Neural Pipeline for Zero-Shot Data-to-Text Generation

Anonymous ACL submission

Abstract

In data-to-text (D2T) generation, training on
in-domain data leads to overfitting to the
data representation and repeating training data
noise. We examine how to avoid finetun-
ing the pretrained language models (PLMs)
on D2T generation datasets while still taking
advantage of surface realization capabilities
of PLMs. Inspired by pipeline approaches,
we propose to generate text by rephrasing
single-item templates using a sequence of
modules trained on general-domain text-based
operations—ordering, aggregation, and para-
graph compression. We train PLMs for per-
forming these operations on a synthetic cor-
pus WIKIFLUENT which we build from En-
glish Wikipedia. Our experiments on two ma-
jor triple-to-text datasets—WebNLG and E2E—
show that our approach enables D2T generation
from RDF triples in zero-shot settings.!

1 Introduction

The aim of data-to-text (D2T) generation is to pro-
duce natural language descriptions of structured
data (Gatt and Krahmer, 2018; Reiter and Dale,
1997). Although pipelines of rule-based D2T gener-
ation modules are still used in practice (Dale, 2020),
end-to-end approaches based on PLMs recently
showed superior benchmark performance (Ke et al.,
2021; Chen et al., 2020a; Ferreira et al., 2020; Kale
and Rastogi, 2020b; Ribeiro et al., 2020), surpass-
ing pipeline systems (Ferreira et al., 2019) in both
automatic and human evaluation metrics.
Finetuning PLMs on human-written references
is widely accepted as a standard approach for adapt-
ing PLMs to the D2T generation objective and
achieving good performance on a given benchmark
(Agarwal et al., 2021; Ke et al., 2021). Never-
theless, this approach brings issues: Most obvi-
ously, finetuning the model for the domain-specific
"The anonymized version of our code and data

is available at https://anonymous.4open.science/r/
zeroshot-d2t-pipeline/.

William Anders William Anders William Anders :

birthPlace wasACrewMemberOf birthDate

Apollo 8 1933-10-17

British Hong Kong

William Anders was born William Anders was a crew
member of Apollo 8.

William Anders was

in British Hong Kong. born on 1933-10-17.

William Anders was born on 1933-10-17 in British
Hong Kong. He was a crew member of Apollo 8.

Figure 1: A scheme of our pipeline for zero-shot data-
to-text generation from RDF triples: (1) ordering, (2)
aggregation, (3) paragraph compression. Individual
pipeline modules are trained on a large general-domain
text corpus and operate over text in natural language.
In-domain knowledge is included only in the simple
hand-crafted templates for each predicate.

data distribution leads to overfitting on the partic-
ular benchmark, decreasing performance on out-
of-distribution data (LLaha et al., 2020). Moreover,
collecting a large set of references for a particular
domain is costly and time-consuming, as the data
are usually collected using crowdsourcing (Dusek
et al., 2020). Few-shot approaches are an alterna-
tive, requring only several tens or hundreds of anno-
tated examples (Chen et al., 2020c; Ke et al., 2021;
Su et al., 2021a). However, robustness of these
approaches is questionable—selecting a represen-
tative set of examples which would improve per-
formance is difficult (Chang et al., 2021a), and the
limited sample is often noisy, increasing the chance
of hallucinations and omissions (Dusek et al., 2019;
Harkous et al., 2020; Rebuffel et al., 2021).

In this paper, we provide an alternative to this
traditional paradigm by formulating the D2T gen-
eration from RDF triples as a sequence of general-
domain operations over text in natural language.
We start by transforming individual triples to text
using trivial templates, which we subsequently or-

https://anonymous.4open.science/r/zeroshot-d2t-pipeline/
https://anonymous.4open.science/r/zeroshot-d2t-pipeline/

der, aggregate, and compress on the paragraph level
to produce the resulting description of the data.
All the pipeline modules operate over natural lan-
guage text and are built upon PLMs trained on
our WIKIFLUENT corpus. WIKIFLUENT contains
934k examples of first paragraphs from the English
Wikipedia, each supplied with a synthesized set of
simple template-like sentences conveying the same
meaning. Our approach allows generating natural
language descriptions from triples with a minimum
amount of domain-specific rules or knowledge and
without using training data from the D2T datasets.
We show that our approach can yield large improve-
ments upon simple baselines and match older super-
vised systems in terms of fluency, while bringing
potential for further improvements and advantages
with respect to controllability.

Our contributions are the following:

(1) We propose an alternative D2T generation ap-
proach based on general-domain text-to-text
operations (ordering, aggregation, and para-
graph compression).

(2) We introduce a synthetic WIKIFLUENT cor-
pus containing 934k sentences based on En-
glish Wikipedia, providing training data for
the operations in (1).

(3) We apply our system on two D2T datasets and
evaluate its performance both automatically
and manually, including the contribution of
individual pipeline modules.

(4) We release our code, data, pretrained models,
and system outputs to ease future research.

2 Related Work

D2T Generation with PLMs Large neural lan-
guage models pretrained on self-supervised tasks
(Lewis et al., 2020; Liu et al., 2019; Devlin et al.,
2019) have recently gained a lot of traction in D2T
generation research (Ferreira et al., 2020). Fol-
lowing Chen et al. (2020c), other works adopt
PLMs for few-shot D2T generation (Chang et al.,
2021b; Su et al., 2021a). Kale and Rastogi (2020b)
and Ribeiro et al. (2020) showed that PLMs using
linearized representations of data can outperform
graph neural networks on graph-to-text datasets,
recently surpassed again by graph-based models
(Ke et al., 2021; Chen et al., 2020a). Although
the models make use of general-domain pretrain-
ing tasks, all of them are eventually finetuned on
domain-specific data.

Templates in Data-Driven D2T Generation Us-
ing simple handcrafted templates for individual
keys or predicates is an efficient way of introducing
domain knowledge while preventing text-to-text
models from overfitting to a specific data format
(Heidari et al., 2021; Kale and Rastogi, 2020a; Kas-
ner and Dusek, 2020). Transforming individual
triples to text is also used in Laha et al. (2020)
whose work is the most similar to ours. They also
build a three-step pipeline for zero-shot D2T gener-
ation, but they use handcrafted rules for producing
the output text and do not address content planning.

Content Planning in D2T Generation Content
planning, i.e. ordering input facts and aggregat-
ing them into individual sentences, is a traditional
part of the D2T generation pipeline (Ferreira et al.,
2019; Gatt and Krahmer, 2018; Reiter and Dale,
1997). As previously demonstrated, using a con-
tent plan in neural D2T generation has important
impact on the overall text quality (Moryossef et al.,
2019a,b; Puduppully et al., 2019; Zhao et al., 2020;
Trisedya et al., 2020). Recently, Su et al. (2021b)
have shown that using a content plan leads to im-
proved quality of PLM outputs. All the aforemen-
tioned models plan directly using predicates or keys
in the D2T datasets representing the correspond-
ing data item. Unlike these works, our planner is
trained on ordering sentences in natural language.

Sentence Ordering Sentence ordering is the task
of organizing a set of natural language sentences
to increase the coherence of a text (Barzilay et al.,
2001; Lapata, 2003). Several neural methods for
this task were proposed, using either interactions
between pairs of sentences (Chen et al., 2016; Li
and Jurafsky, 2017), global interactions (Gong
et al., 2016; Wang and Wan, 2019), or combination
of both (Cui et al., 2020). We base our ordering
module (§5.1) on the recent work of Calizzano et al.
(2021), who use a pointer network (Wang and Wan,
2019; Vinyals et al., 2015) on top of a PLM.

Fact Aggregation The compact nature of the tar-
get text description results in aggregating multiple
facts in a single sentence. Previous works (Wise-
man et al., 2018; Shao et al., 2019; Shen et al.,
2020; Xu et al., 2021) capture the segments which
correspond to individual parts of the input as latent
variables. Unlike these works, we adopt a simpler
scenario using an already ordered sequence of facts,
in which we selectively insert delimiters marking
sentence boundaries.

<subj> plays <obj>.

WebNLG
<subj> comes from <obj>.
eatType: <X> <rest>is a <X>.
E2E | <rest>| familyFriendly: yes | <rest> is family—friendly.

area: <X> <rest> is in the <X>.

Figure 2: Examples of templates for the predicates in
the WebNLG and E2E datasets.

Paragraph Compression We introduce para-
graph compression as a new task in our D2T gener-
ation pipeline. As the last step in the pipeline, it is
closely related to linguistic realisation, however—
since we already work with natural language in
this step—the focus of our task is on sentence fu-
sion, rephrasing, and coreference resolution. Un-
like text summarization or simplification (Zhang
et al., 2020; Jiang et al., 2020), we aim to convey
the complete semantics of the text without omit-
ting any facts. In contrast to sentence fusion (Geva
et al., 2019; Barzilay and McKeown, 2005) or sen-
tence compression (Filippova and Altun, 2013),
we operate in the context of multiple sentences
in a paragraph. The task is the central focus of
our WIKIFLUENT corpus (§4), which we synthe-
size using a model for the reverse task, split-and-
rephrase, i.e. splitting a complex sentence into sim-
pler ones while preserving semantics (Botha et al.,
2018; Narayan et al., 2017).

3 Method

We first give an overview of our neural D2T gener-
ation pipeline (§3.1). Next, we describe the individ-
ual steps, starting by applying simple templates to
transform data to text (§3.2), followed by individ-
ual modules for ordering (§3.3), aggregation (§3.4),
and paragraph compression (§3.5).

3.1 Method Overview

We focus on the task of producing a natural lan-
guage description Y for a set of n RDF triples
X = {z1,...,z,}. Each triple x; = {s;,p;, 0}
consists of subject s;, predicate p;, and object o;.
We assume that we can transform each triple z; to
afact f; (where f; is a sentence in natural language
describing x;) by filling the single-triple template
tp, € T for the predicate p;: t,,(si,0;) — fi.
We proceed as follows — given an input X, we:

(1) apply the templates to transform the set of
triples X to the set of facts: F' = T'(X) =
{flv DRI fn} (§32)7

(2) sort the facts F' using an ordering module
which outputs an ordered sequence of facts
Ey=O(F) ={foy,---, fo,} (§3.3),

(3) obtain sentence delimiters by inputting the
ordered facts F}, into an aggregation module
A(F,) = {00,,000s 500, 1};0; € {0,1},
where §,, = 1 indicates the presence of a
delimiter, i.e., that the sentences with facts f,
and f,,,, should not be fused (§3.4),

(4) input the ordered sequence with delimiters
Fa = {f015601’ f027 e 750”_17 fon} into the
paragraph compression module which gener-
ates the final description P(F,) =Y (§3.5).

3.2 Templates

The first step in our pipeline involves transforming
each of the input triples X into a set of facts F' in
natural language by using a template ¢,,, for each
predicate p;. We need at least one template for
each predicate. Typically, the template will include
placeholders which are filled with s; and o;.

The transformation serves two purposes: (a)
preparing the data for the subsequent text-to-text
operations, (b) introducing in-domain knowledge
about the semantics of individual predicates. Note
that the filled templates are allowed to contain mi-
nor disfluencies since the text will be rephrased in
the final step of the pipeline. See §5.5 for our ap-
proach to gathering the templates and Figure 2 for
examples of the templates we use in our datasets.

We acknowledge that this step may be a bottle-
neck on datasets with an unconstrained (or very
large) set of predicates, which is why we also dis-
cuss possibilities for automating this step in §7.

3.3 Ordering

We assume that the default order of triples X (and
the respective facts F') is random. To maximize the
coherency of the resulting description, we apply an
ordering model O to get an ordered sequence of
facts: F, = {fo,,---, fo,}. The coherence of the
final text will also depend on the paragraph com-
pression step, but grouping related facts together
(e.g. facts mentioning birth date and birth place)
helps the paragraph compression model to focus
only on fusing and rephrasing the neighboring sen-
tences. We describe our ordering model in §5.1.

3.4 Aggregation

The aggregation model takes a sequence of ordered
facts F,, as input and produces a sequence of sen-
tence delimiters A(F,) = {00y, 0005300, 13
0; € {0,1}. The output §; = 1 means that the
neighboring facts are should be mentioned sepa-
rately, serving as a hint for the paragraph compres-
sion model not to fuse the neighboring sentences.
Conversely, 6; = 0 means that the facts should
be aggregated and their corresponding sentences
should be fused (see §5.2 and §5.3).

3.5 Paragraph Compression

The paragraph compression model (see §5.3
for simplified variants) takes as input the or-
dered sequence of facts with delimiters F, =
{for,0015 fozs--+00, 1, fo,} and produces a re-
sulting text Y. The objectives of the model are
two-fold: (a) fusing related sentences, i.e., sen-
tences ¢ and j in between which §; = 0, and (b)
rephrasing the text to improve its fluency, e.g. fix-
ing minor disfluencies in the templates, replacing
noun phrases with refering expressions, etc. The
focus is on minor rephrasing since the goal is to
preserve the semantics of the original text.

4 WIKIFLUENT Corpus

A key to our approach is building a large-scale
synthetic corpus providing training data for the text
operations in our pipeline. Our corpus needs to
cover a broad range of domains while capturing the
sentence style in D2T generation, both regarding
the input templates and the target descriptions. In
other words, we aim to build a corpus in which:
* the input is a set of simple, template-like sen-
tences,
* the output is a fluent text in natural language
preserving the semantics of the input.
As we describe below in detail, we achieve that by
applying a split-and-rephrase model and a corefer-
ence resolution model on a set of human-written
paragraphs in English Wikipedia. We consider the
processed text as a source and the original text as
the target. The process is illustrated in Figure 3;
corpus statistics are included in Appendix A.

4.1 Data Source

For building the WIKIFLUENT corpus, we ex-
tracted 934k first paragraphs of articles from a
Wikipedia dump? using WikiExtractor (Attardi,

Zenwiki-20210401 -pages-articles-multistream

The Westmeath Examiner is a weekly newspaper in Westmeath, Ireland.
>

It was founded in 1882.
split-and-rephrase original paragraph

B it <The Westmeath Examiner is a weekly newspaper.
| successtul ™1t i located in Westmeath, Ireland.
It was founded in 1882.

coreference replacement
*~.._ The Westmeath Examineris a weekly newspaper.

<:The Westmeath Examiner is located in Westmeath, Ireland.

pronouns

resolved The Westmeath Examiner was founded in 1882.

processed paragraph

Figure 3: The building process of the WIKIFLUENT
corpus. We apply a split-and-rephrase model on each
sentence in the paragraph and resolve coreferences in
the split sentences.

2015). The paragraphs contain mostly concise, fact-
based descriptions from a wide range of domains.
We selected paragraphs with length between 30-
430 characters, filtering out lists, disambiguations,
repeated and malformed paragraphs. To further
ensure that the length of inputs is balanced, we
selected 250k examples each from 4 equidistant
length ranges (30-130 characters, etc.).

4.2 Split-and-Rephrase

For generating the target set of sentences, we di-
vide each paragraph into sentences using NLTK
(Bird, 2006) and apply a split-and-rephrase model
on each sentence. Split-and-rephrase is a task of
splitting a complex sentence into a meaning pre-
serving sequence of shorter sentences (Narayan
et al., 2017). We train our model on the large-scale
WikiSplit corpus by Botha et al. (2018), contain-
ing human-made sentence splits from Wikipedia
edit history. Following the setup in the rest of our
experiments, we train the encoder-decoder PLM
BART-base (Lewis et al., 2020) on the WikiSplit
dataset in a sequence-to-sequence setting. We ap-
ply the trained split-and-rephrase model on each
sentence, uniformly randomly choosing between
0-2 recursive calls to ensure that the splits are not
deterministic. If the sentence cannot be meaning-
fully split, the model tends to duplicate the sentence
on the output; in that case, we use only the original
sentence and do not proceed with the splitting.

4.3 Coreference Replacement

Next, we concatenate the split sentences and ap-
ply a coreference resolution model (Gardner et al.,
2018) in order to replace referring expressions
with their antencendents (e.g., pronouns with noun
phrases). This allows to better follow the style of

the templates in which the entities are always fully
verbalized. Since we keep the referring expressions
in the original human-written text, we can train the
paragraph compression module to generate them
in the final text description.

4.4 Filtering

To assert that the generated sentences convey the
same semantics as the original paragraph, we use
a pretrained RoBERTa model® (Liu et al., 2019)
trained on the MultiNLI dataset (Williams et al.,
2018) for checking the semantic accuracy of the
generated text. Following DuSek and Kasner
(2020), we test if the original paragraph entails each
of the synthesized sentences (checking for omis-
sions), and if the set of concatenated synthesized
sentences entails the original paragraph (checking
for hallucinations). In a filtered version of the WIK-
IFLUENT corpus, we include only the examples
without omissions or hallucinations (as computed
by the model), reducing it to approximately 3/4 of
the original size.

5 Experiments

We show how we build our pipeline (§5.1-5.4) and
discuss the D2T generation datasets which we use
for our experiments (§5.5). The details of our train-
ing setup are included in Appendix B.

5.1 Ordering Model

For our ordering model (see §3.3), we use the Sim-
ple Pointer model from Calizzano et al. (2021).
The model is based on a pretrained BART-base
extended with a pointer network from Wang and
Wan (2019). We provide a short description of the
model here; for details see Calizzano et al. (2021).

In the encoding phase, facts F' are concatenated
and tokenized. Each fact is surrounded by spe-
cial tokens denoting the beginning (<s>) and the
end (</s>) of the fact. The sequence is processed
by the BART encoder, generating a sequence of
encoder states E for each end token </s> repre-
senting the preceding fact.

The decoding proceeds autoregressively. To
bootstrap the decoding process, the pair of tokens
<s></s> is fed into the decoder, producing the de-
coder state d;. The pointer network (attending to
dy and E), selects the first ordered fact f,,, which
is fed into the decoder in the next step. The process

Shttps://huggingface.co/roberta-large-mnli

is repeated until the all the facts are decoded in a
particular order.

The pointer network computes the probability of
a fact to be on the j-th position, using the encoder
output £ and the decoder output d;. The network
is based on the scaled dot product attention, where
d; is the query and encoder outputs [; are the keys:

Q =d;Wq
K = EWg

QK T>
P; = softmax .
)= sotomax (£

Here Wg and Wi € Rb*b b is the dimension of
BART hidden states, and P; € R"! is the proba-
bility distribution for the j-th position (i.e., Pj; is
the probability that fact f; is on the j-th position).

We train the model using the split sentences in
the WIKIFLUENT corpus, randomly shuffling the
order of the sentences and training the model to
restore their original order.

5.2 Aggregation Model

We base our aggregation model (cf. §3.4) on
RoBERTa-large (Liu et al., 2019) with a token clas-
sification head.* Similarly to the ordering model
(§5.1), we input the sequence of facts F}, into the
model, separating each pair of facts f,, with a spe-
cial token </s> (used by the model as a separator).
Subsequently, the token classification layer classi-
fies each separator </s>; position into two classes
{0,1} corresponding to the delimiter §;. We ig-
nore the outputs for the non-separator tokens while
computing the cross-entropy loss.

We create the training examples using the split
sentences in the WIKIFLUENT corpus, in which
we set d; = 0 for the sentences 7,7 + 1 which were
originally aggregated (i.e., are the result of splitting
a single sentence) and J; = 1 otherwise.

5.3 Paragraph Compression Model

We adopt BART-base for our paragraph compres-
sion model. We train the model in a sequence-
to-sequence setting on the WIKIFLUENT corpus,
concatenating the split sentences on the input. We
add delimiters between sentences ¢ and ¢ + 1 where
6; = 1 using a special token <sep>, which we
add to the model vocabulary. As shown in Keskar
et al. (2019), including control codes for training

*https://huggingface.co/transformers/model _
doc/roberta.html#robertafortokenclassification

https://huggingface.co/roberta-large-mnli
https://huggingface.co/transformers/model_doc/roberta.html#robertafortokenclassification
https://huggingface.co/transformers/model_doc/roberta.html#robertafortokenclassification

A dam is a barrier. 3-stage

A dam obstructs flowing water.
... : 2_Stage
A dam is a barrier obstructing _

; out ' flowing water. 1-stage

— agg —»{

L PCragg —> I

ord —»{

PC+ord+agg —» ‘

Figure 4: An example illustrating how the individual modules are trained and subsequently applied as the parts of
the pipeline. See §5.1 for description of the ordering model (ORD), §5.2 for the aggregation model (AGG), and §5.3
for the versions of the paragraph compression model (PC, PC+AGG, PC+ORD+AGG).

the model can steer the model towards producing
certain outputs. We evaluate our model’s behavior
with respect to ordering and aggregation in §6.3.

5.4 Ablation Study

In order to evaluate individual components of our
pipeline, we train three versions of the PC model
(see §5.3). The models share the same architecture
and targets, but differ in their inputs:

e PC - the model takes as an input ordered facts
with delimiters (as described in §3.5),

* PC+AGG — the model takes as an input or-
dered facts without delimiters (i.e., the aggre-
gation is left implicitly to the model),

* PC+0ORD+AGG — the model takes as an input
facts in random order and without delimiters
(i.e., both ordering and aggregation are left
implicitly to the model).

Subsequently, we test three versions of the

pipeline (see Figure 4):

* 3-STAGE — a full version of the pipeline con-
sisting of the ordering model, the aggregation
model and the PC model (following the full
pipeline from §3),

* 2-STAGE - a pipeline consisting of the order-
ing model and the PC+AGG model,

* 1-STAGE - a single stage consisting of the
PC+0ORD+AGG model.

We evaluate all versions of the pipeline with PC

models trained on the full and filtered versions of
the WIKIFLUENT dataset (see §4).

5.5 D2T Datasets

We test our approach on two English D2T datasets,
WebNLG and E2E. They differ in domain, size, tex-
tual style, and number of predicates (see Appendix
A for details).

WebNLG The WebNLG dataset (Gardent et al.,
2017) contains RDF triples from DBPedia (Auer
et al., 2007) and their crowdsourced descriptions.
The dataset was extended for the WebNLG+ Chal-

lenge (Ferreira et al., 2020), but we use the version
1.4 for comparability to prior work. Templates for
WebNLG could be extracted from the training data
by delexicalizing single-triple examples. However,
the examples are noisy and such data would not be
available in a zero-shot setup. Therefore, we hand-
crafted templates for all 354 predicates, including
unseen predicates in the test set.’

E2E The E2E dataset (Novikova et al., 2017,
Dusek et al., 2020) contains restaurant recommen-
dations in the form of attribute-value pairs. We
use the cleaned version of the dataset (DusSek et al.,
2019). Following previous work, we transformed
the attribute-value pairs into RDF triples (using the
restaurant name as a subject) and then applied the
same setup as for WebNLG. We created a template
for each of the 8 attributes manually.

6 Evaluation

We evaluate outputs from the {1,2,3}-STAGE vari-
ants of our pipeline automatically (§6.1) and manu-
ally (§6.2). Further, we evaluate the performance
of the content planning modules and the ability of
the PC module to follow the content plan (§6.3).

6.1 Automatic Metrics

Following prior work, we use BLEU (Papineni
et al., 2002) and METEOR (Banerjee and Lavie,
2005) to evaluate the outputs against the human
references.® We also evaluate the number of omis-
sion and hallucination errors (i.e., facts missing
or added, respectively) using a metric from Dusek
and Kasner (2020) based on a RoBERTa model
(Liu et al., 2019) pretrained on natural language
inference (NLI).”

5The templates are single-sentence and mostly clear-cut
verbalizations of the predicates. We did not use human refer-
ences from the dataset when creating the templates.

SWe use the implementation from https://github.
com/tuetschek/e2e-metrics.

"We additionally evaluated the outputs on the E2E dataset
using the provided pattern-based slot error script. See Ap-

https://github.com/tuetschek/e2e-metrics
https://github.com/tuetschek/e2e-metrics

Alabama)

Indian Cuisine.

They love kids.

(Allen Forrest; background; solo singer), (Allen Forrest; genre; Pop music), (Allen Forrest; birthPlace; Dothan,

Allen Forrest is a solo singer. Allen Forrest performs Pop music. Allen Forrest was born in Dothan, Alabama.
Allen Forrest is a solo singer who performs Pop music. He was born in Dothan, Alabama.
Born in Dothan, Alabama, Allen Forrest has a background as a solo singer and was a pop artist.

name[Wildwood], eatType[restaurant], food[French], area[riverside], near[Raja Indian Cuisine]
Wildwood is a restaurant. Wildwood serves French food. Wildwood is in the riverside. Wildwood is near Raja

Wildwood is a restaurant serving French food. It is in the riverside near Raja Indian Cuisine.
A amazing French restaurant is called the Wildwood. The restaurant is near the Raja Indian Cuisine in riverside.

Table 1: Example outputs of our model (3-STAGE, filtered). See Appendix D for more examples.

B M (0] H

B M (0] H

UPF-FORGe* 38.65 39.00 0.075 0.101
MELBOURNE* 45.13 37.00 0.237 0.202
Keetal. 2021)* 66.14 47.25 - -
Laha et al. (2020)7 24.80 34.90 - -
COPY 37.18 38.77 0.000 0.000
3-STAGE 42.92 39.07 0.051 0.148
full 2-STAGE 4290 39.28 0.043 0.125
1-STAGE 39.08 38.94 0.071 0.204
3-STAGE 43.19 39.13 0.152 0.073
filtered 2-STAGE 43.49 3932 0.146 0.096
1-STAGE 42,99 3881 0202 0.093

Table 2: Automatic metrics on WebNLG. B = BLEU, M
=METEOR, O = omissions / # facts, H = hallucinations
/ # examples. The systems marked with asterisk (*) are
trained on the WebNLG dataset. Results for the systems
marked with T are copied from the respective papers.

We include a diverse set of baselines for com-
parison. For WebNLG (see Table 2), we include
the results of UPF-FORGe and MELBOURNE sys-
tems from the first run of WebNLG Challenge (Gar-
dent et al., 2017) which are comparable in terms
of automatic metrics and semantic errors, and the
results of Ke et al. (2021), which is a state-of-the-
art system using structure-aware encoder and task-
specific pretraining. Laha et al. (2020) is (to our
knowledge) the only other zero-shot D2T genera-
tion system applied on WebNLG. TGEN (Dusek
and Jurcicek, 2015) is the baseline system for the
E2E Challenge (Dusek et al., 2020) and Harkous
et al. (2020) is a state-of-the art supervised sys-
tem applied on the cleaned E2E (see Table 3). For
both datasets, COPY is the baseline of copying the
templates verbatim.

The automatic evaluation suggests that while
our system lags behind state-of-the-art supervised
systems, it shows considerable improvements com-
pared to the COPY baseline (e.g., ~12 BLEU points

pendix C for the details.

TGEN* 40.73 3776 0.016 0.083
Harkous etal. (2020)* 43.60 39.00 - -
COPY 24.19 34.89 0.000 0.000

3-STAGE 36.04 3695 0.001 0.001
Sull 2-STAGE 35.84 3691 0.001 0.001
el STAGE 3081 36.01 0009 0122

3-STAGE 3588 36.95 0.001 0.001
filtered ~ 2-STAGE 36.01 36.99 0.001 0.001

1-STAGE 34.08 36.32 0.012 0.050

Table 3: Automatic metrics on E2E. B = BLEU, M =
METEOR, O = omissions / # facts, H = hallucinations /
examples. The systems marked with asterisk (*) are
trained on the E2E dataset. The results for Harkous et al.
(2020) are copied from the paper.

for E2E) and matches performance of some older
supervised systems. The COPY baseline is substan-
tially better than the zero-shot system of Laha et al.
(2020), suggesting that quality of the templates
plays an important role. The 2-STAGE system is
generally on par with the 3-STAGE system (or bet-
ter), which indicates that implicit aggregation using
the PC-AGG model may be sufficient. However, an
advantage of having a separate aggregation module
is the possibility to control the aggregation step
explicitly. The filtered version of the dataset gener-
ally brings better results, although it brings also an
increase in the number of omissions.

6.2 Manual Evaluation

We manually evaluated 100 outputs of the models
regarding factual errors (hallucinations, omissions,
incorrect fact merging, redundancies) as well as
grammatical errors. The results are listed in Table
4. The 1-STAGE model (which has to order the
facts implicitly) tends to repeat the facts in the text
(especially in E2E) and produces frequent halluci-
nations. These problems are only slightly reduced
in the filtered version, but they are largely elim-

WebNLG E2E
HIORG HIORG

3-STAGE 3 39 2 2 16 0o10 0 17
EZ—STAGE 8 36 1 516 1 10 1 23
T 1-STAGE 28 27 6 10 20 17 0 1 79 45
3 3-STAGE 2 37 2 1 15 0 00 0 17
S 2-STAGE 5 32 1 2 14 0 00 0 11
S 1-STAGE 8 40 6 6 16 11 2 1 41 22

B-2 Acc

Transformer (Ferreira et al., 2019)" 5220 0.35

Step-by-step (Moryossef et al., 2019b)T ~ 70.80 0.47

PLANENC (Zhao et al., 2020)" 80.10 0.62
Plan-then-generate (Su etal, 2021b)" 8497 072

RANDOM 47.00 0.29

BART+ptr (Calizzano et al., 2021) 59.10 048

Table 4: Number of manually annotated errors on 100
examples: H = hallucinations, I = incorrect fact merging,
O = omissions, R = redundancies, G = grammar errors
or disfluencies.

inated with 2-STAGE and 3-STAGE models. We
note these models create almost no hallucinations
or omissions. However, the outputs on WebNLG
for all systems suffer from semantic errors result-
ing from merging of unrelated facts. This mostly
happens with unrelated predicates connected to the
same subject/object (e.g. “X was born in Y7, “X
worked as Z” expressed as “X worked as Z in Y”;
see Appendix D for examples). On the E2E data,
which has a simpler triple structure (all predicates
share the same subject), the outputs are generally
consistent and the 2-STAGE and 3-STAGE models
exhibit almost no semantic errors. As we discuss in
§7, more research is needed for ensuring the final
consistency of the text. The grammar errors and dis-
fluencies stem mainly from over-eager paragraph
compression or from artifacts in our templates; they
are relatively minor (e.g., missing “is” in “serves
French food and family-friendly”).

6.3 Content Planning

Following Su et al. (2021b) and Zhao et al. (2020),
we report the accuracy (Acc) and BLEU-2 score (B-
2) of our ordering model on WebNLG against the
human-generated plans from Ferreira et al. (2018).
The results are listed in Table 5. RANDOM is the
baseline of generating a random order. The results
show that although our approach lacks behind state-
of-the-art supervised approaches, it can outperform
both the random baseline and the Transformer-
based approach from Ferreira et al. (2019) while
not using any training examples from WebNLG.
We also evaluate the accuracy of our aggrega-
tion model, using triples ordered according to the
plans from Ferreira et al. (2018) as input. The ac-
curacy is 0.33 per example and 0.62 per sentence
boundary (random baseline is 0.23 and 0.50, re-
spectively). The results show that although our
approach is better than the random baseline, further

Table 5: Evaluation of our zero-shot ordering model
based on Calizzano et al. (2021). The results marked
with { are copied from the respective papers.

investigation regarding plausible fact aggregation
schemes is needed.

Finally, we manually evaluate how the PC
model follows the content plan using 100 ran-
domly chosen examples with more than 1 triple
on WebNLG and E2E. We find that the model fol-
lows the content plan in 95% and 100% of cases,
respectively. The incorrect cases include a fact not
properly mentioned and an extra boundary between
the sentences without a separator. We can thus con-
clude that the pretraining task successfully teaches
the PC model to follow a given content plan.

7 Discussion and Future Work

In the current form, our pipeline can be directly
applied to generating text from RDF triples (or
similarly structured data) which require no extra
processing. Further extensions are needed for more
complex D2T scenarios, e.g. datasets requiring con-
tent selection or common-sense and logical reason-
ing (Wiseman et al., 2017; Lin et al., 2019; Chen
et al., 2020b).

Our approach regarding handcrafting a single
template for each predicate is quite basic. Gener-
ating simple statements from the triples automati-
cally, e.g., using the approach of Laha et al. (2020),
could reduce the manual workload and allow apply-
ing our approach on datasets with a less constrained
set of data attributes such as ToTTo (Parikh et al.,
2020) or DART (Nan et al., 2021). Moreover, ex-
plicitly including a denoising task for the paragraph
compression model could help to tackle the disflu-
encies in the templates.

More research is also needed on semantic errors
stemming from merging of facts in improper ways.
We suggest that explicitly controlling the semantics
of sentence fusion (Ben-David et al., 2020) could
help to mitigate this issue, while still keeping the
advantages of a zero-shot approach.

References

Oshin Agarwal, Heming Ge, Siamak Shakeri, and Rami
Al-Rfou. 2021. Knowledge graph based synthetic
corpus generation for knowledge-enhanced language
model pre-training. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 3554-3565.

Giusepppe Attardi. 2015. Wikiextractor. https://
github.com/attardi/wikiextractor.

Soren Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary Ives. 2007.
Dbpedia: A nucleus for a web of open data. In The
semantic web, pages 722-735. Springer.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65-72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

Regina Barzilay, Noemie Elhadad, and Kathleen McK-
eown. 2001. Sentence ordering in multidocument
summarization. In Proceedings of the first interna-
tional conference on Human language technology
research.

Regina Barzilay and Kathleen R McKeown. 2005. Sen-
tence fusion for multidocument news summarization.
Computational Linguistics, 31(3):297-328.

Eyal Ben-David, Orgad Keller, Eric Malmi, Idan Szpek-
tor, and Roi Reichart. 2020. Semantically driven sen-
tence fusion: Modeling and evaluation. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing: Findings, pages
1491-1505.

Steven Bird. 2006. Nltk: the natural language toolkit.
In Proceedings of the COLING/ACL 2006 Interactive
Presentation Sessions, pages 69-72.

Jan A. Botha, Manaal Faruqui, John Alex, Jason
Baldridge, and Dipanjan Das. 2018. Learning to split
and rephrase from Wikipedia edit history. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 732-737,
Brussels, Belgium. Association for Computational
Linguistics.

Rémi Calizzano, Malte Ostendorff, and Georg Rehm.
2021. Ordering sentences and paragraphs with pre-
trained encoder-decoder transformers and pointer en-
sembles. In Proceedings of the 21st ACM Symposium
on Document Engineering, pages 1-9.

Ernie Chang, Xiaoyu Shen, Hui-Syuan Yeh, and Vera
Demberg. 2021a. On training instance selection
for few-shot neural text generation. arXiv preprint
arXiv:2107.03176.

Ernie Chang, Xiaoyu Shen, Dawei Zhu, Vera Demberg,
and Hui Su. 2021b. Neural data-to-text generation
with Im-based text augmentation. In Proceedings
of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main
Volume, pages 758-768.

Wenhu Chen, Yu Su, Xifeng Yan, and William Yang
Wang. 2020a. KGPT: Knowledge-grounded pre-
training for data-to-text generation. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 8635—
8648, Online. Association for Computational Lin-
guistics.

Xinchi Chen, Xipeng Qiu, and Xuanjing Huang.
2016. Neural sentence ordering. arXiv preprint
arXiv:1607.06952.

Zhiyu Chen, Wenhu Chen, Hanwen Zha, Xiyou Zhou,
Yunkai Zhang, Sairam Sundaresan, and William Yang
Wang. 2020b. Logic2text: High-fidelity natural lan-
guage generation from logical forms. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing: Findings, pages 2096—
2111.

Zhiyu Chen, Harini Eavani, Wenhu Chen, Yinyin Liu,
and William Yang Wang. 2020c. Few-shot NLG
with pre-trained language model. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 183—190, Online.

Baiyun Cui, Yingming Li, and Zhongfei Zhang. 2020.
Bert-enhanced relational sentence ordering network.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6310-6320.

Robert Dale. 2020. Natural language generation: The
commercial state of the art in 2020. Natural Lan-
guage Engineering, 26(4):481-487.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume I (Long and Short Papers), pages 4171—
4186.

Ondrej Dusek, David M Howcroft, and Verena Rieser.
2019. Semantic noise matters for neural natural lan-
guage generation. In Proceedings of the 12th Interna-
tional Conference on Natural Language Generation,
pages 421-426.

Ondfej Dusek and Filip Jurcicek. 2015. Training a
natural language generator from unaligned data. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 451-461.

https://github.com/attardi/wikiextractor
https://github.com/attardi/wikiextractor
https://github.com/attardi/wikiextractor
https://www.aclweb.org/anthology/W05-0909
https://www.aclweb.org/anthology/W05-0909
https://www.aclweb.org/anthology/W05-0909
https://www.aclweb.org/anthology/W05-0909
https://www.aclweb.org/anthology/W05-0909
https://doi.org/10.18653/v1/D18-1080
https://doi.org/10.18653/v1/D18-1080
https://doi.org/10.18653/v1/D18-1080
https://doi.org/10.18653/v1/2020.emnlp-main.697
https://doi.org/10.18653/v1/2020.emnlp-main.697
https://doi.org/10.18653/v1/2020.emnlp-main.697
https://www.aclweb.org/anthology/2020.acl-main.18
https://www.aclweb.org/anthology/2020.acl-main.18
https://www.aclweb.org/anthology/2020.acl-main.18

Ondrej Dusek and Zdenék Kasner. 2020. Evaluating
semantic accuracy of data-to-text generation with
natural language inference. In Proceedings of the
13th International Conference on Natural Language
Generation, pages 131-137.

Ondrej Dusek, Jekaterina Novikova, and Verena Rieser.
2020. Evaluating the state-of-the-art of end-to-end
natural language generation: The e2e nlg challenge.
Computer Speech & Language, 59:123—-156.

et al. Falcon, WA. 2019. Pytorch lightning. GitHub.
Note: https://github.com/PyTorchLightning/pytorch-
lightning, 3.

Thiago Ferreira, Claire Gardent, Nikolai Ilinykh, Chris
van der Lee, Simon Mille, Diego Moussallem, and
Anastasia Shimorina. 2020. The 2020 bilingual, bi-
directional webnlg+ shared task overview and eval-
uation results (webnlg+ 2020). In Proceedings of
the 3rd International Workshop on Natural Language
Generation from the Semantic Web (WebNLG+).

Thiago Castro Ferreira, Diego Moussallem, Emiel Krah-
mer, and Sander Wubben. 2018. Enriching the
webnlg corpus. In Proceedings of the 11th Interna-
tional Conference on Natural Language Generation,
pages 171-176.

Thiago Castro Ferreira, Chris van der Lee, Emiel van
Miltenburg, and Emiel Krahmer. 2019. Neural data-
to-text generation: A comparison between pipeline
and end-to-end architectures. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing

(EMNLP-1JCNLP), pages 552-562.

Katja Filippova and Yasemin Altun. 2013. Overcom-
ing the lack of parallel data in sentence compression.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1481-1491.

Claire Gardent, Anastasia Shimorina, Shashi Narayan,
and Laura Perez-Beltrachini. 2017. The WebNLG
challenge: Generating text from RDF data. In Pro-
ceedings of the 10th International Conference on Nat-
ural Language Generation, pages 124—133, Santiago
de Compostela, Spain.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
Allennlp: A deep semantic natural language process-
ing platform. In Proceedings of Workshop for NLP
Open Source Software (NLP-OSS), pages 1-6.

Albert Gatt and Emiel Krahmer. 2018. Survey of the
state of the art in natural language generation: Core
tasks, applications and evaluation. Journal of Artifi-
cial Intelligence Research, 61:65-170.

Mor Geva, Eric Malmi, Idan Szpektor, and Jonathan
Berant. 2019. Discofuse: A large-scale dataset for
discourse-based sentence fusion. In Proceedings of

10

the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 3443-3455.

Jingjing Gong, Xinchi Chen, Xipeng Qiu, and Xu-
anjing Huang. 2016. End-to-end neural sentence
ordering using pointer network. arXiv preprint
arXiv:1611.04953.

Hamza Harkous, Isabel Groves, and Amir Saffari. 2020.
Have your text and use it too! end-to-end neural
data-to-text generation with semantic fidelity. In Pro-
ceedings of the 28th International Conference on
Computational Linguistics, pages 2410-2424.

Peyman Heidari, Arash Einolghozati, Shashank Jain,
Soumya Batra, Lee Callender, Ankit Arun, Shawn
Mei, Sonal Gupta, Pinar Donmez, Vikas Bhardwaj,
et al. 2021. Getting to production with few-shot
natural language generation models. In Proceedings
of the 22nd Annual Meeting of the Special Interest
Group on Discourse and Dialogue, pages 66-76.

Chao Jiang, Mounica Maddela, Wuwei Lan, Yang
Zhong, and Wei Xu. 2020. Neural crf model for
sentence alignment in text simplification. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 7943-7960.

Mihir Kale and Abhinav Rastogi. 2020a. Template
guided text generation for task-oriented dialogue. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6505-6520, Online. Association for Computa-
tional Linguistics.

Mihir Kale and Abhinav Rastogi. 2020b. Text-to-text
pre-training for data-to-text tasks. In Proceedings of
the 13th International Conference on Natural Lan-
guage Generation, pages 97-102, Dublin, Ireland.
Association for Computational Linguistics.

Zdenék Kasner and Ondrej Dusek. 2020. Data-to-text
generation with iterative text editing. In Proceed-
ings of the 13th International Conference on Natural
Language Generation, pages 60—67.

Pei Ke, Haozhe Ji, Yu Ran, Xin Cui, Liwei Wang,
Linfeng Song, Xiaoyan Zhu, and Minlie Huang.
2021. Jointgt: Graph-text joint representation learn-

ing for text generation from knowledge graphs. arXiv
preprint arXiv:2106.10502.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney,
Caiming Xiong, and Richard Socher. 2019. Ctrl: A
conditional transformer language model for control-
lable generation. arXiv preprint arXiv:1909.05858.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

http://www.aclweb.org/anthology/W17-3518
http://www.aclweb.org/anthology/W17-3518
http://www.aclweb.org/anthology/W17-3518
https://doi.org/10.18653/v1/2020.emnlp-main.527
https://doi.org/10.18653/v1/2020.emnlp-main.527
https://doi.org/10.18653/v1/2020.emnlp-main.527
https://www.aclweb.org/anthology/2020.inlg-1.14
https://www.aclweb.org/anthology/2020.inlg-1.14
https://www.aclweb.org/anthology/2020.inlg-1.14
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

Anirban Laha, Parag Jain, Abhijit Mishra, and Karthik
Sankaranarayanan. 2020. Scalable micro-planned
generation of discourse from structured data. Com-
putational Linguistics, 45(4):737-763.

Mirella Lapata. 2003. Probabilistic text structuring:
Experiments with sentence ordering. In Proceedings
of the 41st Annual Meeting of the Association for
Computational Linguistics, pages 545-552.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871-7880.

Jiwei Li and Dan Jurafsky. 2017. Neural net models of
open-domain discourse coherence. In Proceedings
of the 2017 Conference on Empirical Methods in
Natural Language Processing, pages 198-209.

Bill Yuchen Lin, Ming Shen, Yu Xing, Pei Zhou, and
Xiang Ren. 2019. Commongen: A constrained text
generation dataset towards generative commonsense
reasoning.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Amit Moryossef, Yoav Goldberg, and Ido Dagan. 2019a.
Improving quality and efficiency in plan-based neu-
ral data-to-text generation. In Proceedings of the
12th International Conference on Natural Language
Generation, pages 377-382.

Amit Moryossef, Yoav Goldberg, and Ido Dagan. 2019b.
Step-by-step: Separating planning from realization
in neural data-to-text generation. arXiv preprint
arXiv:1904.03396.

Linyong Nan, Dragomir Radev, Rui Zhang, Amrit
Rau, Abhinand Sivaprasad, Chiachun Hsieh, Xiangru
Tang, Aadit Vyas, Neha Verma, Pranav Krishna, et al.
2021. Dart: Open-domain structured data record to
text generation. In Proceedings of the 2021 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 432—447.

Shashi Narayan, Claire Gardent, Shay B. Cohen, and
Anastasia Shimorina. 2017. Split and rephrase. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages 606—
616, Copenhagen, Denmark. Association for Compu-
tational Linguistics.

Jekaterina Novikova, Ondrej Dusek, and Verena Rieser.
2017. The E2E Dataset: New Challenges for End-to-
End Generation. In Proceedings of the 18th Annual
Meeting of the Special Interest Group on Discourse

11

and Dialogue, pages 201-206, Saarbriicken, Ger-
many.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Ankur Parikh, Xuezhi Wang, Sebastian Gehrmann, Man-
aal Faruqui, Bhuwan Dhingra, Diyi Yang, and Di-
panjan Das. 2020. Totto: A controlled table-to-text
generation dataset. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1173-1186.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances
in Neural Information Processing Systems, 32:8026—
8037.

Ratish Puduppully, Li Dong, and Mirella Lapata. 2019.
Data-to-text generation with content selection and
planning. In Proceedings of the AAAI conference on
artificial intelligence, volume 33, pages 6908—-6915.

Clément Rebuffel, Marco Roberti, Laure Soulier, Geof-
frey Scoutheeten, Rossella Cancelliere, and Patrick
Gallinari. 2021. Controlling hallucinations at word

level in data-to-text generation. arXiv preprint
arXiv:2102.02810.

Ehud Reiter and Robert Dale. 1997. Building applied
natural language generation systems. Natural Lan-
guage Engineering, 3(1):57-87.

Leonardo FR Ribeiro, Martin Schmitt, Hinrich Schiitze,
and Iryna Gurevych. 2020. Investigating pretrained
language models for graph-to-text generation. arXiv
preprint arXiv:2007.08426.

Zhihong Shao, Minlie Huang, Jiangtao Wen, Wenfei Xu,
and Xiaoyan Zhu. 2019. Long and diverse text gen-
eration with planning-based hierarchical variational
model. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3257-3268, Hong Kong, China. Association for Com-
putational Linguistics.

Xiaoyu Shen, Ernie Chang, Hui Su, Cheng Niu, and Di-
etrich Klakow. 2020. Neural data-to-text generation
via jointly learning the segmentation and correspon-
dence. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7155-7165, Online. Association for Computational
Linguistics.

https://doi.org/10.18653/v1/D17-1064
https://www.aclweb.org/anthology/W17-5525/
https://www.aclweb.org/anthology/W17-5525/
https://www.aclweb.org/anthology/W17-5525/
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/D19-1321
https://doi.org/10.18653/v1/D19-1321
https://doi.org/10.18653/v1/D19-1321
https://doi.org/10.18653/v1/D19-1321
https://doi.org/10.18653/v1/D19-1321
https://doi.org/10.18653/v1/2020.acl-main.641
https://doi.org/10.18653/v1/2020.acl-main.641
https://doi.org/10.18653/v1/2020.acl-main.641
https://doi.org/10.18653/v1/2020.acl-main.641
https://doi.org/10.18653/v1/2020.acl-main.641

Yixuan Su, Zaigiao Meng, Simon Baker, and Nigel Col-
lier. 2021a. Few-shot table-to-text generation with
prototype memory. In Findings of the Association
for Computational Linguistics: EMNLP 2021, pages
910-917.

Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang,
and Nigel Collier. 2021b. Plan-then-generate: Con-
trolled data-to-text generation via planning. arXiv
preprint arXiv:2108.13740.

Bayu Trisedya, Jianzhong Qi, and Rui Zhang. 2020.
Sentence generation for entity description with
content-plan attention. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 34,
pages 9057-9064.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. Advances in Neural Infor-
mation Processing Systems, 28:2692-2700.

Tianming Wang and Xiaojun Wan. 2019. Hierarchical
attention networks for sentence ordering. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 7184-7191.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long Papers), pages 1112-1122.

Sam Wiseman, Stuart M Shieber, and Alexander M
Rush. 2017. Challenges in data-to-document gen-
eration. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 2253-2263.

Sam Wiseman, Stuart M Shieber, and Alexander M
Rush. 2018. Learning neural templates for text gen-
eration. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3174-3187.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Xinnuo Xu, Ondfej Dusek, Verena Rieser, and Ioannis
Konstas. 2021. Agggen: Ordering and aggregating
while generating. arXiv preprint arXiv:2106.05580.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In In-
ternational Conference on Machine Learning, pages
11328-11339. PMLR.

Chao Zhao, Marilyn Walker, and Snigdha Chaturvedi.
2020. Bridging the structural gap between encoding

12

and decoding for data-to-text generation. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 2481-2491.

A Dataset Statistics

Statistics for the datasets described in the paper are
listed in Table 7.

B Experimental Setup
B.1 Our Models

We implemented the models for split-and-rephrase,
aggregation, and paragraph compression in Py-
Torch Lightning (Paszke et al., 2019), using the
PyTorch (Falcon, 2019) version of the BART and
RoBERTa models from the Huggingface library
(Wolf et al., 2019).

We use the Adam (Kingma and Ba, 2015) opti-
mizer (81 = 0.9, B2 = 0.997, ¢ = 179) with learn-
ing rate 275, linear scheduling and 0.1 warmup
proportion; batches of size 8 and accumulating gra-
dients with factor 4. We train the models for 1
epoch on a single GeForce RTX 3090 GPU with
24 GB RAM. We use greedy decoding in all our
experiments.

B.2 Ordering

For training the ordering model, we used the imple-
mentation from Calizzano et al. (2021) 8 including
their training parameters. We plan to fully inte-
grate the ordering model into our framework in the
future.

C Additional Results

We provide evaluation of semantic accuracy on the
E2E dataset as evaluated with the slot-error script
based on matching regular expressions in Table 6.°

Note that our manual investigation of a sample
of the data shows that the majority of the errors
identified in our model outputs are false. For ex-
ample, the following regular expression used in the
slot-error script:

prices?(?: range)?7(7:w+)0,3 high

matches "(...) price range and high customer rat-
ing (...)", incorrectly classifying the presence of
the extra slot priceRange[high]. This importance
of this problem is exacerbated by the consistent

%https://github.com/airklizz/
passage-ordering

*https://github.com/tuetschek/e2e-cleaning/
blob/master/slot_error.py

https://github.com/airKlizz/passage-ordering
https://github.com/airKlizz/passage-ordering
https://github.com/tuetschek/e2e-cleaning/blob/master/slot_error.py
https://github.com/tuetschek/e2e-cleaning/blob/master/slot_error.py

miss add miss+add

TGEN 0.0060 0.0433 0.0016
COPY 0.0000 0.0000 0.0000

3-STAGE 0.0238 0.0698 0.0060
Sull 2-STAGE 0.0054 0.0363 0.0000

filiered 2-STAGE 0.0043 0.0368 0.0000
1-STAGE 0.0043 0.0347 0.0000

Table 6: Proportion of output examples with missed
only, added only, and both missed and added facts, ac-
cording to the regular-expression-based E2E slot error
script.

outputs of our models, which tend to repeat certain
patterns. However, we also manually identified sev-
eral cases in which an error was found correctly,
e.g. the model hallucinating "3 out of 4 customer
rating" instead of "3 out of 5 customer rating".

D Example Outputs

Tables 8, 9, 10, and 11 show examples of behavior
of our models on the WebNLG dataset. Tables 12
and 13 show examples of behavior of our models
on the E2E dataset.

The green color marks the model outputs which
are completely correct, the red color marks the
errors. For better readability of the input format,
we add numeric order identifiers for the individ-
ual facts (bold, in squared brackets). These are
subsequently used as references in the Order and
Aggregation rows. Note that zero-th input in E2E
is used as a subject in the RDF triples.

13

#train #dev #test tok/src tok/tgt sent/src sent/tgt

WebNLG 18,102 870 1,862 26.8 22.6 3.0 1.4
Clean E2E 33,236 4,299 1,847 29.2 223 4.2 1.5
WIKIFLUENT-full 915,855 9,346 9,346 529 41.1 39 2.0
WIKIFLUENT-filtered 700,517 7,149 7,149 45.6 354 34 1.8

Table 7: Number of examples (train / dev / test), average number of tokens per source and target, average number of
sentences per source and target (after filling the templates for the D2T datasets).

Input [1] (Andrews County Airport; elevationAboveTheSeaLevel (in metres); 973.0)
[2] (Andrews County Airport; runwayLength; 896.0)
[3] (Andrews County Airport; location; Texas)

Templates Andrews County Airport is 973.0 metres above the sea level.
Andrews County Airport runway is 896.0 m long.
Andrews County Airport is located in Texas.

Order 321

Aggregation 3 <sep>21

Models (all) Andrews County Airport is located in Andrews County, Texas. Its runway is 896.0 m long
and 973.0 metres above the sea level.

Human The runway length of Andrews County Airport (located in Texas and 973.0 above sea level)
is 896.

Table 8: Correct behavior of the models on WebNLG. All the models ({ 1,2,3 }-STAGE full/filtered) produce the
same output.

Input [1] (Akron, Ohio; country; United States)

[2] (United States; language; English language)
Templates Akron, Ohio is from United States.

English language is spoken in United States.
Order 12

Aggregation 1 <sep>2

3-stage full Akron, Ohio is from United States. English language is spoken in Akron, Ohio, United
States, which is located in the U.S. state of Ohio.

2-stage full Akron, Ohio is from United States. English language is spoken in Akron, Ohio.

1-stage full English language is spoken in the United States. Akron, Ohio is from the state of Ohio in the
U.S. state of Illinois.

3-stage filtered Akron, Ohio is from United States. English language is spoken in the United States of
America.

2-stage filtered Akron, Ohio is from United States. English language is spoken in Akron, Ohio.

1-stage filtered English language is spoken in the United States. Akron, Ohio is from the United Kingdom.

Human The country of Akron, Ohio, is United States, where English is the language spoken.

Table 9: Incorrect behavior on WebNLG: besides the minor disfluencies caused by the templates ("Akron, Ohio is
from..."), the models (except for 3-STAGE filtered) tend to hallucinate and merge the facts incorrectly.

14

Input [1] (Juan Peron; party; Labour Party (Argentina))
[2] (Alberto Teisaire; inOfficeWhilePresident; Juan Perén)
[3] (Alberto Teisaire; nationality; Argentina)
[4] (Argentina; language; Spanish language)
Templates Juan Per6n belongs to the Labour Party Argentina.
Alberto Teisaire was in office while Juan Perén was a president.
Alberto Teisaire is from Argentina.
Spanish language is spoken in Argentina.

Order 3214

Aggregation 32 <sep> 1 <sep> 4

3-stage full Alberto Teisaire is from Argentina, who was in office while Juan Perén was a president. He
belongs to the Labour Party Argentina. Spanish language is spoken in Argentina.

2-stage full Alberto Teisaire is from Argentina. He was in office while Juan Perén was a president. He
belongs to the Labour Party Argentina. Spanish language is spoken in Argentina.

1-stage full Alberto Teisaire is from Argentina. He was in office while Juan Perén was a president.

Spanish language is spoken in Argentina. Perén belongs to the Labour Party Argentina.
3-stage filtered Alberto Teisaire is from Argentina, in office while Juan Perén was a president. He belongs
to the Labour Party Argentina. Spanish language is spoken in Argentina.
2-stage filtered Alberto Teisaire is from Argentina. He was in office while Juan Perén was a president. He

belongs to the Labour Party Argentina. Spanish language is spoken in Argentina.
1-stage filtered Alberto Teisaire is from Argentina. He was in office while Juan Perén was a president.
Spanish language is spoken in Argentina. Juan belongs to the Labour Party Argentina.
Human Alberto Teisaire, is a national of Argentina, where Spanish is spoken. Alberto Teisaire, was
in office while Juan Perén was president. Juan Per6n was a member of the Labour Party in
Argentina.

Table 10: Incorrect behavior on WebNLG: by using a pronoun "He", the models tend to imply that Alberto Teisaire
(instead of Juan Peron) belongs to the Labour Party.

Input [1] (Alfa Romeo 164; relatedMeanOfTransportation; Fiat Croma)
[2] (Alfa Romeo 164, assembly; Italy)
[3] (Italy, capital; Rome)
Templates Alfa Romeo 164 is related to Fiat Croma.
Alfa Romeo 164 was assembled in Italy.
Italy’s capital is Rome.

Order 231

Aggregation 2 3 <sep> 1

3-stage full Alfa Romeo 164 was assembled in Italy’s capital, Rome. It is related to Fiat Croma.
2-stage full Alfa Romeo 164 was assembled in Italy’s capital, Rome. It is related to Fiat Croma.
1-stage full Alfa Romeo 164 was assembled in Italy to Fiat Croma. Italy’s capital is Rome.

3-stage filtered Alfa Romeo 164 was assembled in Italy’s capital, Rome. It is related to Fiat Croma.

2-stage filtered Alfa Romeo 164 was assembled in Italy’s capital, Rome. It is related to Fiat Croma.

1-stage filtered Alfa Romeo 164 was assembled in Italy. It is related to Fiat Croma. It was assembled at the
Italian capital is Rome.

Human The Fiat Croma and the Alfa Romeo 164 are both cars. The latter was built in Italy where
the capital is Rome.

Table 11: Incorrect behavior on WebNLG: the models tend to merge the country of vehicle’s assembly and its
capital.

15

Input [0] name[The Cricketers]
[1] eatType[restaurant]
[2] near[All Bar One]
[3] priceRange[cheap]
[4] food[Chinese]
[5] customerRating[average]
[6] familyFriendly[yes]

Templates The Cricketers is a restaurant.
The Cricketers is near All Bar One.
The Cricketers has cheap price range.
The Cricketers serves Chinese food.
The Cricketers has average customer rating.
The Cricketers is family-friendly.

Order 142635

Aggregation 142<sep>635

3-stage full The Cricketers is a restaurant serving Chinese food near All Bar One. It is family-friendly,
has cheap price range and average customer rating.

2-stage full The Cricketers is a restaurant serving Chinese food near All Bar One. It is family-friendly
with cheap price range and average customer rating.

1-stage full The Cricketers is a restaurant serving Chinese food. It is family-friendly and has cheap price

range. It serves Chinese food near All Bar One. It has average customer rating.

3-stage filtered The Cricketers is a restaurant serving Chinese food near All Bar One. It is family-friendly
with cheap price range and average customer rating.

2-stage filtered The Cricketers is a restaurant serving Chinese food near All Bar One. It is family-friendly
with cheap price range and average customer rating.

1-stage filtered The Cricketers is a restaurant serving Chinese food. It is family-friendly and has average
customer rating. It serves Chinese food near All Bar One. It has cheap price range.

Human For a central family friendly venue serving cheap Chinese food, try The Cricketers restaurant.
It has average customer ratings and is near All Bar One.

Table 12: Correct behavior of the models on E2E: the models can deal even with a higher amount of input values.

16

Input [0] name[The Phoenix]
[1] area[riverside]
[2] priceRange[cheap]
[3] familyFriendly[yes]
[4] near[Raja Indian Cuisine]
[5] eatType[restaurant]

Templates The Phoenicx is in the riverside.
The Phoenix has cheap price range.
The Phoenix is family-friendly.
The Phoenix is near Raja Indian Cuisine.
The Phoenix is a restaurant.

Order 514<sep>32

Aggregation 51432

3-stage full The Phoenix is a restaurant in the riverside near Raja Indian Cuisine. It is family-friendly
with cheap price range.

2-stage full The Phoenix is a restaurant in the riverside near Raja Indian Cuisine. It is family-friendly
with cheap price range.

1-stage full The Phoenix is a restaurant near Raja Indian Cuisine in the riverside. It is family-friendly

and has cheap price range. It has cheap food range.

3-stage filtered The Phoenix is a restaurant in the riverside near Raja Indian Cuisine. It is family-friendly
with cheap price range.

2-stage filtered The Phoenix is a restaurant in the riverside near Raja Indian Cuisine. It is family-friendly
with cheap price range.

1-stage filtered The Phoenix is a restaurant near Raja Indian Cuisine in the riverside. It is family-friendly
and has cheap price range. It has cheap food.

Human Cheap food and a family friendly atmosphere at The Phoenix restaurant. Situated riverside
near the Raja Indian Cuisine.

Table 13: Incorrect behavior on E2E: the 1-STAGE models add redundant information to the output.

17

