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ABSTRACT

Online learning in arbitrary and possibly adversarial environments has been ex-
tensively studied in sequential decision-making, with a strong connection to equi-
librium computation in game theory. Most existing online learning algorithms
are based on numeric utility feedback from the environment, which may be un-
available in applications with humans in the loop and/or the presence of privacy
concerns. In this paper, we study an online learning model where only a ranking
of a set of proposed actions is provided to the learning agent at each timestep.
We consider both ranking models based on either the instantaneous utility at
each timestep, or the time-average utility until the current timestep, in both full-
information and bandit feedback settings. Focusing on the standard (external-
)regret metric, we show that sublinear regret cannot be achieved in general with the
instantaneous utility ranking feedback. Moreover, we show that when the ranking
model is relatively deterministic (i.e., with a small temperature), sublinear regret
cannot be achieved with the time-average utility ranking feedback, either. We then
propose new algorithms to achieve sublinear regret, under the additional assump-
tion that the utility vectors have a sublinear variation. Notably, we also show that
when time-average utility ranking is used, such an additional assumption can be
avoided in the full-information setting. As a consequence, we show that if all the
players follow our algorithms, an approximate coarse correlated equilibrium of a
normal-form game can be found through repeated play. Finally, we also validate
the efficiency of our algorithms via numerical experiments.

1 INTRODUCTION

Online learning has been extensively studied as a model for sequential decision-making in arbitrary,
and possibly adversarial environments (Shalev-Shwartz et al., 2012; Hazan et al., 2016). At each
round of decision-making, the learning agent commits to a strategy and takes an action, then receives
some feedback from the environment, oftentimes in a numeric form such as the utility vector (in the
full-information setting) or the realized utility value (in the bandit setting). Numerous algorithms
have been developed to achieve no-regret, i.e., ensuring (external) regret grows sublinearly in time
(Shalev-Shwartz et al., 2012; Hazan et al., 2016). Moreover, online learning is known to also have
an inherent connection to equilibrium computation in Game Theory—when all the players are no-
regret in repeatedly playing a normal-form game, the time-average strategy will approximate the
coarse correlated equilibrium (CCE) of the game (Cesa-Bianchi & Lugosi, 2006).

However, such numeric feedback of utility values may not always be available in real-world ap-
plications. For example, when the feedback is provided by humans in the loop, it is much more
convenient for them to compare/rank actions instead of numerically scoring them. This has been
acknowledged and testified by the recent successes of reinforcement learning from human feedback
(RLHF) in fine-tuning language models (Ouyang et al., 2022). Moreover, even if numeric utility
values exist, sometimes they may not be accessible to the learning agent due to privacy or security
concerns. For example, consider an online platform (cf. Fig. 1 (a)) that recommends commodities
to a stream of customers in an online fashion, where the customers at different timesteps may have
different preferences of the commodities. The platform aims to make good recommendations over
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time, while the customers may not be able/willing to reveal their actual valuation of the commodi-
ties. Depending on the types of the customers, i.e., either being one-shot (arrive, rank, and leave
forever), or being long-lived with memory, the utility used for ranking may either be the instanta-
neous one at each timestep, or the time-average one over the historical utility vectors so far. As a
consequence, the platform needs to minimize the regret incurred by the recommendations with such
ranking feedback, and it remains elusive what fundamental limits and effective algorithms are in
such a setting.

Ranking feedback may become even relevant in game-theoretic settings, when multiple humans
continuously interact with each other, and the objective is to compute a certain equilibrium of the
game. For example, consider an online dating platform recommending candidates for matching
(cf. Figure 1 (b)). Each customer may only have a ranking of the recommended candidates at
each round, and the platform aims to find an equilibrium (a matching between customers) so that
all the customers are satisfied. Similar scenarios also appear in other matching platforms, e.g.,
ride-sharing platforms that match drivers and passengers based on their preferences, such as the
drivers’ preference for trip lengths and the users’ preferences for the drivers’ driving manners (being
prompt or cautious). Our focused setting to address these scenarios may appear related, but different
from the classical stable matching one (Gale & Shapley, 1962), see Appendix A.3 for a detailed
comparison.

In this paper, we seek to systematically study online learning and equilibrium computation with
ranking feedback, where the loss vectors may be non-stochastically and even adversarially gener-
ated. This setting can be viewed as a generalization of the stochastic bandit with ranking feedback
studied recently in Maran et al. (2024) (see a more detailed comparison in Appendix A.3). We aim
to understand when regret minimization in our setting is possible, and also develop new algorithms
with regret and equilibrium approximation guarantees. We summarize our contributions as follows.

Contributions. We consider two types of ranking feedback, categorized by how the rankings are
made: one based on the instantaneous utility at each timestep (InstUtil Rank), and one based on
the time-average utility until the current timestep (AvgUtil Rank). We will thoroughly study both
the full-information and bandit feedback settings under both feedback types. In particular, we show
the following.

i. It is impossible to achieve sublinear regret under InstUtil Rank feedback in both full-
information and bandit settings.

ii. It is impossible to achieve sublinear regret under AvgUtil Rank feedback in both full-
information and bandit settings when the ranking model is too deterministic (i.e., the tem-
perature τ > 0 of the ranking model in (PL) is very small).

iii. We propose a new algorithm to achieve sublinear regret under InstUtil Rank feedback for
both full-information and bandit settings, with an additional assumption on the sublinear
variation of the utility vectors (cf. Assumption 4.1).

iv. We propose a new algorithm to achieve sublinear regret under AvgUtil Rank feedback,
without Assumption 4.1 for the full-information setting, and with Assumption 4.1 for the
bandit setting.

v. When all the players follow our no-regret learning algorithms in repeatedly playing a
normal-form game, an approximate CCE can be computed from the time-average strate-
gies.

Our results are summarized in Table 1.

2 ONLINE LEARNING WITH RANKING FEEDBACK

In this section, we will introduce the model of online learning with ranking feedback. The notations
and preliminaries of online learning and games are postponed to Appendix A.

In online learning with ranking feedback, at timestep t, the agent does not have direct access to u(t),
nor the realized utility (the utility of the realized action at timestep t). Instead, at timestep t, she
can propose a multiset (which may include repeated elements) of actions o(t) ⊆ A and receives
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Figure 1: Two real-world examples of Online Learning and Equilibrium Computation with Ranking
Feedback. Figure (a) is an example of a food recommendation application, where the online platform
recommends choices of food to the customer at each timestep, and serves a stream of (possibly
heterogeneous) customers in an online fashion. The customers will then rank the recommendations
as feedback to the platform, so that the platform can improve the recommendation quality in the
long run. Figure (b) is an example of a dating application, where the online platform recommends
customers to match each other, so that they are all satisfied with the matching and have no incentives
to deviate, i.e., reaching an equilibrium. The customers will then rank the recommended candidates,
and the platform aims to leverage such ranking feedback to find an equilibrium in multiple timesteps
of such online interactions.

a permutation σ(t) ∈ Σ
(
o(t)
)

from the environment, representing a ranking of those actions in
o(t). In full-information setting, o(t) = A, i.e., the whole action set is proposed. In bandit setting,∣∣o(t)∣∣ = K. Suppose the agent’s strategy at timestep t is π(t) ∈ ∆A, then we assume that in the
bandit setting, the actions in o(t) are proposed in an unbiased way, such that

E

[∑
a∈o(t) u

(t)(a)

K

]
=
〈
u(t), π(t)

〉
, (2.1)

which may be achieved if all the a ∈ o(t) are sampled i.i.d. from π(t) (with replacement). Let
σ(t)(k) ∈ A be the kth element of the permutation for any k ∈ [K]. Then, for any k1 < k2 ∈ [K],
action σ(t)(k1) is preferred over action σ(t)(k2). For notational simplicity, we define ai

σ
< aj if

action ai appears ahead of aj in a permutation σ.

For the ranking model, we consider the standard Plackett-Luce (PL) model (Luce, 1959; Plackett,
1975), where at each timestep t, conditioned on the proposed action set o(t), the ranking σ(t) is
sampled from

P
(
σ(t) | o(t)

)
=

K∏
k1=1

exp
(
1
τ r

(t)
(
σ(t) (k1)

))∑K
k2=k1

exp
(
1
τ r

(t)
(
σ(t) (k2)

)) , (PL)

where r(t) ∈ RA is some vector based on which the ranking is determined (as to be instantiated
later), τ > 0 is the temperature that determines how uncertain the ranking model is: when τ → 0+,
the model is absolutely certain, and the action with a larger utility in r(t) will always be ranked in
front of the actions with a smaller utility in the permutation. The utility vector r(t) depends on the
problem setting, which we will introduce next.

We will consider two types of ranking feedback throughout the paper, based on the choice of r(t)
in (PL): (i) ranking by the instantaneous utility (InstUtil Rank); (ii) ranking by the time-average
utility (AvgUtil Rank). Both feedback forms can also be further separately defined for the full-
information and bandit settings as below.

InstUtil Rank: Ranking with instantaneous utility.

The first type of ranking feedback we consider is based on the instantaneous utility function,
i.e., r(t) = u(t) in (PL). Note that only the utilities at the proposed actions will be used
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for ranking. This type is relevant when the feedback provider is oblivious or one-shot. For
example, a stream of customers arrive in an online fashion, each of whom arrives, ranks, and
then leaves, see e.g., Mansour et al. (2015). When the environment is stationary and stochastic,
the classical dueling-bandits model also used instantaneous utilities for comparison/ranking
(Yue et al., 2012; Du et al., 2020).

Full-information setting. In this setting, all the actions can be evaluated and ranked at each
timestep t, even for those she did not propose. Hence, her performance can be
evaluated by

〈
u(t), π(t)

〉
. Note that this does not mean the agent can access the full

vector u(t), since this contradicts our ranking-feedback setting. Hence, the standard
(external-)regret R(T ),external defined in (A.1) will serve as the metric to evaluate the
agent’s performance in this online learning process.

Bandit setting. In this setting, only the proposed actions at each timestep t can be evaluated
and ranked, with the associated elements in the vector u(t). In particular, the proposed
actions are evaluated by the average utility of 1

K

∑K
j=1 u

(t)
(
σ(t) (j)

)
, leading to the

following regret metric for performance evaluation:

R(T ) := max
π̂∈∆A

T∑
t=1

〈u(t), π̂
〉
− 1

K

∑
a∈o(t)

u(t) (a)

 . (2.2)

Note that such a definition coincides with that in the (multi-)dueling-bandit problems
(Yue et al., 2012; Du et al., 2020; Saha et al., 2021; Saha & Gaillard, 2022).

AvgUtil Rank: Ranking with time-average utility.

The second type of ranking-feedback is based on the time-average utility, which will differ
for the full-information and bandit settings, as detailed below. This type is relevant when the
feedback provider has memory and can use the history of utilities for ranking. For example, the
customers are long-lived in the platform, see e.g., Küçükgül et al. (2022) and Baldwin (2009).
Notably, under bandit feedback, such a model aligns with the model in the recent work by
Maran et al. (2024), when τ → 0+ and the environment is stationary and stochastic.

Full-information setting. The time-average utility vector of u
(t)
avg := 1

t

∑t
s=1 u

(s) will be
used as the r(t) in (PL) for ranking, even for those actions the agent did not propose
at timestep t. Hence,

〈
u(t), π(t)

〉
can be computed, and we will thus still use the

(external-)regret R(T ),external from (A.1) as the performance metric.
Bandit setting. In the bandit setting, only the proposed actions will be given to the environ-

ment to evaluate. For instance, the platform (learning agent) may recommend K
restaurants among all possibilities to the user (environment) to try, so that the user
will only know her evaluations of those K restaurants. As a result, the average utility
is now defined as the empirical mean of the utility vectors over time. Formally, for
each action a ∈ A, we define

u
(t)
empirical(a) :=

∑t
s=1 u

(s)(a)
∑

a′∈o(t) 1 (a = a′)∑t
s=1

∑
a′∈o(t) 1 (a = a′)

. (2.3)

This u(t)
empirical will then be used as the r(t) in (PL) for ranking. Note that the discrep-

ancy between the ranking models in the full-information and bandit settings in this
case (contrast to that for InstUtil Rank), is due to that when looking at the history,
the utility at actions other than those proposed at timestep t may be available and
still be useful later. In contrast, for InstUtil Rank, only those proposed at timestep t
are relevant for ranking, i.e., only those elements of u(t)(a) with a ∈ o(t) are used.
Moreover, the ranking will be the same as returning the ranking of the proposed ac-
tions from the ranking of all actions (see the proof of Lemma E.1 for details). The
regret metric will still be that in (2.2).
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3 EQUILIBRIUM COMPUTATION WITH RANKING FEEDBACK

There is a mediator (platform) in the game that computes and recommends strategies to the
players (e.g., Uber recommends the matching between drivers and users), but with only access
to the ranking feedback from the players, e.g., humans. Specifically, when the strategy pro-
file π is implemented by the players, player i’s utility of taking action ai ∈ Ai is uπi (ai) :=∑

a′∈×N
j=1 Aj

Ui(a′)1 (a′i = ai)
∏

j ̸=i πj(a
′
j). However, instead of observing the utility directly,

the mediator can only observe the ranking based on it.

Therefore, at each timestep t, the mediator will choose a strategy profile π and propose each player

i ∈ [N ] a multiset o(t)i =
{
a
(t),k
i

}K

k=1
consisting of K actions.

• Full-information. Each player i ∈ [N ] will receive utility uπ(t)

i , where π(t) =(
π
(t)
1 , . . . , π

(t)
N

)
is the strategy profile at timestep t.

• Bandit. The K actions are proposed sequentially. Therefore, when all players receive the

kth action, player i ∈ [N ] receive the utility Ui
((

a
(t),k
j

)N
j=1

)
.

The player will evaluate her actions’ utilities and report a ranking of the proposed actions according
to either InstUtil Rank or AvgUtil Rank. The process will be repeated until the mediator finds an
(approximate) equilibrium.

4 ONLINE LEARNING WITH InstUtil Rank FEEDBACK

The key challenge in achieving no-regret in the example is that the utility vectors
(
u(t)

)T
t=1

change
arbitrarily fast over time. Hence, to obtain positive results, we may need to restrict how fast they
change over time, as quantitatively characterized by the following assumption.

Assumption 4.1 (Sublinear variation of utility vectors). The utility vectors
(
u(t)

)T
t=1

have a sublin-
ear variation over time, i.e.,

P (T ) :=

T∑
t=2

∥∥∥u(t) − u(t−1)
∥∥∥ ≤ O(T q), (4.1)

for some q < 1.

Our result stated in Section 4 next will show that with Assumption 4.1, we can achieve sublinear
regret, and thus close the gap. Moreover, in a game where the opponents all run no-regret learning
algorithms such as projected gradient descent, Assumption 4.1 will be satisfied.

We will now present our algorithm for adversarial online learning under InstUtil Rank. The utility
estimator in our algorithms is postponed to Appendix E.

4.1 FULL-INFORMATION SETTING

Under full-information feedback, the learning agent proposes the full action set A at each timestep.
In this case, we can obtain ũ(t), an estimate of u(t), by Algorithm 1, and obtain guarantees using
Theorem E.2 under the setting of p = 1 (since all actions are proposed at each timestep). We now
show that for an arbitrary adversarial online learning algorithm that can achieve sublinear external
regret, we can construct an online learning algorithm with InstUtil Rank feedback based on it in a
black-box way. A diagram of the algorithm is in Figure 2 and the details are specified in Algorithm 2.
Specifically, we have the following theorem.
Theorem 4.2 (Informal). Consider InstUtil Rank with constant τ > 0, full-information feedback,
and Algorithm 2. For any δ ∈ (0, 1), T > 0, and any full-information no-regret learning algorithm
with numeric utility feedback, Alg, by choosing m properly, we have that with probability at least
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(1− δ), R(T ),external satisfies

R(T ),external ≤R(T ),external

(
Alg,

(
ũ(t)

)T
t=1

)
+O

((
P (T )

) 1
3
T

2
3

(
log

(
T

δ

)) 1
3

)
.

Theorem 4.2 implies that when P (T ), the variation of utility vectors, is sublinear, the regret
of Algorithm 2 will be sublinear. The proof and formal version of the theorem are provided
in Appendix H. The key technical step in the proof amounts to showing that R(T ),external and
R(T ),external

(
Alg,

(
ũ(t)

)T
t=1

)
are close to each other, since the associated utility vectors ũ(t) and

u(t) are close by Theorem E.2.

4.2 BANDIT SETTING

In the bandit-feedback setting, the utility of the online learning agent at timestep t is
1
K

∑K
k=1 u

(t)
(
σ(t)(k)

)
, i.e., the average utility of the proposed actions. To achieve sublinear R(T ),

each proposed action will be sampled from π(t) independently with replacement. In other words, an
action may be proposed multiple times at a single timestep. Therefore, to ensure each action will be
proposed with a positive probability, we need to let π(t)(a) ≥ γ

|A| for some γ > 0 and every action

a ∈ A. To this end, we will let π(t+1) = (1 − γ)Alg
((

ũ(s)
)t
s=1

)
+ γ 1(A)

|A| , i.e., a convex combi-
nation of the strategy generated by the no-regret learning algorithm Alg and a uniform probability
distribution over A. The diagram can be found in Figure 2 and the details are in Algorithm 2.

Then, the regret bound for Algorithm 2 under bandit feedback is as follows.

Theorem 4.3 (Informal). Consider InstUtil Rank with constant τ > 0, bandit feedback, and Al-
gorithm 2. For any δ ∈ (0, 1), T > 0, and any full-information no-regret learning algorithm with
numeric utility feedback, Alg, by choosing γ,m properly, with probability at least (1 − δ), R(T )

satisfies

R(T ) ≤R(T ),external

(
Alg,

(
ũ(t)

)T
t=1

)
+O

((
P (T )

) 1
5

T
4
5 log

(
T

δ

))
.

The proof and the formal version of Theorem 4.3 is provided in Appendix I. Similar to Theorem 4.2,
when P (T ) is sublinear in T , R(T ) is also sublinear in T . The proof consists of three parts. To
start, we use a concentration bound to argue that the difference

∣∣R(T ) −R(T ),external
∣∣ is small.

Then, we focus on the quantity R̃(T ) := maxπ̂∈∆A
∑T

t=1

〈
ũ(t), π̂ − π(t)

〉
. This quantity is close

to R(T ),external, since
∥∥ũ(t) − u(t)

∥∥ is bounded as shown in Theorem E.2. Finally, we show that∣∣∣R̃(T ) −R(T ),external
(
Alg,

(
ũ(t)

)T
t=1

)∣∣∣ is bounded by O(γT ), by using the fact that π(t+1) =

(1− γ)Alg
((

ũ(s)
)t
s=1

)
+ γ 1(A)

|A| .

5 ONLINE LEARNING WITH AvgUtil Rank FEEDBACK

We will now focus on the setting of online learning with AvgUtil Rank.

5.1 UTILITY ESTIMATION

Since σ(t) is generated based on u
(t)
avg, we will estimate u(t)

avg instead. We will still apply Algorithm 1,
which will generate ũ

(t)
avg, an estimate of u

(t)
avg, when the permutation is sampled under AvgUtil

Rank. Moreover, notice that∥∥∥u(t)
avg − u(t−1)

avg

∥∥∥
∞

=

∥∥∥∥∥u(t) + (t− 1)u
(t−1)
avg

t
− u(t−1)

avg

∥∥∥∥∥
∞

≤ 1

t

(∥∥∥u(t)
∥∥∥
∞

+
∥∥∥u(t−1)

avg

∥∥∥
∞

)
≤ 2

t
.

Therefore, the estimation error is bounded as follows.
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Theorem 5.1. Consider AvgUtil Rank and Algorithm 1. Suppose each action is proposed with
probability at least p > 0 at each timestep t ∈ [T ] and let ũ(t)

avg = Estimate
({
σ(s)

}t
s=t−m′+1

)
.

Then, for any δ ∈ (0, 1) and t ≥ m′, when m′p4 ≥ 2 log
(
2
δ

)
, with probability at least 1 − δ, the

estimate ũ
(t)
avg satisfies,

∥∥∥ũ(t)
avg − u(t)

avg

∥∥∥
∞
≤
τ
(
e

1
τ + 1

)2
p

√
log
(
2
δ

)
m′ +

t−1∑
s=t−m′+1

2

s+ 1
.

When taken δ, p as constants, the accumulated estimation error
∑T

t=1

∥∥ũ(t) − u(t)
∥∥
∞ is bounded

by O
(

T√
m′ +m′∑T

t=1
1
t

)
≤ O

(
T√
m′ +m′ log T

)
. Therefore, to achieve sublinear accumulated

estimation error, Assumption 4.1 is no longer required. The proof of Theorem 5.1 is simply substi-
tuting u(t) in Theorem E.2 to u

(t)
avg.

5.2 FULL-INFORMATION SETTING

Unlike the full-information setting under InstUtil Rank, where any (full-information) adversarial
online learning algorithm can be leveraged, the algorithm for AvgUtil Rank needs to satisfy the
following assumption.
Assumption 5.2. The (full-information) adversarial online learning algorithm Alg needs to
satisfy the following condition: for any T > 0, t ∈ [T ], sequences of utility vectors(
u(s)

)t
s=1

,
(
u′(s)

)t
s=1
∈
(
RA)t, we have∥∥∥∥Alg

((
u(s)

)t
s=1

)
−Alg

((
u′(s)

)t
s=1

)∥∥∥∥ ≤ L
∥∥∥∥∥

t∑
s=1

u(s) −
t∑

s=1

u′(s)

∥∥∥∥∥ ,
where L = Θ(T−c) for some constant c ∈ (0, 1).

It can be verified that follow-the-regularized-leader (FTRL) with any strongly convex regularizer
satisfies this assumption. The proof is postponed to Lemma M.3. The proposed action set is just A
as in Section 4.1. The overall procedure is summarized in Algorithm 3.

Algorithm 3 has the following regret-bound guarantee.
Theorem 5.3 (Informal). Consider AvgUtil Rank with constant τ > 0, full-information feedback,
and Algorithm 3. For any δ ∈ (0, 1), T > 0, and any full-information no-regret learning algorithm
with numeric utility feedback, Alg, that satisfies Assumption 5.2, by choosing m properly, we have
that with probability at least (1− δ), R(T ),external satisfies

R(T ),external ≤R(T ),external

(
Alg,

(
u(t)

)T
t=1

)
+O

(
LT

5
3 log

(
2T

δ

))
.

Theorem 5.3 shows that with a small enough L = Θ(T−c) satisfying c > 2/3, R(T ),external

can be made sublinear. The proof and the formal version of Theorem 5.3 is provided in Ap-
pendix J. The proof sketch of Theorem 5.3 is as follows. Let π(t+1) = Alg

((
u(s)

)t
s=1

)
. Then,∣∣∣R(T ),external −R(T ),external

(
Alg,

(
u(t)

)T
t=1

)∣∣∣ is bounded by O
(∑T

t=1

∥∥π(t+1) − π(t+1)
∥∥).

Then, by Assumption 5.2,
∥∥π(t+1) − π(t+1)

∥∥ ≤ Lt ∥∥∥u(t)
avg − ũ

(t)
avg

∥∥∥, and the result follows.

5.3 BANDIT SETTING

While applying Algorithm 1 to estimate the utility, we can only obtain an estimation of u(t)
empirical

instead of u
(t)
avg. Therefore, to estimate u

(t)
avg, we will divide the timesteps {1, 2, . . . , t} into

⌈t/M⌉ blocks, with each block containing M timesteps except for the last one. Let n(t)(a) :=
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∑t
s=1 #o(s) (a) for any a ∈ A as the number of times action a is proposed up to timestep t. Then,

for each block [s ·M +1, (s+1)M ] and a ∈ A, we estimate 1
M

∑(s+1)M
s′=s·M+1 u

(s′)(a) by computing

ũ
(s·M)
empirical(a)n

(s·M)(a)− ũ((s−1)M)
empirical (a)n

((s−1)M)(a)

n(s·M)(a)− n((s−1)M)(a)
.

The full algorithm is illustrated in Algorithm 3.

Theorem 5.4. Consider AvgUtil Rank with constant τ > 0, bandit feedback, and Algorithm 3.
For any δ ∈ (0, 1), T > 0, and any full-information no-regret learning algorithm with numeric
utility feedback, Alg, that satisfies Assumption 5.2, by choosing M,m, γ properly, we have that with
probability at least (1− δ), R(T ) satisfies

R(T ) ≤R(T ),external

(
Alg,

(
u(t)

)T
t=1

)
+ Õ

((
log

(
1

δ

))2

L
1
3T

23
18

(
P (T )

) 1
6

)
,

where Õ hides logarithm of T .

When P (T ) ≤ O (T q) for some q < 1
3 , and L = Θ(T−c) with c ∈

(
5
6 + q

2 , 1
)
, Theorem 5.4

guarantees sublinear R(T ). We need c < 1 because typically R(T ),external
(
Alg,

(
u(t)

)T
t=1

)
≤

O
(
1
L + LT

)
, e.g., FTRL with any strongly convex regularizer. Furthermore, when all players are

running Algorithm 3 in games, Theorem 5.4 guarantees that the individual regret of each player is
sublinear, when P (T ) ≤ O (LT ) (satisfied by FTRL with any strongly convex regularizer). Because
q ≤ 1− c and

(
5
6 + 1−c

2 , 1
)

is non-empty when c > 2
3 . The details can be found in Section 6.

The proof of Theorem 5.4 is similar to that of Theorem 4.3, except for the technique to bound∥∥∥ũ(t)
avg−est − u

(t)
avg

∥∥∥. To bound the estimation error, we need to show that for each block [s ·M +

1, (s+ 1)M ] and a ∈ A, the estimate

ũ
(s·M)
empirical(a)n

(s·M)(a)− ũ((s−1)M)
empirical (a)n

((s−1)M)(a)

n(s·M)(a)− n((s−1)M)(a)

is close to 1
M

∑(s+1)M
s′=s·M+1 u

(s′)(a). By using Theorem E.2, we can bound the difference between the
estimate and

u
(s·M)
empirical(a)n

(s·M)(a)− u((s−1)M)
empirical (a)n

((s−1)M)(a)

n(s·M)(a)− n((s−1)M)(a)
,

whose difference with 1
M

∑(s+1)M
s′=s·M+1 u

(s′)(a) can be bounded by the variation of the utility vectors
in the block. The full proof and the formal version can be found in Appendix K.

6 EQUILIBRIUM COMPUTATION WITH RANKING FEEDBACK

For a normal-form game
(
N, {Ai}Ni=1 , {Ui}

N
i=1

)
, the external regret of player i ∈ [N ] is

R
(T ),external
i := max

π̂i∈∆Ai

T∑
t=1

〈
u
(t)
i , π̂i − π(t)

i

〉
, (6.1)

where π
(t)
i ∈ ∆Ai is the strategy of player i at timestep t and u

(t)
i (ai) =∑

a′∈×N
j=1 Aj

Ui(a′)1 (a′i = ai)
∏

j′ ̸=i π
(t)
j′ (a

′
j′) for any ai ∈ Ai. Then, it is known that the time-

average joint strategy π(T )
avg , where π(T )

avg(a) :=
1
T

∑T
t=1

∏
i∈[N ] π

(t)
i (ai) for any a ∈×N

i=1
Ai, is an

ϵ-CCE, with

ϵ := max
i∈[N ]

{
1

T
R

(T ),external
i

}
.

8
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By applying the algorithm in Section 4 (for InstUtil Rank feedback) or Section 5 (for AvgUtil
Rank feedback), we achieve sublinear R(T ),external

i for each player i ∈ [N ]. Note that P (T ) in
Assumption 4.1 can be bounded by the summation of all players’ strategy variation. Specifically,
we have the following result.
Lemma 6.1. For any T > 0 and sequence of strategy profiles

(
π(1),π(2), . . . ,π(T )

)
, the variation

of utility vectors of any player i ∈ [N ] satisfies that
T∑

t=2

∥∥∥u(t)
i − u

(t−1)
i

∥∥∥ ≤ max
j∈[N ]

√
|Aj |

N∏
j′=1

|Aj′ |
T∑

t=2

N∑
j=1

∥∥∥π(t)
j − π

(t−1)
j

∥∥∥ . (6.2)

The proof is postponed to Appendix L. Therefore, according to Lemma 6.1, to ensure P (T ) to be
sublinear in T , Alg need to additionally satisfy the following assumption.
Assumption 6.2 (Sublinear variation of strategies). The (full-information) adversarial online learn-
ing algorithm Alg needs to satisfy the following condition: for any T > 0, t ∈ [T−1], and sequence
of utility vectors

(
u(s)

)t
s=1
∈
(
[−1, 1]A

)t
, we have∥∥∥∥Alg

((
u(s)

)t
s=1

)
−Alg

((
u(s)

)t+1

s=1

)∥∥∥∥ ≤ η,
where η = Θ(T−w) for some constant w ∈ (0, 1).

Mirror descent (cf. Wei et al. (2021, Lemma 1) and Liu et al. (2023, Lemma C.5)) and FTRL (see
Lemma M.3 for the proof), along with any strongly convex regularizer, both satisfy this property.
When Assumption 6.2 is satisfied, one can achieve sublinear regret with InstUtil Rank, under both
full-information and bandit feedback. The formal statement is as follows.
Theorem 6.3. Consider InstUtil Rank with constant τ > 0 and Algorithm 2. For any δ ∈ (0, 1),
T > 0, and any full-information no-regret learning algorithm with numeric utility feedback, Alg,
that satisfies Assumption 6.2, by choosing M,m, γ according to Theorem 4.2 and Theorem 4.3 for
different settings respectively, we have that with probability at least (1 − δ), the algorithm finds an
ϵ-CCE, with

ϵ ≤max
i∈[N ]

{
1

T
R

(T ),external
i

(
Alg,

(
ũ

(t)
i

)T
t=1

)}
+O

(
η

1
3

(
log

(
T

δ

)) 1
3

)
(Full Information)

ϵ ≤max
i∈[N ]

{
1

T
R

(T ),external
i

(
Alg,

(
ũ

(t)
i

)T
t=1

)}
+O

(
η

1
5 log

(
T

δ

))
. (Bandit)

Under AvgUtil Rank, when all the players apply Algorithm 3 and both Assumption 5.2 and As-
sumption 6.2 are satisfied, the external regret of each player will be sublinear in T according to
Theorem 5.3. Finally, we have the statement below.
Theorem 6.4. Consider AvgUtil Rank with constant τ > 0 and Algorithm 3. For any δ ∈ (0, 1),
T > 0, and any full-information no-regret learning algorithm with numeric utility feedback, Alg,
that satisfies Assumption 5.2, by choosing M,m, γ according to Theorem 5.3, we have that with
probability at least (1− δ), the algorithm finds ϵ-CCE under full-information, with

ϵ ≤ max
i∈[N]

{
1

T
R

(T ),external
i

(
Alg,

(
u

(t)
i

)T

t=1

)}
+ O

(
LT

5
3 log

(
2T

δ

))
. (Full Information)

When M,m, γ are chosen according toTheorem 5.4 and Assumption 6.2 is also satisfied, the fol-
lowing holds under bandit feedback,

ϵ ≤ max
i∈[N]

{
1

T
R

(T ),external
i

(
Alg,

(
u

(t)
i

)T

t=1

)}
+ Õ

((
log

(
1

δ

))2 (
L

1
3 η

1
6 + L

1
2

)
T

4
9

)
. (Bandit)

Remark 6.5. With the hardness in Theorem C.2, our no-regret results under AvgUtil Rank for both
the online and game settings hold for a constant τ > 0 (that cannot be arbitrarily small). However,
we note that it may be possible when τ → 0+ in the game setting: with such a deterministic ranking
model, the best-response action against the history play of the opponents is now available, leading
to the celebrated algorithm of fictitious-play (FP) (Robinson, 1951; Brown, 1951). FP is known
to converge to an equilibrium in certain games (Robinson, 1951; Monderer & Shapley, 1996; Sela,
1999; Berger, 2005) (with (slow) convergence rates (Robinson, 1951; Daskalakis & Pan, 2014;
Abernethy et al., 2021)), despite that it fails to be no-regret in the online setting (Fudenberg &
Levine, 1995; 1998).
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A NOTATIONS AND PRELIMINARIES

For any integer N , we define [N ] := {1, 2, ..., N − 1, N} to denote the set of positive integers no
larger than N . We use bold notation x to denote a finite-dimensional vector, and xi to denote the
ith element of the vector. Moreover, we extend the space of the vector index from the integer space
to any discrete set. Specifically, for any discrete set S, let RS denote the |S| dimensional real space,
where the S ∋ sth element of any x ∈ RS can be written as xs or x(s). For any vector x ∈ Rm,
let ∥x∥p be its Lp-norm and we use ∥x∥ to denote the L2-norm by default. For any convex compact
set C ⊆ Rn and x ∈ Rn, let ProjC (x0) = argminx∈C ∥x− x0∥. For any event e, let 1 (e) be its
indicator, which is equal to one when e holds and zero otherwise.

For any discrete set S, let |S| denote its cardinality, ∆S :=
{
x ∈ RS :

∑
s∈S xs = 1, xs ≥

0 for all s ∈ S
}

be the probability simplex over S, and 1 (S) be an all-one vector with each index
being elements in S. Additionally, for any discrete set S, let Σ (S) be the set containing all the
permutations of the elements in S. We will use sig(x) := exp(x)

1+exp(x) : R → R to denote the logistic
function.
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A.1 ONLINE LEARNING

We focus on online learning in a non-stochastic and potentially adversarial environment, where
an agent interacts with the environment for multiple timesteps, by taking an action and then re-
ceiving some feedback at each timestep. The agent’s action set is finite and denoted as A :={
a1, a2, . . . , a|A|} with |A| > 1. At each timestep t, the agent will commit to a strategy π(t) ∈ ∆A

and receive a utility vector u(t) ∈ [−1, 1]A afterwards, in the full-information setting. The agent
aims to minimize her (external) regret, which is the difference between her accumulated utility and
the highest accumulated utility in hindsight by playing a fixed strategy across all timesteps. For-
mally, for any integer T > 0, the regret is defined as

R(T ),external := max
π̂∈∆A

T∑
t=1

〈
u(t), π̂ − π(t)

〉
. (A.1)

Since our goal is to minimize the regret, which is not affected if the vector u(t) is offset by some
constant at each timestep t. Hence, without loss of generality, we assume u(t)(a|A|) = 0, i.e., the
last action always receives a zero utility for any u(t) and t ∈ [T ].

A.1.1 ONLINE LEARNING ALGORITHMS WITH NUMERIC FEEDBACK

Our results later will be modular, in the sense that any standard online learning algorithms with
(full-information) numeric feedback, including projected gradient descent (PGD), multiplicative-
weight update (MWU), and follow-the-regularized-leader (FTRL) in general (Hazan et al., 2016),
can be used as a black-box oracle in our algorithms to be designed later. As a preliminary, we
formally introduce such oracles here: we use Alg :

⋃∞
t=0

(
RA)t → ∆A to denote such an online

learning algorithm, which is a mapping from a sequence of utility vectors to the distribution over
the action set A. Therefore, given utility vectors

(
u(s)

)t
s=1

from timestep 1 to t, the algorithm will

generate π(t+1) = Alg
((

u(s)
)t
s=1

)
as the strategy at timestep t + 1. Finally, we can denote the

(external-)regret under Alg as

R(T ),external

(
Alg,

(
u(t)

)T
t=1

)
:= max

π̂∈∆A

T∑
t=1

〈
u(t), π̂ −Alg

((
u(s)

)t−1

s=1

)〉
, (A.2)

which can be made sublinear in T for any utility vectors
(
u(t)

)T
t=1

.

A.2 NORMAL-FORM GAMES

An N -player normal-form game (NFG) can be characterized by a tuple
(
N, {Ai}Ni=1 , {Ui}

N
i=1

)
,

where Ai :=
{
a1i , a

2
i , . . . , a

|Ai|
i

}
is the (finite) action set for player i ∈ [N ]; Ui :×N

i=1
Ai →

[−1, 1] (×is the Cartesian product of sets) is the utility function of player i, where Ui(a1, a2, ..., aN )
is the utility of player i when player j ∈ [N ] takes action aj . We call a : = (a1, a2, ..., aN ) the joint
action and let a−i : = (a1, ..., ai−1, ai+1, ..., aN ). Player i ∈ [N ] can choose a strategy πi ∈ ∆Ai ,
and we call×N

i=1
∆Ai ∋ π = (π1, π2, . . . , πN ) a strategy profile. When a strategy profile π is

implemented, each player i ∈ [N ] has an expected utility of
∑

a∈×N
j=1 Aj

Ui(a)
∏

j∈[N ] πj(aj).

Lastly, we use the unbold notation π ∈ ∆×N
i=1 Ai to denote the (possibly correlated) joint strategy of

all players, where π(a) is the probability of choosing the joint action a ∈×N

i=1
Ai.

In this paper, we focus on finding the ϵ-approximate coarse correlated equilibrium (ϵ-CCE) of the
NFG, which is a probability distribution over the joint action set. It is formally defined as follows:

Definition A.1 (ϵ-CCE). For any joint strategy π ∈ ∆×N
i=1 Ai , it is an ϵ-CCE if

max
i∈[N ]

max
π̂i∈∆Ai

∑
a∈×N

j=1 Aj

Ui(a)

π̂i(ai) ∑
a′
i∈Ai

π(a′i,a−i)− π(a)

 ≤ ϵ. (ϵ-CCE)
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Linear Regret Full Information Bandit
InstUtil Rank τ ≤ O (1)

AvgUtil Rank τ ≤ O
(

1
T log T

)
τ ≤ O

(
1

log T

)
Sublinear regret Full Information Bandit
InstUtil Rank Assumption 4.1
AvgUtil Rank ✓ Assumption 4.1 (q < 1

3 )

Table 1: Summary of the contributions in this paper, including the negative results (top) and the pos-
itive results (bottom). The table on the top shows the conditions under which for any online learning
algorithm, there exists an instance such that it will suffer a linear regret, with either instantaneous
or time-average utility ranking feedback. The negative result for the bandit, time-average utility
ranking feedback case, i.e., the (AvgUtil Rank, Bandit) block in the top table, can be viewed as also
strengthening the hardness result in the recent work Maran et al. (2024), which was developed for
the case with τ → 0+. The bottom table shows the conditions that are sufficient to achieve sublinear
regret with instantaneous and time-average utility ranking feedback, respectively.

When ϵ = 0, we refer to it as a CCE. Moreover, when the joint strategy π can be written as the
product of individual players’ strategies, i.e., π(a) =

∏N
i=1 πi(ai) for any a ∈×N

j=1
Aj , an ϵ-CCE

reduces to an ϵ-Nash equilibrium (NE).

A.3 RELATED WORK

Dueling Bandits. Using comparison and/or ranking feedback for sequential decision-making has
mostly been studied under the framework of dueling bandits (Yue et al., 2012; Saha & Gaillard,
2022; Saha & Gopalan, 2019; Du et al., 2020; Saha et al., 2021; Dudı́k et al., 2015), where the agent
takes two (or multiple) actions at each timestep, and receives a ranking of them as feedback. Differ-
ent from our setting, the ranking feedback in these works was only based on the instantaneous utility
at that timestep, while our results can address settings with both instantaneous and time-average
utilities for ranking. More importantly, the regret notions studied in these works are particularly
designed for the dueling-bandit setting, and are different from the classical external regret we focus
on here. Finally, dueling bandits mostly focused on environments that are stationary and stochastic
(Yue et al., 2012; Saha & Gaillard, 2022; Saha & Gopalan, 2019; Du et al., 2020), while we focus on
the non-stochastic setting where the environment is arbitrary and potentially adversarial, as in the
online learning setups focused on in Shalev-Shwartz et al. (2012); Hazan et al. (2016). Due to the
last two differences, the implication of these algorithms in learning-in-games is unclear, while our
algorithms converge to the CCE of the game, as a corollary of the no-(external-)regret guarantee.

Reinforcement Learning from Human Feedback (RLHF) and Preference-Based RL Inspired
by the successes in aligning large-language-models (LLMs) (Ouyang et al., 2022), reinforcement
learning from human feedback has received increasing attention. RLHF is usually instantiated as
preference-based learning, where the humans rank the model outputs based on their preferences,
and a reward model is then estimated from the feedback, which will be further used for model fine-
tuning. This way, RLHF is oftentimes implemented in an offline fashion, where batch feedback data
are used for reward model estimation (Ziegler et al., 2019; Bai et al., 2022; Ouyang et al., 2022;
Zhu et al., 2023; Park et al., 2024). Recently, online versions of RLHF have also been developed
(Dwaracherla et al., 2024; Du et al., 2024; Xie et al., 2024; Cen et al., 2024; Zhang et al., 2024),
where the exploration issue was addressed with online feedback. In fact, beyond fine-tuning LLMs,
preference-based RL has also been studied in classical Markov decision process models, with online
feedback to provably trade-off exploration and exploitation (Novoseller et al., 2020; Saha et al.,
2023; Xu et al., 2020). However, the utility/reward functions in these works are stationary, and the
regret notions that extend those in the dueling-bandits literature are different from ours. Hence, these
algorithms do not apply to our adversarial online learning and game-theoretic settings.

Learning of Stable Matchings. Some of our motivating scenarios for the game-theoretic setting
may also be modeled as the stable matching problem (Gale & Shapley, 1962), which has been
extensively studied when the agents have full knowledge of their preferences. Recently, growing
efforts have been devoted to learning in stable matching markets with unknown preferences, and
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through interactions between the agents (Liu et al., 2020; 2021; Basu et al., 2021; Jagadeesan et al.,
2021; Etesami & Srikant, 2025; Shah et al., 2024b;a). Notably, Etesami & Srikant (2025); Shah
et al. (2024b;a) also took a game-theoretic perspective, by developing learning-in-games algorithms
for finding matchings in a decentralized, uncoordinated fashion. However, one key difference is that
the learning agents (e.g., the proposers or the platform) can receive numeric feedback of the utilities
each round, based on the matching result, while in our model, they can only receive the ranking
feedback. Moreover, the learning dynamics in Etesami & Srikant (2025); Shah et al. (2024b;a) were
specific to the matching market model, while ours aim to address general normal-form games.

Recent Work by Maran, Bacchiocchi, Stradi, Castiglioni, Gatti, and Restelli (2024). The work
closest to ours is the recent one by Maran et al. (2024), which studied multi-armed bandits with
ranking feedback, also under the standard (external-)regret metric. Different from the ranking model
in dueling bandits, the model of Maran et al. (2024) is based on time-average utilities, a setting also
considered in our paper. More importantly, in contrast to our paper, Maran et al. (2024) focused
on the stochastic bandits setting where the utility functions are stationary, while our focus is on the
adversarial/online and game-theoretic settings, with both instantaneous and time-average utility-
based rankings. Furthermore, the ranking model in Maran et al. (2024) corresponds to the case of
τ → 0+ in our framework. Finally and notably, Maran et al. (2024) also provided a hardness result
for the adversarial bandit setting (with τ → 0+), while our hardness results (with different hard
instances) are stronger in the sense that they allow a wider range of τ for the bandit setting, and also
cover the full-information setting (cf. Table 1).

B ALGORITHMS

Figure 2 is the illustration of learning with InstUtil Rank and Figure 3 is that of AvgUtil Rank. The
utility estimator is Algorithm 1, the full algorithm for learning with InstUtil Rank is Algorithm 2,
and that of AvgUtil Rank is Algorithm 3.

Algorithm 1 Estimate
({
σ(s)

}m′

s=1

)
1: Input: A set consisting of m′ permutations :

{
σ(s)

}m′

s=1
and temperature τ > 0.

2: for j = 1, 2, . . . , |A| − 1 do
3: for s = 1, . . . ,m′ do
4: Calculate n(s)j,1 , n

(s)
j,2 defined as

n
(s)
j,1 :=

∑
i,k∈[K]

1
(
σ(s) (i) = aj , σ(s) (k) = a|A|and i < k

)
,

n
(s)
j,2 :=

∑
i,k∈[K]

1
(
σ(s) (i) = aj , σ(s) (k) = a|A|and i > k

)
.

5: end for
6: Let Tj :=

{
s ∈ [1,m′] : n

(s)
j,1 + n

(s)
j,2 > 0

}
7: Let sig−1(x) : (0, 1) → R := log x

1−x be the inverse function of sig. The utility of action aj

is then estimated as

ũ(aj) =

Proj[−1,1]

(
τsig−1

(
1

|Tj | ·
∑

s∈Tj

(
n
(s)
j,1

n
(s)
j,1+n

(s)
j,2

)))
|Tj | > 0

0 |Tj | = 0.

8: end for
9: Return ũ =

(
ũ(a1), ũ(a2), . . . , ũ

(
a|A|−1

)
, 0
)
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Timestep t (Full-Information)

Estimate(·) Oracle Alg(·)

{
σ(s)

}t
s=max{t−m+1,1} ũ(t) π(t+1)

(
ũ(s)

)(t−1)

s=1

Timestep t (Bandit)

Estimate(·) Oracle Alg(·)

{
σ(s)

}t
s=max{t−m+1,1} ũ(t)

+
·(1 − γ)

γ 1(A)
|A|

π(t+1)

(
ũ(s)

)(t−1)

s=1

Figure 2: The diagram of Algorithm 2 with InstUtil Rank under full-information feedback (top)
and bandit feedback (bottom). +⃝ represents the addition of (1− γ) times the output the Alg and γ
times a uniform distribution over A.

Algorithm 2 Learning with InstUtil Rank
1: Input: Action space A, any full-information no-regret algorithm Alg under numeric feedback,

selected action number K, estimation window size m, and exploration rate γ.
2: Initialize π(1) as uniform distribution 1

|A| over A
3: for timestept = 1, 2, . . . , T do
4: if Full-information setting then
5: K = |A| in this case. Select all |A| actions.
6: else if Bandit setting then
7: Sample K actions independently with replacement from π(t).
8: end if
9: Receive a ranking feedback σ(t) =

(
σ(t)(1), σ(t)(2), . . . , σ(t)(K)

)
from the environment.

10: ũ(t) = Estimate
({
σ(s)

}t
s=max{t−m+1,1}

)
by calling Algorithm 1.

11: if Full-information setting then
12: π(t+1) ← Alg

((
ũ(s)

)t
s=1

)
.

13: else if Bandit setting then
14: π(t+1) ← (1− γ)Alg

((
ũ(s)

)t
s=1

)
+ γ 1(A)

|A| .
15: end if
16: end for

16



Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)

Timestep t (Full-Information)

Estimate(·) Oracle Alg(·)
{
σ(s)

}t

s=max{t−m+1,1} ũ
(t)
avg

(
ũ

(t)
avg

)t

s=1 π(t+1)

Timestep t (Bandit)

Estimate(·) (B.1) Oracle Alg(·)
{
σ(s)

}t

s=max{t−m+1,1} ũ
(t)
avg−est

(
ũ

(t)
avg−est

)t

s=1 +
·(1 − γ)

γ 1(A)
|A|

π(t+1)

(
ũ
(s)
empirical

)(t−1)

s=1

Figure 3: The diagram of Algorithm 3 with AvgUtil Rank under full-information feedback (top)
and bandit feedback (bottom). represents copying the estimated utility vector for t times. +⃝
represents the addition of (1 − γ) times the output the Alg and γ times a uniform distribution over
A.

C HARDNESS FOR THE ONLINE SETTING

In this section, we present hard instances to show that online learning in non-stochastic and poten-
tially adversarial environments can be hard in general, under both InstUtil Rank and AvgUtil Rank,
even when there are only two actions.

Theorem C.1 in the following shows that for any temperature not larger than a constant, there exists
a set of utility vectors such that the expected regret is linear with InstUtil Rank, for both full-
information and bandit settings.
Theorem C.1. Consider InstUtil Rank. For any T > 0, temperature 0 < τ ≤ 0.1, and online
learning algorithm, there exists a sequence of utility vectors

(
u(t)

)T
t=1

such that

min
{
E
[
R(T ),external

]
,E
[
R(T )

]}
≥ Ω (T )

in both full-information and bandit settings. The expectation is taken over the randomness of the
algorithm and the ranking.

To prove Theorem C.1, we need to construct two sets of utility vectors, which are not distinguishable
from InstUtil Rank, but being no-regret in one of them will result in linear regret in the other. The
detailed proof can be found in Appendix F.

Next, we show in Theorem C.2 that when AvgUtil Rank is used, and τ is small enough, it is also
impossible to achieve sublinear regret.
Theorem C.2. Consider AvgUtil Rank with full-information feedback. For any T > 0, temperature
0 < τ ≤ O

(
1

T log T

)
, and online learning algorithm, there exists T ′ ≥ T and a sequence of utility

vectors
(
u(t)

)T ′

t=1
such that

min
{
E
[
R(T ′),external

]
,E
[
R(T ′)

]}
≥ Ω

(
T ′

log T ′

)
.
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Algorithm 3 Learning with AvgUtil Rank
1: Input: Action space A, any full-information no-regret algorithm Alg under numeric feedback,

selected action number K, estimation window size m, exploration rate γ, and block size M .
2: Initialize π(1) as uniform distribution 1

|A| over A
3: for timestep t = 1, 2, . . . , T do
4: if Full-information setting then
5: K = |A| in this case. Select all |A| actions.
6: else if Bandit setting then
7: Sample K actions independently with replacement from π(t).
8: end if
9: Receive a ranking feedback σ(t) =

(
σ(t)(1), σ(t)(2), . . . , σ(t)(|A|)

)
from the environment.

10: if Full-information setting then
11: ũ

(t)
avg = Estimate

({
σ(s)

}t
s=max{t−m+1,1}

)
by calling Algorithm 1.

12: π(t+1) ← Alg

((
ũ
(t)
avg

)t
s=1

)
, i.e., the strategy generated by Alg when all utility vectors

from timestep 1 to t are ũ
(t)
avg.

13: else if Bandit setting then
14: ũ

(t)
empirical = Estimate

({
σ(s)

}t
s=max{t−m+1,1}

)
by calling Algorithm 1.

15: Let n(t)(a) :=
∑t

s=1 #o(s) (a) for any a ∈ A as the number of times action a is proposed
up to timestep t. Then, the estimated average utility is

ũ
(t)
avg−est(a) :=

{
1

⌊t/M⌋
∑⌊t/M⌋

s=1

ũ
(s·M)
empirical(a)n

(s·M)(a)−ũ
((s−1)M)
empirical (a)n

((s−1)M)(a)

n(s·M)(a)−n((s−1)M)(a)
t ≥M

0 t < M

(B.1)

16: π(t+1) ← (1− γ)Alg

((
ũ
(t)
avg−est

)t
s=1

)
+ γ 1(A)

|A| .

17: end if
18: end for

The expectation is taken over the randomness of the algorithm and the ranking.

Given Theorem C.2, it is impossible to achieve sublinear regret with AvgUtil Rank when τ is very
small. However, in Section 5, we will close the gap by showing that when τ is a constant, we can
achieve sublinear regret with AvgUtil Rank, even without Assumption 4.1.

Due to the different instantiations of r(t) in the full-information and the bandit settings under
AvgUtil Rank in the ranking model (PL), we have a separate hardness result for the bandit set-
ting, which is stronger than Theorem C.2 as it allows a larger τ .
Theorem C.3. Consider AvgUtil Rank with bandit feedback. For any T > 0, temperature 0 < τ ≤
O
(

1
log T

)
, and online learning algorithm, there exists a sequence of utility vectors

(
u(t)

)4T
t=1

such
that

min
{
E
[
R(4T ),external

]
,E
[
R(4T )

]}
≥ Ω (T ) .

The expectation is taken over the randomness of the algorithm and the ranking.

The proof is postponed to Appendix F.

D EXPERIMENTS

We evaluate our algorithms in two-player general-sum random-utility games under all combinations
of full-information and bandit feedback, as well as InstUtil Rank and AvgUtil Rank models. The
exploitability of different game parameters are provided in the following figures.
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Figure 4: The exploitability for the full-information setting under both InstUtil Rank and AvgUtil
Rank feedback. The performance is tested under different temperatures τ . Each parameter combi-
nation is tested 10 times with different random seeds. We pick the best m, and γ for each figure.

The utility estimation of each game utilizes Algorithm 1. The (full-information adversarial) no-
regret learning oracle, Alg, for InstUtil Rank is PGD (Hazan et al., 2016) and for AvgUtil Rank is
FTRL with L2-regularization (Hazan et al., 2016).
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Figure 5: The exploitability for the bandit feedback setting under InstUtil Rank feedback. The
performance is tested under different temperatures τ and sampled action size K. Each parameter
combination is tested 10 times with different random seeds. We pick the best m, and γ for each
figure.

To pick better hyper-parameters for different game settings, we performed a grid-search for InstUtil
Rank on exploration rate γ and estimation window size m. For AvgUtil Rank, we perform the
grid-search on exploration rate γ, estimation window size m, and the block size M . The parameters
searched may differ depending on the full information or bandit feedback settings. All games are
run for T = 107 iterations. Each player in the game has 10 actions. The learning rate was set to
η = 1√

T
in all experiments, except in the combination of AvgUtil Rank and bandit feedback, where

it was set to η = 10−6. Each parameter combination is tested 10 times with different random seeds.
We pick the best m, M , and γ for each figure.

For all games, the exploitability decreases as t increases, which shows time-average joint strategy
converges to CCE. The equilibrium of the bandit feedback setting for AvgUtil Rank is reached
slower than InstUtil Rank, which fits the regret bound in Theorem 4.3 and Theorem 5.4.
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Figure 6: The exploitability for the bandit feedback setting under AvgUtil Rank feedback. The
performance is tested under different temperatures τ and sampled action size K. Each parameter
combination is tested 10 times with different random seeds. We pick the best m, M , and γ for each
figure.

The code for the experiments is provided at the anonymous github link Online-Learning-and-
Equilibrium-Computation-with-Ranking-Feedback.1

E UTILITY ESTIMATION

A natural idea to learn under ranking feedback is to use the feedback to estimate numeric utility
vectors. At each timestep t, we propose using the ranking feedback from the last m steps to predict
the utility vector u. When t ≥ m, we use the past m step’s permutation

{
σ(s)

}m
s=t−m+1

to estimate
utility u(t). Lemma E.1 below shows that when K > 2, for any two actions a ̸= b ∈ A in the
proposed action set o(t), in all action pairs a, b in σ(t), the proportion of pairs that action a appears
before b, is equal to sig

(
u(t)(a)−u(t)(b)

τ

)
in expectation. In other words, it is equal to the probability

of the permutation (a, b) occurring when only proposing a, b.
Lemma E.1. Let #S (a) :=

∑
a′∈S 1 (a′ = a) represent the number of elements in a multiset S that

are equal to a ∈ A. For any utility vector u, temperature τ > 0, a multiset of proposed actions S
with cardinality |S| = K, and any two actions a ̸= b ∈ S, we have

1

#S (a) · #S (b)
E

[
K∑

k1=1

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b)

∣∣∣∣S
]
= sig

(
u(a)− u(b)

τ

)
.

The expectation is taken over the randomness in the (PL) model.

The proof is postponed to Appendix G.1. With Lemma E.1, the general cases where K > 2 actions
are proposed can be cast into the case with only two actions being proposed by counting out all
existence of the action pairs. Therefore, to estimate u(t)(aj), we will first construct an unbiased es-

timator of sig
(

u(s)(aj)−u(s)(a|A|)
τ

)
using Lemma E.1, for all timesteps s ∈ [t−m+1, t] when both

aj , a|A| ∈ o(s). Since we have assumed without loss of generality that u(s)(a|A|) = 0, these values

coincide with sig
(

u(s)(aj)
τ

)
. Then, by Hoeffding’s inequality and monotonicity of the logistic func-

tion, with high probability, the mean of the logistic function estimators will be bounded between the

minimum and maximum of
{
sig
(

u(s)(aj)
τ

)}t

s=t−m+1
. By Assumption 4.1, since the utility vectors

are changing slowly, that mean is guaranteed to be close to sig
(

u(t)(aj)
τ

)
. With a good estimate of

1https://anonymous.4open.science/r/Online-Learning-and-Equilibrium-Computation-with-Ranking-
Feedback-FB0C

20

https://anonymous.4open.science/r/Online-Learning-and-Equilibrium-Computation-with-Ranking-Feedback-FB0C
https://anonymous.4open.science/r/Online-Learning-and-Equilibrium-Computation-with-Ranking-Feedback-FB0C


Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)

sig
(

u(s)(aj)
τ

)
, we can then take an inverse of sig(·) to estimate u(s)(aj). This estimation algorithm

is summarized in Algorithm 1 and analyzed in Theorem E.2 below.
Theorem E.2. Consider InstUtil Rank and Algorithm 1. Suppose each action is proposed with
probability at least p > 0 at each timestep t ∈ [T ] and let ũ(t) = Estimate

({
σ(s)

}t
s=t−m′+1

)
.

Then, for any δ ∈ (0, 1) and t ≥ m′, when m′p4 ≥ 2 log
(
2
δ

)
, with probability at least 1 − δ, the

estimate ũ(t) satisfies,∥∥∥ũ(t) − u(t)
∥∥∥
∞
≤
τ
(
e

1
τ + 1

)2
p

√
log
(
2
δ

)
m′ +

t−1∑
s=t−m′+1

∥∥∥u(s+1) − u(s)
∥∥∥
∞
.

When taken δ, p as constants, the accumulated estimation error
∑T

t=1

∥∥ũ(t) − u(t)
∥∥
∞ is bounded

byO
(

T√
m′ +m′P (T )

)
, which implies that sublinear accumulated estimation error is achieved only

when P (T ) is sublinear (Assumption 4.1). Moreover, Theorem E.2 implies that when τ → 0+, the
estimation error upperbound goes to +∞. This makes intuitive sense: when τ → 0+, only the
action with the highest utility is chosen (deterministically), so it becomes impossible to estimate the
gap between the utilities of any two actions. At the opposite end, when τ → +∞, the estimation
error upperbound also goes to +∞, since the ranking is always sampled uniformly regardless of the
utility vectors.

The proof of Theorem E.2 is provided in Appendix G. In the following, we will show how to achieve
sublinear regret in both full-information and bandit settings with InstUtil Rank.

F PROOF OF APPENDIX C

R(T ) ≥ R(T ),external since we can choose π(t)(a) =
∑

a′∈o(t)
1(a=a′)

K for any action a ∈ A so
that 1

K

∑
a∈o(t) u

(t)(a) =
〈
u(t), π(t)

〉
. Therefore, in the rest of this section, we will only show the

lowerbound of R(T ),external.

F.1 PROOF OF THEOREM C.1

Theorem C.1. Consider InstUtil Rank. For any T > 0, temperature 0 < τ ≤ 0.1, and online
learning algorithm, there exists a sequence of utility vectors

(
u(t)

)T
t=1

such that

min
{
E
[
R(T ),external

]
,E
[
R(T )

]}
≥ Ω (T )

in both full-information and bandit settings. The expectation is taken over the randomness of the
algorithm and the ranking.

Proof. Consider an online learning problem with A = {a, b}, so that the utility vector can be
represented as (u(a), u(b)). There are two instances with τ = 0.1.

In the first instance, there are two types of utility vectors (−0.5, 0) and (0.15, 0). At each timestep,
the adversary will choose (−0.5, 0) with probability 4

13 and the other with probability 9
13 .

In the second instance, there are two types of utility vectors (−0.02, 0) and (0.1, 0). Let
sig(x) : R → R := exp(x)

1+exp(x) be the logistic function. At each timestep, the adversary will choose

(−0.02, 0) with probability 4sig(−5)/13+9sig(1.5)/13−sig(1)
sig(−0.2)−sig(1) ≈ 0.58 and the other with probability

0.42.

The expected utility of action b in both instances is 0. The expected utility of action a in the first
instance is −0.05. The expected utility of action a in the second instance is 0.03.

Moreover, the probability of the online learning agent observing permutation (a, b) in the first in-
stance is

4

13
sig(−5) + 9

13
sig(1.5),
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which is equal to the probability of observing it in the second instance

4sig(−5)/13 + 9sig(1.5)/13− sig(1)

sig(−0.2)− sig(1)
sig(−0.2) +

(
1− 4sig(−5)/13 + 9sig(1.5)/13− sig(1)

sig(−0.2)− sig(1)

)
sig(1).

Therefore, for any algorithm that generates
(
π(t)

)T
t=1

, we have

E

[
T∑

t=1

〈
u(t), π(t)

〉]
=

T∑
t=1

E
[〈

u(t), π(t)
〉]

(i)
=

T∑
t=1

〈
E
[
u(t)

]
,E
[
π(t)

]〉
.

(i) is because u(t) is independent of π(t) given our generation processing both instances. Moreover,

E
[
π(t)

]
=

∑
σ(1),...,σ(t−1)∈Σ(A)

P
(
σ(1), . . . , σ(t−1)

)
E
[
π |σ(1), . . . , σ(t−1)

]
.

The first term P
(
σ(1), . . . , σ(t−1)

)
is equal in two instances according to the discussion above,

and the second term E
[
π |σ(1), . . . , σ(t−1)

]
is also equal since it only depends on the algorithm.

Therefore, E
[
π(t)

]
is the same in both instances.

However, E
[
u(t)

]
= (−0.05, 0) in the first instance but (0.03, 0) in the second. Therefore, when-

ever achieving sublinear regret in the first instance, the algorithm will suffer a linear regret in the
second instance, and vice versa.

F.2 PROOF OF THEOREM C.2

Theorem C.2. Consider AvgUtil Rank with full-information feedback. For any T > 0, temperature
0 < τ ≤ O

(
1

T log T

)
, and online learning algorithm, there exists T ′ ≥ T and a sequence of utility

vectors
(
u(t)

)T ′

t=1
such that

min
{
E
[
R(T ′),external

]
,E
[
R(T ′)

]}
≥ Ω

(
T ′

log T ′

)
.

The expectation is taken over the randomness of the algorithm and the ranking.

Proof. We use (u(a), u(b)) to denote the utility vector when the action set is A = {a, b}. In the
following, we will show a hard instance for τ → 0+, i.e., we always observe the action with higher
utility ranks first in the permutation. Then, we will show that τ ≤ O( 1

log T ) can be reduced to
τ → 0+.

The utility vector at timestep 1 is u(1) = (0.5, 0). Then we will construct the rest of the utility
vectors.

We call the following an action-a construction, since except for the last timestep, the observation is
always action a is better. Let K ∈ N be the smallest integer such that 2K ≥ T .

Sequence 0 =(0, 1), (0, 0)

Sequence 1 =(1, 0), (0, 1), (0, 1), (0, 0)

Sequence 2 =(1, 0), (1, 0), (1, 0), (0, 1), (0, 1), (0, 1), (0, 1), (0, 0)

. . . (F.1)
SequenceK − 1 = (1, 0), ..., (1, 0)︸ ︷︷ ︸

2K−1−1

, (0, 1), ..., (0, 1)︸ ︷︷ ︸
2K−1

, (0, 0)

SequenceK =(1, 0), ..., (1, 0)︸ ︷︷ ︸
2K−1

, (0, 0).

Lemma F.1 in the following shows that at least one of the sequences will incur a low average utility
for the algorithm.
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Lemma F.1. Consider (F.1). For any online learning algorithm, at least one of theK+1 sequences
satisfies that the expected average utility per timestep is less than 0.5− 1

2(K+1) .

By Lemma F.1, there exists a sequence with length 2k for some k ≤ K such that the average utility
per timestep achieved by the algorithm is less than 0.5− 1

2(K+1) . We will pick this sequence as the
next 2k utility vectors. If the current utility vector sequence is no less than T , then the hard instance
is completed. Otherwise, we will construct the following action-b construction:

Sequence 0 =(1, 0), (0, 0)

Sequence 1 =(0, 1), (1, 0), (1, 0), (0, 0)

Sequence 2 =(0, 1), (0, 1), (0, 1), (1, 0), (1, 0), (1, 0), (1, 0), (0, 0)

. . .

SequenceK − 1 = (0, 1), ..., (0, 1)︸ ︷︷ ︸
2K−1−1

, (1, 0), ..., (1, 0)︸ ︷︷ ︸
2K−1

, (0, 0)

SequenceK =(0, 1), ..., (0, 1)︸ ︷︷ ︸
2K−1

, (0, 0).

Similarly, except for the last observation, all the observations are action b being the best action.
Similar to Lemma F.1, we can show that at least one of the sequences incurs average utility per
timestep less than 0.5− 1

2(K+1) . We will add that sequence to the end of our hard instance.

Let T ′ ≥ T be the length of the final instance. Therefore, the average regret will be 1
2(K+1) =

Ω( 1
log T ). Because from the construction, the best action should get at least 0.5 − 1

T utility per
timestep.

When τ ≤ O
(

1
log T

)
, from the construction above, the difference between the cumulative utility of

the actions is always 0.5. By definition of AvgUtil Rank, 1 − sig
(
0.5
τ

)
= O

(
1
T

)
. Therefore, by

union bound, with a non-negligible probability, all permutations will rank the action with a higher
utility at first, so that the problem reduces to τ → 0+.

Lemma F.1. Consider (F.1). For any online learning algorithm, at least one of theK+1 sequences
satisfies that the expected average utility per timestep is less than 0.5− 1

2(K+1) .

Proof. Note that this is online learning, so the strategy π(t) is determined by u(1), . . . , u(t−1).
Therefore, in all sequences in action-a construction, since all observations are action a being the
best, for any two sequences k1 ≤ k2, the expectation of the strategies are the same for the first 2k1+1

utility vectors. For simplicity, we will use x(t) to denote the probability of choosing action-a at
timestep t.

The average utility at sequence 0 is 1−x(1)

2 . The average utility at sequence 1 is x(1)

4 + 1−x(2)

4 + 1−x(3)

4 .
We can see that the utility contributed by x(1) to all sequences is

1− x(1)
2

+
x(1)

4
+
x(1)

8
+ ...+

x(1)

2K
+
x(1)

2K
=

1

2
.

Similarly, the contribution of x(2), x(3) is 1
4 . The contribution of x(4), x(5), . . . , x(7) is 1

8 . Therefore,
the total contribution of x(1), ..., x(2

K−1) is K
2 . There are K + 1 sequences in total, so that at least

one of the sequences has average utility per timestep less than K
2(K+1) =

1
2 − 1

2K+2 .

F.3 PROOF OF THEOREM C.3

Theorem C.3. Consider AvgUtil Rank with bandit feedback. For any T > 0, temperature 0 < τ ≤
O
(

1
log T

)
, and online learning algorithm, there exists a sequence of utility vectors

(
u(t)

)4T
t=1

such
that

min
{
E
[
R(4T ),external

]
,E
[
R(4T )

]}
≥ Ω (T ) .
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The expectation is taken over the randomness of the algorithm and the ranking.

Proof. Consider the following two instances. Both of them satisfy A =
{
a1, a2

}
and K = 1.

Instance 1 =(0.1, 0), . . . , (0.1, 0)︸ ︷︷ ︸
T

, (0, 0.2), . . . , (0, 0.2)︸ ︷︷ ︸
T

, (0, 1), . . . , (0, 1)︸ ︷︷ ︸
2T

Instance 2 =(0.1, 0), . . . , (0.1, 0)︸ ︷︷ ︸
T

, (0, 0.2), . . . , (0, 0.2)︸ ︷︷ ︸
T

, (0.4, 0.2), . . . , (0.4, 0.2)︸ ︷︷ ︸
2T

.

We call the first T timesteps as the first phase, the next T timesteps as the second phase, and the last
2T timesteps as the third phase.

For any online learning algorithm, it must propose action a1 for at least 0.9T times during the first
phase with probability at least 1

2 , since otherwise there is the expected external regret in the first
phase is linear. During the second phase, it must propose action a2 for at least 0.2T−0.1T

0.2 = T
2

times due to the same reason with probability at least 1
4 . Then, at the end of the second phase, with

probability at least 1
4 , u(2T )

empirical(a
2)− u(2T )

empirical(a
1) ≥ 0.5T ·0.2

0.1T+0.5T − 0.1 = 1
15 .

Then, in the third phase of instance 1, the algorithm needs to propose a2 for at least
0.2T+2T−0.2T−0.1T

1 = 1.9T times with probability at least 1
8 . In other words, a1 is proposed

by no more than 0.1T times. Then, in instance 2, at the end of the third phase, u(4T )
empirical(a

2) −
u
(4T )
empirical(a

1) ≥ 0.5T ·0.2
0.1T+0.5T − 0.9T ·0.1+0.1T ·0.4

0.9T+0.1T ≥ 0.03. Therefore, when τ → 0+, the observation
of instance 1 and instance 2 are the same with probability at least 1

8 . Then, with probability at least
1
8 , according to the discussion above, any learning algorithm will satisfy one of the following,

• Linear regret at timestep T .

• Linear regret at timestep 2T .

• Linear regret at timestep 4T in either instance 1 or instance 2.

Moreover, for any t > 2T of instance 2, we have u(t)empirical(a
2)−u(t)empirical(a

1) ≥ u(4T )
empirical(a

2)−
u
(4T )
empirical(a

1) ≥ 0.03. Therefore, when τ ≤ O
(

1
log T

)
, with high probability, the action with

higher empirical average utility will always be ranked first.

G PROOF OF THEOREM E.2

In this section, we proved the high probability bound for the estimation error, and with that, we gave
the regret upper bound of our algorithm for instantaneous utility. Under the assumption of sublinear
variation of the utility function, our algorithm reached sublinear regret.

Theorem E.2 gave the estimation error bound of the utility vector for each timestep.

Theorem E.2. Consider InstUtil Rank and Algorithm 1. Suppose each action is proposed with
probability at least p > 0 at each timestep t ∈ [T ] and let ũ(t) = Estimate

({
σ(s)

}t
s=t−m′+1

)
.

Then, for any δ ∈ (0, 1) and t ≥ m′, when m′p4 ≥ 2 log
(
2
δ

)
, with probability at least 1 − δ, the

estimate ũ(t) satisfies,

∥∥∥ũ(t) − u(t)
∥∥∥
∞
≤
τ
(
e

1
τ + 1

)2
p

√
log
(
2
δ

)
m′ +

t−1∑
s=t−m′+1

∥∥∥u(s+1) − u(s)
∥∥∥
∞
.

Proof. For any j ∈ [|A| − 1], we assume that the probability for action aj is chosen at each timestep
is at least p. Let the number of action pair

(
aj , a|A|) chosen in them′ timestep bem1, by Hoeffding’s
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Inequality, we have that with probability at least 1− δ:

m1 ≥ m′p2 −
√
m′

2
log

(
2

δ

)
.

For these chosen pairs, the probability that a ranks before |Ai| is
exp( 1

τ u(t)(aj))
exp( 1

τ u(t)(aj))+exp( 1
τ u(t)(|Ai|))

=

exp( 1
τ u(t)(aj))

exp( 1
τ u(t)(aj))+1

. We define sig(x) : R → R := exp(x)
exp(x)+1 ,let Sm1

:=
∑m′

s=1 1

(
aj

σ(s)

< a|A|
)

, we

then do a projection to Sm1

m1
.

Due to the monotonicity of function sig,

ũ(t)(aj) = τsig−1

(
Proj[sig(− 1

τ ),sig( 1
τ )]

(
Sm1

m1

))
.

where ũ(t)(aj) is the estimation of u(t)(aj). Then also by Hoeffding’s Inequality, we have that with
probability 1− δ,∣∣∣∣∣∣Sm1

m1
− 1

m1

m′∑
s=1

1

(
aj

σ(s)

< a|A|
)
sig

(
1

τ
u(s)(aj)

)∣∣∣∣∣∣ ≤
√

1

2m1
log

(
2

δ

)
.

Let u(t),∗(aj) ∈ R be the scalar satisfying

sig

(
1

τ
u(t),∗(aj)

)
=

1

m1

m′∑
s=1

1

(
aj

σ(s)

< a|A|
)
· sig

(
1

τ
u(s)(aj)

)
.

Since the logistic function is monotone and continuous, u(t),∗(aj) is unique and must exist. Then
since [−1, 1] is a convex set, with probability at least 1− δ,∣∣∣Proj[sig(− 1

τ ),sig( 1
τ )]

(
sig
(
ũ(t)(aj)

))
− Proj[sig(− 1

τ ),sig( 1
τ )]

(
sig
(
u(t),∗(aj)

))∣∣∣
≤
∣∣∣sig (ũ(t)(aj))− sig

(
u(t),∗(aj)

)∣∣∣ ≤√ 1

2m1
log

(
2

δ

)
.

Lemma G.1 in the following shows that ũ(t)(aj) is bounded between the minimum and maximum

of
{
u(s)(aj)

}m′

s=1
. Then, by further utilizing the assumption that the variation of the utility vectors

is small, we can bound the distance between our estimated utility vector and u(t).

Lemma G.1. Let x1, . . . , xn ∈ [−1, 1] , sig(x) := exp(x)
exp(x)+1 . Let sigavg := 1

n

∑n
i=1 sig(xi), we

have

min
i∈[n]

xi ≤ log

(
sigavg

1− sigavg

)
≤ max

i∈[n]
xi.

The proof is postponed to Appendix G.1.

By Lemma G.1, we have that u(t),∗ ∈ [−1, 1], so

sig
(
u(t),∗(aj)

)
∈
[
sig

(
−1

τ

)
, sig

(
1

τ

)]
,

Proj[sig(− 1
τ ),sig( 1

τ )]

(
sig
(
u(t),∗(aj)

))
= sig

(
u(t),∗(aj)

)
.
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For any u ∈ [−1, 1], we have

dsig
(
1
τ u
)

du
=
1

τ
sig
(u
τ

)(
1− sig

(
−u
τ

))
≥ 1

τ
sig

(
−1

τ

)(
1− sig

(
1

τ

))
=

1

τ

(
sig

(
−1

τ

))2

=
1

τ
(
e

1
τ + 1

)2 .
Recall that with probability at least 1− δ,∣∣∣Proj[sig(− 1

τ ),sig( 1
τ )]

(
sig
(
ũ(t)(aj)

))
− sig

(
u(t),∗(aj)

)∣∣∣ ≤√ 1

2m1
log

(
2

δ

)
.

Since function sig is monotonic, by Taylor expansion and the fact that ũ(t)(aj), u(t),∗(aj) ∈ [−1, 1],
we get that with probability at least 1− δ,∣∣∣ũ(t)(aj)− u(t),∗(aj)∣∣∣ ≤ τ (e 1

τ + 1
)2√ 1

2m1
log

(
2

δ

)
.

By Lemma G.1, we have

u(t),∗(aj) ∈
[
min

{
u(s)(aj)

}m′

s=1
,max

{
u(s)(aj)

}m′

s=1

]
,

which implies that∣∣∣ũ(t)(aj)− u(t)(aj)∣∣∣ ≤τ (e 1
τ + 1

)2√ 1

2m1
log

(
2

δ

)
+ max

s∈{1,2,...,m′−1}

∣∣∣u(s)(aj)− u(t)(aj)∣∣∣
≤τ
(
e

1
τ + 1

)2√ 1

2m1
log

(
2

δ

)
+

m′∑
s=1

∣∣∣u(s+1)(aj)− u(s)(aj)
∣∣∣ .

When m′p4 ≥ 2 log
(
2
δ

)
, with probability at least 1− δ,

m1 ≥
m′

2
p2.

So we have that with a probability at least 1− δ,∣∣∣ũ(t)(aj)− u(t)(aj)∣∣∣ ≤ τ (e 1
τ + 1

)2√ 1

m′p2
log

(
2

δ

)
+

m′−1∑
s=1

∣∣∣us+1(aj)− u(s)(aj)
∣∣∣ .

After estimating the utility of each action, we have

∥∥∥ũ(t) − u(t)
∥∥∥
∞
≤
τ
(
e

1
τ + 1

)2
p

√
log
(
2
δ

)
m′ +

m′−1∑
s=1

∥∥∥u(s+1) − u(s)
∥∥∥
∞
.

g the utility of eachTherefore, g the utility of eachTherefore,

Remark G.2. Due to the monotonicity of function sig, the following two projections on sig
(
x
τ

)
are

equivalent:

Proj[sig(− 1
τ ),sig( 1

τ )]

(
sig
(x
τ

))
:=min

(
max

(
sig
(x
τ

)
, sig

(
−1

τ

))
, sig

(
1

τ

))
,

sig

(
Proj[−1,1] (x)

τ

)
:=sig

(
min (max (x,−1) , 1)

τ

)
.
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G.1 OMITTED PROOFS

Lemma E.1. Let #S (a) :=
∑

a′∈S 1 (a′ = a) represent the number of elements in a multiset S that
are equal to a ∈ A. For any utility vector u, temperature τ > 0, a multiset of proposed actions S
with cardinality |S| = K, and any two actions a ̸= b ∈ S, we have

1

#S (a) · #S (b)
E

[
K∑

k1=1

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b)

∣∣∣∣S
]
= sig

(
u(a)− u(b)

τ

)
.

The expectation is taken over the randomness in the (PL) model.

Proof. We will abuse the notion
σ
< from permutations to subsets of actions. When proposing a set of

actions S, let a
S
< b denote the event that a is ahead of b in the permutation given by the environment.

In pairwise BTL model, the probability that action a ranks before action b is that

Pτ,u

(
a

{a,b}
< b

)
=

exp
(
1
τ u(a)

)
exp

(
1
τ u(a)

)
+ exp

(
1
τ u (b)

) .
By definition, let the multiset of the K proposed actions be S. Then, the probability of the K-wise
permutation is

Pτ,u (σ | S) =
K∏

k1=1

exp
(
1
τ u (σ (k1))

)∑K
k2=k1

exp
(
1
τ u (σ (k2))

) . (G.1)

Let Σ(S) be the set containing all permutations of S.

E

[
K∑

k1=1

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b) | S
]

=
∑

σ∈Σ(S)

Pτ,u (σ | S)
K∑

k1=1

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b)

=
∑

σ∈Σ(S) :
σ(1)=a

Pτ,u (σ | S)
K∑

k1=1

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b) (G.2)

+
∑

σ∈Σ(S) :
σ(1)=b

Pτ,u (σ | S)
K∑

k1=1

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b) (G.3)

+
∑

σ∈Σ(S) :
σ(1) ̸∈{a,b}

Pτ,u (σ | S)
K∑

k1=1

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b) . (G.4)
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Consider (G.2) first.∑
σ∈Σ(S) :
σ(1)=a

Pτ,u (σ | S)
K∑

k1=1

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b)

=
∑

σ∈Σ(S) :
σ(1)=a

Pτ,u (σ | S)
(
#S(b) +

K∑
k1=2

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b)

)

=#S(b)Pτ,u (σ(1) = a | S) +
∑

σ∈Σ(S) :
σ(1)=a

Pτ,u (σ | S)
K∑

k1=2

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b)

=#S(b)Pτ,u (σ(1) = a | S)

+ Pτ,u (σ(1) = a | S)
∑

σ∈Σ(S\{a})

Pτ,u (σ | S \ {a})
K∑

k1=2

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b)

=#S(b)Pτ,u (σ(1) = a | S) + Pτ,u (σ(1) = a | S)E
[
K−1∑
k1=1

K−1∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b) | S \ {a}
]
.

Similarly, for (G.3), we have∑
σ∈Σ(S) :
σ(1)=b

Pτ,u (σ | S)
K∑

k1=1

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b)

=Pτ,u (σ(1) = b | S)E
[
K−1∑
k1=1

K−1∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b) | S \ {b}
]
.

Let Unique (S) be the set of non-repeated elements in S. Then, (G.4) can be written as,∑
σ∈Σ(S) :
σ(1) ̸∈{a,b}

Pτ,u (σ | S)
K∑

k1=1

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b)

=
∑

c∈Unique(S) :
c̸∈{a,b}

Pτ,u (σ(1) = c | S)E
[
K−1∑
k1=1

K−1∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b) | S \ {c}
]
.

Let sig(x) : R → R := exp(x)
exp(x)+1 be the logistic function. Next, we will use induction to show that

for any actions a ̸= b ∈ S, the following holds.

E

[
K∑

k1=1

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b) | S
]
= #S(a)#S(b)sig

(
u(a)− u(b)

τ

)
. (G.5)

Base case. When #S(a) = 0 or #S(b) = 0, (G.5) trivially holds. When |S| = 2 and #S(a) =
#S(b) = 1,

E

[
K∑

k1=1

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b) | S
]
=Pτ,u (σ = ((a, b)) | {a, b})

=sig

(
u(a)− u(b)

τ

)
=#{a,b}(a)#{a,b}(b)sig

(
u(a)− u(b)

τ

)
.
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Induction step. When (G.5) holds for any S with |S| = K. Then, we will show that it still holds for
any S with |S| = K +1. Firstly, we will introduce Lemma G.3 to quantify the marginal probability
Pτ,u (σ(1) = a | S).
Lemma G.3. For any utility vector u, temperature τ > 0, and a multiset of actions S, the marginal
probability of any action a ∈ A ranking at the first place of the permutation can be written as

Pτ,u (σ(1) = a | S) = #S (a)
exp

(
1
τ u (a)

)∑
a′∈S exp

(
1
τ u (a

′)
) .

The proof is postponed to the end of this section. By Lemma G.3, (G.2) is equal to

#S(b)Pτ,u (σ(1) = a | S)

+ Pτ,u (σ(1) = a | S)
∑

σ∈Σ(S\{a})

Pτ,u (σ | S \ {a})
K∑

k1=2

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b)

=#S(a)#S(b)
exp

(
1
τ u (a)

)∑
a′∈S exp

(
1
τ u (a

′)
)

+ #S(a)
exp

(
1
τ u (a)

)∑
a′∈S exp

(
1
τ u (a

′)
) (#S\{a}(a) · #S\{a}(b)sig

(
u(a)− u(b)

τ

))
=#S(a)#S(b)

exp
(
1
τ u (a)

)∑
a′∈S exp

(
1
τ u (a

′)
) + #S(a)

exp
(
1
τ u (a)

)∑
a′∈S exp

(
1
τ u (a

′)
) (#S(a)− 1) · #S(b)sig

(
u(a)− u(b)

τ

)
.

Similarly, (G.3) is equal to

#S(b)
exp

(
1
τ u (b)

)∑
a′∈S exp

(
1
τ u (a

′)
)#S(a) · (#S(b)− 1) sig

(
u(a)− u(b)

τ

)
,

and (G.4) is equal to(
1− #S(a) exp

(
1
τ u (a)

)
+ #S(b) exp

(
1
τ u (b)

)∑
a′∈S exp

(
1
τ u (a

′)
) )

#S(a) · #S(b)sig

(
u(a)− u(b)

τ

)
.

Lastly, by summing them up, we have

E

[
K∑

k1=1

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b) | S
]

=#S(a)#S(b)
exp

(
1
τ u (a)

)∑
a′∈S exp

(
1
τ u (a

′)
) − #S(a)

exp
(
1
τ u (a)

)
+ exp

(
1
τ u (b)

)∑
a′∈S exp

(
1
τ u (a

′)
) · #S(b)sig

(
u(a)− u(b)

τ

)
+ #S(a) · #S(b)sig

(
u(a)− u(b)

τ

)
.

Note that sig
(

u(a)−u(b)
τ

)
=

exp(u(a)−u(b)
τ )

exp(u(a)−u(b)
τ )+1

=
exp(u(a)

τ )
exp(u(a)

τ )+exp(u(b)
τ )

. Therefore,

E

[
K∑

k1=1

K∑
k2=k1+1

1 (σ(k1) = a) · 1 (σ(k2) = b) | S
]
= #S(a) · #S(b)sig

(
u(a)− u(b)

τ

)
,

and we complete the induction.

Lemma G.3. For any utility vector u, temperature τ > 0, and a multiset of actions S, the marginal
probability of any action a ∈ A ranking at the first place of the permutation can be written as

Pτ,u (σ(1) = a | S) = #S (a)
exp

(
1
τ u (a)

)∑
a′∈S exp

(
1
τ u (a

′)
) .
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Proof. Let Σ (S) be the set containing all permutations of S. By definition, for any action a ∈ A,

Pτ,u (σ(1) = a | S) =
∑

σ∈Σ(S) :
σ(1)=a

Pτ,u (σ | S) =
∑

σ∈Σ(S) :
σ(1)=a

|S|∏
k1=1

exp
(
1
τ u (σ (k1))

)∑|S|
k2=k1

exp
(
1
τ u (σ (k2))

) .
Since there are #S(a) action a in S, by rearranging the terms, we have

Pτ,u (σ(1) = a | S) =#S(a)
exp

(
1
τ u (a)

)∑
a′∈S exp

(
1
τ u (a

′)
) ∑

σ∈Σ(S\{a})

|S|−1∏
k1=1

exp
(
1
τ u (σ (k1))

)∑|S|−1
k2=k1

exp
(
1
τ u (σ (k2))

)
=#S(a)

exp
(
1
τ u (a)

)∑
a′∈S exp

(
1
τ u (a

′)
) ∑

σ∈Σ(S\{a})

Pτ,u (σ | S \ {a})

=#S(a)
exp

(
1
τ u (a)

)∑
a′∈S exp

(
1
τ u (a

′)
) .

Lemma G.1. Let x1, . . . , xn ∈ [−1, 1] , sig(x) := exp(x)
exp(x)+1 . Let sigavg := 1

n

∑n
i=1 sig(xi), we

have

min
i∈[n]

xi ≤ log

(
sigavg

1− sigavg

)
≤ max

i∈[n]
xi.

Proof. The logistic function sig(x) is increasing monotonically with respect to x, since dsig
dx =

exp(x)

(exp(x)+1)2
> 0. Then, without loss of generality, let x1 ≤ x2 ≤ · · · ≤ xn. Then sig(x1) ≤

sigavg ≤ sig(xn).

Since sig(x) is monotonic and continuous, there exist only one ζ ∈ [x1, xn] such that sig(ζ) =

sigavg. As the inverse function of sig(x) is log
(

sig(y)
1−sig(y)

)
, we have

min
i∈[n]

xi ≤ log

(
sigavg

1− sigavg

)
≤ max

i∈[n]
xi.

H PROOF OF THEOREM 4.2

In this section, we prove the regret upper bound for our instantaneous reward algorithm under the
full-information feedback.
Theorem H.1 (Formal version of Theorem 4.2). Consider Algorithm 2 and full-information feed-
back. For any δ ∈ (0, 1), T > 0, and any no-regret learning algorithm Alg, with probability at least

(1− δ), by choosing m =
(

T
P (T )

) 2
3
(
log
(
2T
δ

)) 1
3 , R(T ),external satisfies

R(T ),external ≤R(T ),external

(
Alg,

(
ũ(t)

)T
t=1

)
+
√
2τ
(
e

1
τ + 1

)2 (
P (t)

) 1
3

T
2
3

(
log

(
2T

δ

)) 1
3

+ 2
(
P (t)

) 1
3

T
2
3

(
log

(
2T

δ

)) 1
3

+ 2
(
P (t)

)− 2
3

T
2
3

(
log

(
2T

δ

)) 1
3

. (H.1)

Proof. By Theorem E.2, we have∣∣∣∣R(T ),external −R(T ),external

(
Alg,

(
ũ(t)

)T
t=1

)∣∣∣∣ =
∣∣∣∣∣max
π̂∈∆A

T∑
t=1

〈
u(t), π̂ − π(t)

〉
− max

π̂∈∆A

T∑
t=1

〈
ũ(t), π̂ − π(t)

〉∣∣∣∣∣
≤ max

π̂∈∆A

∣∣∣∣∣
T∑

t=1

〈
u(t) − ũ(t), π̂ − π(t)

〉∣∣∣∣∣
≤

T∑
t=1

∥∥∥u(t) − ũ(t)
∥∥∥
∞
· max
π̂∈∆A

∥∥∥π̂ − π(t)
∥∥∥
1
.
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When t ≥ m, the estimation error between ũ(t) and u(t) is given out by Theorem E.2. When t < m,
it’s trivial that the estimation error satisfies∥∥∥u(t) − ũ(t)

∥∥∥
∞
≤ 2.

For any given δ, we require the utility estimation bound to hold with probability at least 1− δ
T , then

by union bound, with probability at least 1− δ,∣∣∣∣R(T ),external −R(T ),external

(
Alg,

(
ũ(t)

)T
t=1

)∣∣∣∣ ≤ 2τ
(
e

1
τ + 1

)2√ log
(
2T
δ

)
2m1

T + 2m
(
P (T ) + 1

)
.

By choosing m =
(

T
P (T )

) 2
3
(
log
(
2T
δ

)) 1
3 , we conclude the proof.

I PROOF OF THEOREM 4.3

In this section, we prove the regret upper bound for our instantaneous reward algorithm under the
bandit feedback.
Theorem I.1 (Formal version of Theorem 4.3). Consider Algorithm 2 and bandit feedback. For any
δ ∈ (0, 1), T > 0, and any no-regret learning algorithm Alg, with probability at least (1 − δ), by

choosing γ =
(

P (T )

T

) 1
5

,m = 32|A|4
K4

(
T

P (T )

) 4
5 log

(
2T
δ

)
, R(T ) satisfies

R(T ) ≤R(T ),external

(
Alg,

(
ũ(t)

)T
t=1

)
+

√
2T log

(
1

δ

)
+

τK
(
e

1
τ + 1

)2
|A| + 1

(P (T )
) 1

5

T
4
5

(I.1)

+
64|A|4
K4

(
P (T )

) 1
5

T
4
5 log

(
2T

δ

)
+

64|A|4
K4

(
T

P (T )

) 4
5

log

(
2T

δ

)
.

Proof. Firstly, we define:

R(T ) := max
π̂∈∆A

T∑
t=1

〈u(t), π̂
〉
− 1

K

K∑
j=1

u(t)
(
σ(t)(j)

)
R̃(T ) := max

π̂∈∆A

T∑
t=1

〈
ũ(t), π̂ − π(t)

〉
.

Then,

R(T ) ≤
∣∣∣R(T ) −R(T ),external

∣∣∣︸ ︷︷ ︸
♥

+
∣∣∣R(T ),external − R̃(T )

∣∣∣︸ ︷︷ ︸
♠

+

∣∣∣∣R̃(T ) −R(T ),external

(
Alg,

(
ũ(t)

)T
t=1

)∣∣∣∣︸ ︷︷ ︸
♦

+R(T ),external

(
Alg,

(
ũ(t)

)T
t=1

)
︸ ︷︷ ︸

♣

.

Note that ♠ can be bounded by bounding
∥∥ũ(t) − u(t)

∥∥
∞ as in Appendix H. ♣ is sublinear by

definition of Alg. Next, we will introduce lemmas that bound ♥,♦ individually. The proofs are
postponed to Appendices I.1 and I.2.

Lemma I.2 (♥). For any T > 0 and δ ∈ (0, 1), with probability at least 1− δ:∣∣∣R(T ) −R(T ),external
∣∣∣ ≤√2T log

(
1

δ

)
.

31



Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)

Lemma I.3 (♦). The difference between R̃(T ) and R(T ),external
(
Alg,

(
ũ(t)

)T
t=1

)
satisfies:∣∣∣∣R̃(T ) −R(T ),external

(
Alg,

(
ũ(t)

)T
t=1

)∣∣∣∣ ≤ 2γT.

With Lemma I.2 and Lemma I.3, under the condition of Theorem 4.3, by letting Theorem E.2 to
hold with probability 1− δ

T at each timestep, with probability at least (1− δ), the regret satisfies

R(T ) ≤R(T ),external

(
Alg,

(
ũ(t)

)T
t=1

)
+

√
2T log

(
1

δ

)
+ 2

τ
(
e

1
τ + 1

)2
p

√
log
(
2T
δ

)
m

T + 2m
(
P (T ) + 1

)
+ γT.

In this case, each action a ∈ A is chosen with probability at least p that satisfies

p ≥1−
(
1− γ

|A|

)K

≥ 1− exp

(
−K γ

|A|

)
≥1−

(
1−K γ

|A| +
1

2

(
K

γ

|A|

)2
)

= K
γ

|A| −
1

2

(
K

γ

|A|

)2

.

Since K γ
|A| ≤ 1,

1

2
K

γ

|A| ≥
1

2

(
K

γ

|A|

)2

⇒ p ≥ Kγ

2 |A| .

By letting γ =
(

P (T )

T

) 1
5

,m = 32|A|4
K4

(
T

P (T )

) 4
5 log

(
2T
δ

)
, we have

R(T ) ≤ R(T ),external

(
Alg,

(
ũ(t)

)T
t=1

)
+O

(
T

4
5

(
P (T )

) 1
5

log

(
T

δ

))
.

The condition m ≥ 2 log( 2T
δ )

p4 is also satisfied since

mp4 ≥ m K4γ4

16|A|4 = 2 log

(
2T

δ

)
.

I.1 BOUNDING ♥ :
∣∣R(T ) −R(T ),external

∣∣
We will show that

∣∣R(T ) −R(T ),external
∣∣ is sublinear by using a standard concentration bound.

Lemma I.2 (♥). For any T > 0 and δ ∈ (0, 1), with probability at least 1− δ:∣∣∣R(T ) −R(T ),external
∣∣∣ ≤√2T log

(
1

δ

)
.

Proof. Let

d(t) :=
1

K

∑
a∈o(t)

u(t)(a)−
〈
u(t), π(t)

〉
.

By definition, each element of o(t) is sampled i.i.d. from π(t) and the update-rule of π(t) is deter-
ministic, E

[
d(t) |

{
σ(s)

}t−1

s=1

]
= 0, so that

{
d(t)
}

is a martingale difference sequence.

We also have bound for
∣∣ 1
K

∑
a∈o(t) u

(t)(a)
∣∣ ≤ 1,

∣∣〈u(t), π(t)
〉∣∣ ≤ 1, so

∣∣∣d(t)∣∣∣ =
∣∣∣∣∣∣ 1K

∑
a∈o(t)

u(t)(a)−
〈
u(t), π(t)

〉∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ 1K

∑
a∈o(t)

u(t)(a)

∣∣∣∣∣∣+
∣∣∣〈u(t), π(t)

〉∣∣∣ ≤ 2.
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Furthermore, we have

T∑
t=1

d(t) =

T∑
t=1

 1

K

∑
a∈o(t)

u(t)(a)

− T∑
t=1

(〈
u(t), π(t)

〉)

= max
π̂∈∆A

T∑
t=1

(〈
u(t), π̂

〉
−
〈
u(t), π(t)

〉)
− max

π̂∈∆A

T∑
t=1

〈u(t), π̂
〉
− 1

K

K∑
j=1

u(t)
(
σ(j)

)
=R(T ),external −R(T ).

Next, we will introduce Azuma-Hoeffding inequality to finish the concentration bound.

Theorem I.4 (Azuma-Hoeffding inequality). For any martingale difference sequence Y1, . . . , Yn
with ∀j ∈ [n] , aj ≤ Yj ≤ bj , the following holds for any w ≥ 0.

P

 n∑
j=1

Yj ≥ w

 ≤ exp

(
− 2w2∑n

j=1 (bj − aj)
2

)
.

Then with Theorem I.4, we have that

P

(
R(T ),external −R(T ) ≥

√
2T log

(
1

δ

))
≤ δ.

Similarly, we can also prove

P

(
R(T ) −R(T ),external ≥

√
2T log

(
1

δ

))
≤ δ.

So we get that with probability at least 1− δ:∣∣∣R(T ) −R(T ),external
∣∣∣ ≤√2T log

(
1

δ

)
.

I.2 BOUNDING ♦ :
∣∣∣R̃(T ) − R̃(T )

γ

∣∣∣
♦ can be bounded by O (γT ), since ∆A and ∆A

γ are close to each other.

Lemma I.3 (♦). The difference between R̃(T ) and R(T ),external
(
Alg,

(
ũ(t)

)T
t=1

)
satisfies:∣∣∣∣R̃(T ) −R(T ),external

(
Alg,

(
ũ(t)

)T
t=1

)∣∣∣∣ ≤ 2γT.

Proof. Let π(t+1) = Alg
((

ũ(s)
)t
s=1

)
. Then,∣∣∣∣R̃(T ) −R(T ),external

(
Alg,

(
ũ(t)

)T
t=1

)∣∣∣∣ =
∣∣∣∣∣max
π̂∈∆A

T∑
t=1

〈
ũ(s), π̂ − π(t)

〉
− max

π̂∈∆A

T∑
t=1

〈
ũ(t), π̂ − π(t)

〉∣∣∣∣∣
=

∣∣∣∣∣
T∑

t=1

〈
ũ(t), π(t) − π(t)

〉∣∣∣∣∣
=

∣∣∣∣∣
T∑

t=1

〈
ũ(t), π(t) −

(
(1− γ)π(t) + γ

1 (A)
|A|

)〉∣∣∣∣∣
≤γ

T∑
t=1

∥∥∥ũ(t)
∥∥∥
∞
·
(∥∥∥π(t)

∥∥∥
1
+

∥∥∥∥1 (A)|A|

∥∥∥∥
1

)
≤ 2γT.
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J PROOF OF THEOREM 5.3

Theorem J.1 (Formal version of Theorem 5.3). Consider AvgUtil Rank with full-information feed-
back and Algorithm 3. For any δ ∈ (0, 1), T > 0, and any no-regret learning algorithm Alg

satisfying Assumption 5.2, with probability at least (1 − δ), by choosing m = 2 |A|4
K4 T

2
3 log

(
2T
δ

)
,

R(T ),external satisfies

R(T ),external ≤R(T ),external

(
Alg,

(
u(t)

)T
t=1

)
+ LτK

(
e

1
τ + 1

)2
L

1
3T + 4

|A|4
K4

L− 2
3 log

(
2T

δ

)
(J.1)

+ 4
|A|9
K8

L− 1
3 log

(
2T

δ

)
(log T + 1) + 4

|A|5
K4

log

(
2T

δ

)
L

1
3T.

Proof. Let π(t+1) = Alg
((

u(s)
)t
s=1

)
, i.e., the strategy generated by Alg when the ground-truth

utility vectors are given. Then,∣∣∣∣R(T ),external −R(T ),external

(
Alg,

(
u(t)

)T
t=1

)∣∣∣∣ =
∣∣∣∣∣max
π̂∈∆A

T∑
t=1

〈
u(t), π̂ − π(t)

〉
− max

π̂∈∆A

T∑
t=1

〈
u(t), π̂ − π(t)

〉∣∣∣∣∣
=

∣∣∣∣∣
T∑

t=1

〈
u(t), π(t) − π(t)

〉∣∣∣∣∣
≤

m−1∑
t=1

∥∥∥u(t)
∥∥∥
∞
·
∥∥∥π(t) − π(t)

∥∥∥
1
+

T∑
t=m

∥∥∥u(t)
∥∥∥ · ∥∥∥π(t) − π(t)

∥∥∥
≤2m+

T∑
t=m

∥∥∥u(t)
∥∥∥ · ∥∥∥π(t) − π(t)

∥∥∥ .
By Assumption 5.2, when the conditions in Theorem 5.1 are met, for any t ≥ m, with probability at
least 1− δ we have∥∥∥π(t) − π(t)

∥∥∥ ≤ Lt∥∥∥ũ(t)
avg − u(t)

avg

∥∥∥ ≤Lt√|A|
τ (e 1

τ + 1
)2√ log

(
2T
δ

)
2m

+

t−1∑
s=t−m+1

2

s+ 1

 .

Then, ∣∣∣∣R(T ),external −R(T ),external

(
Alg,

(
u(t)

)T
t=1

)∣∣∣∣
≤2m+ L|A|τ

(
e

1
τ + 1

)2√ log
(
2T
δ

)
2m

T 2 + 2L|A|
T∑

t=m

t

t∑
s=t−m+1

1

s+ 1

≤2m+ L|A|τ
(
e

1
τ + 1

)2√ log
(
2T
δ

)
2m

T 2 + L|A|
T∑

t=1

m(2t+m− 1)

t

≤2m+ L|A|τ
(
e

1
τ + 1

)2√ log
(
2T
δ

)
2m

T 2 + Lm2|A|
T∑

t=1

1

t
+ 2Lm|A|T

≤L|A|τ
(
e

1
τ + 1

)2√ log
(
2T
δ

)
2m

T 2 + 2m+ Lm2|A| (log T + 1) + 2|A|mLT.

By choosing m = 2 |A|4
K4 T

2
3 log

(
2T
δ

)
, we have

R(T ),external ≤R(T ),external

(
Alg,

(
u(t)

)T
t=1

)
+O

(
LT

5
3 log

(
2T

δ

))
.

Moreover, now m ≥ 2 log( 2T
δ )

p4 , where p = K
|A| .
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K PROOF OF THEOREM 5.4

Theorem K.1 (Formal version of Theorem 5.4). Consider AvgUtil Rank with bandit feedback and
Algorithm 3. For any δ ∈ (0, 1), T > 0, and any no-regret learning algorithm Alg satisfying As-

sumption 5.2, with probability at least (1− δ), by choosing M = 4T
5
6

(
P (T )

)− 1
2 |A|4 log

(
6|A|T

δ

)
,

m = 2T
2
3 |A|4 log

(
6
δ

)
, and γ = L

1
3T

5
18

(
P (T )

) 1
6 , R(T ) satisfies

R(T ) ≤R(T ),external

(
Alg,

(
u(t)

)T
t=1

)
+ L|A|TW (T ) + 2γ

√
|A|T +

√
2T log

(
3

δ

)
, (K.1)

where

Cδ :=
|A| log

(
3|A|T

δ

)
γ

W (T ) :=4Cδ (log T + 1)

T 2

M

τ |A|
(
e

1
τ + 1

)2
γ

√
log
(
6T
δ

)
m

+ 16KCδ
m

M
T


+M (log T + 1)P (T ) + 2M (log T + 2) .

Proof. In the first part of the proof, we will bound
∥∥∥ũ(t)

empirical − u
(t)
empirical

∥∥∥
∞

. According to Theo-

rem E.2 and union bound, since each action is proposed with probability at least γ
|A| , with probability

at least 1− δ
3 , for any t ≥ m, we have

∥∥∥ũ(t)
empirical − u

(t)
empirical

∥∥∥
∞
≤
τ |A|

(
e

1
τ + 1

)2
γ

√
log
(
6T
δ

)
m

+

t−1∑
s=t−m+1

∥∥∥u(s+1)
empirical − u

(s)
empirical

∥∥∥
∞
.

Let #o(t) (a) be the number of action a ∈ A proposed in o(t). Then, for any t ∈ [T − 1] and a ∈ A,
we have∣∣∣u(t+1)

empirical(a)− u
(t)
empirical(a)

∣∣∣ = ∣∣∣∣∣u
(t)
empirical(a)

∑t
s=1 #o(s) (a) + u(t+1)(a)#o(t+1) (a)∑t

s=1 #o(s) (a) + #o(t+1) (a)
− u(t)empirical(a)

∣∣∣∣∣
≤
∣∣∣∣∣ u

(t)
empirical(a)#o(t+1) (a)∑t

s=1 #o(s) (a) + #o(t+1) (a)

∣∣∣∣∣+
∣∣∣∣∣ u(t+1)(a)#o(t+1) (a)∑t

s=1 #o(s) (a) + #o(t+1) (a)

∣∣∣∣∣
≤K

∣∣∣∣∣ u
(t)
empirical(a)∑t

s=1 #o(s) (a) + #o(t+1) (a)

∣∣∣∣∣+K

∣∣∣∣∣ u(t+1)(a)∑t
s=1 #o(s) (a) + #o(t+1) (a)

∣∣∣∣∣ .
Next, we will show that since each action will be proposed with probability at least γ

|A| , with high
probability, there is a lowerbound for #o(t+1) (a).

Lemma K.2. Consider the case when action is proposed with probability at least p > 0 at each
timestep. Then, for any δ > 0, any action a ∈ A, and T > 0, with probability at least 1 − δ, the

following holds for any t ≥ log( |A|T
δ )

p ,

∃t′ ∈ [T ] , t−
log
(

|A|T
δ

)
p

≤ t′ ≤ t and a ∈ o(t′). (K.2)

For notational simplicity, let Cδ :=
|A| log( 3|A|T

δ )
γ . According to Lemma K.2, with probability at

least 1− δ
3 , for any timestep t ≥ Cδ , we have

t∑
s=1

#o(s) (a) ≥
⌊
t

Cδ

⌋
≥ t

2Cδ
.
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Therefore, for any t ∈ [T − 1] and a ∈ A, we have∣∣∣u(t+1)
empirical(a)− u

(t)
empirical(a)

∣∣∣ ≤ 4K
Cδ

t+ 1
.

It holds for t < Cδ − 1 because in this case 4K Cδ

t+1 ≥ 4K ≥ 2 and all utilities are bounded in
[−1, 1]. Finally, by Theorem E.2 and union bound, with probability at least 1− 2δ

3 , we have

∥∥∥ũ(t)
empirical − u

(t)
empirical

∥∥∥
∞
≤
τ |A|

(
e

1
τ + 1

)2
γ

√
log
(
6T
δ

)
m

+ 4KCδ

t−1∑
s=t−m+1

1

s+ 1
.

Let n(t)(a) :=
∑t

s=1 #o(s) (a) for any a ∈ A as the number of times action a is proposed up to
timestep t. For any a ∈ A and t ≥M , let define

u
(t)
avg−est(a) :=

1

⌊t/M⌋

⌊t/M⌋∑
s=1

u
(s·M)
empirical(a)n

(s·M)(a)− u((s−1)M)
empirical (a)n

((s−1)M)(a)

n(s·M)(a)− n((s−1)M)(a)

ũ
(t)
avg−est(a) :=

1

⌊t/M⌋

⌊t/M⌋∑
s=1

ũ
(s·M)
empirical(a)n

(s·M)(a)− ũ((s−1)M)
empirical (a)n

((s−1)M)(a)

n(s·M)(a)− n((s−1)M)(a)
.

For t < M , we define u(t)avg−est(a) = ũ
(t)
avg−est(a) = 0 for any action a ∈ A. In the rest of the proof,

we will bound
∥∥∥ũ(t)

avg−est − u
(t)
avg−est

∥∥∥
∞

and
∥∥∥u(t)

avg−est − u
(t)
avg

∥∥∥
∞

individually.

K.1
∥∥∥ũ(t)

avg−est − u
(t)
avg−est

∥∥∥
∞

UPPERBOUND

For any a ∈ A, we have∣∣∣ũ(t)avg−est(a)− u(t)avg−est(a)
∣∣∣ ≤ 1

⌊t/M⌋

⌊t/M⌋∑
s=1

n(s·M)(a)

n(s·M)(a)− n((s−1)M)(a)

∣∣∣ũ(s·M)
empirical(a)− u

(s·M)
empirical(a)

∣∣∣
+

1

⌊t/M⌋

⌊t/M⌋∑
s=1

n((s−1)M)(a)

n(s·M)(a)− n((s−1)M)(a)

∣∣∣ũ((s−1)M)
empirical (a)− u

((s−1)M)
empirical (a)

∣∣∣ .
According to Lemma K.2, n(s·M)(a) − n((s−1)M)(a) ≥ M

2Cδ
when M ≥ Cδ . Therefore, when

M ≥ Cδ , since n(s·M)(a) ≤ s ·M , we have∣∣∣ũ(t)avg−est(a)− u(t)avg−est(a)
∣∣∣ ≤ 2Cδ

⌊t/M⌋

⌊t/M⌋∑
s=1

s
(∣∣∣ũ(s·M)

empirical(a)− u
(s·M)
empirical(a)

∣∣∣+ ∣∣∣ũ((s−1)M)
empirical (a)− u

((s−1)M)
empirical (a)

∣∣∣) .
K.2

∥∥∥u(t)
avg−est − u

(t)
avg

∥∥∥
∞

UPPERBOUND

For any a ∈ A,∣∣∣∣∣∣ 1

⌊t/M⌋

⌊t/M⌋∑
s=1

u
(s·M)
empirical(a)n

(s·M)(a)− u((s−1)M)
empirical (a)n

((s−1)M)(a)

n(s·M)(a)− n((s−1)M)(a)
− u(t)avg(a)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

⌊t/M⌋

⌊t/M⌋∑
s=1

u
(s·M)
empirical(a)n

(s·M)(a)− u((s−1)M)
empirical (a)n

((s−1)M)(a)

n(s·M)(a)− n((s−1)M)(a)
− u(M⌊t/M⌋)

avg (a)

∣∣∣∣∣∣︸ ︷︷ ︸
♠

+
∣∣∣u(t)avg(a)− u(M⌊t/M⌋)

avg (a)
∣∣∣︸ ︷︷ ︸

♣

.
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Note that ♣ can be bounded by

♣ =

∣∣∣∣∣ (M ⌊t/M⌋)u
(M⌊t/M⌋)
avg (a) +

∑t
s=M⌊t/M⌋+1 u

(s)(a)

t
− u(M⌊t/M⌋)

avg (a)

∣∣∣∣∣
≤M
t

∣∣∣u(M⌊t/M⌋)
avg (a)

∣∣∣+ 1

t

∣∣∣∣∣∣
t∑

s=M⌊t/M⌋+1

u(s)(a)

∣∣∣∣∣∣ ≤ 2M

t
.

For ♠, we have

♠ =

∣∣∣∣∣∣ 1

⌊t/M⌋

⌊t/M⌋∑
s=1

u(s·M)
empirical(a)n

(s·M)(a)− u((s−1)M)
empirical (a)n

((s−1)M)(a)

n(s·M)(a)− n((s−1)M)(a)
− 1

M

s·M∑
s′=(s−1)M+1

u(s
′)(a)

∣∣∣∣∣∣
≤ 1

⌊t/M⌋

⌊t/M⌋∑
s=1

∣∣∣∣∣∣u
(s·M)
empirical(a)n

(s·M)(a)− u((s−1)M)
empirical (a)n

((s−1)M)(a)

n(s·M)(a)− n((s−1)M)(a)
− 1

M

s·M∑
s′=(s−1)M+1

u(s
′)(a)

∣∣∣∣∣∣ .

When n(s·M)(a) − n((s−1)M)(a) > 0, both
u
(s·M)
empirical(a)n

(s·M)(a)−u
((s−1)M)
empirical (a)n

((s−1)M)(a)

n(s·M)(a)−n((s−1)M)(a)
and

1
M

∑s·M
s′=(s−1)M+1 u

(s′)(a) are in the convex hull of
{
u(s

′)(a)
}s·M

s′=(s−1)M+1
. Therefore,

∣∣∣∣∣∣u
(s·M)
empirical(a)n

(s·M)(a)− u((s−1)M)
empirical (a)n

((s−1)M)(a)

n(s·M)(a)− n((s−1)M)(a)
− 1

M

s·M∑
s′=(s−1)M+1

u(s
′)(a)

∣∣∣∣∣∣
≤ max

(s−1)M+1≤s′,s′′≤s·M

∣∣∣u(s′)(a)− u(s′′)(a)∣∣∣
≤

s·M−1∑
s′=(s−1)M+1

∣∣∣u(s′+1)(a)− u(s′)(a)
∣∣∣ .

Therefore, for any t ≥M and a ∈ A, we have

∣∣∣u(t)avg−est(a)− u(t)avg(a)
∣∣∣
∞
≤ 1

⌊t/M⌋

⌊t/M⌋∑
s=1

s·M−1∑
s′=(s−1)M+1

∣∣∣u(s′+1)(a)− u(s′)(a)
∣∣∣+ 2M

t
.

By combining all pieces together, we have

∣∣∣ũ(t)avg−est(a)− u(t)avg(a)
∣∣∣

≤ 2Cδ

⌊t/M⌋

⌊t/M⌋∑
s=1

s
(∣∣∣ũ(s·M)

empirical(a)− u
(s·M)
empirical(a)

∣∣∣+ ∣∣∣ũ((s−1)M)
empirical (a)− u

((s−1)M)
empirical (a)

∣∣∣)

+
1

⌊t/M⌋

⌊t/M⌋∑
s=1

s·M−1∑
s′=(s−1)M+1

∣∣∣u(s′+1)(a)− u(s′)(a)
∣∣∣+ 2M

t
.
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Then,

T∑
t=1

∣∣∣ũ(t)avg−est(a)− u(t)avg(a)
∣∣∣

=

T∑
t=M

∣∣∣ũ(t)avg−est(a)− u(t)avg(a)
∣∣∣+ M−1∑

t=1

∣∣∣ũ(t)avg−est(a)− u(t)avg(a)
∣∣∣

≤2Cδ

⌊T/M⌋∑
s=1

s
(∣∣∣ũ(s·M)

empirical(a)− u
(s·M)
empirical(a)

∣∣∣+ ∣∣∣ũ((s−1)M)
empirical (a)− u

((s−1)M)
empirical (a)

∣∣∣) ⌊T/M⌋∑
s′=1

M

s′

+

⌊T/M⌋∑
s=1

 s·M−1∑
s′=(s−1)M+1

∣∣∣u(s′+1)(a)− u(s′)(a)
∣∣∣
 ·

⌊T/M⌋∑
s′=1

M

s′

+

T∑
t=1

2M

t
+ 2M

≤2CδM

⌊T/M⌋∑
s=1

s
(∣∣∣ũ(s·M)

empirical(a)− u
(s·M)
empirical(a)

∣∣∣+ ∣∣∣ũ((s−1)M)
empirical (a)− u

((s−1)M)
empirical (a)

∣∣∣) (log (⌊T/M⌋) + 1)

+M

⌊T/M⌋∑
s=1

 s·M−1∑
s′=(s−1)M+1

∣∣∣u(s′+1)(a)− u(s′)(a)
∣∣∣
 · (log (⌊T/M⌋) + 1) + 2M (log T + 1) + 2M.

When s = 1, s
∣∣∣ũ((s−1)M)

empirical (a)− u
((s−1)M)
empirical (a)

∣∣∣ = 0 by definition. When s > 1, since M ≥ 2m, we
have

s

(s− 1)M −m+ 2
≤ s

(s− 1)M/2 + 2
≤ s

(s− 1)M/2
≤ 4s

s ·M =
4

M
.

Hence,

s
∣∣∣ũ((s−1)M)

empirical (a)− u
((s−1)M)
empirical (a)

∣∣∣ ≤sτ |A|
(
e

1
τ + 1

)2
γ

√
log
(
6T
δ

)
m

+ 4KCδ

(s−1)M−1∑
s′=(s−1)M−m+1

s

s′ + 1

≤ T

M

τ |A|
(
e

1
τ + 1

)2
γ

√
log
(
6T
δ

)
m

+ 16KCδ
m

M
.

Therefore,

T∑
t=1

∣∣∣ũ(t)avg−est(a)− u(t)avg(a)
∣∣∣

≤4CδM · ⌊T/M⌋ (log T + 1)

 T

M

τ |A|
(
e

1
τ + 1

)2
γ

√
log
(
6T
δ

)
m

+ 16KCδ
m

M


+M (log T + 1)P (T ) + 2M (log T + 1)

≤4Cδ (log T + 1)

T 2

M

τ |A|
(
e

1
τ + 1

)2
γ

√
log
(
6T
δ

)
m

+ 16KCδ
m

M
T


+M (log T + 1)P (T ) + 2M (log T + 2) .
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Lastly, similar to the proof in Appendix J, let π(t+1) = Alg
((

u(s)
)t
s=1

)
. Then, we have∣∣∣∣R(T ),external −R(T ),external

(
Alg,

(
u(t)

)T
t=1

)∣∣∣∣
=

∣∣∣∣∣
T∑

t=1

〈
u(t), π(t) − π(t)

〉∣∣∣∣∣
≤

T∑
t=1

∥∥∥u(t)
∥∥∥ · ∥∥∥π(t) − π(t)

∥∥∥
≤
√
|A|

T∑
t=1

∥∥∥∥(1− γ)Alg

((
ũ
(t)
avg−est

)t
s=1

)
+ γ

1 (A)
|A| − π

(t)

∥∥∥∥
≤(1− γ)

√
|A|

T∑
t=1

∥∥∥∥Alg

((
ũ
(t)
avg−est

)t
s=1

)
− π(t)

∥∥∥∥+ γ
√
|A|

T∑
t=1

∥∥∥∥1 (A)|A| − π
(t)

∥∥∥∥
≤
√
|A|

T∑
t=1

∥∥∥∥Alg

((
ũ
(t)
avg−est

)t
s=1

)
− π(t)

∥∥∥∥+ 2γ
√
|A|T.

Further, by Assumption 5.2, we have√
|A|

T∑
t=1

∥∥∥∥Alg

((
ũ
(t)
avg−est

)t
s=1

)
− π(t)

∥∥∥∥ ≤L√|A| T∑
t=1

t
∥∥∥ũ(t)

avg−est − u(t)
avg

∥∥∥
≤L|A|T

T∑
t=1

∥∥∥ũ(t)
avg−est − u(t)

avg

∥∥∥
∞
.

By combining all the pieces together, we have

R(T ),external ≤R(T ),external

(
Alg,

(
u(t)

)T
t=1

)

+ Õ

(log ( 1δ )) 3
2

γ2
LT 3

M
√
m

+
m
(
log
(
1
δ

))2
γ2M

LT 2 + LMP (T )T + 2γT

 ,

where Õ hides all the log T terms.

Let M = 4T
5
6

(
P (T )

)− 1
2 |A|4 log

(
6|A|T

δ

)
, m = 2T

2
3 |A|4 log

(
6
δ

)
, and γ = L

1
3T

5
18

(
P (T )

) 1
6 , we

have

R(T ),external ≤R(T ),external

(
Alg,

(
u(t)

)T
t=1

)
+O

((
log

(
1

δ

))2

L
1
3T

23
18

(
P (T )

) 1
6

)
.

Easy to verify that M ≥ max {Cδ, 2m} and m ≥ 2 log( 6
δ )

γ4 |A|4.

Lastly, by Lemma I.2, with probability at least 1− δ
3 , we have

R(T ) ≤ R(T ),external +

√
2T log

(
3

δ

)
.

By a union bound, we complete the proof.

Lemma K.2. Consider the case when action is proposed with probability at least p > 0 at each
timestep. Then, for any δ > 0, any action a ∈ A, and T > 0, with probability at least 1 − δ, the

following holds for any t ≥ log( |A|T
δ )

p ,

∃t′ ∈ [T ] , t−
log
(

|A|T
δ

)
p

≤ t′ ≤ t and a ∈ o(t′). (K.2)
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Proof. For any t ≥ log( |A|T
δ )

p and action a ∈ A, the probability of (K.2) does not hold is at most

(1− p)
log( |A|T

δ )
p ≤ exp

(
− log

( |A|T
δ

))
=

δ

|A|T .

Therefore, by union bound, with probability 1 − δ, (K.2) holds for any t ∈ [T ] and any action
a ∈ A.

L PROOF OF SECTION 6

Lemma 6.1. For any T > 0 and sequence of strategy profiles
(
π(1),π(2), . . . ,π(T )

)
, the variation

of utility vectors of any player i ∈ [N ] satisfies that
T∑

t=2

∥∥∥u(t)
i − u

(t−1)
i

∥∥∥ ≤ max
j∈[N ]

√
|Aj |

N∏
j′=1

|Aj′ |
T∑

t=2

N∑
j=1

∥∥∥π(t)
j − π

(t−1)
j

∥∥∥ . (6.2)

Proof. For any timestep t, player i ∈ [N ], and joint action a−i ∈×j ̸=i
Aj , let π(t)

−i(a−i) :=∏
j ̸=i π

(t)
j (aj).

Then, for any timestep t, player i ∈ [N ], and action ai ∈ Ai, we have∣∣∣u(t)i (ai)− u
(t−1)
i (ai)

∣∣∣ ≤
∣∣∣∣∣∣

∑
a′∈×N

j=1 Aj

Ui(a′)1 (a′i = ai)
(
π
(t)
−i(a

′
−i)− π(t−1)

−i (a′
−i)
)∣∣∣∣∣∣

=
∣∣∣〈(Ui(ai,a′

−i)
)
a′

−i∈×j ̸=i Aj
, π

(t)
−i − π

(t−1)
−i

〉∣∣∣
≤
∥∥∥(Ui(ai,a′

−i)
)
a′

−i∈×j ̸=i Aj

∥∥∥
∞
·
∥∥∥π(t)

−i − π
(t−1)
−i

∥∥∥
1

≤
∥∥∥π(t)

−i − π
(t−1)
−i

∥∥∥
1
.

Further, for any a, b, a′, b′ ∈ [0, 1], we have |ab− a′b′| = |ab− ab′ + ab′ − a′b′| ≤ a |b− b′| +
|a− a′| b′ ≤ |a− a′| + |b− b′|. Therefore, by recursively using it, for any a−i ∈×j ̸=i

Aj , we
have∣∣∣π(t)

−i(a−i)− π(t−1)
−i (a−i)

∣∣∣ =
∣∣∣∣∣∣
∏
j ̸=i

π
(t)
j (aj)−

∏
j ̸=i

π
(t−1)
j (aj)

∣∣∣∣∣∣ ≤
∑
j ̸=i

∣∣∣π(t)
j (aj)− π(t−1)

j (aj)
∣∣∣ .

Finally, ∥∥∥u(t)i − u
(t−1)
i

∥∥∥ ≤√|Ai|
∥∥∥π(t)

−i − π
(t−1)
−i

∥∥∥
1
≤

N∏
j=1

|Aj |
∑
j ̸=i

∥∥∥π(t)
j − π

(t−1)
j

∥∥∥
1
.

L.1 PROOF OF THEOREM 6.3 AND THEOREM 6.4

Before proving Theorem 6.3 and Theorem 6.4, we will show that when Assumption 6.2 is satisfied,
then the strategy variation is bounded.
Lemma L.1. Consider when Assumption 6.2 is satisfied. For both full-information and bandit,
Algorithm 2 satisfies the following,

T−1∑
t=1

∥∥∥π(t) − π(t+1)
∥∥∥ ≤ O (ηT ) .

When Assumption 5.2 is also satisfied, the following holds for Algorithm 3 in bandit setting,
T−1∑
t=1

∥∥∥π(t) − π(t+1)
∥∥∥ ≤ O (ηT + LT ) .

40



Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)

With Lemma L.1, we can prove thatR(T ),external
i is sublinear for any player i ∈ [N ] by Theorem 4.2,

Theorem 6.3, Theorem 5.3, and Theorem 5.4. Then, according to the folklore theorem (Cesa-
Bianchi & Lugosi, 2006), Theorem 6.3 and Theorem 6.4 are proved.

Lemma L.1. Consider when Assumption 6.2 is satisfied. For both full-information and bandit,
Algorithm 2 satisfies the following,

T−1∑
t=1

∥∥∥π(t) − π(t+1)
∥∥∥ ≤ O (ηT ) .

When Assumption 5.2 is also satisfied, the following holds for Algorithm 3 in bandit setting,

T−1∑
t=1

∥∥∥π(t) − π(t+1)
∥∥∥ ≤ O (ηT + LT ) .

Proof. For Algorithm 2 and full-information, the proof simply follows from ũ(t) ∈ [−1, 1]A and
Assumption 6.2.

For Algorithm 2 and bandit, we have∥∥∥π(t+1) − π(t)
∥∥∥ = (1− γ)

∥∥∥∥Alg

((
ũ(s)

)t+1

s=1

)
−Alg

((
ũ(s)

)t
s=1

)∥∥∥∥ ≤ η.
Then, we conclude the proof.

For Algorithm 3 and bandit, for any t ̸≡ 0 (mod M), we have ũ
(t)
avg−est = ũ

(t−1)
avg−est. Therefore, by

Assumption 6.2, we have∥∥∥π(t−1) − π(t)
∥∥∥ ≤∥∥∥∥Alg

((
ũ
(t−1)
avg−est

)t−1

s=1

)
−Alg

((
ũ
(t)
avg−est

)t
s=1

)∥∥∥∥
=

∥∥∥∥Alg

((
ũ
(t−1)
avg−est

)t−1

s=1

)
−Alg

((
ũ
(t−1)
avg−est

)t
s=1

)∥∥∥∥ ≤ η.
For any t ≡ 0 (mod M), let u =

ũ
(t)
empirical(a)n

(t)(a)−ũ
(t−M)
empirical(a)n

(t−M)(a)

n(t)(a)−n(t−M)(a)
, then we have

∥∥∥ũ(t)
avg−est − ũ

(t−1)
avg−est

∥∥∥ =

∥∥∥∥∥
(
(t/M − 1)ũ

(t−1)
avg−est + u

t/M

)
− ũ

(t−1)
avg−est

∥∥∥∥∥
≤M
t

(∥∥∥ũ(t−1)
avg−est

∥∥∥+ ∥u∥) ≤ 2M

t

√
|A|.

Therefore,∥∥∥π(t−1) − π(t)
∥∥∥ ≤ ∥∥∥∥Alg

((
ũ
(t−1)
avg−est

)t−1

s=1

)
−Alg

((
ũ
(t)
avg−est

)t
s=1

)∥∥∥∥
≤
∥∥∥∥Alg

((
ũ
(t−1)
avg−est

)t−1

s=1

)
−Alg

((
ũ
(t−1)
avg−est

)t
s=1

)∥∥∥∥+ ∥∥∥∥Alg

((
ũ
(t−1)
avg−est

)t
s=1

)
−Alg

((
ũ
(t)
avg−est

)t
s=1

)∥∥∥∥
(i)

≤η + Lt

(
2M

t

√
|A|
)

=η + 2LM
√
|A|.

(i) uses Assumption 5.2. Then, the total variation is bounded by

T−1∑
t=1

∥∥∥π(t+1) − π(t)
∥∥∥ ≤ O(ηT + LM

T

M

)
≤ O (ηT + LT ) ,

since there are at most T
M timesteps t ∈ [T ] satisfying t ≡ 0 (mod M).
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M PROPERTIES OF FOLLOW THE REGULARIZED LEADER (FTRL)

Firstly, we will define the strongly convex function and its conjugate function.
Definition M.1. For any integer n, a differentiable function ψ(x) : Rn → R is called c0-strongly
convex (c0 > 0) when

ψ(x) ≥ ψ(x′) + ⟨∇ψ(x′),x− x′⟩+ c0
2
∥x− x′∥2 (M.1)

holds for any x,x′ ∈ Rn. Its conjugate function is defined as
ψ∗(y) : Rn → R := sup

x∈Rn

⟨x,y⟩ − ψ(x).

Specifically, if (M.1) holds for c0 = 0, then we call ψ a convex function.

Next, we will introduce follow the regularized leader (FTRL).
Definition M.2 (Follow the Regularized Leader (FTRL)). For any T > 0 and at any timestep
t ∈ {0} ∪ [T − 1], given the utility vectors

(
u(s)

)t
s=1

, the strategy at timestep t + 1, π(t+1), is
defined as,

π(t+1) = argmax
π∈∆A

(
λ

t∑
s=1

〈
u(s), π

〉
− ψ(π)

)
, (FTRL)

for some constant λ > 0. Typically, λ is taken to be Θ(T−r) for some constant r > 0.

Now, we can introduce the smoothness of (FTRL).
Lemma M.3. For any c0-strongly convex and differentiable function ψ : ∆A → R, (FTRL) satisfies
Assumption 5.2 and Assumption 6.2 with L = λ

c0
and η = λ

c0

√
|A|.

Proof. By first-order optimality, at any timestep t ∈ {0} ∪ [T − 1] for any two sequences of utility

vectors
(
u(s)

)t
s=1

and
(
u′(s)

)t
s=1

, let the corresponding strategy generated by (FTRL) be π(t+1)

and π′(t+1) respectively, we have〈
λ

t∑
s=1

u(s) −∇ψ
(
π(t+1)

)
, π′(t+1) − π(t+1)

〉
≤ 0〈

λ

t∑
s=1

u′(s) −∇ψ
(
π′(t+1)

)
, π(t+1) − π′(t+1)

〉
≤ 0.

By summing them up and rearranging the terms, we have〈
λ

t∑
s=1

u′(s) − λ
t∑

s=1

u(s), π′(t+1) − π(t+1)

〉
≥
〈
∇ψ

(
π′(t+1)

)
−∇ψ

(
π(t+1)

)
, π′(t+1) − π(t+1)

〉
.

Since ψ is c0-strongly convex, we have

ψ
(
π(t+1)

)
≥ ψ

(
π′(t+1)

)
+
〈
∇ψ

(
π′(t+1)

)
, π(t+1) − π′(t+1)

〉
+
c0
2

∥∥∥π(t+1) − π′(t+1)
∥∥∥2

ψ
(
π′(t+1)

)
≥ ψ

(
π(t+1)

)
+
〈
∇ψ

(
π(t+1)

)
, π′(t+1) − π(t+1)

〉
+
c0
2

∥∥∥π(t+1) − π′(t+1)
∥∥∥2 .

By summing them up and rearranging the terms, we have〈
∇ψ

(
π′(t+1)

)
−∇ψ

(
π(t+1)

)
, π′(t+1) − π(t+1)

〉
≥ c0

∥∥∥π(t+1) − π′(t+1)
∥∥∥2 .

Therefore,

c0

∥∥∥π(t+1) − π′(t+1)
∥∥∥2 ≤〈λ t∑

s=1

u′(s) − λ
t∑

s=1

u(s), π′(t+1) − π(t+1)

〉
(i)

≤
∥∥∥∥∥λ

t∑
s=1

u′(s) − λ
t∑

s=1

u(s)

∥∥∥∥∥ · ∥∥∥π′(t+1) − π(t+1)
∥∥∥ .
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(i) is by Hölder’s Inequality. Then,∥∥∥∥∥λ
t∑

s=1

u′(s) − λ
t∑

s=1

u(s)

∥∥∥∥∥ ≤ c0 ∥∥∥π(t+1) − π′(t+1)
∥∥∥ ,

so that (FTRL) satisfies Assumption 5.2 with L = λ
c0

. Furthermore, note that the results above also
hold for sequences of utility vectors of different lengths (not necessarily equal to length t simulta-
neously). As a result, we have∥∥∥π(t+1) − π(t)

∥∥∥ ≤ λ

c0

∥∥∥u(t)
∥∥∥ ≤ λ

c0

√
|A|,

for any t ∈ {0} ∪ [T − 1], which implies that η = λ
c0

√
|A| in Assumption 6.2 for (FTRL).

N CONCLUDING REMARKS

In this paper, we studied online learning and equilibrium computation with ranking feedback, which
is particularly relevant to application scenarios with humans in the loop. Focusing on the classi-
cal (external-)regret metric, we designed novel hardness instances to show that achieving sublinear
regret can be hard in general, in a few different ranking models and feedback settings. We then de-
veloped new algorithms to achieve sublinear regret under an additional assumption on the sublinear
variation of the utility, leading to an equilibrium computation result in the repeated game setting.
We believe our work paves the way for promising avenues of future research. For example, it would
be interesting to close the gap between the lower-bound and the positive result for AvgUtil Rank
under bandit feedback, i.e., either show the hardness when τ is a constant or achieve sublinear regret
for constant τ without Assumption 4.1. Moreover, applying our algorithms to real-world datasets
with ranking feedback, such as ride-sharing and match-dating, would also be of great interest.
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