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Abstract

In data-to-text (D2T) generation, training on001
in-domain data leads to overfitting to the002
data representation and repeating training data003
noise. We examine how to avoid finetun-004
ing the pretrained language models (PLMs)005
on D2T generation datasets while still taking006
advantage of surface realization capabilities007
of PLMs. Inspired by pipeline approaches,008
we propose to generate text by rephrasing009
single-item templates using a sequence of010
modules trained on general-domain text-based011
operations—ordering, aggregation, and para-012
graph compression. We train PLMs for per-013
forming these operations on a synthetic cor-014
pus WIKIFLUENT which we build from En-015
glish Wikipedia. Our experiments on two ma-016
jor triple-to-text datasets—WebNLG and E2E—017
show that our approach enables D2T generation018
from RDF triples in zero-shot settings.1019

1 Introduction020

The aim of data-to-text (D2T) generation is to pro-021

duce natural language descriptions of structured022

data (Gatt and Krahmer, 2018; Reiter and Dale,023

1997). Although pipelines of rule-based D2T gener-024

ation modules are still used in practice (Dale, 2020),025

end-to-end approaches based on PLMs recently026

showed superior benchmark performance (Ke et al.,027

2021; Chen et al., 2020a; Ferreira et al., 2020; Kale028

and Rastogi, 2020b; Ribeiro et al., 2020), surpass-029

ing pipeline systems (Ferreira et al., 2019) in both030

automatic and human evaluation metrics.031

Finetuning PLMs on human-written references032

is widely accepted as a standard approach for adapt-033

ing PLMs to the D2T generation objective and034

achieving good performance on a given benchmark035

(Agarwal et al., 2021; Ke et al., 2021). Never-036

theless, this approach brings issues: Most obvi-037

ously, finetuning the model for the domain-specific038

1The anonymized version of our code and data
is available at https://anonymous.4open.science/r/
zeroshot-d2t-pipeline/.
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Figure 1: A scheme of our pipeline for zero-shot data-
to-text generation from RDF triples: (1) ordering, (2)
aggregation, (3) paragraph compression. Individual
pipeline modules are trained on a large general-domain
text corpus and operate over text in natural language.
In-domain knowledge is included only in the simple
hand-crafted templates for each predicate.

data distribution leads to overfitting on the partic- 039

ular benchmark, decreasing performance on out- 040

of-distribution data (Laha et al., 2020). Moreover, 041

collecting a large set of references for a particular 042

domain is costly and time-consuming, as the data 043

are usually collected using crowdsourcing (Dušek 044

et al., 2020). Few-shot approaches are an alterna- 045

tive, requring only several tens or hundreds of anno- 046

tated examples (Chen et al., 2020c; Ke et al., 2021; 047

Su et al., 2021a). However, robustness of these 048

approaches is questionable—selecting a represen- 049

tative set of examples which would improve per- 050

formance is difficult (Chang et al., 2021a), and the 051

limited sample is often noisy, increasing the chance 052

of hallucinations and omissions (Dušek et al., 2019; 053

Harkous et al., 2020; Rebuffel et al., 2021). 054

In this paper, we provide an alternative to this 055

traditional paradigm by formulating the D2T gen- 056

eration from RDF triples as a sequence of general- 057

domain operations over text in natural language. 058

We start by transforming individual triples to text 059

using trivial templates, which we subsequently or- 060
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der, aggregate, and compress on the paragraph level061

to produce the resulting description of the data.062

All the pipeline modules operate over natural lan-063

guage text and are built upon PLMs trained on064

our WIKIFLUENT corpus. WIKIFLUENT contains065

934k examples of first paragraphs from the English066

Wikipedia, each supplied with a synthesized set of067

simple template-like sentences conveying the same068

meaning. Our approach allows generating natural069

language descriptions from triples with a minimum070

amount of domain-specific rules or knowledge and071

without using training data from the D2T datasets.072

We show that our approach can yield large improve-073

ments upon simple baselines and match older super-074

vised systems in terms of fluency, while bringing075

potential for further improvements and advantages076

with respect to controllability.077

Our contributions are the following:078

(1) We propose an alternative D2T generation ap-079

proach based on general-domain text-to-text080

operations (ordering, aggregation, and para-081

graph compression).082

(2) We introduce a synthetic WIKIFLUENT cor-083

pus containing 934k sentences based on En-084

glish Wikipedia, providing training data for085

the operations in (1).086

(3) We apply our system on two D2T datasets and087

evaluate its performance both automatically088

and manually, including the contribution of089

individual pipeline modules.090

(4) We release our code, data, pretrained models,091

and system outputs to ease future research.092

2 Related Work093

D2T Generation with PLMs Large neural lan-094

guage models pretrained on self-supervised tasks095

(Lewis et al., 2020; Liu et al., 2019; Devlin et al.,096

2019) have recently gained a lot of traction in D2T097

generation research (Ferreira et al., 2020). Fol-098

lowing Chen et al. (2020c), other works adopt099

PLMs for few-shot D2T generation (Chang et al.,100

2021b; Su et al., 2021a). Kale and Rastogi (2020b)101

and Ribeiro et al. (2020) showed that PLMs using102

linearized representations of data can outperform103

graph neural networks on graph-to-text datasets,104

recently surpassed again by graph-based models105

(Ke et al., 2021; Chen et al., 2020a). Although106

the models make use of general-domain pretrain-107

ing tasks, all of them are eventually finetuned on108

domain-specific data.109

Templates in Data-Driven D2T Generation Us- 110

ing simple handcrafted templates for individual 111

keys or predicates is an efficient way of introducing 112

domain knowledge while preventing text-to-text 113

models from overfitting to a specific data format 114

(Heidari et al., 2021; Kale and Rastogi, 2020a; Kas- 115

ner and Dušek, 2020). Transforming individual 116

triples to text is also used in Laha et al. (2020) 117

whose work is the most similar to ours. They also 118

build a three-step pipeline for zero-shot D2T gener- 119

ation, but they use handcrafted rules for producing 120

the output text and do not address content planning. 121

Content Planning in D2T Generation Content 122

planning, i.e. ordering input facts and aggregat- 123

ing them into individual sentences, is a traditional 124

part of the D2T generation pipeline (Ferreira et al., 125

2019; Gatt and Krahmer, 2018; Reiter and Dale, 126

1997). As previously demonstrated, using a con- 127

tent plan in neural D2T generation has important 128

impact on the overall text quality (Moryossef et al., 129

2019a,b; Puduppully et al., 2019; Zhao et al., 2020; 130

Trisedya et al., 2020). Recently, Su et al. (2021b) 131

have shown that using a content plan leads to im- 132

proved quality of PLM outputs. All the aforemen- 133

tioned models plan directly using predicates or keys 134

in the D2T datasets representing the correspond- 135

ing data item. Unlike these works, our planner is 136

trained on ordering sentences in natural language. 137

Sentence Ordering Sentence ordering is the task 138

of organizing a set of natural language sentences 139

to increase the coherence of a text (Barzilay et al., 140

2001; Lapata, 2003). Several neural methods for 141

this task were proposed, using either interactions 142

between pairs of sentences (Chen et al., 2016; Li 143

and Jurafsky, 2017), global interactions (Gong 144

et al., 2016; Wang and Wan, 2019), or combination 145

of both (Cui et al., 2020). We base our ordering 146

module (§5.1) on the recent work of Calizzano et al. 147

(2021), who use a pointer network (Wang and Wan, 148

2019; Vinyals et al., 2015) on top of a PLM. 149

Fact Aggregation The compact nature of the tar- 150

get text description results in aggregating multiple 151

facts in a single sentence. Previous works (Wise- 152

man et al., 2018; Shao et al., 2019; Shen et al., 153

2020; Xu et al., 2021) capture the segments which 154

correspond to individual parts of the input as latent 155

variables. Unlike these works, we adopt a simpler 156

scenario using an already ordered sequence of facts, 157

in which we selectively insert delimiters marking 158

sentence boundaries. 159
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instrument
<subj> plays <obj>.

WebNLG

E2E familyFriendly: yes

eatType: <X>

<subj> comes from <obj>.

<rest>

<rest> is a <X>.

<rest> is family-friendly.

<subj>

<obj>

countryOrigin
<obj>

area: <X> <rest> is in the <X>.

Figure 2: Examples of templates for the predicates in
the WebNLG and E2E datasets.

Paragraph Compression We introduce para-160

graph compression as a new task in our D2T gener-161

ation pipeline. As the last step in the pipeline, it is162

closely related to linguistic realisation, however—163

since we already work with natural language in164

this step—the focus of our task is on sentence fu-165

sion, rephrasing, and coreference resolution. Un-166

like text summarization or simplification (Zhang167

et al., 2020; Jiang et al., 2020), we aim to convey168

the complete semantics of the text without omit-169

ting any facts. In contrast to sentence fusion (Geva170

et al., 2019; Barzilay and McKeown, 2005) or sen-171

tence compression (Filippova and Altun, 2013),172

we operate in the context of multiple sentences173

in a paragraph. The task is the central focus of174

our WIKIFLUENT corpus (§4), which we synthe-175

size using a model for the reverse task, split-and-176

rephrase, i.e. splitting a complex sentence into sim-177

pler ones while preserving semantics (Botha et al.,178

2018; Narayan et al., 2017).179

3 Method180

We first give an overview of our neural D2T gener-181

ation pipeline (§3.1). Next, we describe the individ-182

ual steps, starting by applying simple templates to183

transform data to text (§3.2), followed by individ-184

ual modules for ordering (§3.3), aggregation (§3.4),185

and paragraph compression (§3.5).186

3.1 Method Overview187

We focus on the task of producing a natural lan-188

guage description Y for a set of n RDF triples189

X “ tx1, . . . , xnu. Each triple xi “ tsi, pi, oiu190

consists of subject si, predicate pi, and object oi.191

We assume that we can transform each triple xi to192

a fact fi (where fi is a sentence in natural language193

describing xi) by filling the single-triple template194

tpi P T for the predicate pi: tpipsi, oiq Ñ fi.195

We proceed as follows – given an input X , we:196

(1) apply the templates to transform the set of 197

triples X to the set of facts: F “ T pXq “ 198

tf1, . . . , fnu (§3.2), 199

(2) sort the facts F using an ordering module 200

which outputs an ordered sequence of facts 201

Fo “ OpF q “ tfo1 , . . . , fonu (§3.3), 202

(3) obtain sentence delimiters by inputting the 203

ordered facts Fo into an aggregation module 204

ApFoq “ tδo1 , δo2 , . . . , δon´1u; δi P t0, 1u, 205

where δoi “ 1 indicates the presence of a 206

delimiter, i.e., that the sentences with facts foi 207

and foi`1 should not be fused (§3.4), 208

(4) input the ordered sequence with delimiters 209

Fa “ tfo1 , δo1 , fo2 , . . . , δon´1 , fonu into the 210

paragraph compression module which gener- 211

ates the final description P pFaq “ Y (§3.5). 212

3.2 Templates 213

The first step in our pipeline involves transforming 214

each of the input triples X into a set of facts F in 215

natural language by using a template tpi for each 216

predicate pi. We need at least one template for 217

each predicate. Typically, the template will include 218

placeholders which are filled with si and oi. 219

The transformation serves two purposes: (a) 220

preparing the data for the subsequent text-to-text 221

operations, (b) introducing in-domain knowledge 222

about the semantics of individual predicates. Note 223

that the filled templates are allowed to contain mi- 224

nor disfluencies since the text will be rephrased in 225

the final step of the pipeline. See §5.5 for our ap- 226

proach to gathering the templates and Figure 2 for 227

examples of the templates we use in our datasets. 228

We acknowledge that this step may be a bottle- 229

neck on datasets with an unconstrained (or very 230

large) set of predicates, which is why we also dis- 231

cuss possibilities for automating this step in §7. 232

3.3 Ordering 233

We assume that the default order of triples X (and 234

the respective facts F ) is random. To maximize the 235

coherency of the resulting description, we apply an 236

ordering model O to get an ordered sequence of 237

facts: Fo “ tfo1 , . . . , fonu. The coherence of the 238

final text will also depend on the paragraph com- 239

pression step, but grouping related facts together 240

(e.g. facts mentioning birth date and birth place) 241

helps the paragraph compression model to focus 242

only on fusing and rephrasing the neighboring sen- 243

tences. We describe our ordering model in §5.1. 244
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3.4 Aggregation245

The aggregation model takes a sequence of ordered246

facts Fo as input and produces a sequence of sen-247

tence delimiters ApFoq “ tδo1 , δo2 , . . . , δon´1u;248

δi P t0, 1u. The output δi “ 1 means that the249

neighboring facts are should be mentioned sepa-250

rately, serving as a hint for the paragraph compres-251

sion model not to fuse the neighboring sentences.252

Conversely, δi “ 0 means that the facts should253

be aggregated and their corresponding sentences254

should be fused (see §5.2 and §5.3).255

3.5 Paragraph Compression256

The paragraph compression model (see §5.3257

for simplified variants) takes as input the or-258

dered sequence of facts with delimiters Fa “259

tfo1 , δo1 , fo2 , . . . , δon´1 , fonu and produces a re-260

sulting text Y . The objectives of the model are261

two-fold: (a) fusing related sentences, i.e., sen-262

tences i and j in between which δi “ 0, and (b)263

rephrasing the text to improve its fluency, e.g. fix-264

ing minor disfluencies in the templates, replacing265

noun phrases with refering expressions, etc. The266

focus is on minor rephrasing since the goal is to267

preserve the semantics of the original text.268

4 WIKIFLUENT Corpus269

A key to our approach is building a large-scale270

synthetic corpus providing training data for the text271

operations in our pipeline. Our corpus needs to272

cover a broad range of domains while capturing the273

sentence style in D2T generation, both regarding274

the input templates and the target descriptions. In275

other words, we aim to build a corpus in which:276

• the input is a set of simple, template-like sen-277

tences,278

• the output is a fluent text in natural language279

preserving the semantics of the input.280

As we describe below in detail, we achieve that by281

applying a split-and-rephrase model and a corefer-282

ence resolution model on a set of human-written283

paragraphs in English Wikipedia. We consider the284

processed text as a source and the original text as285

the target. The process is illustrated in Figure 3;286

corpus statistics are included in Appendix A.287

4.1 Data Source288

For building the WIKIFLUENT corpus, we ex-289

tracted 934k first paragraphs of articles from a290

Wikipedia dump2 using WikiExtractor (Attardi,291

2enwiki-20210401-pages-articles-multistream

The Westmeath Examiner is a weekly newspaper in Westmeath, Ireland.

It is located in Westmeath, Ireland. 

The Westmeath Examiner is a weekly newspaper.

original paragraph

The Westmeath Examiner is a weekly newspaper.  

It was founded in 1882. 

It was founded in 1882. 

split-and-rephrase

coreference replacement

The Westmeath Examiner is located in Westmeath, Ireland. 

The Westmeath Examiner was founded in 1882. 
processed paragraph

split 
successful

pronouns
resolved

Figure 3: The building process of the WIKIFLUENT
corpus. We apply a split-and-rephrase model on each
sentence in the paragraph and resolve coreferences in
the split sentences.

2015). The paragraphs contain mostly concise, fact- 292

based descriptions from a wide range of domains. 293

We selected paragraphs with length between 30- 294

430 characters, filtering out lists, disambiguations, 295

repeated and malformed paragraphs. To further 296

ensure that the length of inputs is balanced, we 297

selected 250k examples each from 4 equidistant 298

length ranges (30-130 characters, etc.). 299

4.2 Split-and-Rephrase 300

For generating the target set of sentences, we di- 301

vide each paragraph into sentences using NLTK 302

(Bird, 2006) and apply a split-and-rephrase model 303

on each sentence. Split-and-rephrase is a task of 304

splitting a complex sentence into a meaning pre- 305

serving sequence of shorter sentences (Narayan 306

et al., 2017). We train our model on the large-scale 307

WikiSplit corpus by Botha et al. (2018), contain- 308

ing human-made sentence splits from Wikipedia 309

edit history. Following the setup in the rest of our 310

experiments, we train the encoder-decoder PLM 311

BART-base (Lewis et al., 2020) on the WikiSplit 312

dataset in a sequence-to-sequence setting. We ap- 313

ply the trained split-and-rephrase model on each 314

sentence, uniformly randomly choosing between 315

0-2 recursive calls to ensure that the splits are not 316

deterministic. If the sentence cannot be meaning- 317

fully split, the model tends to duplicate the sentence 318

on the output; in that case, we use only the original 319

sentence and do not proceed with the splitting. 320

4.3 Coreference Replacement 321

Next, we concatenate the split sentences and ap- 322

ply a coreference resolution model (Gardner et al., 323

2018) in order to replace referring expressions 324

with their antencendents (e.g., pronouns with noun 325

phrases). This allows to better follow the style of 326
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the templates in which the entities are always fully327

verbalized. Since we keep the referring expressions328

in the original human-written text, we can train the329

paragraph compression module to generate them330

in the final text description.331

4.4 Filtering332

To assert that the generated sentences convey the333

same semantics as the original paragraph, we use334

a pretrained RoBERTa model3 (Liu et al., 2019)335

trained on the MultiNLI dataset (Williams et al.,336

2018) for checking the semantic accuracy of the337

generated text. Following Dušek and Kasner338

(2020), we test if the original paragraph entails each339

of the synthesized sentences (checking for omis-340

sions), and if the set of concatenated synthesized341

sentences entails the original paragraph (checking342

for hallucinations). In a filtered version of the WIK-343

IFLUENT corpus, we include only the examples344

without omissions or hallucinations (as computed345

by the model), reducing it to approximately 3/4 of346

the original size.347

5 Experiments348

We show how we build our pipeline (§5.1-5.4) and349

discuss the D2T generation datasets which we use350

for our experiments (§5.5). The details of our train-351

ing setup are included in Appendix B.352

5.1 Ordering Model353

For our ordering model (see §3.3), we use the Sim-354

ple Pointer model from Calizzano et al. (2021).355

The model is based on a pretrained BART-base356

extended with a pointer network from Wang and357

Wan (2019). We provide a short description of the358

model here; for details see Calizzano et al. (2021).359

In the encoding phase, facts F are concatenated360

and tokenized. Each fact is surrounded by spe-361

cial tokens denoting the beginning (<s>) and the362

end (</s>) of the fact. The sequence is processed363

by the BART encoder, generating a sequence of364

encoder states E for each end token </s> repre-365

senting the preceding fact.366

The decoding proceeds autoregressively. To367

bootstrap the decoding process, the pair of tokens368

<s></s> is fed into the decoder, producing the de-369

coder state d1. The pointer network (attending to370

d1 and E), selects the first ordered fact fo1 , which371

is fed into the decoder in the next step. The process372

3https://huggingface.co/roberta-large-mnli

is repeated until the all the facts are decoded in a 373

particular order. 374

The pointer network computes the probability of 375

a fact to be on the j-th position, using the encoder 376

output E and the decoder output dj . The network 377

is based on the scaled dot product attention, where 378

dj is the query and encoder outputs Ei are the keys: 379

Q “ djWQ 380

K “ EWK 381

Pj “ softmax

ˆ

QKT

?
b

˙

. 382

Here WQ and WK P Rbˆb, b is the dimension of 383

BART hidden states, and Pj P Rn`1 is the proba- 384

bility distribution for the j-th position (i.e., Pji is 385

the probability that fact fi is on the j-th position). 386

We train the model using the split sentences in 387

the WIKIFLUENT corpus, randomly shuffling the 388

order of the sentences and training the model to 389

restore their original order. 390

5.2 Aggregation Model 391

We base our aggregation model (cf. §3.4) on 392

RoBERTa-large (Liu et al., 2019) with a token clas- 393

sification head.4 Similarly to the ordering model 394

(§5.1), we input the sequence of facts Fo into the 395

model, separating each pair of facts foi with a spe- 396

cial token </s> (used by the model as a separator). 397

Subsequently, the token classification layer classi- 398

fies each separator </s>i position into two classes 399

t0, 1u corresponding to the delimiter δi. We ig- 400

nore the outputs for the non-separator tokens while 401

computing the cross-entropy loss. 402

We create the training examples using the split 403

sentences in the WIKIFLUENT corpus, in which 404

we set δi “ 0 for the sentences i, i ` 1 which were 405

originally aggregated (i.e., are the result of splitting 406

a single sentence) and δi “ 1 otherwise. 407

5.3 Paragraph Compression Model 408

We adopt BART-base for our paragraph compres- 409

sion model. We train the model in a sequence- 410

to-sequence setting on the WIKIFLUENT corpus, 411

concatenating the split sentences on the input. We 412

add delimiters between sentences i and i`1 where 413

δi “ 1 using a special token <sep>, which we 414

add to the model vocabulary. As shown in Keskar 415

et al. (2019), including control codes for training 416

4https://huggingface.co/transformers/model_
doc/roberta.html#robertafortokenclassification
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A dam is a barrier obstructing
flowing water.

ordA dam is a barrier. +

PC+agg

PC+ord+agg

3-stage

2-stage

1-stage

A dam obstructs flowing water.
in

agg PC

out

Figure 4: An example illustrating how the individual modules are trained and subsequently applied as the parts of
the pipeline. See §5.1 for description of the ordering model (ORD), §5.2 for the aggregation model (AGG), and §5.3
for the versions of the paragraph compression model (PC, PC+AGG, PC+ORD+AGG).

the model can steer the model towards producing417

certain outputs. We evaluate our model’s behavior418

with respect to ordering and aggregation in §6.3.419

5.4 Ablation Study420

In order to evaluate individual components of our421

pipeline, we train three versions of the PC model422

(see §5.3). The models share the same architecture423

and targets, but differ in their inputs:424

• PC – the model takes as an input ordered facts425

with delimiters (as described in §3.5),426

• PC+AGG – the model takes as an input or-427

dered facts without delimiters (i.e., the aggre-428

gation is left implicitly to the model),429

• PC+ORD+AGG – the model takes as an input430

facts in random order and without delimiters431

(i.e., both ordering and aggregation are left432

implicitly to the model).433

Subsequently, we test three versions of the434

pipeline (see Figure 4):435

• 3-STAGE – a full version of the pipeline con-436

sisting of the ordering model, the aggregation437

model and the PC model (following the full438

pipeline from §3),439

• 2-STAGE – a pipeline consisting of the order-440

ing model and the PC+AGG model,441

• 1-STAGE – a single stage consisting of the442

PC+ORD+AGG model.443

We evaluate all versions of the pipeline with PC444

models trained on the full and filtered versions of445

the WIKIFLUENT dataset (see §4).446

5.5 D2T Datasets447

We test our approach on two English D2T datasets,448

WebNLG and E2E. They differ in domain, size, tex-449

tual style, and number of predicates (see Appendix450

A for details).451

WebNLG The WebNLG dataset (Gardent et al.,452

2017) contains RDF triples from DBPedia (Auer453

et al., 2007) and their crowdsourced descriptions.454

The dataset was extended for the WebNLG+ Chal-455

lenge (Ferreira et al., 2020), but we use the version 456

1.4 for comparability to prior work. Templates for 457

WebNLG could be extracted from the training data 458

by delexicalizing single-triple examples. However, 459

the examples are noisy and such data would not be 460

available in a zero-shot setup. Therefore, we hand- 461

crafted templates for all 354 predicates, including 462

unseen predicates in the test set.5 463

E2E The E2E dataset (Novikova et al., 2017; 464

Dušek et al., 2020) contains restaurant recommen- 465

dations in the form of attribute-value pairs. We 466

use the cleaned version of the dataset (Dušek et al., 467

2019). Following previous work, we transformed 468

the attribute-value pairs into RDF triples (using the 469

restaurant name as a subject) and then applied the 470

same setup as for WebNLG. We created a template 471

for each of the 8 attributes manually. 472

6 Evaluation 473

We evaluate outputs from the {1,2,3}-STAGE vari- 474

ants of our pipeline automatically (§6.1) and manu- 475

ally (§6.2). Further, we evaluate the performance 476

of the content planning modules and the ability of 477

the PC module to follow the content plan (§6.3). 478

6.1 Automatic Metrics 479

Following prior work, we use BLEU (Papineni 480

et al., 2002) and METEOR (Banerjee and Lavie, 481

2005) to evaluate the outputs against the human 482

references.6 We also evaluate the number of omis- 483

sion and hallucination errors (i.e., facts missing 484

or added, respectively) using a metric from Dušek 485

and Kasner (2020) based on a RoBERTa model 486

(Liu et al., 2019) pretrained on natural language 487

inference (NLI).7 488

5The templates are single-sentence and mostly clear-cut
verbalizations of the predicates. We did not use human refer-
ences from the dataset when creating the templates.

6We use the implementation from https://github.
com/tuetschek/e2e-metrics.

7We additionally evaluated the outputs on the E2E dataset
using the provided pattern-based slot error script. See Ap-

6

https://github.com/tuetschek/e2e-metrics
https://github.com/tuetschek/e2e-metrics


Input (Allen Forrest; background; solo singer), (Allen Forrest; genre; Pop music), (Allen Forrest; birthPlace; Dothan,
Alabama)

Templ. Allen Forrest is a solo singer. Allen Forrest performs Pop music. Allen Forrest was born in Dothan, Alabama.
Model Allen Forrest is a solo singer who performs Pop music. He was born in Dothan, Alabama.
Human Born in Dothan, Alabama, Allen Forrest has a background as a solo singer and was a pop artist.
Input name[Wildwood], eatType[restaurant], food[French], area[riverside], near[Raja Indian Cuisine]
Templ. Wildwood is a restaurant. Wildwood serves French food. Wildwood is in the riverside. Wildwood is near Raja

Indian Cuisine.
Model Wildwood is a restaurant serving French food. It is in the riverside near Raja Indian Cuisine.
Human A amazing French restaurant is called the Wildwood. The restaurant is near the Raja Indian Cuisine in riverside.

They love kids.

Table 1: Example outputs of our model (3-STAGE, filtered). See Appendix D for more examples.

B M O H

UPF-FORGe˚ 38.65 39.00 0.075 0.101
MELBOURNE˚ 45.13 37.00 0.237 0.202
Ke et al. (2021):˚ 66.14 47.25 - -
Laha et al. (2020): 24.80 34.90 - -
COPY 37.18 38.77 0.000 0.000

full
3-STAGE 42.92 39.07 0.051 0.148
2-STAGE 42.90 39.28 0.043 0.125
1-STAGE 39.08 38.94 0.071 0.204

filtered
3-STAGE 43.19 39.13 0.152 0.073
2-STAGE 43.49 39.32 0.146 0.096
1-STAGE 42.99 38.81 0.202 0.093

Table 2: Automatic metrics on WebNLG. B = BLEU, M
= METEOR, O = omissions / # facts, H = hallucinations
/ # examples. The systems marked with asterisk (*) are
trained on the WebNLG dataset. Results for the systems
marked with : are copied from the respective papers.

We include a diverse set of baselines for com-489

parison. For WebNLG (see Table 2), we include490

the results of UPF-FORGe and MELBOURNE sys-491

tems from the first run of WebNLG Challenge (Gar-492

dent et al., 2017) which are comparable in terms493

of automatic metrics and semantic errors, and the494

results of Ke et al. (2021), which is a state-of-the-495

art system using structure-aware encoder and task-496

specific pretraining. Laha et al. (2020) is (to our497

knowledge) the only other zero-shot D2T genera-498

tion system applied on WebNLG. TGEN (Dušek499

and Jurčíček, 2015) is the baseline system for the500

E2E Challenge (Dušek et al., 2020) and Harkous501

et al. (2020) is a state-of-the art supervised sys-502

tem applied on the cleaned E2E (see Table 3). For503

both datasets, COPY is the baseline of copying the504

templates verbatim.505

The automatic evaluation suggests that while506

our system lags behind state-of-the-art supervised507

systems, it shows considerable improvements com-508

pared to the COPY baseline (e.g., „12 BLEU points509

pendix C for the details.

B M O H

TGEN˚ 40.73 37.76 0.016 0.083
Harkous et al. (2020)˚ 43.60 39.00 - -
COPY 24.19 34.89 0.000 0.000

full
3-STAGE 36.04 36.95 0.001 0.001
2-STAGE 35.84 36.91 0.001 0.001
1-STAGE 30.81 36.01 0.009 0.122

filtered
3-STAGE 35.88 36.95 0.001 0.001
2-STAGE 36.01 36.99 0.001 0.001
1-STAGE 34.08 36.32 0.012 0.050

Table 3: Automatic metrics on E2E. B = BLEU, M =
METEOR, O = omissions / # facts, H = hallucinations /
# examples. The systems marked with asterisk (*) are
trained on the E2E dataset. The results for Harkous et al.
(2020) are copied from the paper.

for E2E) and matches performance of some older 510

supervised systems. The COPY baseline is substan- 511

tially better than the zero-shot system of Laha et al. 512

(2020), suggesting that quality of the templates 513

plays an important role. The 2-STAGE system is 514

generally on par with the 3-STAGE system (or bet- 515

ter), which indicates that implicit aggregation using 516

the PC-AGG model may be sufficient. However, an 517

advantage of having a separate aggregation module 518

is the possibility to control the aggregation step 519

explicitly. The filtered version of the dataset gener- 520

ally brings better results, although it brings also an 521

increase in the number of omissions. 522

6.2 Manual Evaluation 523

We manually evaluated 100 outputs of the models 524

regarding factual errors (hallucinations, omissions, 525

incorrect fact merging, redundancies) as well as 526

grammatical errors. The results are listed in Table 527

4. The 1-STAGE model (which has to order the 528

facts implicitly) tends to repeat the facts in the text 529

(especially in E2E) and produces frequent halluci- 530

nations. These problems are only slightly reduced 531

in the filtered version, but they are largely elim- 532
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WebNLG E2E
H I O R G H I O R G

fu
ll

3-STAGE 3 39 2 2 16 0 1 0 0 17
2-STAGE 8 36 1 5 16 1 1 0 1 23
1-STAGE 28 27 6 10 20 17 0 1 79 45

fil
te

re
d 3-STAGE 2 37 2 1 15 0 0 0 0 17

2-STAGE 5 32 1 2 14 0 0 0 0 11
1-STAGE 8 40 6 6 16 11 2 1 41 22

Table 4: Number of manually annotated errors on 100
examples: H = hallucinations, I = incorrect fact merging,
O = omissions, R = redundancies, G = grammar errors
or disfluencies.

inated with 2-STAGE and 3-STAGE models. We533

note these models create almost no hallucinations534

or omissions. However, the outputs on WebNLG535

for all systems suffer from semantic errors result-536

ing from merging of unrelated facts. This mostly537

happens with unrelated predicates connected to the538

same subject/object (e.g. “X was born in Y”, “X539

worked as Z” expressed as “X worked as Z in Y”;540

see Appendix D for examples). On the E2E data,541

which has a simpler triple structure (all predicates542

share the same subject), the outputs are generally543

consistent and the 2-STAGE and 3-STAGE models544

exhibit almost no semantic errors. As we discuss in545

§7, more research is needed for ensuring the final546

consistency of the text. The grammar errors and dis-547

fluencies stem mainly from over-eager paragraph548

compression or from artifacts in our templates; they549

are relatively minor (e.g., missing “is” in “serves550

French food and family-friendly”).551

6.3 Content Planning552

Following Su et al. (2021b) and Zhao et al. (2020),553

we report the accuracy (Acc) and BLEU-2 score (B-554

2) of our ordering model on WebNLG against the555

human-generated plans from Ferreira et al. (2018).556

The results are listed in Table 5. RANDOM is the557

baseline of generating a random order. The results558

show that although our approach lacks behind state-559

of-the-art supervised approaches, it can outperform560

both the random baseline and the Transformer-561

based approach from Ferreira et al. (2019) while562

not using any training examples from WebNLG.563

We also evaluate the accuracy of our aggrega-564

tion model, using triples ordered according to the565

plans from Ferreira et al. (2018) as input. The ac-566

curacy is 0.33 per example and 0.62 per sentence567

boundary (random baseline is 0.23 and 0.50, re-568

spectively). The results show that although our569

approach is better than the random baseline, further570

B-2 Acc

Transformer (Ferreira et al., 2019): 52.20 0.35
Step-by-step (Moryossef et al., 2019b): 70.80 0.47
PLANENC (Zhao et al., 2020): 80.10 0.62
Plan-then-generate (Su et al., 2021b): 84.97 0.72
RANDOM 47.00 0.29

BART+ptr (Calizzano et al., 2021) 59.10 0.48

Table 5: Evaluation of our zero-shot ordering model
based on Calizzano et al. (2021). The results marked
with : are copied from the respective papers.

investigation regarding plausible fact aggregation 571

schemes is needed. 572

Finally, we manually evaluate how the PC 573

model follows the content plan using 100 ran- 574

domly chosen examples with more than 1 triple 575

on WebNLG and E2E. We find that the model fol- 576

lows the content plan in 95% and 100% of cases, 577

respectively. The incorrect cases include a fact not 578

properly mentioned and an extra boundary between 579

the sentences without a separator. We can thus con- 580

clude that the pretraining task successfully teaches 581

the PC model to follow a given content plan. 582

7 Discussion and Future Work 583

In the current form, our pipeline can be directly 584

applied to generating text from RDF triples (or 585

similarly structured data) which require no extra 586

processing. Further extensions are needed for more 587

complex D2T scenarios, e.g. datasets requiring con- 588

tent selection or common-sense and logical reason- 589

ing (Wiseman et al., 2017; Lin et al., 2019; Chen 590

et al., 2020b). 591

Our approach regarding handcrafting a single 592

template for each predicate is quite basic. Gener- 593

ating simple statements from the triples automati- 594

cally, e.g., using the approach of Laha et al. (2020), 595

could reduce the manual workload and allow apply- 596

ing our approach on datasets with a less constrained 597

set of data attributes such as ToTTo (Parikh et al., 598

2020) or DART (Nan et al., 2021). Moreover, ex- 599

plicitly including a denoising task for the paragraph 600

compression model could help to tackle the disflu- 601

encies in the templates. 602

More research is also needed on semantic errors 603

stemming from merging of facts in improper ways. 604

We suggest that explicitly controlling the semantics 605

of sentence fusion (Ben-David et al., 2020) could 606

help to mitigate this issue, while still keeping the 607

advantages of a zero-shot approach. 608
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natural language generator from unaligned data. In 714
Proceedings of the 53rd Annual Meeting of the As- 715
sociation for Computational Linguistics and the 7th 716
International Joint Conference on Natural Language 717
Processing (Volume 1: Long Papers), pages 451–461. 718

9

https://github.com/attardi/wikiextractor
https://github.com/attardi/wikiextractor
https://github.com/attardi/wikiextractor
https://www.aclweb.org/anthology/W05-0909
https://www.aclweb.org/anthology/W05-0909
https://www.aclweb.org/anthology/W05-0909
https://www.aclweb.org/anthology/W05-0909
https://www.aclweb.org/anthology/W05-0909
https://doi.org/10.18653/v1/D18-1080
https://doi.org/10.18653/v1/D18-1080
https://doi.org/10.18653/v1/D18-1080
https://doi.org/10.18653/v1/2020.emnlp-main.697
https://doi.org/10.18653/v1/2020.emnlp-main.697
https://doi.org/10.18653/v1/2020.emnlp-main.697
https://www.aclweb.org/anthology/2020.acl-main.18
https://www.aclweb.org/anthology/2020.acl-main.18
https://www.aclweb.org/anthology/2020.acl-main.18
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A Dataset Statistics 996

Statistics for the datasets described in the paper are 997

listed in Table 7. 998

B Experimental Setup 999

B.1 Our Models 1000

We implemented the models for split-and-rephrase, 1001

aggregation, and paragraph compression in Py- 1002

Torch Lightning (Paszke et al., 2019), using the 1003

PyTorch (Falcon, 2019) version of the BART and 1004

RoBERTa models from the Huggingface library 1005

(Wolf et al., 2019). 1006

We use the Adam (Kingma and Ba, 2015) opti- 1007

mizer (β1 “ 0.9, β2 “ 0.997, ε “ 1´9) with learn- 1008

ing rate 2´5, linear scheduling and 0.1 warmup 1009

proportion; batches of size 8 and accumulating gra- 1010

dients with factor 4. We train the models for 1 1011

epoch on a single GeForce RTX 3090 GPU with 1012

24 GB RAM. We use greedy decoding in all our 1013

experiments. 1014

B.2 Ordering 1015

For training the ordering model, we used the imple- 1016

mentation from Calizzano et al. (2021) 8 including 1017

their training parameters. We plan to fully inte- 1018

grate the ordering model into our framework in the 1019

future. 1020

C Additional Results 1021

We provide evaluation of semantic accuracy on the 1022

E2E dataset as evaluated with the slot-error script 1023

based on matching regular expressions in Table 6.9 1024

Note that our manual investigation of a sample
of the data shows that the majority of the errors
identified in our model outputs are false. For ex-
ample, the following regular expression used in the
slot-error script:

prices?(?: range)?(?:w+)0,3 high

matches "(...) price range and high customer rat- 1025

ing (...)", incorrectly classifying the presence of 1026

the extra slot priceRange[high]. This importance 1027

of this problem is exacerbated by the consistent 1028

8https://github.com/airKlizz/
passage-ordering

9https://github.com/tuetschek/e2e-cleaning/
blob/master/slot_error.py
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miss add miss+add

TGEN 0.0060 0.0433 0.0016
COPY 0.0000 0.0000 0.0000

full
3-STAGE 0.0238 0.0698 0.0060
2-STAGE 0.0054 0.0363 0.0000
1-STAGE 0.0043 0.0330 0.0000

filtered
3-STAGE 0.0444 0.0487 0.0076
2-STAGE 0.0043 0.0368 0.0000
1-STAGE 0.0043 0.0347 0.0000

Table 6: Proportion of output examples with missed
only, added only, and both missed and added facts, ac-
cording to the regular-expression-based E2E slot error
script.

outputs of our models, which tend to repeat certain1029

patterns. However, we also manually identified sev-1030

eral cases in which an error was found correctly,1031

e.g. the model hallucinating "3 out of 4 customer1032

rating" instead of "3 out of 5 customer rating".1033

D Example Outputs1034

Tables 8, 9, 10, and 11 show examples of behavior1035

of our models on the WebNLG dataset. Tables 121036

and 13 show examples of behavior of our models1037

on the E2E dataset.1038

The green color marks the model outputs which1039

are completely correct, the red color marks the1040

errors. For better readability of the input format,1041

we add numeric order identifiers for the individ-1042

ual facts (bold, in squared brackets). These are1043

subsequently used as references in the Order and1044

Aggregation rows. Note that zero-th input in E2E1045

is used as a subject in the RDF triples.1046
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# train # dev # test tok/src tok/tgt sent/src sent/tgt

WebNLG 18,102 870 1,862 26.8 22.6 3.0 1.4
Clean E2E 33,236 4,299 1,847 29.2 22.3 4.2 1.5

WIKIFLUENT-full 915,855 9,346 9,346 52.9 41.1 3.9 2.0
WIKIFLUENT-filtered 700,517 7,149 7,149 45.6 35.4 3.4 1.8

Table 7: Number of examples (train / dev / test), average number of tokens per source and target, average number of
sentences per source and target (after filling the templates for the D2T datasets).

Input [1] (Andrews County Airport; elevationAboveTheSeaLevel (in metres); 973.0)
[2] (Andrews County Airport; runwayLength; 896.0)
[3] (Andrews County Airport; location; Texas)

Templates Andrews County Airport is 973.0 metres above the sea level.
Andrews County Airport runway is 896.0 m long.
Andrews County Airport is located in Texas.

Order 3 2 1
Aggregation 3 <sep> 2 1
Models (all) Andrews County Airport is located in Andrews County, Texas. Its runway is 896.0 m long

and 973.0 metres above the sea level.
Human The runway length of Andrews County Airport (located in Texas and 973.0 above sea level)

is 896.

Table 8: Correct behavior of the models on WebNLG. All the models ({1,2,3}-STAGE full/filtered) produce the
same output.

Input [1] (Akron, Ohio; country; United States)
[2] (United States; language; English language)

Templates Akron, Ohio is from United States.
English language is spoken in United States.

Order 1 2
Aggregation 1 <sep> 2
3-stage full Akron, Ohio is from United States. English language is spoken in Akron, Ohio, United

States, which is located in the U.S. state of Ohio.
2-stage full Akron, Ohio is from United States. English language is spoken in Akron, Ohio.
1-stage full English language is spoken in the United States. Akron, Ohio is from the state of Ohio in the

U.S. state of Illinois.
3-stage filtered Akron, Ohio is from United States. English language is spoken in the United States of

America.
2-stage filtered Akron, Ohio is from United States. English language is spoken in Akron, Ohio.
1-stage filtered English language is spoken in the United States. Akron, Ohio is from the United Kingdom.
Human The country of Akron, Ohio, is United States, where English is the language spoken.

Table 9: Incorrect behavior on WebNLG: besides the minor disfluencies caused by the templates ("Akron, Ohio is
from..."), the models (except for 3-STAGE filtered) tend to hallucinate and merge the facts incorrectly.
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Input [1] (Juan Perón; party; Labour Party (Argentina))
[2] (Alberto Teisaire; inOfficeWhilePresident; Juan Perón)
[3] (Alberto Teisaire; nationality; Argentina)
[4] (Argentina; language; Spanish language)

Templates Juan Perón belongs to the Labour Party Argentina.
Alberto Teisaire was in office while Juan Perón was a president.
Alberto Teisaire is from Argentina.
Spanish language is spoken in Argentina.

Order 3 2 1 4
Aggregation 3 2 <sep> 1 <sep> 4
3-stage full Alberto Teisaire is from Argentina, who was in office while Juan Perón was a president. He

belongs to the Labour Party Argentina. Spanish language is spoken in Argentina.
2-stage full Alberto Teisaire is from Argentina. He was in office while Juan Perón was a president. He

belongs to the Labour Party Argentina. Spanish language is spoken in Argentina.
1-stage full Alberto Teisaire is from Argentina. He was in office while Juan Perón was a president.

Spanish language is spoken in Argentina. Perón belongs to the Labour Party Argentina.
3-stage filtered Alberto Teisaire is from Argentina, in office while Juan Perón was a president. He belongs

to the Labour Party Argentina. Spanish language is spoken in Argentina.
2-stage filtered Alberto Teisaire is from Argentina. He was in office while Juan Perón was a president. He

belongs to the Labour Party Argentina. Spanish language is spoken in Argentina.
1-stage filtered Alberto Teisaire is from Argentina. He was in office while Juan Perón was a president.

Spanish language is spoken in Argentina. Juan belongs to the Labour Party Argentina.
Human Alberto Teisaire, is a national of Argentina, where Spanish is spoken. Alberto Teisaire, was

in office while Juan Perón was president. Juan Perón was a member of the Labour Party in
Argentina.

Table 10: Incorrect behavior on WebNLG: by using a pronoun "He", the models tend to imply that Alberto Teisaire
(instead of Juan Perón) belongs to the Labour Party.

Input [1] (Alfa Romeo 164; relatedMeanOfTransportation; Fiat Croma)
[2] (Alfa Romeo 164; assembly; Italy)
[3] (Italy; capital; Rome)

Templates Alfa Romeo 164 is related to Fiat Croma.
Alfa Romeo 164 was assembled in Italy.
Italy’s capital is Rome.

Order 2 3 1
Aggregation 2 3 <sep> 1
3-stage full Alfa Romeo 164 was assembled in Italy’s capital, Rome. It is related to Fiat Croma.
2-stage full Alfa Romeo 164 was assembled in Italy’s capital, Rome. It is related to Fiat Croma.
1-stage full Alfa Romeo 164 was assembled in Italy and related to Fiat Croma. Italy’s capital is Rome.
3-stage filtered Alfa Romeo 164 was assembled in Italy’s capital, Rome. It is related to Fiat Croma.
2-stage filtered Alfa Romeo 164 was assembled in Italy’s capital, Rome. It is related to Fiat Croma.
1-stage filtered Alfa Romeo 164 was assembled in Italy. It is related to Fiat Croma. It was assembled at the

Italian capital is Rome.
Human The Fiat Croma and the Alfa Romeo 164 are both cars. The latter was built in Italy where

the capital is Rome.

Table 11: Incorrect behavior on WebNLG: the models tend to merge the country of vehicle’s assembly and its
capital.
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Input [0] name[The Cricketers]
[1] eatType[restaurant]
[2] near[All Bar One]
[3] priceRange[cheap]
[4] food[Chinese]
[5] customerRating[average]
[6] familyFriendly[yes]

Templates The Cricketers is a restaurant.
The Cricketers is near All Bar One.
The Cricketers has cheap price range.
The Cricketers serves Chinese food.
The Cricketers has average customer rating.
The Cricketers is family-friendly.

Order 1 4 2 6 3 5
Aggregation 1 4 2 <sep> 6 3 5
3-stage full The Cricketers is a restaurant serving Chinese food near All Bar One. It is family-friendly,

has cheap price range and average customer rating.
2-stage full The Cricketers is a restaurant serving Chinese food near All Bar One. It is family-friendly

with cheap price range and average customer rating.
1-stage full The Cricketers is a restaurant serving Chinese food. It is family-friendly and has cheap price

range. It serves Chinese food near All Bar One. It has average customer rating.
3-stage filtered The Cricketers is a restaurant serving Chinese food near All Bar One. It is family-friendly

with cheap price range and average customer rating.
2-stage filtered The Cricketers is a restaurant serving Chinese food near All Bar One. It is family-friendly

with cheap price range and average customer rating.
1-stage filtered The Cricketers is a restaurant serving Chinese food. It is family-friendly and has average

customer rating. It serves Chinese food near All Bar One. It has cheap price range.
Human For a central family friendly venue serving cheap Chinese food, try The Cricketers restaurant.

It has average customer ratings and is near All Bar One.

Table 12: Correct behavior of the models on E2E: the models can deal even with a higher amount of input values.
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Input [0] name[The Phoenix]
[1] area[riverside]
[2] priceRange[cheap]
[3] familyFriendly[yes]
[4] near[Raja Indian Cuisine]
[5] eatType[restaurant]

Templates The Phoenix is in the riverside.
The Phoenix has cheap price range.
The Phoenix is family-friendly.
The Phoenix is near Raja Indian Cuisine.
The Phoenix is a restaurant.

Order 5 1 4 <sep> 3 2
Aggregation 5 1 4 3 2
3-stage full The Phoenix is a restaurant in the riverside near Raja Indian Cuisine. It is family-friendly

with cheap price range.
2-stage full The Phoenix is a restaurant in the riverside near Raja Indian Cuisine. It is family-friendly

with cheap price range.
1-stage full The Phoenix is a restaurant near Raja Indian Cuisine in the riverside. It is family-friendly

and has cheap price range. It has cheap food range.
3-stage filtered The Phoenix is a restaurant in the riverside near Raja Indian Cuisine. It is family-friendly

with cheap price range.
2-stage filtered The Phoenix is a restaurant in the riverside near Raja Indian Cuisine. It is family-friendly

with cheap price range.
1-stage filtered The Phoenix is a restaurant near Raja Indian Cuisine in the riverside. It is family-friendly

and has cheap price range. It has cheap food.
Human Cheap food and a family friendly atmosphere at The Phoenix restaurant. Situated riverside

near the Raja Indian Cuisine.

Table 13: Incorrect behavior on E2E: the 1-STAGE models add redundant information to the output.
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