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Abstract

In data-to-text (D2T) generation, training on
in-domain data leads to overfitting to the
data representation and repeating training data
noise. We examine how to avoid finetun-
ing the pretrained language models (PLMs)
on D2T generation datasets while still taking
advantage of surface realization capabilities
of PLMs. Inspired by pipeline approaches,
we propose to generate text by rephrasing
single-item templates using a sequence of
modules trained on general-domain text-based
operations—ordering, aggregation, and para-
graph compression. We train PLMs for per-
forming these operations on a synthetic cor-
pus WIKIFLUENT which we build from En-
glish Wikipedia. Our experiments on two ma-
jor triple-to-text datasets—WebNLG and E2E—
show that our approach enables D2T generation
from RDF triples in zero-shot settings.!

1 Introduction

The aim of data-to-text (D2T) generation is to pro-
duce natural language descriptions of structured
data (Gatt and Krahmer, 2018; Reiter and Dale,
1997). Although pipelines of rule-based D2T gener-
ation modules are still used in practice (Dale, 2020),
end-to-end approaches based on PLMs recently
showed superior benchmark performance (Ke et al.,
2021; Chen et al., 2020a; Ferreira et al., 2020; Kale
and Rastogi, 2020b; Ribeiro et al., 2020), surpass-
ing pipeline systems (Ferreira et al., 2019) in both
automatic and human evaluation metrics.
Finetuning PLMs on human-written references
is widely accepted as a standard approach for adapt-
ing PLMs to the D2T generation objective and
achieving good performance on a given benchmark
(Agarwal et al., 2021; Ke et al., 2021). Never-
theless, this approach brings issues: Most obvi-
ously, finetuning the model for the domain-specific
"The anonymized version of our code and data
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Figure 1: A scheme of our pipeline for zero-shot data-
to-text generation from RDF triples: (1) ordering, (2)
aggregation, (3) paragraph compression. Individual
pipeline modules are trained on a large general-domain
text corpus and operate over text in natural language.
In-domain knowledge is included only in the simple
hand-crafted templates for each predicate.

data distribution leads to overfitting on the partic-
ular benchmark, decreasing performance on out-
of-distribution data (LLaha et al., 2020). Moreover,
collecting a large set of references for a particular
domain is costly and time-consuming, as the data
are usually collected using crowdsourcing (Dusek
et al., 2020). Few-shot approaches are an alterna-
tive, requring only several tens or hundreds of anno-
tated examples (Chen et al., 2020c; Ke et al., 2021;
Su et al., 2021a). However, robustness of these
approaches is questionable—selecting a represen-
tative set of examples which would improve per-
formance is difficult (Chang et al., 2021a), and the
limited sample is often noisy, increasing the chance
of hallucinations and omissions (Dusek et al., 2019;
Harkous et al., 2020; Rebuffel et al., 2021).

In this paper, we provide an alternative to this
traditional paradigm by formulating the D2T gen-
eration from RDF triples as a sequence of general-
domain operations over text in natural language.
We start by transforming individual triples to text
using trivial templates, which we subsequently or-
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der, aggregate, and compress on the paragraph level
to produce the resulting description of the data.
All the pipeline modules operate over natural lan-
guage text and are built upon PLMs trained on
our WIKIFLUENT corpus. WIKIFLUENT contains
934k examples of first paragraphs from the English
Wikipedia, each supplied with a synthesized set of
simple template-like sentences conveying the same
meaning. Our approach allows generating natural
language descriptions from triples with a minimum
amount of domain-specific rules or knowledge and
without using training data from the D2T datasets.
We show that our approach can yield large improve-
ments upon simple baselines and match older super-
vised systems in terms of fluency, while bringing
potential for further improvements and advantages
with respect to controllability.

Our contributions are the following:

(1) We propose an alternative D2T generation ap-
proach based on general-domain text-to-text
operations (ordering, aggregation, and para-
graph compression).

(2) We introduce a synthetic WIKIFLUENT cor-
pus containing 934k sentences based on En-
glish Wikipedia, providing training data for
the operations in (1).

(3) We apply our system on two D2T datasets and
evaluate its performance both automatically
and manually, including the contribution of
individual pipeline modules.

(4) We release our code, data, pretrained models,
and system outputs to ease future research.

2 Related Work

D2T Generation with PLMs Large neural lan-
guage models pretrained on self-supervised tasks
(Lewis et al., 2020; Liu et al., 2019; Devlin et al.,
2019) have recently gained a lot of traction in D2T
generation research (Ferreira et al., 2020). Fol-
lowing Chen et al. (2020c), other works adopt
PLMs for few-shot D2T generation (Chang et al.,
2021b; Su et al., 2021a). Kale and Rastogi (2020b)
and Ribeiro et al. (2020) showed that PLMs using
linearized representations of data can outperform
graph neural networks on graph-to-text datasets,
recently surpassed again by graph-based models
(Ke et al., 2021; Chen et al., 2020a). Although
the models make use of general-domain pretrain-
ing tasks, all of them are eventually finetuned on
domain-specific data.

Templates in Data-Driven D2T Generation Us-
ing simple handcrafted templates for individual
keys or predicates is an efficient way of introducing
domain knowledge while preventing text-to-text
models from overfitting to a specific data format
(Heidari et al., 2021; Kale and Rastogi, 2020a; Kas-
ner and Dusek, 2020). Transforming individual
triples to text is also used in Laha et al. (2020)
whose work is the most similar to ours. They also
build a three-step pipeline for zero-shot D2T gener-
ation, but they use handcrafted rules for producing
the output text and do not address content planning.

Content Planning in D2T Generation Content
planning, i.e. ordering input facts and aggregat-
ing them into individual sentences, is a traditional
part of the D2T generation pipeline (Ferreira et al.,
2019; Gatt and Krahmer, 2018; Reiter and Dale,
1997). As previously demonstrated, using a con-
tent plan in neural D2T generation has important
impact on the overall text quality (Moryossef et al.,
2019a,b; Puduppully et al., 2019; Zhao et al., 2020;
Trisedya et al., 2020). Recently, Su et al. (2021b)
have shown that using a content plan leads to im-
proved quality of PLM outputs. All the aforemen-
tioned models plan directly using predicates or keys
in the D2T datasets representing the correspond-
ing data item. Unlike these works, our planner is
trained on ordering sentences in natural language.

Sentence Ordering Sentence ordering is the task
of organizing a set of natural language sentences
to increase the coherence of a text (Barzilay et al.,
2001; Lapata, 2003). Several neural methods for
this task were proposed, using either interactions
between pairs of sentences (Chen et al., 2016; Li
and Jurafsky, 2017), global interactions (Gong
et al., 2016; Wang and Wan, 2019), or combination
of both (Cui et al., 2020). We base our ordering
module (§5.1) on the recent work of Calizzano et al.
(2021), who use a pointer network (Wang and Wan,
2019; Vinyals et al., 2015) on top of a PLM.

Fact Aggregation The compact nature of the tar-
get text description results in aggregating multiple
facts in a single sentence. Previous works (Wise-
man et al., 2018; Shao et al., 2019; Shen et al.,
2020; Xu et al., 2021) capture the segments which
correspond to individual parts of the input as latent
variables. Unlike these works, we adopt a simpler
scenario using an already ordered sequence of facts,
in which we selectively insert delimiters marking
sentence boundaries.



<subj> plays <obj>.

WebNLG
<subj> comes from <obj>.
eatType: <X> <rest>is a <X>.
E2E | <rest>| familyFriendly: yes | <rest> is family—friendly.

area: <X> <rest> is in the <X>.

Figure 2: Examples of templates for the predicates in
the WebNLG and E2E datasets.

Paragraph Compression We introduce para-
graph compression as a new task in our D2T gener-
ation pipeline. As the last step in the pipeline, it is
closely related to linguistic realisation, however—
since we already work with natural language in
this step—the focus of our task is on sentence fu-
sion, rephrasing, and coreference resolution. Un-
like text summarization or simplification (Zhang
et al., 2020; Jiang et al., 2020), we aim to convey
the complete semantics of the text without omit-
ting any facts. In contrast to sentence fusion (Geva
et al., 2019; Barzilay and McKeown, 2005) or sen-
tence compression (Filippova and Altun, 2013),
we operate in the context of multiple sentences
in a paragraph. The task is the central focus of
our WIKIFLUENT corpus (§4), which we synthe-
size using a model for the reverse task, split-and-
rephrase, i.e. splitting a complex sentence into sim-
pler ones while preserving semantics (Botha et al.,
2018; Narayan et al., 2017).

3 Method

We first give an overview of our neural D2T gener-
ation pipeline (§3.1). Next, we describe the individ-
ual steps, starting by applying simple templates to
transform data to text (§3.2), followed by individ-
ual modules for ordering (§3.3), aggregation (§3.4),
and paragraph compression (§3.5).

3.1 Method Overview

We focus on the task of producing a natural lan-
guage description Y for a set of n RDF triples
X = {z1,...,z,}. Each triple x; = {s;,p;, 0}
consists of subject s;, predicate p;, and object o;.
We assume that we can transform each triple z; to
afact f; (where f; is a sentence in natural language
describing x;) by filling the single-triple template
tp, € T for the predicate p;: t,,(si,0;) — fi.
We proceed as follows — given an input X, we:

(1) apply the templates to transform the set of
triples X to the set of facts: F' = T'(X) =
{flv DRI fn} (§32)7

(2) sort the facts F' using an ordering module
which outputs an ordered sequence of facts
Ey=O(F) ={foy,---, fo,} (§3.3),

(3) obtain sentence delimiters by inputting the
ordered facts F}, into an aggregation module
A(F,) = {00,,000s 500, 1};0; € {0,1},
where §,, = 1 indicates the presence of a
delimiter, i.e., that the sentences with facts f,
and f,,,, should not be fused (§3.4),

(4) input the ordered sequence with delimiters
Fa = {f015601’ f027 e 750”_17 fon} into the
paragraph compression module which gener-
ates the final description P(F,) =Y (§3.5).

3.2 Templates

The first step in our pipeline involves transforming
each of the input triples X into a set of facts F' in
natural language by using a template ¢,,, for each
predicate p;. We need at least one template for
each predicate. Typically, the template will include
placeholders which are filled with s; and o;.

The transformation serves two purposes: (a)
preparing the data for the subsequent text-to-text
operations, (b) introducing in-domain knowledge
about the semantics of individual predicates. Note
that the filled templates are allowed to contain mi-
nor disfluencies since the text will be rephrased in
the final step of the pipeline. See §5.5 for our ap-
proach to gathering the templates and Figure 2 for
examples of the templates we use in our datasets.

We acknowledge that this step may be a bottle-
neck on datasets with an unconstrained (or very
large) set of predicates, which is why we also dis-
cuss possibilities for automating this step in §7.

3.3 Ordering

We assume that the default order of triples X (and
the respective facts F') is random. To maximize the
coherency of the resulting description, we apply an
ordering model O to get an ordered sequence of
facts: F, = {fo,,---, fo,}. The coherence of the
final text will also depend on the paragraph com-
pression step, but grouping related facts together
(e.g. facts mentioning birth date and birth place)
helps the paragraph compression model to focus
only on fusing and rephrasing the neighboring sen-
tences. We describe our ordering model in §5.1.



3.4 Aggregation

The aggregation model takes a sequence of ordered
facts F,, as input and produces a sequence of sen-
tence delimiters A(F,) = {00y, 0005300, 13
0; € {0,1}. The output §; = 1 means that the
neighboring facts are should be mentioned sepa-
rately, serving as a hint for the paragraph compres-
sion model not to fuse the neighboring sentences.
Conversely, 6; = 0 means that the facts should
be aggregated and their corresponding sentences
should be fused (see §5.2 and §5.3).

3.5 Paragraph Compression

The paragraph compression model (see §5.3
for simplified variants) takes as input the or-
dered sequence of facts with delimiters F, =
{for,0015 fozs--+00, 1, fo,} and produces a re-
sulting text Y. The objectives of the model are
two-fold: (a) fusing related sentences, i.e., sen-
tences ¢ and j in between which §; = 0, and (b)
rephrasing the text to improve its fluency, e.g. fix-
ing minor disfluencies in the templates, replacing
noun phrases with refering expressions, etc. The
focus is on minor rephrasing since the goal is to
preserve the semantics of the original text.

4 WIKIFLUENT Corpus

A key to our approach is building a large-scale
synthetic corpus providing training data for the text
operations in our pipeline. Our corpus needs to
cover a broad range of domains while capturing the
sentence style in D2T generation, both regarding
the input templates and the target descriptions. In
other words, we aim to build a corpus in which:
* the input is a set of simple, template-like sen-
tences,
* the output is a fluent text in natural language
preserving the semantics of the input.
As we describe below in detail, we achieve that by
applying a split-and-rephrase model and a corefer-
ence resolution model on a set of human-written
paragraphs in English Wikipedia. We consider the
processed text as a source and the original text as
the target. The process is illustrated in Figure 3;
corpus statistics are included in Appendix A.

4.1 Data Source

For building the WIKIFLUENT corpus, we ex-
tracted 934k first paragraphs of articles from a
Wikipedia dump? using WikiExtractor (Attardi,

Zenwiki-20210401 -pages-articles-multistream

The Westmeath Examiner is a weekly newspaper in Westmeath, Ireland.
>

It was founded in 1882.
split-and-rephrase original paragraph

B it <The Westmeath Examiner is a weekly newspaper.
| successtul ™1t i located in Westmeath, Ireland.
It was founded in 1882.

coreference replacement
*~.._ The Westmeath Examineris a weekly newspaper.

<:The Westmeath Examiner is located in Westmeath, Ireland.

pronouns

resolved The Westmeath Examiner was founded in 1882.

processed paragraph

Figure 3: The building process of the WIKIFLUENT
corpus. We apply a split-and-rephrase model on each
sentence in the paragraph and resolve coreferences in
the split sentences.

2015). The paragraphs contain mostly concise, fact-
based descriptions from a wide range of domains.
We selected paragraphs with length between 30-
430 characters, filtering out lists, disambiguations,
repeated and malformed paragraphs. To further
ensure that the length of inputs is balanced, we
selected 250k examples each from 4 equidistant
length ranges (30-130 characters, etc.).

4.2 Split-and-Rephrase

For generating the target set of sentences, we di-
vide each paragraph into sentences using NLTK
(Bird, 2006) and apply a split-and-rephrase model
on each sentence. Split-and-rephrase is a task of
splitting a complex sentence into a meaning pre-
serving sequence of shorter sentences (Narayan
et al., 2017). We train our model on the large-scale
WikiSplit corpus by Botha et al. (2018), contain-
ing human-made sentence splits from Wikipedia
edit history. Following the setup in the rest of our
experiments, we train the encoder-decoder PLM
BART-base (Lewis et al., 2020) on the WikiSplit
dataset in a sequence-to-sequence setting. We ap-
ply the trained split-and-rephrase model on each
sentence, uniformly randomly choosing between
0-2 recursive calls to ensure that the splits are not
deterministic. If the sentence cannot be meaning-
fully split, the model tends to duplicate the sentence
on the output; in that case, we use only the original
sentence and do not proceed with the splitting.

4.3 Coreference Replacement

Next, we concatenate the split sentences and ap-
ply a coreference resolution model (Gardner et al.,
2018) in order to replace referring expressions
with their antencendents (e.g., pronouns with noun
phrases). This allows to better follow the style of



the templates in which the entities are always fully
verbalized. Since we keep the referring expressions
in the original human-written text, we can train the
paragraph compression module to generate them
in the final text description.

4.4 Filtering

To assert that the generated sentences convey the
same semantics as the original paragraph, we use
a pretrained RoBERTa model® (Liu et al., 2019)
trained on the MultiNLI dataset (Williams et al.,
2018) for checking the semantic accuracy of the
generated text. Following DuSek and Kasner
(2020), we test if the original paragraph entails each
of the synthesized sentences (checking for omis-
sions), and if the set of concatenated synthesized
sentences entails the original paragraph (checking
for hallucinations). In a filtered version of the WIK-
IFLUENT corpus, we include only the examples
without omissions or hallucinations (as computed
by the model), reducing it to approximately 3/4 of
the original size.

5 Experiments

We show how we build our pipeline (§5.1-5.4) and
discuss the D2T generation datasets which we use
for our experiments (§5.5). The details of our train-
ing setup are included in Appendix B.

5.1 Ordering Model

For our ordering model (see §3.3), we use the Sim-
ple Pointer model from Calizzano et al. (2021).
The model is based on a pretrained BART-base
extended with a pointer network from Wang and
Wan (2019). We provide a short description of the
model here; for details see Calizzano et al. (2021).

In the encoding phase, facts F' are concatenated
and tokenized. Each fact is surrounded by spe-
cial tokens denoting the beginning (<s>) and the
end (</s>) of the fact. The sequence is processed
by the BART encoder, generating a sequence of
encoder states E for each end token </s> repre-
senting the preceding fact.

The decoding proceeds autoregressively. To
bootstrap the decoding process, the pair of tokens
<s></s> is fed into the decoder, producing the de-
coder state d;. The pointer network (attending to
dy and E), selects the first ordered fact f,,, which
is fed into the decoder in the next step. The process

Shttps://huggingface.co/roberta-large-mnli

is repeated until the all the facts are decoded in a
particular order.

The pointer network computes the probability of
a fact to be on the j-th position, using the encoder
output £ and the decoder output d;. The network
is based on the scaled dot product attention, where
d; is the query and encoder outputs [; are the keys:

Q =d;Wq
K = EWg

QK T>
P; = softmax .
)= sotomax (£

Here Wg and Wi € Rb*b b is the dimension of
BART hidden states, and P; € R"! is the proba-
bility distribution for the j-th position (i.e., Pj; is
the probability that fact f; is on the j-th position).

We train the model using the split sentences in
the WIKIFLUENT corpus, randomly shuffling the
order of the sentences and training the model to
restore their original order.

5.2 Aggregation Model

We base our aggregation model (cf. §3.4) on
RoBERTa-large (Liu et al., 2019) with a token clas-
sification head.* Similarly to the ordering model
(§5.1), we input the sequence of facts F}, into the
model, separating each pair of facts f,, with a spe-
cial token </s> (used by the model as a separator).
Subsequently, the token classification layer classi-
fies each separator </s>; position into two classes
{0,1} corresponding to the delimiter §;. We ig-
nore the outputs for the non-separator tokens while
computing the cross-entropy loss.

We create the training examples using the split
sentences in the WIKIFLUENT corpus, in which
we set d; = 0 for the sentences 7,7 + 1 which were
originally aggregated (i.e., are the result of splitting
a single sentence) and J; = 1 otherwise.

5.3 Paragraph Compression Model

We adopt BART-base for our paragraph compres-
sion model. We train the model in a sequence-
to-sequence setting on the WIKIFLUENT corpus,
concatenating the split sentences on the input. We
add delimiters between sentences ¢ and ¢ + 1 where
6; = 1 using a special token <sep>, which we
add to the model vocabulary. As shown in Keskar
et al. (2019), including control codes for training

*https://huggingface.co/transformers/model _
doc/roberta.html#robertafortokenclassification
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A dam is a barrier. 3-stage

A dam obstructs flowing water.
......................................... : 2_Stage
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Figure 4: An example illustrating how the individual modules are trained and subsequently applied as the parts of
the pipeline. See §5.1 for description of the ordering model (ORD), §5.2 for the aggregation model (AGG), and §5.3
for the versions of the paragraph compression model (PC, PC+AGG, PC+ORD+AGG).

the model can steer the model towards producing
certain outputs. We evaluate our model’s behavior
with respect to ordering and aggregation in §6.3.

5.4 Ablation Study

In order to evaluate individual components of our
pipeline, we train three versions of the PC model
(see §5.3). The models share the same architecture
and targets, but differ in their inputs:

e PC - the model takes as an input ordered facts
with delimiters (as described in §3.5),

* PC+AGG — the model takes as an input or-
dered facts without delimiters (i.e., the aggre-
gation is left implicitly to the model),

* PC+0ORD+AGG — the model takes as an input
facts in random order and without delimiters
(i.e., both ordering and aggregation are left
implicitly to the model).

Subsequently, we test three versions of the

pipeline (see Figure 4):

* 3-STAGE — a full version of the pipeline con-
sisting of the ordering model, the aggregation
model and the PC model (following the full
pipeline from §3),

* 2-STAGE - a pipeline consisting of the order-
ing model and the PC+AGG model,

* 1-STAGE - a single stage consisting of the
PC+0ORD+AGG model.

We evaluate all versions of the pipeline with PC

models trained on the full and filtered versions of
the WIKIFLUENT dataset (see §4).

5.5 D2T Datasets

We test our approach on two English D2T datasets,
WebNLG and E2E. They differ in domain, size, tex-
tual style, and number of predicates (see Appendix
A for details).

WebNLG The WebNLG dataset (Gardent et al.,
2017) contains RDF triples from DBPedia (Auer
et al., 2007) and their crowdsourced descriptions.
The dataset was extended for the WebNLG+ Chal-

lenge (Ferreira et al., 2020), but we use the version
1.4 for comparability to prior work. Templates for
WebNLG could be extracted from the training data
by delexicalizing single-triple examples. However,
the examples are noisy and such data would not be
available in a zero-shot setup. Therefore, we hand-
crafted templates for all 354 predicates, including
unseen predicates in the test set.’

E2E The E2E dataset (Novikova et al., 2017,
Dusek et al., 2020) contains restaurant recommen-
dations in the form of attribute-value pairs. We
use the cleaned version of the dataset (DusSek et al.,
2019). Following previous work, we transformed
the attribute-value pairs into RDF triples (using the
restaurant name as a subject) and then applied the
same setup as for WebNLG. We created a template
for each of the 8 attributes manually.

6 Evaluation

We evaluate outputs from the {1,2,3}-STAGE vari-
ants of our pipeline automatically (§6.1) and manu-
ally (§6.2). Further, we evaluate the performance
of the content planning modules and the ability of
the PC module to follow the content plan (§6.3).

6.1 Automatic Metrics

Following prior work, we use BLEU (Papineni
et al., 2002) and METEOR (Banerjee and Lavie,
2005) to evaluate the outputs against the human
references.® We also evaluate the number of omis-
sion and hallucination errors (i.e., facts missing
or added, respectively) using a metric from Dusek
and Kasner (2020) based on a RoBERTa model
(Liu et al., 2019) pretrained on natural language
inference (NLI).”

5The templates are single-sentence and mostly clear-cut
verbalizations of the predicates. We did not use human refer-
ences from the dataset when creating the templates.

SWe use the implementation from https://github.
com/tuetschek/e2e-metrics.

"We additionally evaluated the outputs on the E2E dataset
using the provided pattern-based slot error script. See Ap-
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Alabama)

Indian Cuisine.

They love kids.

(Allen Forrest; background; solo singer), (Allen Forrest; genre; Pop music), (Allen Forrest; birthPlace; Dothan,

Allen Forrest is a solo singer. Allen Forrest performs Pop music. Allen Forrest was born in Dothan, Alabama.
Allen Forrest is a solo singer who performs Pop music. He was born in Dothan, Alabama.
Born in Dothan, Alabama, Allen Forrest has a background as a solo singer and was a pop artist.

name[Wildwood], eatType[restaurant], food[French], area[riverside], near[Raja Indian Cuisine]
Wildwood is a restaurant. Wildwood serves French food. Wildwood is in the riverside. Wildwood is near Raja

Wildwood is a restaurant serving French food. It is in the riverside near Raja Indian Cuisine.
A amazing French restaurant is called the Wildwood. The restaurant is near the Raja Indian Cuisine in riverside.

Table 1: Example outputs of our model (3-STAGE, filtered). See Appendix D for more examples.

B M (0] H

B M (0] H

UPF-FORGe* 38.65 39.00 0.075 0.101
MELBOURNE* 45.13  37.00 0.237 0.202
Keetal. 2021)*  66.14 47.25 - -
Laha et al. (2020)7  24.80  34.90 - -
COPY 37.18 38.77 0.000 0.000
3-STAGE  42.92 39.07 0.051 0.148
full 2-STAGE 4290 39.28 0.043 0.125
1-STAGE  39.08 38.94 0.071 0.204
3-STAGE  43.19 39.13 0.152 0.073
filtered 2-STAGE 43.49 3932 0.146 0.096
1-STAGE 42,99 3881 0202 0.093

Table 2: Automatic metrics on WebNLG. B = BLEU, M
=METEOR, O = omissions / # facts, H = hallucinations
/ # examples. The systems marked with asterisk (*) are
trained on the WebNLG dataset. Results for the systems
marked with T are copied from the respective papers.

We include a diverse set of baselines for com-
parison. For WebNLG (see Table 2), we include
the results of UPF-FORGe and MELBOURNE sys-
tems from the first run of WebNLG Challenge (Gar-
dent et al., 2017) which are comparable in terms
of automatic metrics and semantic errors, and the
results of Ke et al. (2021), which is a state-of-the-
art system using structure-aware encoder and task-
specific pretraining. Laha et al. (2020) is (to our
knowledge) the only other zero-shot D2T genera-
tion system applied on WebNLG. TGEN (Dusek
and Jurcicek, 2015) is the baseline system for the
E2E Challenge (Dusek et al., 2020) and Harkous
et al. (2020) is a state-of-the art supervised sys-
tem applied on the cleaned E2E (see Table 3). For
both datasets, COPY is the baseline of copying the
templates verbatim.

The automatic evaluation suggests that while
our system lags behind state-of-the-art supervised
systems, it shows considerable improvements com-
pared to the COPY baseline (e.g., ~12 BLEU points

pendix C for the details.

TGEN* 40.73 3776 0.016 0.083
Harkous etal. (2020)* 43.60 39.00 - -
COPY 24.19 34.89 0.000 0.000

3-STAGE 36.04 3695 0.001 0.001
Sull 2-STAGE 35.84 3691 0.001 0.001
el STAGE 3081 36.01 0009 0122

3-STAGE 3588 36.95 0.001 0.001
filtered ~ 2-STAGE 36.01 36.99 0.001 0.001

1-STAGE 34.08 36.32 0.012 0.050

Table 3: Automatic metrics on E2E. B = BLEU, M =
METEOR, O = omissions / # facts, H = hallucinations /
# examples. The systems marked with asterisk (*) are
trained on the E2E dataset. The results for Harkous et al.
(2020) are copied from the paper.

for E2E) and matches performance of some older
supervised systems. The COPY baseline is substan-
tially better than the zero-shot system of Laha et al.
(2020), suggesting that quality of the templates
plays an important role. The 2-STAGE system is
generally on par with the 3-STAGE system (or bet-
ter), which indicates that implicit aggregation using
the PC-AGG model may be sufficient. However, an
advantage of having a separate aggregation module
is the possibility to control the aggregation step
explicitly. The filtered version of the dataset gener-
ally brings better results, although it brings also an
increase in the number of omissions.

6.2 Manual Evaluation

We manually evaluated 100 outputs of the models
regarding factual errors (hallucinations, omissions,
incorrect fact merging, redundancies) as well as
grammatical errors. The results are listed in Table
4. The 1-STAGE model (which has to order the
facts implicitly) tends to repeat the facts in the text
(especially in E2E) and produces frequent halluci-
nations. These problems are only slightly reduced
in the filtered version, but they are largely elim-



WebNLG E2E
HIORG HIORG

3-STAGE 3 39 2 2 16 0o10 0 17
EZ—STAGE 8 36 1 516 1 10 1 23
T 1-STAGE 28 27 6 10 20 17 0 1 79 45
3 3-STAGE 2 37 2 1 15 0 00 0 17
S 2-STAGE 5 32 1 2 14 0 00 0 11
S 1-STAGE 8 40 6 6 16 11 2 1 41 22

B-2 Acc

Transformer (Ferreira et al., 2019)" 5220 0.35

Step-by-step (Moryossef et al., 2019b)T ~ 70.80  0.47

PLANENC (Zhao et al., 2020)" 80.10 0.62
Plan-then-generate (Su etal, 2021b)" 8497 072

RANDOM 47.00 0.29

BART+ptr (Calizzano et al., 2021) 59.10 048

Table 4: Number of manually annotated errors on 100
examples: H = hallucinations, I = incorrect fact merging,
O = omissions, R = redundancies, G = grammar errors
or disfluencies.

inated with 2-STAGE and 3-STAGE models. We
note these models create almost no hallucinations
or omissions. However, the outputs on WebNLG
for all systems suffer from semantic errors result-
ing from merging of unrelated facts. This mostly
happens with unrelated predicates connected to the
same subject/object (e.g. “X was born in Y7, “X
worked as Z” expressed as “X worked as Z in Y”;
see Appendix D for examples). On the E2E data,
which has a simpler triple structure (all predicates
share the same subject), the outputs are generally
consistent and the 2-STAGE and 3-STAGE models
exhibit almost no semantic errors. As we discuss in
§7, more research is needed for ensuring the final
consistency of the text. The grammar errors and dis-
fluencies stem mainly from over-eager paragraph
compression or from artifacts in our templates; they
are relatively minor (e.g., missing “is” in “serves
French food and family-friendly”).

6.3 Content Planning

Following Su et al. (2021b) and Zhao et al. (2020),
we report the accuracy (Acc) and BLEU-2 score (B-
2) of our ordering model on WebNLG against the
human-generated plans from Ferreira et al. (2018).
The results are listed in Table 5. RANDOM is the
baseline of generating a random order. The results
show that although our approach lacks behind state-
of-the-art supervised approaches, it can outperform
both the random baseline and the Transformer-
based approach from Ferreira et al. (2019) while
not using any training examples from WebNLG.
We also evaluate the accuracy of our aggrega-
tion model, using triples ordered according to the
plans from Ferreira et al. (2018) as input. The ac-
curacy is 0.33 per example and 0.62 per sentence
boundary (random baseline is 0.23 and 0.50, re-
spectively). The results show that although our
approach is better than the random baseline, further

Table 5: Evaluation of our zero-shot ordering model
based on Calizzano et al. (2021). The results marked
with { are copied from the respective papers.

investigation regarding plausible fact aggregation
schemes is needed.

Finally, we manually evaluate how the PC
model follows the content plan using 100 ran-
domly chosen examples with more than 1 triple
on WebNLG and E2E. We find that the model fol-
lows the content plan in 95% and 100% of cases,
respectively. The incorrect cases include a fact not
properly mentioned and an extra boundary between
the sentences without a separator. We can thus con-
clude that the pretraining task successfully teaches
the PC model to follow a given content plan.

7 Discussion and Future Work

In the current form, our pipeline can be directly
applied to generating text from RDF triples (or
similarly structured data) which require no extra
processing. Further extensions are needed for more
complex D2T scenarios, e.g. datasets requiring con-
tent selection or common-sense and logical reason-
ing (Wiseman et al., 2017; Lin et al., 2019; Chen
et al., 2020b).

Our approach regarding handcrafting a single
template for each predicate is quite basic. Gener-
ating simple statements from the triples automati-
cally, e.g., using the approach of Laha et al. (2020),
could reduce the manual workload and allow apply-
ing our approach on datasets with a less constrained
set of data attributes such as ToTTo (Parikh et al.,
2020) or DART (Nan et al., 2021). Moreover, ex-
plicitly including a denoising task for the paragraph
compression model could help to tackle the disflu-
encies in the templates.

More research is also needed on semantic errors
stemming from merging of facts in improper ways.
We suggest that explicitly controlling the semantics
of sentence fusion (Ben-David et al., 2020) could
help to mitigate this issue, while still keeping the
advantages of a zero-shot approach.
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A Dataset Statistics

Statistics for the datasets described in the paper are
listed in Table 7.

B Experimental Setup
B.1 Our Models

We implemented the models for split-and-rephrase,
aggregation, and paragraph compression in Py-
Torch Lightning (Paszke et al., 2019), using the
PyTorch (Falcon, 2019) version of the BART and
RoBERTa models from the Huggingface library
(Wolf et al., 2019).

We use the Adam (Kingma and Ba, 2015) opti-
mizer (81 = 0.9, B2 = 0.997, ¢ = 179) with learn-
ing rate 275, linear scheduling and 0.1 warmup
proportion; batches of size 8 and accumulating gra-
dients with factor 4. We train the models for 1
epoch on a single GeForce RTX 3090 GPU with
24 GB RAM. We use greedy decoding in all our
experiments.

B.2 Ordering

For training the ordering model, we used the imple-
mentation from Calizzano et al. (2021) 8 including
their training parameters. We plan to fully inte-
grate the ordering model into our framework in the
future.

C Additional Results

We provide evaluation of semantic accuracy on the
E2E dataset as evaluated with the slot-error script
based on matching regular expressions in Table 6.°

Note that our manual investigation of a sample
of the data shows that the majority of the errors
identified in our model outputs are false. For ex-
ample, the following regular expression used in the
slot-error script:

prices?(?: range)?7(7:w+)0,3 high

matches "(...) price range and high customer rat-
ing (...)", incorrectly classifying the presence of
the extra slot priceRange[high]. This importance
of this problem is exacerbated by the consistent

%https://github.com/airklizz/
passage-ordering

*https://github.com/tuetschek/e2e-cleaning/
blob/master/slot_error.py


https://github.com/airKlizz/passage-ordering
https://github.com/airKlizz/passage-ordering
https://github.com/tuetschek/e2e-cleaning/blob/master/slot_error.py
https://github.com/tuetschek/e2e-cleaning/blob/master/slot_error.py

miss add miss+add

TGEN 0.0060  0.0433 0.0016
COPY 0.0000  0.0000 0.0000

3-STAGE  0.0238  0.0698 0.0060
Sull 2-STAGE  0.0054  0.0363 0.0000

filiered  2-STAGE  0.0043 0.0368  0.0000
1-STAGE  0.0043  0.0347  0.0000

Table 6: Proportion of output examples with missed
only, added only, and both missed and added facts, ac-
cording to the regular-expression-based E2E slot error
script.

outputs of our models, which tend to repeat certain
patterns. However, we also manually identified sev-
eral cases in which an error was found correctly,
e.g. the model hallucinating "3 out of 4 customer
rating" instead of "3 out of 5 customer rating".

D Example Outputs

Tables 8, 9, 10, and 11 show examples of behavior
of our models on the WebNLG dataset. Tables 12
and 13 show examples of behavior of our models
on the E2E dataset.

The green color marks the model outputs which
are completely correct, the red color marks the
errors. For better readability of the input format,
we add numeric order identifiers for the individ-
ual facts (bold, in squared brackets). These are
subsequently used as references in the Order and
Aggregation rows. Note that zero-th input in E2E
is used as a subject in the RDF triples.
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#train #dev #test tok/src tok/tgt sent/src sent/tgt

WebNLG 18,102 870 1,862  26.8 22.6 3.0 1.4
Clean E2E 33,236 4,299 1,847 29.2 223 4.2 1.5
WIKIFLUENT-full 915,855 9,346 9,346 529 41.1 39 2.0
WIKIFLUENT-filtered 700,517 7,149 7,149  45.6 354 34 1.8

Table 7: Number of examples (train / dev / test), average number of tokens per source and target, average number of
sentences per source and target (after filling the templates for the D2T datasets).

Input [1] (Andrews County Airport; elevationAboveTheSeaLevel (in metres); 973.0)
[2] (Andrews County Airport; runwayLength; 896.0)
[3] (Andrews County Airport; location; Texas)

Templates Andrews County Airport is 973.0 metres above the sea level.
Andrews County Airport runway is 896.0 m long.
Andrews County Airport is located in Texas.

Order 321

Aggregation 3 <sep>21

Models (all) Andrews County Airport is located in Andrews County, Texas. Its runway is 896.0 m long
and 973.0 metres above the sea level.

Human The runway length of Andrews County Airport (located in Texas and 973.0 above sea level)
is 896.

Table 8: Correct behavior of the models on WebNLG. All the models ({ 1,2,3 }-STAGE full/filtered) produce the
same output.

Input [1] (Akron, Ohio; country; United States)

[2] (United States; language; English language)
Templates Akron, Ohio is from United States.

English language is spoken in United States.
Order 12

Aggregation 1 <sep>2

3-stage full Akron, Ohio is from United States. English language is spoken in Akron, Ohio, United
States, which is located in the U.S. state of Ohio.

2-stage full Akron, Ohio is from United States. English language is spoken in Akron, Ohio.

1-stage full English language is spoken in the United States. Akron, Ohio is from the state of Ohio in the
U.S. state of Illinois.

3-stage filtered Akron, Ohio is from United States. English language is spoken in the United States of
America.

2-stage filtered Akron, Ohio is from United States. English language is spoken in Akron, Ohio.

1-stage filtered English language is spoken in the United States. Akron, Ohio is from the United Kingdom.

Human The country of Akron, Ohio, is United States, where English is the language spoken.

Table 9: Incorrect behavior on WebNLG: besides the minor disfluencies caused by the templates ("Akron, Ohio is
from..."), the models (except for 3-STAGE filtered) tend to hallucinate and merge the facts incorrectly.
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Input [1] (Juan Peron; party; Labour Party (Argentina))
[2] (Alberto Teisaire; inOfficeWhilePresident; Juan Perén)
[3] (Alberto Teisaire; nationality; Argentina)
[4] (Argentina; language; Spanish language)
Templates Juan Per6n belongs to the Labour Party Argentina.
Alberto Teisaire was in office while Juan Perén was a president.
Alberto Teisaire is from Argentina.
Spanish language is spoken in Argentina.

Order 3214

Aggregation 32 <sep> 1 <sep> 4

3-stage full Alberto Teisaire is from Argentina, who was in office while Juan Perén was a president. He
belongs to the Labour Party Argentina. Spanish language is spoken in Argentina.

2-stage full Alberto Teisaire is from Argentina. He was in office while Juan Perén was a president. He
belongs to the Labour Party Argentina. Spanish language is spoken in Argentina.

1-stage full Alberto Teisaire is from Argentina. He was in office while Juan Perén was a president.

Spanish language is spoken in Argentina. Perén belongs to the Labour Party Argentina.
3-stage filtered Alberto Teisaire is from Argentina, in office while Juan Perén was a president. He belongs
to the Labour Party Argentina. Spanish language is spoken in Argentina.
2-stage filtered Alberto Teisaire is from Argentina. He was in office while Juan Perén was a president. He

belongs to the Labour Party Argentina. Spanish language is spoken in Argentina.
1-stage filtered Alberto Teisaire is from Argentina. He was in office while Juan Perén was a president.
Spanish language is spoken in Argentina. Juan belongs to the Labour Party Argentina.
Human Alberto Teisaire, is a national of Argentina, where Spanish is spoken. Alberto Teisaire, was
in office while Juan Perén was president. Juan Per6n was a member of the Labour Party in
Argentina.

Table 10: Incorrect behavior on WebNLG: by using a pronoun "He", the models tend to imply that Alberto Teisaire
(instead of Juan Peron) belongs to the Labour Party.

Input [1] (Alfa Romeo 164; relatedMeanOfTransportation; Fiat Croma)
[2] (Alfa Romeo 164, assembly; Italy)
[3] (Italy, capital; Rome)
Templates Alfa Romeo 164 is related to Fiat Croma.
Alfa Romeo 164 was assembled in Italy.
Italy’s capital is Rome.

Order 231

Aggregation 2 3 <sep> 1

3-stage full Alfa Romeo 164 was assembled in Italy’s capital, Rome. It is related to Fiat Croma.
2-stage full Alfa Romeo 164 was assembled in Italy’s capital, Rome. It is related to Fiat Croma.
1-stage full Alfa Romeo 164 was assembled in Italy to Fiat Croma. Italy’s capital is Rome.

3-stage filtered Alfa Romeo 164 was assembled in Italy’s capital, Rome. It is related to Fiat Croma.

2-stage filtered Alfa Romeo 164 was assembled in Italy’s capital, Rome. It is related to Fiat Croma.

1-stage filtered Alfa Romeo 164 was assembled in Italy. It is related to Fiat Croma. It was assembled at the
Italian capital is Rome.

Human The Fiat Croma and the Alfa Romeo 164 are both cars. The latter was built in Italy where
the capital is Rome.

Table 11: Incorrect behavior on WebNLG: the models tend to merge the country of vehicle’s assembly and its
capital.
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Input [0] name[The Cricketers]
[1] eatType[restaurant]
[2] near[All Bar One]
[3] priceRange[cheap]
[4] food[ Chinese]
[5] customerRating[average]
[6] familyFriendly[yes]

Templates The Cricketers is a restaurant.
The Cricketers is near All Bar One.
The Cricketers has cheap price range.
The Cricketers serves Chinese food.
The Cricketers has average customer rating.
The Cricketers is family-friendly.

Order 142635

Aggregation 142<sep>635

3-stage full The Cricketers is a restaurant serving Chinese food near All Bar One. It is family-friendly,
has cheap price range and average customer rating.

2-stage full The Cricketers is a restaurant serving Chinese food near All Bar One. It is family-friendly
with cheap price range and average customer rating.

1-stage full The Cricketers is a restaurant serving Chinese food. It is family-friendly and has cheap price

range. It serves Chinese food near All Bar One. It has average customer rating.

3-stage filtered The Cricketers is a restaurant serving Chinese food near All Bar One. It is family-friendly
with cheap price range and average customer rating.

2-stage filtered The Cricketers is a restaurant serving Chinese food near All Bar One. It is family-friendly
with cheap price range and average customer rating.

1-stage filtered The Cricketers is a restaurant serving Chinese food. It is family-friendly and has average
customer rating. It serves Chinese food near All Bar One. It has cheap price range.

Human For a central family friendly venue serving cheap Chinese food, try The Cricketers restaurant.
It has average customer ratings and is near All Bar One.

Table 12: Correct behavior of the models on E2E: the models can deal even with a higher amount of input values.

16



Input [0] name[The Phoenix]
[1] area[riverside]
[2] priceRange[cheap]
[3] familyFriendly[yes]
[4] near[Raja Indian Cuisine]
[5] eatType[restaurant]

Templates The Phoenicx is in the riverside.
The Phoenix has cheap price range.
The Phoenix is family-friendly.
The Phoenix is near Raja Indian Cuisine.
The Phoenix is a restaurant.

Order 514<sep>32

Aggregation 51432

3-stage full The Phoenix is a restaurant in the riverside near Raja Indian Cuisine. It is family-friendly
with cheap price range.

2-stage full The Phoenix is a restaurant in the riverside near Raja Indian Cuisine. It is family-friendly
with cheap price range.

1-stage full The Phoenix is a restaurant near Raja Indian Cuisine in the riverside. It is family-friendly

and has cheap price range. It has cheap food range.

3-stage filtered The Phoenix is a restaurant in the riverside near Raja Indian Cuisine. It is family-friendly
with cheap price range.

2-stage filtered The Phoenix is a restaurant in the riverside near Raja Indian Cuisine. It is family-friendly
with cheap price range.

1-stage filtered The Phoenix is a restaurant near Raja Indian Cuisine in the riverside. It is family-friendly
and has cheap price range. It has cheap food.

Human Cheap food and a family friendly atmosphere at The Phoenix restaurant. Situated riverside
near the Raja Indian Cuisine.

Table 13: Incorrect behavior on E2E: the 1-STAGE models add redundant information to the output.
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