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ABSTRACT

High-dimensional data must be highly structured to be learnable. Although the
compositional and hierarchical nature of data is often put forward to explain
learnability, quantitative measurements establishing these properties are scarce.
Likewise, accessing the latent variables underlying such a data structure remains
a challenge. In this work, we show that forward-backward experiments in
diffusion-based models, where data is noised and then denoised to generate new
samples, are a promising tool to probe the latent structure of data. We predict
in simple hierarchical models that, in this process, changes in data occur by
correlated chunks, with a length scale that diverges at a noise level where a phase
transition is known to take place. Remarkably, we confirm this prediction in both
text and image datasets using state-of-the-art diffusion models. Our results show
how latent variable changes manifest in the data and establish how to measure
these effects in real data using diffusion models.

1 INTRODUCTION

Generative artificial intelligence (AI) systems have demonstrated remarkable capabilities in synthe-
sizing data across various modalities, including images (Betker et al., 2023; Rombach et al., 2022)
and text (Brown, 2020; Ouyang et al., 2022; Touvron et al., 2023). The underlying reasons behind
these achievements remain poorly understood. Indeed, natural data are often high-dimensional and
thus generically intractable due to the curse of dimensionality (Luxburg & Bousquet, 2004; Bach,
2017). Hence, to be learnable, the distribution of the data must be highly structured. Characterizing
this structure is a fundamental challenge central to any theory of learning.

Hierarchical compositionality (Patel et al., 2015; Mossel, 2016; Poggio et al., 2017; Malach &
Shalev-Shwartz, 2018; Schmidt-Hieber, 2020; Cagnetta et al., 2023) is a candidate property put for-
ward to rationalize the success of deep architectures. In this view, data can be decomposed into
features organized hierarchically. It is well-established that the grammatical structure of most lan-
guages is approximately context-free and hierarchical (Chomsky, 2014; Jäger & Rogers, 2012), al-
though it is unclear how well this structure can capture language semantics (Goldberg, 1995; 2015).
Likewise, pattern theory (Grenander, 1996) posits that images have a hierarchical structure. In both
cases, obtaining quantitative evidence characterizing this hierarchy and building tools to determine
the associated latent variables remain a challenge.

Generative denoising diffusion probabilistic models (DDPMs) offer a new handle to tackle this
challenge, particularly through forward-backward experiments, where a controlled level of noise
is added to a starting image and then removed to generate a new one (Ho et al., 2020; Sclocchi
et al., 2024; Behjoo & Chertkov, 2023). For small amounts of noise, low-level features of the
image change (Ho et al., 2020; Sclocchi et al., 2024). Passed a transition point, the class is likely
to change (Ambrogioni, 2023; Sclocchi et al., 2024; Biroli et al., 2024; Li & Chen, 2024), but
remarkably some of the low-level features of the original image are still retained, as predicted in
simple hierarchical models of data structure (Sclocchi et al., 2024). However, the empirical tests
in these works were limited to images and did not explore other data modalities. Moreover, the
geometrical structure of the changes occurring in such a process is not known.

In this work, we derive the length scale associated with changes occurring in the forward-backward
protocol in a synthetic generative model of hierarchical data, and we show experimentally that our
predictions hold in both language and image datasets. The synthetic model we consider belongs to
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the class of probabilistic context-free grammars (Rozenberg & Salomaa, 1997); it is thus defined on
a tree graph, and its forward-backward diffusion experiments can be done exactly with a message-
passing algorithm. Specifically, our contributions are as follows:

• In the generative model of hierarchically structured data, using a mean-field description of
the forward-backward diffusion process, we show theoretically that changes in the tokens
are correlated over a length scale that diverges at the class transition. This phenomenology
is a signature of the hierarchy in the data structure, indicating changes in deep latent
variables.

• We validate our theoretical predictions performing numerical experiments on our synthetic
data with a diffusion process used in practice for discrete data, showing the same phe-
nomenology predicted by our theory. To do so, we measure the dynamical susceptibility,
an observable used to study the dynamics in physical systems.

• We perform forward-backward experiments with state-of-the-art masked diffusion lan-
guage models (MDLM) (Sahoo et al., 2024) on WikiText. We show the presence of a
peaking correlation length in the token changes at a finite inversion time, consistently with
our theoretical model.

• We perform the same experiments with vision Denoising Diffusion Probabilistic Models
(DDPM) (Nichol & Dhariwal, 2021) on ImageNet. We tokenize the resulting images
using the patch embeddings of a contrastively pre-trained vision encoder (Radford et al.,
2021) and show that the correlations of token changes display a qualitative agreement with
our analysis.

Overall, our results show how changes in latent variables affect visible data, and directly support the
idea that a hierarchical latent structure is central to both language and vision modalities. Moreover,
our work puts forward the forward-backward protocol as a tool to probe the latent hierarchical
structure of real data.
Organization of the manuscript In Section 2, we provide background on continuous and dis-
crete diffusion models. We then define the theoretical model of hierarchical data we consider and
its Bayes-optimal denoising. In Section 3, we define the correlations between changes and asso-
ciated susceptibility and then present our theoretical result on the hierarchical data model and its
experimental validation. In Section 4, we report the experimental measures for the same quantities
in language and image diffusion models.

2 BACKGROUND

2.1 DIFFUSION MODELS

Denoising diffusion models are generative models designed to sample from a distribution by
reversing a step-by-step noise addition process (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song
& Ermon, 2019; Song et al., 2020). Let t indicate the time step in a sequence [0, . . . , T ], q(·) the
data distribution we wish to sample from and x0 ∼ q(x0) a sample drawn from this distribution.
Diffusion models consist of: a forward process generating a sequence of increasingly noised data
{xt}1≤t≤T , q(x1, . . . ,xT |x0) =

∏T
t=1 q(xt|xt−1), where at the final time T , xT corresponds to

pure noise; a backward process, which reverts the forward one by gradually removing noise. This
process is typically obtained by learning the backward transition kernels p(xt−1|xt) using a neural
network. This corresponds to learning the score function, which is proportional to the conditional
expectation Eq(x0|xt) [x0]. Sampling from q(·) is achieved by sampling noise xT ∼ q(xT ) and
then applying the learned backward process to obtain a new sample x0 ∼ q(x0). Different diffusion
models correspond to different choices of the forward process, depending on the data space under
consideration (see Yang et al. (2023) for a review).

Discrete data For discrete data, like text, x0 consists of a sequence of tokens x0,i, i ∈ [d],
each corresponding to a symbol belonging to a vocabulary V. In this case, we consider masked
diffusion with an absorbing state by introducing an additional [MASK] symbol (Austin et al.,
2021). At time step t, each non-masked token either stays unchanged or transitions to [MASK]
with some probability βt. Using a one-hot-encoding representation of these |V| + 1 states, the
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forward transition matrix reads q(xt,i|xt−1,i) = (1− βt)I+ βt1e
⊤
M , where I is the identity matrix,

1 a column vector of all ones and eM the one-hot-encoding of the [MASK] symbol. At the final
time T , xT,i = [MASK] for every i ∈ [d]. In the following, we consider the noise schedule
βt = (T − t+ 1)−1 such that q(xt,i = [MASK] |x0) = t/T (Austin et al., 2021).

Continuous data For continuous data, like images, corresponding to x0 ∈ Rd, we consider the
time-discretized Gaussian diffusion introduced in (Ho et al., 2020). The forward transition matrix
reads q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI), where N represents the Gaussian probability dis-

tribution and the sequence {βt}1≤t≤T is the variance schedule. At the final time T , xT ∼ N (0, I).

Forward-backward experiments Forward-backward experiments involve inverting the diffusion
process at some intermediate time t ≤ T . Starting from x0, the forward process up to time t
produces a noisy sample xt ∼ q(xt|x0). The backward process, obtained from a trained diffusion
model, produces a new sample x̂0(t) ∼ p(x̂0|xt). Thus, we refer to t as the inversion time of the
forward-backward process.

2.2 THE RANDOM HIERARCHY MODEL (RHM)

The RHM is a generative model of hierarchically structured data introduced by (Cagnetta et al.,
2023). It belongs to the class of context-free grammars in the field of language theory (Rozenberg &
Salomaa, 1997), and assumes that production rules are random. In its simplest version, it consists of:

• A regular tree graph of depth L and branching factor s. Each node of the tree corresponds
to a discrete random variable.

• A discrete vocabulary V(ℓ) of size v for each level ℓ = 0, 1, . . . , L of the tree. We call
ℓ = 0 the level of the leaves and ℓ = L the root level.

• A set of production rules defining how each symbol belonging to V(ℓ) can be represented
at the lower level with the symbols of (V(ℓ−1))⊗s. For each element of V(ℓ), there are m
equivalent lower-level representations, which are all distinct and chosen randomly.

We use the notation h(ℓ)i to indicate the variable at level ℓ and position i ∈ [sL−ℓ]. The leaf nodes
h(0)1 , . . . , h(0)

sL
correspond to the visible tokens, while the upper-level nodes represent latent variables.

See App. A for an example. We define the tree distance ℓ̃ between two visible tokens as the number
of edges between them and their lowest common ancestor. Their corresponding real space distance
r is r = sℓ̃ − 1. Because of the hierarchical structure generating the data, the visible tokens have
non-trivial spatial correlations, which depend on their tree distance (Cagnetta & Wyart, 2024).

2.2.1 BAYES-OPTIMAL DENOISING OF THE RHM USING BELIEF PROPAGATION

Knowing the production rules and the tree structure of the RHM, the probabilities of the latent
variables, conditioned on some observation, can be reconstructed exactly (Sclocchi et al., 2024)
using the Belief Propagation (BP) algorithm (Mezard & Montanari, 2009). Specifically, if an
RHM datum x0 is corrupted by some noise, e.g. via masking a fraction of tokens, resulting in a
noisy observation xt, then BP can be used to:

• compute the marginal probabilities of any latent or visible variable, conditioned on the
noisy observation xt: p(h

(ℓ)
i |xt);

• sample directly from the posterior p(x̂0|xt).
If the noisy observation xt is produced by a forward diffusion process, then sampling from p(x̂0|xt)
is equivalent to integrating exactly (i.e., for an infinite number of time steps) the backward diffusion
process starting from xt and using the exact score function. In fact, BP can also be used to compute
the score function, which is proportional to Ep(x̂0|xt) [x̂0], corresponding to having access to a neural
network achieving perfect generalization (see App. A.1.3 for a comparison between BP sampling
and backward diffusion with the score function). This is a different situation with respect to real
data, like images and text, where the score is estimated by training a neural network.

2.2.2 DIFFUSION PROCESSES IN THE RHM

For the RHM data, we consider two different processes.
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• ϵ-process This is a simplified process where one considers any datum x0 that can be
generated by the RHM, and assumes that there is some level of uncertainty on each visible
token (see App. A.1.2 for details). One then uses BP to compute the probability that the
true initial data was x̂0. The noising process is controlled by a noise-to-signal ratio ϵ ∈
[0, 1], which plays the role of time in the standard diffusion processes, such that ϵ = 0
at t = 0 and ϵ = 1 at t = T . Starting from an RHM datum x0, we indicate with xϵ
the noisy observation at the leaf priors. Therefore, BP computes the marginals p(h(ℓ)i |xϵ)
and samples from p(x̂0|xϵ). We study theoretically this process in section 3.1 through a
mean-field approximation, neglecting some fluctuations and averaging over the disorder of
the RHM.

• Masking diffusion with an absorbing state This is the diffusion process described in
section 2.1 for discrete data, which is commonly used in practice. We study it numerically
with BP in section 3.2.

Phase transition in the class reconstruction of the RHM Sclocchi et al. (2024) showed that
there exists a regime of the RHM parameters where the probability of reconstructing the class in the
ϵ diffusion process, that is p(h(L)1 |xϵ), undergoes a sharp phase transition at a critical noise level ϵ∗
in the limit of large L. Therefore, sampling x̂0(ϵ) ∼ p(x̂0|xϵ), for ϵ < ϵ∗, x̂0(ϵ) and x0 share the
same latent h(L)

1 (i.e. they belong to the same class), while, for ϵ > ϵ∗, the probability that x̂0(ϵ)
and x0 share the same class corresponds to the random chance 1/v.

In Fig. 10, we show numerically that also in masking diffusion the probability of reconstructing the
class p(h(L)

1 |xt) undergoes a phase transition at a specific inversion time t∗.

3 HIERARCHICAL STRUCTURES INDUCE CORRELATED BLOCKS OF TOKEN
CHANGES

In this section, we characterize the statistics of how the input tokens change in the forward-
backward experiments. Let x0,i denote the i-th input token, i ∈ [d], and x̂0,i(t) the same token
after undergoing a forward-backward experiment with inversion time t. We seek to compute the
correlations between changes in the tokens as a function of the inversion time t. For each token
position i, we introduce a variable σi(t) characterizing the dynamics.

Definition 1 (Token change). If the tokens x0,i and x̂0,i(t) take values in a discrete vocabulary, then
σi(t) is a spin variable defined as

σi(t) =

{
+1, if x0,i ̸= x̂0,i(t),

−1, if x0,i = x̂0,i(t).
(1)

Definition 2 (Dynamical correlation function). Given the σi(t) defined above, the dynamical corre-
lation function between the changes of tokens at positions i and j, relative to the initial point x0, is
defined as

Cx0,ij(t) = ⟨σi(t)σj(t)⟩ − ⟨σi(t)⟩⟨σj(t)⟩, (2)

where ⟨·⟩ denotes averaging over different stochastic trajectories. The average dynamical correla-
tion function is defined as Cij(t) = Cx0,ij(t), where the overline indicates averaging over the initial
point x0.

Given the correlations, we compute the dynamical susceptibility χ(t), a quantity used to study the
dynamics in physical systems (Donati et al., 2002; Toninelli et al., 2005).

Definition 3 (Dynamical susceptibility). Given the average correlation function Cij(t) of Defini-
tion 2, the dynamical susceptibility is defined as

χ(t) =

∑d
i=1

∑d
j=1 Cij(t)∑d

i=1 Cii(t)
, (3)

where we normalized by the sum of auto-correlations.
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Intuitively, the susceptibility measures the volume of the blocks of tokens that change together.

In the case of the ϵ-process for the RHM, where x̂0(ϵ) is sampled from p(x̂0|xϵ), the same defini-
tions hold for the quantities Cij(ϵ) and χ(ϵ).

In the case of continuous embeddings, where the tokens x0,i and x̂0,i(t) are continuous vectors (see
Section 4 for image diffusion), the same definitions for Cij(t) and χ(t) hold by redefining σi(t) as
σi(t) = ∥x0,i − x̂0,i(t)∥.

3.1 MEAN-FIELD THEORY OF THE ϵ-PROCESS OF THE RHM

The average correlation function Cij(ϵ) can be computed for the ϵ-process of the RHM through
a mean-field approximation. This mean-field approach consists of computing the average BP
messages at each layer ℓ, where the average is performed over the possible realizations of the RHM
rules. Let’s consider two leaf nodes h(0)i and h(0)j connected to the common ancestor h(ℓ)k at layer ℓ

through the nodes h(ℓ−1)
l and h(ℓ−1)

m (see Fig. 1 for an illustration). Their associated spin variables
are therefore σ(0)

i , σ(0)
j , σ(ℓ)

k , σ(ℓ−1)
l and σ(ℓ−1)

m , where we omit the ϵ dependence to lighten the

notation. Given the tree structure, the joint probability distribution P (σ(0)
i , σ

(0)
j ) can be written as

P (σ
(0)
i , σ

(0)
j ) =

∑
σ
(ℓ−1)
l ,σ

(ℓ−1)
m

P (σ
(0)
i |σ(ℓ−1)

l ) P (σ
(0)
j |σ(ℓ−1)

m ) P (σ
(ℓ−1)
l , σ(ℓ−1)

m ).
(4)

h
(ℓ)
k

h(ℓ−1)
m

h
(0)
j

h
(ℓ−1)
l

h
(0)
i

Figure 1: Example of leaf nodes h(0)i ,
h(0)
j connected to the common ancestor

h(ℓ)
k through h(ℓ−1)

l and h(ℓ−1)
m .

Each element in the sum of Eq. (4) can be written in
terms of BP messages, and its average value can be com-
puted by averaging over the realizations of RHM rules.
The average of P (σ(0)

i |σ(ℓ−1)
l ) and P (σ(0)

j |σ(ℓ−1)
m ) can

be written as a 2 × 2 matrix T (ℓ−1) only depending on
the layer ℓ − 1. Similarly, also the average of the joint
probability P (σ

(ℓ−1)
l , σ

(ℓ−1)
m ) can be represented as a

2 × 2 matrix C(ℓ−1). In the mean-field approximation,
we neglect the fluctuations of these quantities around their
means. Therefore, we compute the average joint proba-
bility P (σ

(0)
i , σ

(0)
j ) by substituting the elements in the

product of Eq. (4) with their means. For spin variables i
and j at tree distance ℓ, we have

P (σ
(0)
i , σ

(0)
j ) = T (ℓ−1) C(ℓ−1) T (ℓ−1)⊤. (5)

All the expressions for the above quantities are reported
in App. A.2. With a similar procedure, we can compute the average marginal probability p(σ(0)).
From these quantities, we obtain the average correlation function Cij(ϵ) at each noise level ϵ.

3.1.1 DYNAMICAL CORRELATION LENGTH

In what follows, we present our main result predicting a power law divergence of the dynamical
correlation length at the phase transition. The technical details of the derivation are reported in
App. A.2.1.
Main result (Divergence of the correlation length). Consider the RHM in the limit L → ∞, with
parameters v,m, s such that the probability of reconstructing the class in the ϵ-process undergoes
a phase transition at noise level ϵ∗ (condition 28 in App. A.2). Then, the correlation length ξ(ϵ)
associated to the dynamical correlation function Cij(ϵ) diverges at the class phase transition ϵ∗ as

ξ ∼ |ϵ− ϵ∗|−ν , (6)

where ν is a function of v,m, s reported in Eq. (54) of App. A.2.1.

This divergence of the correlation length at the class transition indicates that large blocks of tokens
change in concert. In fact, these large correlated changes are caused by the modifications of deeper
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Figure 2: Correlation measures on diffusion samples of the Random Hierarchy Model (RHM).
(a-I) In the ϵ-process, the average correlation function shows a correlation length that is maximal
for ϵ∗ ≃ 0.74, corresponding to the class phase transition, with a system-spanning power-law be-
havior. The full lines are experiments run with Belief Propagation, while the dashed lines are the
corresponding mean-field theory description (Section 3.1), showing excellent agreement. (a-II) Cor-
respondingly, also the average susceptibility shows a peak at the transition ϵ∗. (b) The same behavior
is observed for the correlation function (b-I) and the susceptibility (b-II) for masking diffusion. In
this case, the phase transition is observed for inversion time t∗ ≃ 0.3 T , where both the correlation
length and the susceptibility peak. Data for RHM parameters v = 32, m = 8, s = 2, L = 9,
averaged over 256 starting data and 256 diffusion trajectories per starting datum.

and deeper latent variables near the transition (see Fig. 3 for an illustration). At both smaller and
larger noise levels, the correlation length decays. This behavior of the dynamical correlation func-
tions implies that the dynamical susceptibility also peaks at the transition, a hallmark of criticality

3.2 NUMERICAL EXPERIMENTS

To test our theoretical predictions for the ϵ-process, in Fig. 2 (a-I), we present the average correlation
functions C(r, ϵ), corresponding to Cij(ϵ) averaged on all pairs ij such that their real space distance
is r, and normalized by the auto-correlation C(0, ϵ). We observe that the correlation function
displays a system-spanning power-law behavior at a critical value ϵ∗ ≈ 0.74, while it decays faster
with distance when ϵ ̸= ϵ∗. This observation implies a correlation length that peaks at the critical
value ϵ∗. Consistently, also the susceptibility χ(ϵ) in Fig. 2 (a-II) peaks at this critical value.
We compare both the correlation functions and the susceptibility measures with the theoretical
predictions obtained by the mean-field theory of the ϵ-process (dashed lines in Fig. 2 (a-I) and
(a-II)), showing excellent agreement. Moreover, in Fig. 9 of App. A, we test the prediction for the
critical exponent of the correlation length of Eq. (6), also showing very good agreement.

In the panels (b-I) and (b-II) of Fig. 2, we report the average correlation functions C(r, t) and sus-
ceptibility χ(t) for masking diffusion at different inversion times t. Also in this case, the correlation

6
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(a) t/T = 0.3 (b) t/T = 0.5

Figure 3: Masking diffusion in the RHM for masking fraction (a) t/T = 0.3 and (b) t/T = 0.5.
The bottom sequence represents the starting datum x0. The blue (green) symbols are the masked
ones in xt that (do not) change feature in x̂0(t). The leaves of the tree represent the sampled
sequence x̂0(t) ∼ p(x̂0|xt). In the corresponding tree, the red nodes are those that changed features
with respect to the generating tree of x0. We observe that larger blocks of changed tokens reflect
changes in deeper latent variables.

length and the susceptibility are maximal at a specific critical time t∗ ≈ 0.3 T . From Fig. 10, we
observe that this critical time t∗ corresponds to the phase transition in the class reconstruction prob-
ability. Although there is not a simple mapping between the masking probability t/T and the noise
level ϵ in the simplified ϵ-process, the qualitative behaviors in the two settings show a remarkable
agreement, validating the relevance of our theoretical predictions for both kind of diffusion process.

3.3 SPATIAL CORRELATIONS IN DATA ARE NOT SUFFICIENT TO GET A SUSCEPTIBILITY PEAK

In the RHM, the latent hierarchical structure induces spatial correlations both between the input
tokens and in their changes in the forward-backward diffusion. Therefore, it is natural to ask
whether any model of data displaying spatial correlations, even without a latent hierarchical
structure, exhibits the same phenomenology of the RHM in the forward-backward diffusion.

In App. B, we show that this is not the case. In particular, we consider a Gaussian random field
model with a covariance having a power-law decaying spectrum. This induces spatial correlations
in the field that decay algebraically with the distance. We show that performing forward-backward
diffusion at different inversion times t results in a variation field having a correlation length that in-
creases monotonically with t and is maximal at the final time t = T . This behavior contrasts sharply
with the hierarchical data studied here, where the growing length scale occurs in correspondence
with a phase transition at a finite inversion time t∗.

In fact, the mechanisms behind the dynamical correlations are different. For Gaussian random fields,
the noise of the diffusion acts as a low-pass filter, which defines a characteristic scale below which a
mode is reconstructed in the backward process. For hierarchically structured data, instead, the spatial
correlations in the changes are associated with the changes of latent variables at different levels of
the hierarchy. Therefore, a diverging correlation length is present only when the reconstruction
probability of the root node (i.e., the class) undergoes a phase transition.

4 EXPERIMENTS ON NATURAL LANGUAGE AND IMAGE DATA

This section extends our analysis to real-world scenarios, demonstrating that language and vision
diffusion models exhibit the same phenomenology as observed in the RHM.

Language diffusion models We consider Masked Diffusion Language Models (MDLM) (Sahoo
et al., 2024) utilizing the GPT2 tokenizer. We perform forward-backward experiments starting from
samples from the WikiText2 dataset. In Fig. 4 (a), we illustrate how an initial paragraph changes
with different inversion times t. At small t, only a few isolated words are modified. At intermediate
t, we clearly observe clusters of words changing in a correlated manner. At large t, only a small
fraction of the initial sentence remains unchanged (see App. C for a presentation of the same data
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The third day, September 3, the situation worsened. 
The weather was hot and ammunition, food and 
supplies were nearly completely exhausted

The third day, September 3, the situation worsened. 
The weather was hot and ammunition, tanks and 
supplies were nearly completely exhausted

the same day, September 29, the situation worsened. 
The weather was hot and ammunition, food and 
materials were almost completely exhausted

The third day, September 3, the situation worsened. 
The weather was hot and ammunition, food and 
supplies were nearly completely exhausted

Masking fraction t/T = 0.1 Masking fraction t/T = 0.5

Original

information on maps of the actual burial 
population size. The number is probably around 
30,000, we were almost completely encroached

The third day, September 3, the situation worsened. 
The weather was hot and ammunition, food and 
supplies were nearly completely exhausted

Masking fraction t/T = 0.9

Original

Forward-
Backward

Next day, September 3, the situation worsened. The 
weather was hot and humid, and the prisoners were 
almost completely exhausted

Masking fraction t/T = 0.7

The third day, September 3, the situation worsened. 
The weather was hot and ammunition, food and 
supplies were nearly completely exhausted

Forward-
Backward
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Figure 4: Forward-backward experiments with language diffusion models. (a) Forward-
backward examples for different masking fractions. The words in blue (green) are those that were
masked and changed (did not change), while the words in red changed following the backward pro-
cess. (b) Normalized correlations as a function of index distance r = |i − j| for different fractions
of masked tokens. (c) Susceptibility χ(t) as a function of masking fraction. The results are averaged
over NS = 300 samples, each consisting of NT = 128 tokens, with NR = 50 noise realizations for
each masking fraction. The susceptibility is given by integrating over the domain r ∈ [0, 10].

in their larger context). In Fig. 4 (b-c), we quantify these observations by measuring the average
correlation functions and susceptibility1. Strikingly, in line with the phenomenology obtained
for the RHM, we find a growing correlation length as t increases, reaching a maximum of 7 ÷ 8
tokens at a critical inversion time t∗ ≈ 0.6T , followed by a subsequent decline. Additionally, the
susceptibility peaks at t∗, establishing the existence of a phase transition for the language modality.

Vision diffusion models We extend our analysis to computer vision by considering Improved De-
noising Diffusion Probabilistic Models (Nichol & Dhariwal, 2021), trained on the ImageNet dataset.
To compute the correlation between changes in the image tokens, we follow recent trends in multi-
modal LLMs (Liu et al., 2024; Dai et al., 2023). Specifically, we divide each image into 7×7 patches
and use the last-layer embeddings for each patch from a CLIP ViT-B32 (Radford et al., 2021) to to-
kenize the image. Let x0,i denote the embedding of the i-th patch, where i = (k, l) with k, l ∈ [7].
After the forward-backward process, the variation of each patch embedding is given by ∆xi(t) =
x0,i − x̂0,i(t). We then compute the average correlations between the norms of these variations:

Cij(t) = ⟨∥∆xi(t)∥ ∥∆xj(t)∥⟩ − ⟨∥∆xi(t)∥⟩⟨∥∆xj(t)∥⟩. (7)

The susceptibility is subsequently obtained as χ(t) =
∑
ij Cij(t)/

∑
ii Cii(t). In Fig. 5, we present

some examples of starting images and generated ones at different inversion times t, together with
1To avoid finite size effects due to imposing a fixed masking fraction, we integrate the average correlation

function up to the maximal correlation length r ∼ O(10).
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t = 0 t = 0.6 T t = 0.7 T

Figure 5: Examples of images generated at different inversion times t with forward-backward
diffusion. The first column represents the starting images x0, while the other columns represent the
generated ones x̂0(t). The grid indicates the tokens represented inside the CLIP vision encoder. For
inversion time t > 0, the red patches indicate the token embeddings that have a variation magnitude
larger than a fixed threshold. These patches of variation appear in domains of growing size around
the class transition, observed for t∗ ≈ 0.6÷ 0.7T (Fig. 6).
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C
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/
C
(0
,t
)
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t=1.0 T

1

(a)

0.2 0.4 0.6 0.8 1.0

t / T

2
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χ(t)

1

(b)

Figure 6: Correlation measures on the variation of CLIP embeddings of images generated with
forward-backward diffusion. (a) The average correlation function displays a system spanning
power-law behavior for t∗ ≈ 0.6 ÷ 0.7 T , corresponding to the class phase transition (cf. Fig. 13).
(b) In correspondence with the phase transition, the average susceptibility displays a peak. Data
obtained with 344 starting images and 128 diffusion trajectories per starting image.

the grid representing their tokenization. We observe that, for increasing t, new semantic elements
appear in the generated images, corresponding to blocks of tokens changing in concert. In Fig. 6,
we present the average correlation functions and the susceptibility for vision DDPMs, starting
from samples of the ImageNet validation set (Deng et al., 2009). At a critical inversion time
t∗ ≈ 0.6 ÷ 0.7T , we observe a peak in susceptibility, signaling the class phase transition in these
models. This finding highlights the compositional semantic structure of image data, similar to the
phase transitions observed in language diffusion models and the RHM.

5 RELATED WORK

Phase transitions in diffusion models Several works have studied phenomena related to phase
transitions in diffusion models. Biroli et al. (2024); Ambrogioni (2023) show the presence of dif-
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ferent dynamical regimes in the diffusion process separated by a ‘speciation’ cross-over where a
bimodal distribution merges into a mono-modal one. Li & Chen (2024) provide bounds for critical
time windows appearing in the diffusion of mixtures of strongly log-concave densities. These works
do not consider hierarchical data, and thus do not present growing dynamical susceptibility or length
scale at the transition.

Hierarchical models of images and text Generative models have been used to describe the
structure of data in several context, including in linguistics and signal processing. For languages,
hierarchically-structured formal grammars are often used as a model of their syntactic structure
(Rozenberg & Salomaa, 1997). Likewise, pattern theory formalizes the semantic decomposition of
visual scenes through a hierarchy of features (Stoyan, 1997; Jin & Geman, 2006; Siskind et al., 2007;
Li et al., 2009). More recently, images have been described through a hierarchical decomposition
in multi-scale wavelet coefficients (Marchand et al., 2022; Kadkhodaie et al., 2023), although the
underlying structure, in this case, is not tree-like.

Semantic vs geometrical description of images Several studies (Rissanen et al., 2022; Wang
& Vastola, 2023) pointed out that the backward diffusion process of images acts on coarse-to-fine
scales. Since the Fourier spectra of images decay as power laws, higher frequencies are affected at
short diffusion times, while low-frequency modes persist for longer. This is precisely the pattern
we describe in the Gaussian random field model in Section 3.3 and App. B. While this viewpoint is
an appropriate starting point to describe the geometrical structure at the pixel level, our hierarchi-
cal model seeks to capture a high-level, semantic description of images that we test using a CLIP
encoder. This means that high/low-level features can correspond to parts of objects – such as the
eyes, mouth, and nose of a face – rather than simple geometric or frequency components. The two
descriptions are, therefore, complementary.

Hierarchical models in machine learning theory Several studies (Mossel, 2016; Shalev-Shwartz
et al., 2017; Malach & Shalev-Shwartz, 2018; 2020) have shown that the correlations between in-
put and task are crucial for determining learnability in hierarchical data. Furthermore, the internal
representations of trained deep networks reflect the data’s latent structure (Cagnetta et al., 2023;
Allen-Zhu & Li, 2023). Sclocchi et al. (2024) showed that diffusion on hierarchical data can be
solved using Belief Propagation. Mei (2024) showed that U-Nets can efficiently approximate the
Belief Propagation algorithm on hierarchical data, while Garnier-Brun et al. (2024) provided evi-
dence that transformers can implement the same algorithm.

6 DISCUSSION AND CONCLUSION

In this work, we showed that when data exhibit a hierarchical structure, the changes induced
by forward-backward experiments in diffusion models reveal a growing correlation length and
susceptibility near a phase transition. At this critical point, changes in the data become highly
correlated, reflecting changes in deep latent variables. In particular, we focused on understanding
how modifications in the latent variables manifest in the data, in contrast with common approaches
which attempt to reconstruct the latent representations from visible data.

Our predictions for a hierarchical model were confirmed through experiments across different nat-
ural data modalities, showing a remarkable level of universality. This supports the hypothesis that
hierarchical and compositional structures are fundamental, universal properties underlying natural
data as diverse as images and text.

Such fundamental analyses have the potential to impact practical applications. For example, they
can enhance the interpretability of deep networks, whose representations are believed to reflect the
hierarchical structure of data. Moreover, the diffusion dynamics of high and low-level features can
suggest improved training strategies, for instance, to avoid mode collapse when fine-tuning diffusion
models (Barceló et al., 2024).

Future work may include interpreting the large, correlated changes in text in terms of grammatical
structure and context variables, possibly sharpening these concepts through the data-driven method
introduced in this study. Moreover, better capturing the grammatical structure of real languages may
require considering more general latent models involving context dependencies. A challenge for
future work is extending our theoretical analysis to such cases.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 1, context-free grammar. arXiv
preprint arXiv:2305.13673, 2023.

Luca Ambrogioni. The statistical thermodynamics of generative diffusion models. arXiv preprint
arXiv:2310.17467, 2023.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 34:17981–17993, 2021.

Francis Bach. Breaking the curse of dimensionality with convex neural networks. The Journal of
Machine Learning Research, 18(1):629–681, 2017.
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Zahra Kadkhodaie, Florentin Guth, Stéphane Mallat, and Eero P Simoncelli. Learning multi-scale
local conditional probability models of images. arXiv preprint arXiv:2303.02984, 2023.

Li-Jia Li, Richard Socher, and Li Fei-Fei. Towards total scene understanding: Classification, an-
notation and segmentation in an automatic framework. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2036–2043. IEEE, 2009.

Marvin Li and Sitan Chen. Critical windows: non-asymptotic theory for feature emergence in
diffusion models. arXiv preprint arXiv:2403.01633, 2024.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36, 2024.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11976–11986, 2022.

Ulrike von Luxburg and Olivier Bousquet. Distance-based classification with lipschitz functions.
The Journal of Machine Learning Research, 5(Jun):669–695, 2004.

Eran Malach and Shai Shalev-Shwartz. A provably correct algorithm for deep learning that actually
works. arXiv preprint arXiv:1803.09522, 2018.

Eran Malach and Shai Shalev-Shwartz. The implications of local correlation on learning some deep
functions. Advances in Neural Information Processing Systems, 33:1322–1332, 2020.

Tanguy Marchand, Misaki Ozawa, Giulio Biroli, and Stéphane Mallat. Wavelet conditional renor-
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A THE RANDOM HIERARCHY MODEL

Data generation in the RHM A datum of the RHM is generated with the following procedure:

• a symbol at the root h(L)1 is chosen uniformly at random from V(L);
• one of the m production rules associated with the symbol sampled at the root is chosen

uniformly at random. This choice defines the values, belonging to V(L−1), of the s children
nodes h(L−1)

1 , . . . , h(L−1)
s ;

• the procedure is iterated sampling the symbols at layer ℓ − 1 according to the symbols at
layer ℓ and their respective production rules;

• as a result, a string of sL symbols belonging to V(0) is generated at the leaf nodes. This
string is the generated datum x.

Levels Production Rules

ℓ = 2 → ℓ = 1

a

ef

fe

ed

b

df

ff

de

c

dd

fd

ee

ℓ = 1 → ℓ = 0

d

hi

ii

gi

e

ih

ig

hg

f

gg

hh

gh

b l = 2

d f l = 1

g i g g l = 0

Figure 7: Example of RHM with L = 2, s = 2, v = 3, m = 3. Left: example of production rules
with vocabularies V(2) = {a, b, c}, V(1) = {d, e, f}, V(0) = {g, h, i}. Right: one possible datum
generated by the production rules, with the hierarchical levels indicated on the right.

A.1 DENOISING THE RHM WITH BELIEF PROPAGATION

In the RHM, knowing the production rules of its tree structure, the Bayes-optimal denoising of its
data can be done exactly using the Belief Propagation (BP) algorithm (Sclocchi et al., 2024).

In the factor graph of the RHM tree, all latent and visible variables h(ℓ)
i represent variable nodes,

while the RHM rules connecting them are factor nodes. Each variable node is associated to two BP
messages, one coming from below, ν↑(h

(ℓ)
i ), and one coming from above, ν↓(h

(ℓ)
i ). The starting

point of the BP algorithm is the definition of the messages at the boundaries of the tree, which are
the upward messages at the leaves ν↑(h

(0)
i ) and the downward message at the root node ν↓(h

(L)
1 ).

Since we consider class-unconditional diffusion processes, we consider the latter as being uniform
over the values of V(L). The initialization at the leaves, instead, corresponds to the prior belief
on the values of the single visible tokens, which is given by the noisy observation. In the case of
diffusion processes, the noisy observation xt gives prior beliefs ν↑(h

(0)
i ) = p(x̂0,i|xt,i), which can

be computed for the single token by Bayes’ rule and depends on the specific diffusion process under
consideration.

A.1.1 BP ITERATION

The initialization of BP is given by the leaf messages ν↑(h
(0)
i ), i ∈ [sL]. For each s-patch at level ℓ,

e.g., {h(ℓ)i }i=1,...,s, having a common parent node at layer ℓ+1, e.g. h(ℓ+1)
1 , the upward message in

the upper level is computed as:

ν̃↑
(

h(ℓ+1)
1 = y

)
=

∑
a1,...,as∈V(ℓ)⊗s

ψ(ℓ+1) (y, a1, . . . , as)

s∏
i=1

ν↑
(

h(ℓ)
i = ai

)
, (8)

ν↑(h
(ℓ+1)
1 = y) =

ν̃↑(h
(ℓ+1)
1 = y)∑

y′∈V(ℓ+1) ν̃↑(h
(ℓ+1)
1 = y′)

, (9)
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where the factor ψ(ℓ+1) (y, a1, . . . , as) reads

ψ(ℓ+1)(y, a1, ..., as) =

{
1, if y → (a1, ..., as) is a rule at layer (ℓ+ 1) → ℓ

0, otherwise.
(10)

This upward process is iterated from the leaf nodes at ℓ = 0 until the root node at ℓ = L. Afterward,
BP computes the downward messages. The initialization at the root node is given by a uniform prior
over the symbols of V(L), i.e.

ν↓
(

h(L)
1 = a

)
=

1

v
, ∀a ∈ V(L). (11)

For the same s-patch at layer ℓ and parent node at layer ℓ+ 1 as before, the downward message for
h(ℓ)1 is given by

ν̃↓(h
(ℓ)
1 = a1) =

∑
a2,...,as∈V(ℓ)⊗(s−1)

y∈V(ℓ+1)

ψ(ℓ+1)(y, a1, ..., as) ν↓(h
(ℓ+1)
1 = y)

s∏
i=2

ν↑(h
(ℓ)
i = ai), (12)

ν↓(h
(ℓ)
1 = a) =

ν̃↓(h
(ℓ)
1 = a)∑

a′∈V(ℓ) ν̃↓(h
(ℓ)
1 = a′)

, (13)

with the same factor node of Eq. (10).

At the end of the upward-downward iteration, each variable node h(ℓ)i is associated with two BP
messages for each symbol of the vocabulary V(ℓ): ν↑(h

(ℓ)
i ) and ν↓(h

(ℓ)
i ). Their product gives the

marginal probability of the value of the node:

p(h(ℓ)i = a) ∝ ν↑(h
(ℓ)
i = a) ν↓(h

(ℓ)
i = a), a ∈ V(ℓ). (14)

These marginal probabilities are conditioned on the BP messages at the leaf nodes, which can come
from a noisy observation of an RHM datum, as is the case for denoising diffusion.

Similarly, sampling from the posterior probabilities given by BP is done by starting sampling from
the marginal probability at the root and then iteratively updating the marginal probabilities every
time a new node is sampled (Mezard & Montanari, 2009).

A.1.2 PRIORS AT THE LEAVES

Masking diffusion Let’s consider a datum x0 of the RHM undergoing masking diffusion. At any
time t, the tokens of xt can have value

xt,i = x0,i, if token i has not yet been masked;
xt,i = [MASK], if token i has already been masked.

(15)

Therefore, given the noisy observation xt, the prior belief ν↑(h
(0)
i = a) on the value of the token i

being equal to a is given by p(x0,i|xt,i), that is:

ν↑
(

h(0)i = a
)
= δa,a, if xt,i = a ∈ V(0);

ν↑
(

h(0)i = a
)
= 1/v, ∀a ∈ V(0) if xt,i = [MASK].

(16)

ϵ-process In this process, instead of running a forward diffusion process, we act directly on the
leaf priors. We introduce a noise-to-signal ratio ϵ ∈ [0, 1], which controls the noise level instead of
the diffusion time t. Starting from a datum x0, whose i-th token has value a ∈ V(0), the prior beliefs
at the leaf node i taking values in V(0) are defined as
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ν↑
(

h(0)i = a
)

= 1− ϵ+ ϵ/v, for x0,i = a;

ν↑
(

h(0)i = a
)

= ϵ/v, ∀a ∈ V(0) \ a.
(17)

The role of ϵ is decreasing the prior belief on the starting value of a token. This process can be inter-
preted as an averaged forward diffusion process, where the average is made over different forward
trajectories. In the example of masking diffusion (Eq. (16)), calling 1−αt the probability of a token
being masked at time t, the average prior beliefs at the leaves read

〈
ν↑(h

(0)
i = a)

〉
= αt +

1−αt

v , where x0,i = a;〈
ν↑(h

(0)
i = a)

〉
= 1−αt

v , ∀a ∈ V(0) \ a,
(18)

which have the same functional form as Eq. (17) by identifying ϵ = 1− αt. Both ϵ and 1− αt vary
between 0 and 1 and play the role of noise-to-signal ratio in their respective processes. However, the
fluctuations of the upward beliefs around their mean in the masking diffusion change the statistics of
the BP messages propagating upwards and make the mapping ϵ = 1− αt inaccurate. For example,
in the experimental data of Fig. 2, the phase transition in the ϵ-process is located at ϵ∗ ≃ 0.74, while
it is found at 1− αt∗ = t∗/T ≃ 0.3 for masking diffusion.

A.1.3 BP SAMPLING VS BACKWARD DIFFUSION

BP sampling As discussed at the end of section A.1.1, BP allows for sampling directly from
the posterior probability p(x̂0|xt). Given a noisy observation xt and the corresponding marginal
probabilities p(h(ℓ)i |xt), the sampling procedes as follows:

• a root symbol h(L)1 = ŷ, ŷ ∈ V(L), is sampled according to the probability p(h(L)
1 |xt);

• the corresponding downward message is updated as ν↓
(

h(L)
1 = y

)
= δy,ŷ;

• the probabilities of the production rules y → (a1, ..., as) form layer L to layer L − 1 are
computed as

p
(
y → a1, ..., as|xt, h(L)1 = ŷ

)
∝ ν↓

(
h(L)1 = y

)
ν↑

(
h(L−1)
1 = a1

)
·...·ν↑

(
h(L−1)
s = as

)
.

(19)
Notice that the upward messages ν↑

(
h(L−1)
i = ai

)
carry the information on the observa-

tion xt;
• a production rule y → (a1, ..., as) is sampled according to the probabilities of Eq. (19).

This gives the values âi ∈ V(L−1) of the latent nodes h(L−1)
i . The corresponding downward

messages are updated as ν↓
(

h(L−1)
i = a

)
= δa,âi ;

• the probabilities of the production rules from layer L − 1 to L − 2 are computed as in
Eq. (19);

• the sampling procedure continuous up to the visible layer h(0)
i , giving a leaf configuration

x̂0.

The obtained sequence x̂0 is a configuration of the RHM sampled from the posterior p(x̂0|xt).

Backward diffusion with BP The BP sampling above is equivalent to running the backward dy-
namics with the true score function of the RHM. In fact, given a noisy observation xt at time t,
the marginal probabilities p(h(ℓ)i =a|xt) at the visible nodes can be used to compute the expectation
values E(h(ℓ)i |xt), which corresponds to E(x̂0|xt). This expectation gives the score function at xt
at time t, which can be used in the backward dynamics to sample xt−1 at time t− 1, and so on.

Fig. 8 compares BP sampling and the backward diffusion with the exact score function in the case
of masking diffusion. Both the average correlation functions and the dynamical susceptibility at
different masking fractions t/T show the same behavior, independently of the sampling procedure.
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Figure 8: Comparison between BP sampling and backward diffusion for masking in the Ran-
dom Hierarchy Model (RHM). Forward-backward experiments with masking diffusion, where the
sampling from the posterior p(x̂0|xt) is done with BP sampling (continuous lines) or by running the
backward diffusion dynamics (dotted-dashed lines), using the score function given by BP. Both the
average correlation functions of changes (panel (a)) and the dynamical susceptibility (panel (b)) for
different masking fractions t/T do not depend on the sampling process. Data for RHM parameters
v = 32, m = 8, s = 2, L = 8, averaged over 32 starting data and 256 diffusion trajectories per
starting datum.

A.2 MEAN-FIELD THEORY OF THE ϵ-PROCESS

Computation of the marginal probabilities Starting from Eq. (17) and the BP iterative Eqs. (8),
(9), (12) and (13), Sclocchi et al. (2024) computed the average BP messages at each layer ℓ, where
the average is performed over the possible choices of the RHM rules. The result consists in the
average messages associated with reconstructing the starting value a ∈ V(ℓ) of a latent node h(ℓ)i ,〈

ν↑
(

h(ℓ)i = a
)〉

ψ
= pℓ,

〈
ν↓

(
h(ℓ)i = a

)〉
ψ
= qℓ, (20)

where the average ⟨. . . ⟩ψ is performed over the factor nodes ψ representing the randomly chosen
rules of the RHM. The values of pℓ and qℓ can be computed layer-by-layer through the following
iterative maps:

pℓ+1 = F (pℓ), qℓ−1 = G(qℓ, pℓ−1), (21)

where

F (p) =
ps + f m−1

mv−1 (1− ps)

ps + f(1− ps)
, (22)

G(q, p) =
q ps−1 + f m−q

mv−1 (1− ps−1)

q ps−1 + f m−q
mv−1 (1− ps−1) + (v − 1)f m−q

mv−1

, (23)

and f = mv−1
vs−1 . The initial conditions are given by

p0 = 1− ϵ+ ϵ/v, (24)

qL = 1/v. (25)

Notice that the expectation values pℓ and qℓ only depend on the layer ℓ and not on the specific
position of the node i inside the layer. Once pℓ and qℓ have been computed for every layer ℓ =
0, . . . , L, the average marginal probability of reconstructing the original value a ∈ V(ℓ) of the
variable h(ℓ) is given by

P (h(ℓ) = a) =
pℓqℓ

pℓqℓ +
(1−pℓ)(1−qℓ)

v−1

. (26)
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This marginal probability is conditioned on the initialization of the leaf nodes (Eq. (17)) and only
depends on the layer ℓ, not on the position of the node inside the layer. Given the initialization of
qL, the probability of reconstructing the root node P (h(L) = a), that is the class of the datum, is
given by

P (h(L) = a) = pL. (27)

Therefore, in the limit of large depth L → ∞, the value of pL is given by one of the fixed of the
iterative map F (p). When F ′(1) > 1, F (p) has two fixed points: p = 1, which is repulsive, and
p = 1/v, which is attractive. This implies that, in this regime, for any noise level ϵ > 0 at the leaf
nodes, it is impossible to reconstruct the value of the class better than random chance. Instead, when
F ′(1) < 1, that is

s m
v − 1

vs − 1
< 1, (28)

a third non-trivial fixed point p∗ = F (p∗) appears, which is repulsive, while both p = 1 and
p = 1/v are now attractive. This implies the presence of a phase transition at a specific noise level
ϵ∗ = 1−p∗

1−1/v . For ϵ < ϵ∗, the class is reconstructed, for ϵ > ϵ∗ it is not.

Computation of the correlation functions Similar to the marginal probabilities, the average cor-
relation function can also be computed through an annealed average over the RHM rules. Let’s
consider two leaf nodes h(0)i and h(0)

j connected to the common ancestor h(ℓ̃)
1 at layer ℓ̃ through the

nodes h(ℓ̃−1)
1 and h(ℓ̃−1)

2 . Given the tree structure, their joint probability distribution can be written
as

P (h(0)i , h(0)j ) =∑
h(ℓ̃−1)
l ,h(ℓ̃−1)

m

P
(

h(0)i |h(ℓ̃−1)
l

)
P
(

h(0)j |h(ℓ̃−1)
m

)∑
h(ℓ̃)k

P
(

h(ℓ̃−1)
l , h(ℓ̃−1)

m |h(ℓ̃)k
)
P
(

h(ℓ̃)k
)

(29)

In the mean-field approach, the average joint probability only depends on the tree-distance ℓ̃ between
i and j and not their precise location. Moreover, we are only interested in the probability that both
the starting values of h(0)

i , h(0)j are reconstructed, and the probability of only one of the two is
reconstructed. In the following, we use an overline . . . to indicate the starting value of a variable to
be reconstructed. We need to compute〈

P (h(0)
i = ai, h

(0)
j = aj)

〉
ψ
, (30)〈

P (h(0)
i = ai, h

(0)
j ̸= aj)

〉
ψ
=

〈
P (h(0)

i ̸= ai, h
(0)
j = aj)

〉
ψ
, (31)

where the average ⟨. . . ⟩ψ is done over the possible choices of RHM rules. Using the same strategy
for the computation of the marginal probabilities, we compute the average of each term in Eq. (29)
by substituting the BP messages with their averages. For this purpose, we first define the average
marginal conditioned on the downward messages at layer ℓ̂, P (h(ℓ) = aℓ|qℓ̂ = c), with ℓ < ℓ̂.
This is computed with Eq. (26) by iterating the equations 21 between layers 0 and ℓ̂ and using
the initial conditions of Eq. (24) and qℓ̂ = c. Therefore, the marginals of Eq. (26) correspond to
P (h(ℓ) = aℓ|qL = 1/v). For the marginals in Eq. (29) we have:

⟨P
(

h(ℓ̃)k = a
(ℓ̃)
k

)
⟩ψ = P (h(ℓ̃) = a(ℓ̃)|qL = 1/v), (32)

that is the average marginal computed in Eq. (26);〈
P
(

h(0)i = ai|h(ℓ̃−1)
l = a

(ℓ̃−1)
l

)〉
ψ
= P (h(0) = a|qℓ̃−1 = 1), (33)

〈
P
(

h(0)i = ai|h(ℓ̃−1)
l ̸= a

(ℓ̃−1)
l

)〉
ψ
= P (h(0) = a|qℓ̃−1 = 0). (34)
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The probability terms of the type P (h(0) ̸= a| . . . ) are given by 1 − P (h(0) ̸= a| . . . ). Since these
averages only depend on the layer level ℓ̃, they are the same for

〈
P
(

h(0)j |h(ℓ̃−1)
m

)〉
ψ

. The last term

to compute is the joint P
(

h(ℓ̃−1)
l , h(ℓ̃−1)

m |h(ℓ̃)
k

)
which can be expressed in terms of BP messages:

P
(

h(ℓ̃−1)
l = al, h(ℓ̃−1)

m = am|h(ℓ̃)k = y
)
∝∑

am+1,...,as∈V(ℓ)⊗(s−2)

ψ(ℓ)(y, al, am, . . . , as) ν↑(h
(ℓ)
l = al) ν↑(h(ℓ)

m = am)

s∏
i ̸=l,m

ν↑(h
(ℓ)
i = ai).

(35)

Computing the averages over the rules, we have:〈
P
(

h(ℓ̃−1)
l = al, h(ℓ̃−1)

m = am|h(ℓ̃)k = y
)〉

ψ
= p2ℓ−1 / Z

(ℓ̃−1)
y , (36)〈

P
(

h(ℓ̃−1)
l = al, h(ℓ̃−1)

m ̸= am|h(ℓ̃)k = y
)〉

ψ
= f pℓ−1(1− pℓ−1)

m− 1

mv − 1
/ Z

(ℓ̃−1)
y , (37)〈

P
(

h(ℓ̃−1)
l ̸= al, h(ℓ̃−1)

m ̸= am|h(ℓ̃)k = y
)〉

ψ
= f (1− pℓ−1)

2 m− 1

mv − 1
/ Z

(ℓ̃−1)
y , (38)

Z
(ℓ̃−1)
y = p2ℓ−1 + f

m− 1

mv − 1
(1− p2ℓ−1) (39)

〈
P
(

h(ℓ̃−1)
l = al, h(ℓ̃−1)

m = am|h(ℓ̃)k ̸= y
)〉

ψ
= 0, (40)〈

P
(

h(ℓ̃−1)
l = al, h(ℓ̃−1)

m ̸= am|h(ℓ̃)k ̸= y
)〉

ψ
= f pℓ−1(1− pℓ−1)

m

mv − 1
/ Z(ℓ̃−1)

y , (41)〈
P
(

h(ℓ̃−1)
l ̸= al, h(ℓ̃−1)

m ̸= am|h(ℓ̃)k ̸= y
)〉

ψ
= f (1− pℓ−1)

2 m

mv − 1
/ Z(ℓ̃−1)

y , (42)

Z(ℓ̃−1)
y = f

m

mv − 1
(1− p2ℓ−1) (43)

We can combine these terms with the marginals Eq. (32) to obtain
〈
P
(

h(ℓ̃−1)
l , h(ℓ̃−1)

m

)〉
ψ

. We can

write this probabilities in a 2× 2 matrix C(ℓ̃−1) such that:

C
(ℓ̃−1)
11 =

〈
P
(

h(ℓ̃−1)
l = al, h(ℓ̃−1)

m = am

)〉
ψ
, (44)

C
(ℓ̃−1)
12 = C

(ℓ̃−1)
21 =

〈
P
(

h(ℓ̃−1)
l = al, h(ℓ̃−1)

m ̸= am

)〉
ψ
, (45)

C
(ℓ̃−1)
22 =

〈
P
(

h(ℓ̃−1)
l ̸= al, h(ℓ̃−1)

m ̸= am

)〉
ψ
. (46)

Similarly, also the conditional marginals of Eqs. (33) and (34) can be written as a 2 × 2 matrix
T (ℓ̃−1):

T
(ℓ̃−1)
11 =

〈
P
(

h(0)i = ai|h(ℓ̃−1)
l = a

(ℓ̃−1)
l

)〉
ψ
, (47)

T
(ℓ̃−1)
12 =

〈
P
(

h(0)i = ai|h(ℓ̃−1)
l ̸= a

(ℓ̃−1)
l

)〉
ψ
, (48)

T
(ℓ̃−1)
21 =

〈
P
(

h(0)i ̸= ai|h(ℓ̃−1)
l = a

(ℓ̃−1)
l

)〉
ψ
, (49)

T
(ℓ̃−1)
22 =

〈
P
(

h(0)i ̸= ai|h(ℓ̃−1)
l ̸= a

(ℓ̃−1)
l

)〉
ψ
. (50)
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Collecting the values of ⟨P (h(0)i , h(0)
j )⟩ψ into a 2× 2 matrix P (h(0)i , h(0)j ), we finally obtain

P (h(0)i , h(0)j ) = T (ℓ̃−1) C(ℓ̃−1) T (ℓ̃−1)
⊤
. (51)

In the language of the spin variables introduced in Section 3, the probability of reconstructing a
variable h(0)i = ai is the probability that σ0

i = +1, while h(0)i ̸= ai corresponds to σ0
i = −1.

A.2.1 DYNAMICAL CORRELATION LENGTH

In the mean-field approach, the average upward belief pℓ in the original value of a latent variable at
layer ℓ can be computed through the iterative map

pℓ = F (pℓ−1), (52)

where the functional form of F (p) is reported in Eq. (22) and the initial condition p0 depends on
the noise level ϵ as p0 = 1 − ϵ + ϵ/v. In the limit of large depth L → ∞, the probability pL
of reconstructing the class is given by the fixed points of F (p). For RHM parameters such that
Eq. (28) is satisfied, pL undergoes a phase transition and F (p) has three fixed points: two attractive
ones, corresponding to p = 1/v and p = 1, and a repulsive one, corresponding to the non-trivial
solution of p∗ = F (p∗) with p∗ ∈ ( 1v , 1). p

∗ corresponds to a critical noise level ϵ∗ = 1−p∗
1−1/v .

In the vicinity of ϵ∗ and the limit L → ∞, we can estimate the typical distance over which token
changes are correlated by computing the number of layers ℓ̃ after which the upward probability
of reconstructing the latent variables pℓ̃ approaches one of the two trivial fixed points p = 1 and
p = 1/v. This corresponds to the number of layers required to escape the repulsive fixed point p∗.

Given the iterative map of Eq. (52), we can linearize it around the fixed point p∗ and iterate for ℓ
layers,

∆pℓ =

dF (p)

dp

∣∣∣∣∣
p∗

ℓ

∆p0, (53)

where ∆pℓ = pℓ−p∗. We have that dF (p)
dp

∣∣
p∗
> 1 and we use the shorthand notation F ′

∗ = dF (p)
dp

∣∣
p∗

.

We want to compute the depth ℓ̃ at which F ′
∗
ℓ̃ |∆p0| = O(1). In terms of the corruption noise ϵ, we

have F ′
∗
ℓ̃ |∆ϵ| = O(1), where ∆ϵ = ϵ − ϵ∗. Hence, ℓ̃ ∼ − log |ϵ − ϵ∗|/ logF ′

∗. From the depth ℓ̃,
we can compute the correlation length in input space as

ξ ≃ sℓ̃ ∼ |ϵ− ϵ∗|−ν with ν =
log s

logF ′∗
, (54)

that diverges at the critical point: limϵ→ϵ∗ ξ = +∞.

B GAUSSIAN RANDOM FIELD MODEL

Consider u ∈ [−1, 1]d. Let x(u) denote a centered Gaussian random field defined over this domain
with translational-invariant isotropic covariance function K(u, u′). Specifically, the field satisfies
E[x(u)] = 0 and E[x(u)x(u′)] = K(u, u′) = c(∥u − u′∥), where c is a function depending only
on the Euclidean distance ∥u− u′∥.

Assume that the Fourier coefficients C(k) of c(∥u− u′∥) satisfy, for large ∥k∥, C(k) = γ∥k∥−a +
o(∥k∥−a), ∥k∥ → ∞, with 0<a<d. This implies that the Fourier coefficients X(k) are independent
Gaussian random variables, X(k) ∼ N (0, σ2

k) with σ2
k ≍ ∥k∥−a.

B.1 FORWARD-BACKWARD EXPERIMENTS IN FOURIER SPACE

Given the independence of the Fourier coefficients X(k), we apply the diffusion dynamics to each
Fourier coefficient independently. The noising process is given by:

X(k)t =
√
1− βtX(k)t−1 +

√
βtη, η ∼ N (0, 1), (55)
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1Figure 9: ϵ-process in the RHM (v = 32, m = 8, s = 2, L = 9): correlation function with
respect to the token distance r, for noise levels ϵ close to the transition ϵ∗ ≃ 0.74. (Inset) The
correlation function displays system-spanning power-law decay at the transition ϵ∗ ≃ 0.74, while it
decays faster for noise values ϵ ̸= ϵ∗. The length scale at which it departs from the critical behaviour
defines the correlation length ξ. (Main) Rescaling the distance r with ξ given by Eq. (54) andC(r, ϵ)
with ξa, a = 1, the different correlation functions collapse on a single curve. This implies that the
power-law scaling ξ ∼ |∆ϵ|−ν of Eq. (54) describes well the peaking of the correlation length
around the class transition. For this choice of RHM parameters, ν ≃ 1.78. The exponent a = 1 is
obtained by fitting the critical decay C(r, ϵ∗) ∼ r−a from the data.
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depth L → ∞. Data for RHM parameters v = 32, m = 8, s = 2, L = 10, averaged over 10
diffusion trajectories per 10 starting data x0.
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for t = 1, 2, . . . , T , where βt ∈ (0, 1) are the diffusion coefficients and η are independent standard
Gaussian variables.

By unrolling the recursion, the forward dynamics can be expressed as

X(k)t =
√
αtX(k)0 +

√
1− αtη, η ∼ N (0, 1), (56)

where αt =
∏t
t′=1(1− βt′).

We then reverse the process at time t, following the backward dynamics:

X(k)t−1 =
1√
αt

(
X(k)t + βt∇X(k) log q(X(k)t)

)
+

√
βtz, z ∼ N (0, 1), (57)

where q(X(k)t) is marginal probability density of X(k)t in the forward process and log q(X(k)t)
is the corresponding score function.

Given the forward process, q(X(k)t) is Gaussian and the score function can be computed explicitly:

∇X(k) log q(X(k)t) = − X(k)t
αtσ2

k + 1− αt
. (58)

B.2 MODE RETRIEVAL

Our goal is to determine which Fourier coefficients are retrieved after the reverse process. Specif-
ically, we want to compute the modes k for which the distance between the coefficient obtained at
the end of the backward process X̂(k, t)0 ∼ p(·|X(k)t) with the starting coefficient X(k)0 is small:

|X̂(k, t)0 −X(k)0| ≪ 1. (59)

Thus, we consider the signal-to-noise ratio (SNR) for each mode k

SNR(κ, t) =
κ−a

αt
−1 − 1

, (60)

where κ = ∥k∥.

Define the critical wavevector magnitude κ∗ where SNR(κ∗, t) = 1:

κ∗ =
(
αt

−1 − 1
)−1/a

(61)

Modes with κ < κ∗ (low-frequency modes) have SNR > 1 and can be retrieved, while modes with
κ > κ∗ (high-frequency modes) have SNR > 1 are dominated by the noise in the forward dynamics
and cannot be reconstructed.

B.3 CORRELATION ANALYSIS

We seek to compute the correlation of the changes after reverting the process at time t. Let x(u, t)
denote the field obtained after reverting the diffusion process at time t, at position u. In particular,
x(·, 0) denotes the starting random field. Define the difference field z(u, t) = x(u, t) − x(u, 0).
Since the two fields are Gaussian, also z(·, t) is Gaussian.

We are interested in the following spatial correlation function:

C(r, t) = E[z(u, t)2z(0, t)2], (62)

where r = ∥u∥. Using Wick’s theorem, we have

C(r, t) = E[z(u, t)z(u, t)]E[z(0, t)z(0, t)] + 2E[z(u, t)z(0, t)]2. (63)

The first term is a constant independent of r, while the second term captures the spatial dependence.

To compute E[z(u, t)z(0, t)], we express z(u, t) in terms of its Fourier coefficients Z(k, t). For
modes with κ < κ∗(t), we can assume Z(k, t) ≈ 0. For modes with κ > κ∗(t), X̂(k, t)0 is
approximately independent of X(k)0. Thus, Z(k, t) for κ > κ∗(t) is a Gaussian random variable
with zero mean and variance 2σ2

k.
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Figure 11: Gaussian random field model. (a) Relative modal errors as a function of wave-vector
magnitude |k|. For |k| > κ∗, errors remain large, indicating unsuccessful retrieval of the Fourier
coefficients, while for |k| < κ∗, the errors decrease, signifying successful recovery. (b) Spatial
correlation function C(r, t), showing a power law decay at short distances and a cutoff at long dis-
tances. The correlation length increases with inversion time t. (c) The susceptibility χ(t) increases
monotonically and reaches its maximum at the inversion time t = T .

Thus, the covariance of z is

E[z(u, t)z(0, t)] ≈
∫
∥k∥>κ∗(t)

eik
⊤u 2σ2

kd
dk. (64)

Substituting σ2
k ≍ ∥k∥−a, we have:

E[z(u, t)z(0, t)] ≈
∫
∥k∥>κ∗(t)

eik
⊤u 2∥k∥−addk. (65)

To evaluate the integral, we consider the asymptotic behavior for different regimes of r. At short
distances r ≪ 1/κ∗, the integral over k is dominated by large κ and behaves as E[z(u, t)z(0, t)] ≈
C1 r

a−d, where C1 is a constant. At long distances r ≫ 1/κ∗(t), the lower limit κ∗(t) introduces
an effective cutoff and the covariance decays faster than any power law.

Therefore, the correlation function C(r, t) exhibits algebraic decay with exponent 2(a− d) for r ≪
1/κ∗ and faster than any power law for r ≫ 1/κ∗.

B.4 DISCUSSION

For the Gaussian random field model, the correlation length ξ ∼ 1/κ∗(t) is a monotonically increas-
ing function of the inversion time t, or noise-to-signal ratio (NSR). As a result, the susceptibility χ(t)
– calculated by integrating the correlation function over space – also increases monotonically and
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reaches its maximum at the inversion time t = T , where the NSR = ∞. This behavior contrasts
sharply with the hierarchical data studied here, where a phase transition occurs at a finite time/NSR.
As discussed in the main text, this divergence arises due to the geometry of correlations induced by
the hierarchical tree structure, which is absent in the Gaussian random field model.

B.5 NUMERICAL EXPERIMENTS

In Figure 11 (a), we plot the relative modal errors Ek = σ−1
k |X̂(k, t)0 −X(k)0|. For ∥k∥ > κ∗, the

errors remain O(1), indicating that the coefficients are not retrieved, as predicted by our analysis.
Conversely, for ∥k∥ > κ∗, the errors decay, indicating successful recovery of the coefficients. In
panel (b), we present the correlations C(r, t), which exhibit a power law decay followed by a cutoff.
Notably, the correlation length increases monotonically with the inversion time t. Finally, in panel
(c), we plot the susceptibility χ(t), which reaches its maximum at t = T .

C LANGUAGE DIFFUSION

C.1 SETUP

Here, we briefly describe the particular realization of discrete diffusion used in the MDLM setting,
which is detailed in (Sahoo et al., 2024).

MDLMs are a form of discrete diffusion model tailored for language generation. Unlike autore-
gressive (AR) models, MDLMs generate text by gradually unmasking tokens, allowing for non-
sequential generation. This process is governed by a forward masking and reverse unmasking pro-
cess, parameterized using a Rao-Blackwellized objective to improve performance.

Forward Process: The forward process is defined by progressively noising a clean input sequence
x using a categorical distribution:

q(zt|x) = Cat(zt;αtx+ (1− αt)m), (66)

where zt is the latent variable at time t, representing the noisy version of the input sequence, x is
the original, clean sequence of tokens, Cat(·; ·) is a categorical distribution over the possible states,
αt is the noise schedule function, strictly decreasing from 1 to 0 as t increases, and m is a one-hot
vector representing the special masked token. At each time step, a fraction of the data transitions
into the masked state.

Reverse Process and Rao-Blackwellization: The reverse diffusion process reconstructs the origi-
nal data from noisy observations. It is parameterized using a neural network approximation xθ(zt, t),
which predicts clean tokens from noisy inputs:

pθ(zs|zt) =
{

Cat(zs; zt), if zt ̸= m,

Cat
(
zs;

(1−αs)m+(αs−αt)xθ(zt,t)
1−αt

)
, if zt = m.

(67)

where zs is the latent variable at a prior time step s (with s < t), xθ(zt, t) is a neural network
approximation of x given the noisy observation zt at time t, and pθ(·|·) is the model distribution
approximating the true reverse process.

The training objective is a negative evidence lower bound (NELBO), expressed as:

Ldiffusion =

T∑
i=1

Eq
[
αt(i) − αs(i)

1− αt(i)
log⟨xθ(zt(i)), x⟩

]
, (68)

where T is the number of diffusion steps, αt(i), αs(i) is the noise schedules evaluated at time
steps t(i) and s(i), respectively, Eq is the expectation over the forward process defined by q, and
⟨xθ(zt(i)), x⟩ is the dot product between the neural network output xθ(zt(i)) and the original input
x.
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Continuous-Time Likelihood Bounds: To achieve a tighter approximation to the ELBO, the dis-
crete objective is extended to continuous time as:

L∞NELBO = Eq
∫ 1

0

α′
t

1− αt
log⟨xθ(zt, t), x⟩ dt. (69)

where α′
t is the time derivative of the noise schedule αt. The integral evaluates the objective over

continuous time, providing a tighter bound on the likelihood. This formulation is invariant to the
specific functional form of the noise schedule αt, highlighting the robustness of the MDLM ap-
proach.

Connection to Masked Language Models: MDLMs leverage a masked diffusion approach where
the training objective is a weighted average of classical masked language modeling (MLM) losses:

L∞NELBO = Eq
∫ 1

0

α′
t

1− αt

∑
ℓ

log⟨xℓθ(zt), xℓ⟩ dt, (70)

where xℓ: The ℓ-th token in the original sequence, xℓθ(zt): The neural network’s prediction for
the ℓ-th token given the noisy sequence zt. The summation runs over all tokens in the sequence,
effectively establishing a connection between MDLMs and BERT-style encoders while equipping
them with generative capabilities.

We employ the MDLM proposed in (Sahoo et al., 2024) to conduct the forward-backward ex-
periments described in Section 4, by first drawing random texts of a fixed token length from the
WikiText2 database, masking a fixed fraction of the tokens t, and then performing the backward
diffusion process by using the masked sequence as the initial point for the MDLM model.

C.2 EXAMPLES OF TEXT SAMPLES FOR THE FORWARD-BACKWARD EXPERIMENTS

Below, we provide examples of texts generated by the forward-backward process using MDLM
seeded from WikiText2 examples for different masking fractions. Selected samples were shown
in the main text in Fig. 4 (a). We dub the text results after the forward-backward process as U-turn
samples. As can be seen by the color coding, correlated blocks of words change together along the
denoising process, as described in Section 3, and the semantic meaning of the paragraphs themselves
change along the phase transition. In blue we denote masked tokens that have changed their value
after the backward process, while in green masked tokens that have returned to their initial value.
Red indicates the changes in the final texts. It can be seen that for small masking fractions such as
t/T = 0.1, most of the tokens do not change after masking, while the amount of changed tokens
far exceeds the unchanged ones near the phase transition at t/T = 0.5, hinting at the long-range
correlations emerging.
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D IMAGE DIFFUSION

For image diffusion, we use the publicly available models from Improved Denoising Diffusion
Probabilistic Models (Nichol & Dhariwal, 2021), trained on the ImageNet dataset at resolution
256 × 256. We use the class-unconditional model to ensure a class phase transition at an inter-
mediate diffusion time. To tokenize the images in a semantically meaningful manner, we use the
last-layer embeddings from a CLIP ViT-B32 (Radford et al., 2021) encoder. This procedure crops
the images to the size 224× 224, which get tokenized in 7× 7 patches, each of dimension 32× 32.
The embeddings at the last layer of the CLIP encoder have dimension 768.

In Fig. 12, we provide some examples of images generated with the forward-backward protocol. In
red, we highlight the patches whose CLIP embeddings show a statistically significant change with
respect to the starting image (t = 0). In Fig. 13, we evaluate a convolutional classifier on the gener-
ated images and the starting ones to detect the inversion time corresponding to the class transition.
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t = 0 t = 0.6 T t = 0.7 T

Figure 12: Examples of images generated at different inversion times t. The grid indicates the
tokens represented inside the CLIP vision encoder. For inversion time t > 0, the red patches indicate
the token embeddings that have a variation magnitude larger than a fixed threshold. These patches
of variation appear in domains of growing size.
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Similarity of the logits of x0 and those of x̂0(t)

Figure 13: Class transition in the forward-backward diffusion for ImageNet images. Cosine
similarity between the logits of a convolutional classifier computed on the starting images x0 and on
the generated images x̂0(t) at different inversion times t. The logits are standardized on the statistics
of the ImageNet validation set and the cosine similarities are averaged over 10k starting images. The
convolutional classifier is a ConvNeXt Base architecture (Liu et al., 2022) pre-trained on ImageNet-
1k and achieving 96.9% top-5 generalization accuracy. At short inversion times, the similarity is
close to one, implying that x0 and x̂0(t) are images of the same class. At inversion time around
t ≈ 0.6T , the similarity has a sharp drop, corresponding to the class transition. Correspondingly,
the susceptibility measure in Fig. 6-(b) has a peak.
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