91.9 85.1 62.7 87.2
SPFT-SQL+Qwen2.5 Coder-14B 95.6 94.4 81.6 64.5 87.7
SPFT-SQL+Qwen2.5 Coder-32B 96.4 93.5 80.5 67.5 87.8

Table 3: The performance (EX) comparison with different hardness on the SPIDER-Dev

Method Simple Moderate Challenging All

Prompting with GPT
MAC-SQL+GPT4(Wang et al., 2023) 65.7 52.7 40.3 59.4
MCS-SQL+GPT4(Lee et al., 2024) 70.4 53.1 51.4 63.4

Fine-Tuning with Open-Source LLMs
Codes-7B+SFT(Li et al., 2024a) 64.6 46.9 40.3 57.2
Codes-15B+SFT(Li et al., 2024a) 65.8 48.8 42.4 58.5
ROUTE+Qwen2.5-7B(Qin et al., 2025) 63.8 45.4 39.6 55.9
ROUTE+Qwen2.5-14B(Qin et al., 2025) 67.7 53.1 42.4 60.9

Self-Play Method
SPIN+Qwen2.5 Coder-14B(Chen et al., 2024b) 45.8 24.1 20.1 36.8
SPFT-SQL+Qwen2.5 Coder-1.5B 61.1 46.5 33.3 54.0
SPFT-SQL+Qwen2.5 Coder-7B 68.7 51.6 41.7 61.0
SPFT-SQL+Qwen2.5 Coder-14B 68.8 57.6 49.3 63.6
SPFT-SQL+Qwen2.5 Coder-32B 71.2 57.4 51.4 65.2

Table 4: The performance (EX) comparison with different hardness on the BIRD-Dev

performance. The implementation of Verification-840

Based Iterative Fine-Tuning (VBI-FT) significantly841

enhanced the model’s performance, with improve-842

ments ranging from 5.2% to 8.3% in EX on the843

SPIDER-Variants, highlighting its critical role in844

advancing core SQL synthesis capabilities. Fur-845

thermore, the self-play fine-tuning process con-846

tributed to an accuracy increase of 0.3% to 1.7%847

on the SPIDER-Variants, illustrating how self-play848

allows the model to optimize its inherent poten-849

tial without relying on external supervision. Col-850

lectively, these results underscore the efficacy of 851

both Verification-Based Iterative Fine-Tuning and 852

self-play fine-tuning in boosting the model’s per- 853

formance on SQL synthesis tasks. 854

A.5 Comparison of Generated SQLs from 855

Different Methods 856

To better illustrate the improvements of our method 857

over others, we selected two examples from the 858

SPIDER and BIRD datasets, as shown in Tables 7 859

and 8. In the first example, both the models fine- 860

12

SPIDER SPIDER-Variants BIRD

Quantity Dev Test Syn Realistic DK Dev

EX TS EX EX TS EX TS EX EX VES

0 83.5 79.2 81.5 69.8 64.2 75.4 70.9 68.0 51.5 55.3
1000 86.5 80.9 86.9 76.8 69.6 82.1 76.6 73.3 59.3 62.7
3000 87.2 81.3 87.4 75.1 67.6 83.3 75.6 75.5 61.0 67.0
5000 86.3 79.6 86.7 72.1 64.3 82.8 75.6 73.8 60.5 66.2
7000 86.6 80.9 86.6 71.8 64.1 82.1 73.6 73.6 59.2 65.8
10000 86.0 80.4 86.5 72.4 64.6 82.5 73.6 72.9 59.7 62.9

Table 5: Comparison of Synthetic Data Quantity

SPIDER SPIDER-Variants BIRD

Dev Test Syn Realistic DK Dev

EX TS EX EX TS EX TS EX EX VES

Qwen2.5 Coder-7B 83.5 79.2 81.5 69.8 64.2 75.4 70.9 68.0 51.5 55.3
SPFT-SQL 87.2 81.3 87.4 75.1 67.6 83.3 75.6 75.5 61.0 67.0
w/o VBI-FT 83.9 79.3 83.6 69.9 64.6 75.0 70.5 70.3 54.2 57.5
w/o self-play 86.6 80.4 86.8 74.8 66.8 82.7 74.4 73.8 60.3 65.3

Table 6: Ablation Study Results

tuned with SFT and SPIN lost the ability to com-861

pute ratios, while our method was able to correctly862

calculate the formula and select the correct fields.863

This is attributed to our VBI-FT method, which864

generates high-quality training data during the iter-865

ative process, and the guidance provided during the866

Self-Play phase, helping the model select the cor-867

rect fields and generate accurate SQL queries. In868

the second example, both SFT and SPFT achieved869

the correct results, while SPIN produced incorrect870

values, further demonstrating the issue with the871

SPIN self-play mechanism, where the model’s his-872

torical outputs are treated as negative samples.873

13

Table 7: Comparison of Generated SQLs from Different Methods on the BIRD Dataset

Stage Details

Data Question: What is the eligible free or reduced price meal rate for the top 5 schools
in grades 1-12 with the highest free or reduced price meal count of the schools with
the ownership code 66?
Gold SQL: SELECT CAST(T1.‘FRPM Count (K-12)‘ AS REAL) / T1.‘Enrollment
(K-12)‘ FROM frpm AS T1 INNER JOIN schools AS T2 ON T1.CDSCode =
T2.CDSCode WHERE T2.SOC = 66 ORDER BY T1.‘FRPM Count (K-12)‘ DESC
LIMIT 5

Original Model Pred SQL: SELECT frpm.CDSCode, frpm.School Name, frpm.FRPM Count
(K-12), frpm.Enrollment (K-12), (frpm.FRPM Count (K-12) / frpm.Enrollment
(K-12)) AS Eligible_FRPM_Rate FROM frpm JOIN schools ON frpm.CDSCode =
schools.CDSCode WHERE schools.OwnershipCode = 66 ORDER BY frpm.FRPM
Count (K-12) DESC LIMIT 5;
Result: Wrong

SFT Pred SQL: SELECT T2.‘Percent (%) Eligible Free (K-12)‘, T2.‘Percent (%)
Eligible FRPM (K-12)‘ FROM schools AS T1 INNER JOIN frpm AS T2 ON
T1.CDSCode = T2.CDSCode WHERE T1.SOC = 66 ORDER BY T2.‘FRPM
Count (K-12)‘ DESC LIMIT 5;
Result: Wrong

SPIN Pred SQL: SELECT "Percent (%) Eligible Free (K-12)", "Percent (%) Eligible
FRPM (K-12)" FROM frpm WHERE "2013-14 CALPADS Fall 1 Certification
Status" = 66 ORDER BY "FRPM Count (K-12)" DESC LIMIT 5;
Result: Wrong

SPFT-SQL Pred SQL: SELECT cast(frpm.‘frpm count (k-12)‘ AS REAL) / frpm.‘enrollment
(k-12)‘ FROM frpm INNER JOIN schools ON frpm.cdscode = schools.cdscode
WHERE schools.soc = 66 ORDER BY frpm.‘frpm count (k-12)‘ DESC LIMIT 5;
Result: Right

14

Table 8: Comparison of Generated SQLs from Different Methods on the SPIDER Dataset

Stage Details

Data Question: Count the number of searches made by buyers.
Gold SQL: SELECT count(*) FROM Users AS T1 JOIN User_Searches AS T2
ON T1.user_id = T2.user_id WHERE T1.is_buyer = 1;

Original Model Pred SQL: SELECT COUNT(us.search_seq) FROM Users u JOIN User_Searches
us ON u.user_id = us.user_id WHERE u.is_buyer = ’Yes’;
Result: Wrong

SFT Pred SQL: SELECT count(*) FROM users AS T1 JOIN user_searches AS T2 ON
T1.user_id = T2.user_id WHERE T1.is_buyer = ’1’
Result: Right

SPIN Pred SQL: SELECT count(*) FROM users AS t1 JOIN user_searches AS t2 ON
t1.user_id = t2.user_id WHERE t1.is_buyer = ’t’
Result: Wrong

SPFT-SQL Pred SQL: SELECT count(*) FROM users JOIN user_searches ON users.user_id
= user_searches.user_id WHERE users.is_buyer = 1;
Result: Right

15

	Introduction
	Related Works
	Methodology
	Verification-Based Iterative Fine-Tuning
	Text-to-SQL Data Synthesis
	Schema Processing and SFT
	Evaluation Feedback

	Self-Play Fine-Tuning

	Experiments
	Experiment Setup
	Comparison Results
	Parameter Study
	Synthetic Data Study
	Ablation Study

	Conclusion
	Appendix
	Prompt
	Comparison with different hardness
	Comparison of Synthetic Data Quantity
	Ablation Study Results
	Comparison of Generated SQLs from Different Methods

