© © N O O A~ W N =

N = o

NeuSym-HLS: Learning-Driven Symbolic Distillation
in High-Level Synthesis of Hardware Accelerators

Chung-Mou Pan, Salma Elmalaki, Yasser Shoukry, Sitao Huang
Department of Electrical Engineering and Computer Science
University of California, Irvine
Irvine, CA 92697
{chungmop, selmalak, yshoukry, sitaoh}@uci.edu

Abstract

Domain-specific hardware accelerators for deep neural network (DNN) inference
have been widely adopted. Traditional DNN compression techniques such as
pruning and quantization help but can fall short when aggressive hardware effi-
ciency is required. We present NeuSym-HLS, a partial symbolic distillation and
high-level hardware synthesis flow to compress and accelerate DNN inference for
edge computing. NeuSym-HLS replaces a portion of the layers of a trained DNN
model with compact analytic expressions obtained via symbolic regression, and
generates efficient hardware accelerators. The resulting hardware accelerator of the
hybrid DNN-symbolic model provides well balanced performance in algorithmic
accuracy, hardware resource, and inference latency. Our evaluation on vision tasks
showed that NeuSym-HLS reduces hardware resource usage, reduces latency, while
maintaining model inference accuracy.

1 Introduction

Deep neural networks (DNNs) have been widely adopted in a wide range of application domains.
Despite their significant accuracy performance, DNN models require intensive computation, and
they often lack explainability, which posts risks for certain applications and systems like real-time
systems and cyber-physical systems. To improve DNN’s computational performance, researchers
have proposed various solutions at both the model architecture level and the computing system
level, including model compression techniques and domain-specific acceleration with application-
specific integrated circuits (ASICs) and field-programmable gate arrays (FPGAs). Model compression
and hardware acceleration techniques often need to be applied together with specialized hardware
architecture and DNN retraining to gain computing efficiency and maintain model accuracy.

Compared to the computational challenges discussed above, the explainability of DNN-based machine
learning models is an even harder problem and is more serious in certain domains that require rigorous
robustness and verification standard. In recent years, researchers have proposed techniques aiming to
create interpretable versions of DNN-based models. Symbolic regression (SR) has become one of
the popular techniques and has been shown to be able to replace some DNN models without much
accuracy degradation.

To address the computation and explainability challenges in DNN-based models, we propose NeuSym-
HLS, a DNN model compression and hardware accelerator generation framework that performs co-
optimization of DNN model compression and high-level synthesis (HLS) based hardware architecture
design space exploration. Our proposed NeuSym-HLS flow features three key components, including
(1) partial symbolic distillation and quantization pass that compresses given DNN models by replacing
computational heavy layers with symbolic expressions; (ii) hardware-aware design space exploration
of symbolic operation selection; and (iii) symbolic-architecture co-design engine which finetune the

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

36
37
38

39

40
41
42
43
44

45
46
47
48
49
50

51
52
53
54
55
56

57
58
59
60

61

62

63
64
65
66

67
68

69

Hardware-Aware
DNN Model Prep Symbolic Distillation

FP32 Training Operator Search Symbolic Layer Accelerator

/O Trace SR-specific HLS Drop-In Synthesis

Extraction
LB LD Evaluation

" . Metrics

e —————]

Figure 1: NeuSym-HLS Overview. FP32 training produces an activation trace that feeds hardware-
aware symbolic regression (SR). The resulting analytic layer is dropped-in and the hybrid design
synthesized. Optional branches (blue dashed boxes/paths) support QAT and post-SR fine-tuning.

symbolic distilled model and generates efficient hardware accelerator design via high-level synthesis
(HLS). NeuSym-HLS significantly reduces hardware resource usage and inference latency of DNN
models accelerators, while delivering near-original inference accuracy.

2 Background and Related Works

Deep learning (DL) inference on hardware accelerators hinges on two orthogonal themes: (i)
hardware-aware design flows that translate high-level specifications (e.g., DNN models and C/C++
implementations) into efficient RTL designs, and (ii) model-compression techniques that shrink model
size without sacrificing accuracy. We review the state-of-the-art techniques in both areas before
introducing our NeuSym-HLS flow.

High-Level Synthesis of Hardware Accelerators. Modern tools such as AMD Vitis HLS let
developers express kernels in C/C++ and refine them with HLS pragmas (e. g. dataflow, pipeline)
to guide HLS compiler to optimize hardware designs and meet tight latency and resource utilization
targets on FPGAs or ASICs [[1]. Dozens of works show that careful loop unrolling, tiling, and
memory partitioning can deliver real-time CNN inference even on low-power resource-constrained

devices [2 3.

Symbolic Regression and Hardware Acceleration. Tsoi et al. [4] introduce FPGA-resident sym-
bolic regression (SR) accelerators that entirely replace dataset-level inference with compact analytic
expressions, achieving sub-us latency on physics workloads. Later, SymbolNet [5]] bridges this idea
with DNNs by by combining neural symbolic regression with adaptive dynamic pruning to achieve
efficient model compression, enabling low-latency inference even for high-dimensional datasets on
FPGA hardware.

Challenges in Scaling Symbolic Regression. Differentiable Genetic Programming (DGP) [6] tackles
the high-dimensional SR problem by relaxing tree structures into continuous representations. Even
s0, the authors note that discovering compact formulas for thousands of features remains expensive,
confirming that “all-layer” SR on deep networks is impractical.

3 NeuSym-HLS Framework

3.1 NeuSym-HLS Framework Overview

Figure [T]illustrates the end-to-end NeuSym-HLS flow, starting from a floating-point PyTorch model
and ending with post-synthesis metrics. Solid arrows represent the default path; dashed arrows
represent optional branches such as quantization-aware training (QAT) and end-to-end fine-tuning of
the neural-symbolic hybrid network.

Hardware-Aware Symbolic Regression (SR). For each of the N output channels fit an analytic
function

ﬁj = fj (h) with fj S SR(O, Cmax) s
where O is the operator set (e.g., {+, —, , sin, exp}) and C,.x a complexity budget.

70
71
72

BRI

82

83
84
85
86
87
88
89
90
91

92

93

94
95
96
97
98
99

Table 1: Example snapshot of symbolic regression Hall of Fame produced by PySR.

Complexity Loss Equation
1 1926.54 0.7614
3 04929 1 -1
5 04835 (w1 -x1)-0.9978

6 1.10x 107" sin(zo) + 3
13 9.88x 107" zf+sin(zo+cos((z1—21)—%))

Table 2: Evaluating Generated Accelerators on the MNIST Task

Model ID Acc (%) Latency LUT (%) FF (%) DSP (%)

BL-MLP 964 106k 21k (41%) 44k (41%) 976 (443%)
SR-MLP 944 110k 9499 (17%) 6,833 (6%) 96 (43%)
Q-MLP 963 158 1347(3%) 1955 (2%) 0(0%)

Q-SR-MLP 9538 75 982 (2%) 1,645 (2%) 0 (0%)

BL-LeNet 984 130k 602k (1,132%) 435k (408%) 2,769 (1,258%)
SR-LeNet 99.0 130k 395k (743%) 256k (241%) 2,194 (997%)
Q-LeNet 977 8810 7,173 (13%) 10k (10%) 0 (0%)
Q-SR-LeNet 962 35k 3,146 (6%) 3.576 (3%) 0 (0%)

SR Paper|[4] 85.3 13! 7,592 (14%) 6,424 (6%) 160 (73%)

The equation with the lowest validation loss under the complexity threshold (e.g., Entry #13) is
selected for deployment. This expression is translated into synthesizable HLS C code for hardware
integration, as shown in Listing

float fc3_symbolic(float x@, float x1) {

#pragma HLS INLINE

float terml = x1 * x1;

float term2 = sinf(x@ + cosf((x1 - x1) - 1.5707971f));
return terml + term2;

Listing 1: Auto-generated HLS C implementation of Entry #13

3.2 Hardware-Aware Symbolic Regression in NeuSym-HLS

NeuSym-HLS builds on PySR [7], an open-source symbolic regression library for discovering
human-interpretable equations through a high-performance Genetic Programming approach with
its unique evolve—simplify—optimize loop algorithm, but enhances its fitness metric to account for
hardware-aware trade-offs, including inference latency and FPGA resource utilization. This section
details the two key design dimensions that must be fixed before large-scale symbolic regression:
Search-space definition: selecting unary/binary operator sets that offer the best balance between
interpretability and synthesis overhead (Section [A). Distillation placement — deciding which DNN
layers to be replaced by symbolic expressions to optimize synthesis metrics while preserving accuracy
(Section [B).

4 Evaluation Results and Analysis

Our evaluation setup is explained in Appendix [C|

TABLE [2] and TABLE [3] summarized all the evaluation results on MNIST task and SVHN task,
respectively. According to the evaluation results shown in these two tables, NeuSym-HLS generated
compressed models and accelerators (names start with “SR-" or “Q-") achieve more performance and
resource efficient hardware acceleration compared to baseline implementations, while maintaining
high accuracy. When compared against state-of-the-art works, NeuSym-HLS achieves much higher
accuracy while using much less resource, and having similar levels of latency.

100
101
102
103
104

106

107
108
109
110
111
112
113
114

115

116
117
118
119
120
121
122

Table 3: Evaluating Generated Accelerators on the SVHN Task

Model ID Acc (%) Latency LUT (%) FF (%) DSP (%)

BL-MLP 941 12.6m 4.665(8%) 3,182 (2%) 15 (6%)
SR-1L-SCE 97.7 184m 5598 (10%) 3.316(3%) 16 (%)
SR-1L-SRL 976 184m 2969 (5%) 1,693 (1%) 7 (3%)
SR-1L-POL 982 184m 2894 (5%) 1,630(1%) 7 (3%)
SR-2L-SCE 903 12.6m 7,803 (14%) 4,662 (4%) 23 (10%)
SR-2L-SRL 91.8 12.6m 4,089 (7%) 2.555(2%) 7 (3%)
SR-2L-POL 907 12.6m 3,627 (6%) 2353 (2%) 5(2%)

Q-MLP 939 8737 48,357 (90%) 32,367 (30%) 0 (0%)
Q-SR-IL-SCE 917 65,550 45,682 (86%) 14,287 (13%) 0 (0%)
Q-SR-IL-SRL 939 65,550 46,289 (87%) 14,368 (13%) 0 (0%)
Q-SR-IL-POL 909 65550 45,661 (86%) 14,291 (13%) 0 (0%)

SymbolNet [5] 94 520" 27,407 (52%) 16,286 (15%) 77 (35%)

Operator—Set Search: Identifying Key Unary Functions. We explore the design space of operator
selection for symbolic regression (SR) to identify the most efficient combinations of operators. As
discussed in Section [A] we defined non-trig and trig-enriched sets of operators. Fig. [3]and Fig. [
present the losses (the lower the better) of varies combinations of SR operators. According to the
figures, trig-enriched unary operator sets tend to perform better than the non-trig operator sets. From
Fig.[] We can also observe that better performing non-trig operator sets consistently include “ReLu”
operator.

Impact of Operator Selection on Hardware Accelerators. We selected various representative
combinations of SR operators, and use them to approximate the entire DNN model, and evaluate
the performance of generated hardware accelerators. Fig. [2] shows the evaluation results. When
running symbolic regression on the whole DNN model, the hardware usage decreases significantly,
however, the accuracy also drops significantly to 72%. This supports our motivation of doing partial
symbolic distillation instead of full model symbolic approximation. Besides, different combinations
of operators lead to different results of accuracy, hardware resource usage, and latency, therefore, the
operator selection search in NeuSym-HLS is essential to generate efficient accelerator.

10000000

mm— Accuracy
m LUT
— FF
mmmm DSP
=@=Latency

1000000

=)
3

100000

%
S

10000

-y
S

1000

S
S

100

Latency (clock cycles)

%)
S

Accuracy and Resource (normalized)

= B om

floor-sin square-relu round-ceil abs-relu-cos baseline

=}

Figure 2: Comparing Symbolic Regression Operator Combinations on the Area and the Performance
of Hardware Accelerators for LeNet (MNIST Task).

5 Conclusion

NeuSym-HLS bridges the gap between the efficiency of aggressive quantization and the interpretabil-
ity of full-network symbolic regression. By selectively distilling the final layer(s) of a neural network
into compact symbolic expressions, leveraging quantization-aware training and other standard com-
pression techniques, our results demonstrate that symbolic distillation is especially advantageous
for low-dimensional and high-latency output layers. Meanwhile, quantization remains an effective
tool for compressing the remaining network, underscoring the complementary strengths of both
approaches for resource-efficient and interpretable DNN deployment.

'Reported latency from [4] and [3]] reflects only HLS kernel latency using hls4ml, and does not include
end-to-end design latency; actual deployment latency may be higher.

123

124
125

126
127
128

129
130
131

132
133
134

135
136
137

138
139

140
141

142
143

144
145
146
147

148
149

References

(1]

(2]

3

—

(4]

(5

—

[6

—_

(71

(8

—_—

[9

—

(10]

Xilinx Inc. Vitis high-level synthesis user guide, 2022. https://www.xilinx.com/support/documents/
sw_manuals/xilinx2022_2/ugl1399-vitis-hls.pdf.

Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. Optimizing fpga-based
accelerator design for deep convolutional neural networks. In Proceedings of the 2015 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, pages 161-170, 2015.

Stylianos I Venieris and Christos-Savvas Bouganis. fpgaconvnet: A framework for mapping convolutional
neural networks on fpgas. In 2016 IEEE 24th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), pages 40-47, 2016.

Ho Fung Tsoi, Adrian Alan Pol, Vladimir Loncar, Ekaterina Govorkova, Miles Cranmer, Sridhara Dasu,
Peter Elmer, Philip Harris, Isobel Ojalvo, and Maurizio Pierini. Symbolic regression on fpgas for fast
machine learning inference. In EPJ Web of Conferences, volume 295, page 09036, 2024.

Ho Fung Tsoi, Vladimir Loncar, Sridhara Dasu, and Philip Harris. SymbolNet: Neural Symbolic Re-
gression with Adaptive Dynamic Pruning for Compression. Machine Learning: Science and Technology,
6(1):015021, 2025.

Peng Zeng, Xiaotian Song, Andrew Lensen, Yuwei Ou, Yanan Sun, Mengjie Zhang, and Jiancheng Lv.
Differentiable genetic programming for high-dimensional symbolic regression, 2023.

Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregression.jl. arXiv
preprint arXiv:2305.01582, 2023.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In Proceedings
of the Fourteenth International Conference on Artificial Intelligence and Statistics, pages 315-323, 2011.

Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott, Philip Leong, Magnus Jahre,
and Kees Vissers. Finn: A framework for fast, scalable binarized neural network inference. In Proceedings
of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA 17, pages
65-74. ACM, 2017.

Marco Virgolin and Solon P. Pissis. Symbolic regression is np-hard. arXiv preprint arXiv:2207.01018,
2022.

https://www.xilinx.com/support/documents/sw_manuals/xilinx2022_2/ug1399-vitis-hls.pdf
https://www.xilinx.com/support/documents/sw_manuals/xilinx2022_2/ug1399-vitis-hls.pdf
https://www.xilinx.com/support/documents/sw_manuals/xilinx2022_2/ug1399-vitis-hls.pdf

150 Appendices

Unary Operators

Trig-Enriched Op. Combinations

Non-Trig Op. Combinations

squidre,
abs, Cos
neg, cell: €os
square, aur] " cos
negq, relu; cos
net, abs! cos
neg, cube’ cos
Sqrt; ¢os

AT}

square, sin, €os
ceil: 3in; Cos

neg, S uare, i

oes
20055
i

08!
S55A0RS55

s u%tr)g' ng
! ‘Frour

JrmYNaal
Ey

square; n$r’,
neg, abs;
g, rell; sin

Top 75 Equations by Loss and Complexity

0.2

04 0.6 0.8 10
Loss le—11

neg.

squart
neg, abs,

rel

n
rou

Fy

NABNNS S5 S0

Eea2399502:

squr}aergﬁ H 1";%
nrée?g?gag
squa e
S it

oor

\ réund, el]
0.

0.1 0.2 0.3 0.4 0.5

Figure 4: Trig-enriched (top) vs. Non-trig (bottom) operator combinations.

151

152
153
154

156
157

158

159

160

161
162

163
164
165
166
167
168

169
170

171
172

173
174

175

176

177
178

179
180
181

182
183
184
185
186
187

188

189
190
191

192
193
194
195

A Operator-Set Study

A preliminary sweep determined which unary functions should enter the search space. To system-
atically explore the symbolic design space before scaling to full DNN regression, we constructed
a synthetic 2 — 1 regression task (x € R? + y) whose ground-truth function blends polynomial
and sinusoidal terms. This task serves as a proxy to mirror the kinds of nonlinearities seen in neural
networks, allowing us to evaluate how different operator combinations in PYSR navigate the trade-off
between interpretability and accuracy. Two broad categories of unary operators were explored:

1. Non-trig: {neg, square, cube, abs, sqrt, relu, round, floor, ceil, sign}

2. Trig-enriched: all of the non-trig plus {sin, cos}

We swept through the space of all valid 3-element and 2-element subsets of candidate unary operators

(.e., ("3}—') + (IJ;‘)), where F is the operator pool). For each subset, we trained a PYSRREGRESSOR
using the fixed binary operator set {+, -, *}, with 40 iterations and 10 independent populations.

The trig-enriched subsets consistently achieved validation losses around Lo ~ 10~ 11, while the
best-performing non-trig configuration (square + relu) stalled at approximately £o ~ 10~!. Hence,
even under identical tree-depth and complexity budgets, incorporating sin/cos closes a ~5-order-of-
magnitude accuracy gap. Within the non-trig family, sets that retained relu always outperformed
those that did not, which aligns with prior findings on ReLU’s effectiveness in deep neural network
training [8].

Guided by these findings, we designed three sets of operators to be used in the NeuSym-HLS
framework, to meet various model compression and accelerator optimization needs.

1. SCE (Sin—Cos-Exp): {+, —, *, sin, cos, exp} — highest expressiveness; used when accuracy
is paramount.

2. SRL (Square-ReLu): {4+, —, *, square, relu} — no trig; captures piece-wise linearity with
good hardware efficiency.

3. POL (Polynomial): {+, —, %, /} — pure arithmetic baseline.

B Distillation Strategy

Symbolic regression is appealing for interpretability, yet GP-based methods scale poorly to high-
dimensional data because their stochastic, discrete tree search lacks gradient guidance [6]].

Our LeNet study confirms this: turning the whole network into one symbolic expression either failed
to converge or produced unwieldy formulas, dropping accuracy from 98% to ~ 70%. Full-network
symbolic distillation is hence impractical for high-dimensional vision data.

To mitigate this, we adopt a targeted distillation strategy. Rather than distilling the entire network,
we identify specific layers or submodules where symbolic expressions can be injected with min-
imal impact on end-to-end accuracy. Criteria for selection include computational intensity and
input/output dimensionality of the layer (low-dimensional layers preferred). We therefore tested
symbolic replacement of the final one or two dense layers, with the detailed accuracy—resource
trade-off reported in TABLE 3]

C Evaluation Setup

DNN Models and Tasks. We evaluate our proposed NeuSym-HLS framework on three DNNs across
two tasks, as shown in TABLE @] These DNNs vary layer types, number of layers, and number of
neurons in the layers.

Model Training and Quantization. All DNN models are first trained with standard cross-entropy
loss for 10 epochs (Adam, learning rate 1le—3, batch size 64). In some evaluations, the model goes
through quantization-aware training (QAT) using FINN [9] as well as fine-tuning, where each network
is fine-tuned for 5 epochs using 2-bit activations and weights.

196
197
198
199
200

201
202
203
204

206
207
208
209
210

211

212

213

214
215

216
217
218

219

220

221

222
223

224
225
226

227
228

229
230

231
232

234

Table 4: Neural Network Benchmarks Used in This Study

Task & Model DNN Architecture Details (# of layers and neurons)
MNIST MLP Input: 784 — 128 — 64 — 10 output classes

MNIST LeNet Two conv-pool blocks (6 x 5 x 5 and 16 x 5 x 5 kernels, 2 X 2 max-pool),
followed by 120 x 5 x 5 conv and one FC-10 output layer

SVHN MLP Input: 3072 — 512 — 128 — 1 (binary; digits “1” vs “7”)

Symbolic Regression Engine. We leverage an open-source tool, PySR [[7]], to build the symbolic
regression engine inside NeuSym-HLS. We use PySR v1.5.(ﬂ where search parameters niterations
and populations are set to 40 and 10 respectively. NeuSym-HLS framework explores the non-linear
operator selection space on top of a combination of POLY, SCE, and SRL operator sets. The default
£5 regression loss on DNN layer logits is used.

Hardware Accelerator Prototyping Platform. We use an AMD XC7Z020 FPGA (Zynq-7000 series)
as our hardware accelerator prototyping and evaluation platform. We use Vitis HLS (v2022.2) [1]]
to generate hardware designs, and target 100 MHz clock rate in the synthesis (post-place and route
timing met in all designs).

Evaluation Metrics. We evaluate the effectiveness of NeuSym-HLS with three metrics, (i) inference
accuracy (%) of compressed DNN model on the full validation set; (ii) inference latency (in clock
cycles and in microseconds at 100 MHz) of generated hardware accelerator; (iii) resource usage of
generated hardware accelerator on FPGA, including look-up table (LUT), flip-flop (FF), and DSP
counts, expressed both in absolute numbers and as utilization percentage of the targeting FPGA
device capacity.

We present end-to-end hardware synthesis results that answer three experimental questions:

1. Operator relevance. Which unary operators matter most for symbolic regression on image
data?

2. Pure-SR feasibility. How well can a fully symbolic model approximate MNIST without
any MACs?

3. Hybrid efficiency. When only the cost-critical layers of a DNN are replaced by symbolic
expressions, how do accuracy, latency, and FPGA utilization compare with floating-point
and quantized baselines?

To answer these, the section proceeds in five steps:

* Operator-set search. A 220-way grid sweep identifies square+relu as the most accurate
non-trigonometric set and confirms the importance of keeping relu.

* End-to-end SR on MNIST. We train a pure symbolic regressor on the full dataset and report
accuracy and resource cost against BL-MLP and Q-MLP baselines.

* LeNet-5 hybrid on MNIST. Replacing only the final fully connected layer with a symbolic
expression (NeuSym-HLS) cuts LUT, FF, and DSP usage by up to 3.3 at iso-accuracy and
reduces latency by 1.5x.

* Fully-connected MLP. The same partial-distillation recipe is applied to a three-layer MLP,
showing that gains generalize beyond convolutional architectures.

* Same experiments on another SVHN Dataset. Expanded SVHN experiments which include
two-layer replacement and alternative operator sets.

Model ID Naming Scheme: BL = baseline (floating-point, no symbolic or quantization); SR =
symbolic regression (last layer(s) replaced); Q = quantized (QAT, 2-bit weights, no symbolic); Q-SR =
quantized + symbolic regression; 1L/2L = number of layers replaced; SCE, SRL, POL = operator sets

(see Sec.[A).

"https://github.com/MilesCranmer/PySR

235

236
237

239
240
241
242
243

244

245
246
247

248
249
250
251
252

253
254
255
256
257

258

259

261
262

D NeuSym-HLS on MNIST: A Generality Study

To evaluate the effectiveness and generality of our NeuSym-HLS symbolic distillation approach, we
apply NeuSym-HLS to a fully connected multilayer perceptron (MLP) and a LeNet model trained on
MNIST task. Fig. [5]shows the evaluation results for the MLP model.

1000 1000000
e LUT

B U 100000
5 mmmm FF
S 100 10000
g DSP
& 1000 .
é =@ Latency S
g 10 100 &
= <
b 0 =
2 Em
o
2 [] 1

BL-MLP SR-MLP Q-MLP Q-SR-MLP
Figure 5: Hardware Accelerators for MLP Model on the MNIST Task.

The Q—-SR-MLP version delivers the most aggressive compression while still preserving accuracy.
Compared to SR-MLP, the Q-SR-MLP variant reduces latency by more than an order of magnitude and
lowers LUT/FF usage to under 1% of the original baseline. These results confirm that NeuSym-HLS
works effectively: symbolic final-layer replacement consistently reduces hardware cost, when applied
to either convolutional models or MLPs.

D.1 SVHN Binary Classifier: Depth and Operator-Set Exploration

We now evaluate NeuSym-HLS on the SVHN dataset using a compact binary classifier architecture.
Our analysis explores two axes: (1) the depth of symbolic replacement—whether 1 or 2 layers are
replaced—and (2) the symbolic operator family used.

2 100
PR "
E 14 1L Accuracy 9% é
QD
é 1‘? =@=2L Accuracy o4 g
E 0.8 92 g
%o 88

0‘(2) IL 2L %6
SCE SRL POL

Figure 6: 1-layer vs. 2-layer Symbolic Distillation, in Area and Accuracy.
Fig. [6] shows the evaluation results. Among various versions, SR-1L-POL achieves the highest
accuracy (98.2%) while maintaining the lowest LUT usage (5%). SR-1L-SRL trails slightly at 97.6%
but with nearly identical hardware usage, whereas SR-1L-SCE lags in both accuracy and LUT cost.
This confirms that operator set selection has a tangible impact on hardware efficiency. SCE incurs the
highest DSP cost at 6.8%, while SRL and POL remain below 3%.

We next examine the effect of replacing two layers instead of one. Evaluation results show that
2-layer symbolic models consistently degrade in accuracy across all operator families. For instance,
accuracy drops by 7.4 points for SCE and 6.9 points for POL compared to their 1-layer counterparts.
Resource costs also increase, confirming that aggressive symbolic replacement compromises both
accuracy and efficiency.

Finally, TABLE [3] presents detailed synthesis metrics for all designs. NeuSym-HLS achieves better
accuracy than both the quantized baseline (Q-MLP) and prior SR accelerators (e.g., SR-Paper [3])
while reducing LUT and DSP usage by over 10x in some configurations. Notably, Q—SR-1L-POL
matches the performance of SR-1L-POL but executes in just 65k cycles, enabling low-latency
inference without multipliers.

263
264

265

266

267
268
269
270
271
272
273
274
275
276
277
278
279

280

281
282
283
284

285

286
287
288
289
290
291
292
293

294

296
297
298
299
300

These results confirm that symbolic regression is most effective when applied selectively and targeting
a single output layer using low-complexity, hardware-friendly operators.

E Discussion and Future Work

E.1 Resource-Latency Trade-offs

Our results demonstrate that even replacing a single fully connected layer with a symbolic expression
preserves accuracy within 1% of the floating-point baseline while reducing LUT and flip-flop usage
by an order of magnitude and eliminating almost all DSP requirements (Tables 2] [3). Quantization
excels at raw speed, achieving up to 675 x latency reductions on MNIST, but can inflate logic usage
on larger inputs (e.g., 90% LUT for SVHN). On SVHN, symbolic regression alone can offer the best
Pareto trade-off: SR-1L-POL achieves 98.2% accuracy with only 5% LUT and 7% DSP, surpassing
both baseline and quantized variants. Combining QAT with symbolic regression (Q-SR) is most
beneficial for small networks (e.g., MNIST MLP), but provides diminishing returns for deeper
architectures due to accumulator overhead. For example, on MNIST, quantized symbolic models
achieve up to 98% LUT savings relative to the baseline with less than 1% drop in accuracy. On
SVHN, replacing one layer with symbolic expressions delivers strong accuracy-resource trade-offs,
while two-layer replacements begin to significantly degrade accuracy, highlighting a practical limit to
symbolic compression depth.

E.2 Operator Set and Depth Ablations

Our operator-set ablation shows that the polynomial-only (POL) search yields the best balance of
accuracy and DSP cost. Depth ablation confirms that symbolic regression is most effective for the last,
low-dimensional layers; replacing multiple layers can halve logic again, but with up to 8 percentage
points accuracy drop, indicating diminishing returns for high-dimensional layers.

E.3 Current Limitations

Some practical limitations remain. Currently, symbolic partitioning and formula integration require
manual intervention (copy-pasting PySR outputs, editing typecasts), which can be streamlined. Also,
symbolic regression search can be computationally intensive, particularly as the number of candidate
operators or target layers and dimensions increase. This is expected, as the search space for equations
grows combinatorially with the number of available parameters. Recent work formally proves that
symbolic regression is an NP-hard problem [10], confirming the intractability of exact solutions in
general cases. Finally, while symbolic methods are effective for fully connected layers, direct support
for convolutional and high-dimensional layers remains an open challenge.

E.4 Future Work

To further improve applicability and automation, future directions include: Automated partition
selection: Heuristics or learning-based methods to choose layers that yield optimal trade-offs. CNN
layer support: Extending symbolic regression to convolutional or depth-wise layers, possibly by
constraining expression growth. Operator Complexity Study: An algorithm to learn hardware-
specific cost models (latency and resource) for each operator type, and adaptively promote or demote
operators during training so that the final expression set simultaneously minimizes resource cost and
maintains accuracy performance.

10

	Introduction
	Background and Related Works
	NeuSym-HLS Framework
	NeuSym-HLS Framework Overview
	Hardware-Aware Symbolic Regression in NeuSym-HLS

	Evaluation Results and Analysis
	Conclusion
	Operator-Set Study
	Distillation Strategy
	Evaluation Setup
	NeuSym-HLS on MNIST: A Generality Study
	SVHN Binary Classifier: Depth and Operator-Set Exploration

	Discussion and Future Work
	Resource–Latency Trade-offs
	Operator Set and Depth Ablations
	Current Limitations
	Future Work

