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Abstract

Distribution shifts between training and test data undermine the reliability of deep
neural networks, challenging real-world applications across domains and subpopu-
lations. While distributionally robust optimization (DRO) methods like GroupDRO
aim to improve robustness by optimizing worst-case performance over predefined
groups, their use of a single global classifier can be restrictive when facing sub-
stantial inter-environment variability. We propose Multi-Expert Distributionally
Robust Optimization (MEDRO), a novel extension of GroupDRO designed to
address such complex shifts. MEDRO employs a shared feature extractor with m
environment-specific expert classifier heads, and introduces a min-max objective
over all m2 expert-environment pairings, explicitly modeling cross-environment
risks. This expanded uncertainty set captures fine-grained distributional variations
that a single classifier might overlook. Empirical evaluations on a range of standard
distribution shift benchmarks demonstrate that MEDRO often achieves robust
predictive performance compared to existing methods. Furthermore, MEDRO
offers practical inference strategies, such as ensembling or gating mechanisms,
for typical scenarios where environment labels are unavailable at test time. Our
findings suggest MEDRO as a promising step toward resilient and generalizable
machine learning under real-world distribution shifts.

1 Introduction

Deep neural networks have achieved remarkable success under the assumption that training and test
data are drawn from the same distribution. In real-world applications, however, this assumption often
breaks down, and even minor deviations—known as distribution shifts—can significantly impair
performance [1, 2]. Such shifts are common across domains like medical diagnostics (e.g., changing
demographics or imaging protocols) and natural language processing (e.g., text from emerging
sources), posing serious challenges for model reliability [3, 4].

Two common types of distribution shift are subpopulation shift and domain shift [5]. Subpopulation
shift arises when specific subgroups—such as minority demographics—exhibit different feature or
label distributions from the majority population [6, 7]. Domain shift, by contrast, involves broader
changes in data-generating processes, such as differences in visual style or linguistic domain [8]. We
follow Koh et al. [5] in defining subpopulation shifts as variations within a domain, and domain shifts
as those occurring between distinct domains. Both types can degrade performance and require robust
generalization approaches [5, 6, 9].

A leading approach is distributionally robust optimization (DRO), which minimizes the worst-case
risk over a set of possible distributions [10, 6]. In GroupDRO, a prominent DRO variant, the model is
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trained to minimize the maximum loss across predefined environments, promoting robustness under
subpopulation shifts. However, GroupDRO relies on a single global classifier and may struggle when
optimal decision boundaries vary substantially between environments [11]. Moreover, its uncertainty
set—defined over convex mixtures of environments—may overlook nuanced interactions between
them.

To address these limitations, we propose Multi-Expert DRO (MEDRO), which extends GroupDRO
by assigning a specialized expert head to each environment while sharing a common feature extractor.
This design enlarges the uncertainty set from an (m − 1)-dimensional simplex to an (m2 − 1)-
dimensional one, accounting for all expert–environment combinations. Each expert minimizes risk
on its designated environment while also learning to generalize across mismatched inputs from other
environments.

We evaluate MEDRO across a variety of distribution shift settings. On subpopulation shift benchmarks
[6, 12], MEDRO significantly improves worst-group accuracy. It also generalizes effectively to
domain and mixed-shift benchmarks [5], consistently outperforming single-head DRO baselines.

Since environment labels are unavailable at test time, we introduce two inference strategies: a simple
ensemble that averages expert outputs, and a gating network that adaptively weighs them based on
the input. These strategies enable effective deployment of MEDRO without requiring environment
annotations at inference time.

Overall, MEDRO extends the DRO framework by explicitly modeling expert–environment interac-
tions, offering a unified and principled approach to both subpopulation and domain-level shifts.

The remainder of the paper is organized as follows. Section 2 reviews out-of-distribution generaliza-
tion and DRO. Section 3 provides the requisite background and introduces the proposed MEDRO
framework. Section 4 reports experimental findings, and Section 5 concludes with potential future
research avenues.

Summary of contributions:

• Multi-expert DRO formulation: We propose a principled extension of DRO that assigns
a specialized expert head to each environment and optimizes over all expert–environment
pairs. This formulation expands the DRO uncertainty set and captures cross-environment
variations beyond the capacity of single-head models.

• Theoretical analysis: We show that MEDRO extends GroupDRO by explicitly model-
ing expert–environment interactions beyond group-wise risks. Our formulation recovers
GroupDRO as a special case and enjoys convergence guarantees under standard assumptions.

• Unified approach to subpopulation and domain shift: By modeling all ex-
pert–environment interactions, our approach unifies subpopulation robustness and domain
generalization within a single framework, supported by theoretical analysis and empirical
results for both types of shifts.

2 Related work

2.1 Out-of-distribution generalization

Out-of-distribution (OOD) generalization aims to ensure robust model performance when test distribu-
tions deviate from those seen during training. A variety of methods address this challenge. One line of
work focuses on invariant feature learning, which encourages representations that remain predictive
across environments [13, 14], often through distribution alignment or adversarial training [15, 16].
Another direction builds on causal inference, assuming structural knowledge such as causal graphs or
conditional independencies to identify stable predictors [17], and includes approaches that model
domain shift as selection bias [18].

Complementary perspectives include meta-learning, which optimizes models for cross-domain
generalization by simulating distribution shifts during episodic training [19], and data augmentation,
which enriches the training distribution via transformations or perturbations [20, 21]. Recent work
also explores generating synthetic domains [22] or aligning optimization dynamics [23] to further
improve generalization.
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Despite their diversity, existing methods often rely on fixed assumptions about invariance or training
distribution coverage, without explicitly addressing worst-case scenarios. As a result, performance
may degrade under severe or unanticipated shifts. This motivates the use of more principled ap-
proaches such as distributionally robust optimization (DRO), which explicitly targets worst-case
robustness.

2.2 Distributionally robust optimization and generalization of robust models

DRO addresses distribution shift by optimizing worst-case risk over an uncertainty set [10, 24, 25].
Classical DRO formulations define an uncertainty set Q around the empirical training distribution
ρ̂, typically using a divergence-based radius (e.g., an f -divergence or Wasserstein ball) [24, 25, 26,
27]. Alternatively, formulations based on maximum mean discrepancy define an uncertainty set
and establish connections between DRO and regularization in kernel methods [28]. While these
approaches offer robustness to localized perturbations in (x, y), they are often less effective for
structured shifts, such as those involving subpopulations or domains.

To address this, early work explored DRO objectives under structured scenarios like label or data-
source shift [29, 30]. Building on this direction, GroupDRO [6] defines the uncertainty set over
predefined groups, enabling reweighting within observed groups while disallowing shifts beyond
their convex hull. By adversarially adjusting group weights, GroupDRO mitigates the risk of
underrepresented groups being overlooked, thereby improving worst-group performance on minority
groups. Recent work extends GroupDRO to affine combinations of training risks, encouraging
robustness beyond the convex hull [9].

However, GroupDRO and its extensions typically rely on a single classifier to represent all groups.
While shared models ensure coverage, they may overlook critical inter-group or domain-specific
variation [5]. This motivates DRO formulations that can explicitly model interactions between experts
and environments—a direction we pursue in this work.

3 Methodology

3.1 Problem setup

We consider a supervised learning problem in which training data is drawn from m distinct envi-
ronments (also referred to as groups or domains), indexed by e = 1, 2, . . . ,m. Each environment e
is characterized by a probability distribution Pe over the input-output space X × Y . We denote a
sample from environment e by (x, y) ∼ Pe. The model parameters are denoted by θ ∈ Θ, where Θ
is the parameter space, and a loss function ℓ : Y × Y → R+ quantifies prediction error.

Empirical risk minimization (ERM) is a common strategy that minimizes the average loss across
observed environments [31]. However, ERM often struggles when the test distribution deviates from
what was seen during training, leading to poor generalization [5, 12].

3.2 From ERM to DRO

To tackle distributional shifts, distributionally robust optimization (DRO) focuses on minimizing the
worst-case expected loss over an uncertainty set Q. Formally, DRO solves:

min
θ∈Θ

max
q∈Q

E(x,y)∼q
[
ℓ
(
fθ(x), y

)]
. (1)

The design of Q governs the types of distribution shifts the model becomes robust against. For
instance, Q might comprise all distributions within a specified distance (e.g., a Wasserstein ball)
around an empirical measure [24, 25], or consist of mixtures of known group distributions [6].

3.3 GroupDRO framework

GroupDRO [6], a well-known form of DRO for multiple environments, definesQ as the set of convex
combinations of P1, . . . ,Pm:

Q :=
{ m∑
e=1

λePe
∣∣ λ ∈ ∆m

}
, (2)
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Figure 1: Conceptual visualization of uncertainty sets for m = 3 environments. Environments Pj are
represented by distinct locations in the (x,y)-plane; the z-axis denotes risk. (a) GroupDRO: The
risk surface (shaded triangle) for a single classifier, defined over the convex hull of the m = 3 base
environment distributions. GroupDRO optimizes for the worst-case risk on this surface. (b) MEDRO
(Individual Experts): Illustrates the three distinct risk surfaces (triangular patches), one for each
of MEDRO’s m = 3 experts (ωi ◦ ϕ). Each surface shows how an individual expert i performs
across all environments j (i.e., visualizing itsRi,j profile). (c) MEDRO (Expanded Uncertainty
Set): The convex hull of all m2 = 9 cross-environment risks (Ri,j points). MEDRO’s worst-case
component is maximized over this significantly more comprehensive set, explicitly considering all
expert-environment pairings. The size of this polytope adapts naturally to the degree of environment
heterogeneity, preventing excessive pessimism when environments are similar while capturing
complex variations when environments substantially differ.

where λ = (λ1, . . . , λm) lies in the probability simplex ∆m = {λ ∈ Rm≥0 :
∑m
e=1 λe = 1}. The

environment-wise risk of a model f on environment e is:

Re(θ) := E(x,y)∼Pe

[
ℓ
(
fθ(x), y

)]
. (3)

Hence, GroupDRO solves:

min
θ∈Θ

max
λ∈∆m

m∑
e=1

λeRe(θ). (4)

This objective prioritizes the highest-loss environment, driving the model to perform well even under
worst-case shifts. In practice, at any training iteration t, GroupDRO uses an iterative procedure where
i)Re(θt) is estimated for each environment e; ii) the weights λt are updated (e.g., by exponentiated
gradient) to emphasize environments with higher risks; iii) a gradient step updates θt to reduce the
weighted sum of losses. Under mild assumptions (e.g., convexity, bounded gradients, losses, and
Lipschitz continuity), convergence occurs at a rate of O(1/

√
T ) [6, 32].

3.4 Motivation for extensions

GroupDRO trains a single classifier to be robust against worst-case mixtures of predefined environ-
ment distributions. While effective, this single-classifier approach can be restrictive when optimal
decision strategies inherently diverge across environments. Furthermore, its uncertainty set, based
on evaluating this single strategy across mixtures, may not explicitly isolate or optimize against all
distinct classes of vulnerabilities. This motivates exploring extensions that can address these aspects
through a more expressive uncertainty framework (see Appendix A.1 for a more detailed discussion).

3.5 Proposed method: Multi-Expert Distributionally Robust Optimization (MEDRO)

To this end, we propose MEDRO which extends GroupDRO by enlarging the uncertainty set Q
to handle more potential distribution shifts. Consider a neural net classifier f : X → Y typically
decomposed into a shared feature extractor ϕ : X → Z and a linear (or shallow) head ω : Z → Y . In
MEDRO, we maintain a shared feature extractor ϕ but introduce m expert heads, ω1, . . . , ωm, each
tailored to one environment. Let θ = {ϕ, ω1, . . . , ωm}. For a pair (i, j), where expert i is used on
data from environment j, we define the cross-environment risk as

Ri,j(θ) = E(x,y)∼Pj

[
ℓ
(
(ωi ◦ ϕ)(x), y

)]
. (5)
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Rather than tracking just m risks {Re}, MEDRO considers m2 such cross-environment risks {Ri,j}
serving as candidates for worst-case evaluation. This broader set of risks, corresponding to each
potential mismatch between expert i and environment j, forms the basis for our expanded uncertainty
set (see Figure 1 for a conceptual illustration). This design recognizes that test-time inputs from
environment j may be inadvertently labeled or processed as if they came from i, especially when
domain labels are uncertain.

We assign weights λi,j to each pair (i, j), forming a matrix Λ ∈ Rm×m that lies in the (m2 − 1)-

dimensional probability simplex ∆m2 =
{
Λ ∈ Rm2

≥0

∣∣ ∑m
i=1

∑m
j=1 λi,j = 1

}
. We further

introduce a specialization term,
∑m
i=1Ri,i(θ), to ensure expert i remains proficient in environment i.

Our complete objective is

min
θ

[
m∑
i=1

Ri,i(θ) + γ max
Λ∈∆m2

m∑
i=1

m∑
j=1

λi,j Ri,j(θ)

]
, (6)

where γ > 0 balances the importance of cross-environment mismatches. We emphasize that
naively enlarging the DRO uncertainty set does not guarantee improved performance and may
lead to overly pessimistic models or loss of task-specific performance [6, 33]. MEDRO’s design
incorporates two key safeguards against these failure modes. First, the worst-case optimization over
the expanded uncertainty set remains adaptive and bounded: the m2 cross-environment risks are
grounded in the training data and reflect plausible distribution shifts rather than arbitrary worst-case
scenarios. When environments exhibit substantial variation, the expanded risk polytope (Figure 1c)
captures this heterogeneity, enabling targeted robustness. Conversely, when environments are more
homogeneous, the effective uncertainty set contracts naturally, preventing excessive pessimism.
Second, the specialization term

∑
iRi,i(θ) serves as a critical regularizer that anchors each expert to

its native environment, explicitly preserving domain-specific knowledge and preventing the model
collapse that could result from overly aggressive robustness optimization. This principled balance
between adaptive worst-case protection and specialization anchoring distinguishes MEDRO from
naive uncertainty set expansion.

In essence, MEDRO retains the min-max flavor of GroupDRO across m2 risk terms, emphasizing
both native and mismatched expert-environment pairs. Under conditions where λi,j ≈ 0 for i ̸= j, the
objective of MEDRO simplifies to GroupDRO by focusing on the diagonal terms {Ri,i}. Conversely,
if cross-environment risk is significant (λi,j > 0), the expanded uncertainty set can yield enhanced
robustness against distribution shifts that a single-environment weighting might fail to capture. Full
proofs are provided in Appendix B, showing how this broader formulation encompasses GroupDRO
while capturing cross-environment risks.

To solve this objective in (6), we adapt GroupDRO’s online approach. At iteration t, we (1) estimate
Ri,j(θt) with mini-batches from environment j, (2) update Λt+1 in the (m2−1)-dimensional simplex
via exponentiated gradient, and (3) update θt+1 to minimize the weighted sum of cross-environment
risks plus the specialization term. Pseudocode is provided in Algorithm 1 of Appendix A.3. This
procedure also converges at a rate of O(1/

√
T ), albeit with a factor of log(m2) from the higher-

dimensional simplex. We provide the full convergence analysis in Appendix C.

Connection to domain generalization Although MEDRO is primarily motivated by subpopulation
shifts, our theoretical analysis shows that, under the assumption of approximately equal cross-
environment risks, the shared feature extractor ϕ∗ approximately satisfies label-conditional invariance
across environments (i.e., Pi(Y | ϕ∗(X)) = Pj(Y | ϕ∗(X)) for all i, j). This follows from
MEDRO’s expanded uncertainty set over all m2 expert–environment pairs, which promotes the
removal of environment-specific variations in the learned representation (Appendix D). We empirically
evaluate this effect on standard domain-generalization benchmarks in Section 4.4.

3.6 Inference with unknown environments

As environment membership is not available at test time in our experimental settings, we cannot
simply route each sample to its matching expert. Two general strategies are considered for combining
the outputs of MEDRO’s m expert heads: (1) simple ensemble, which averages predictions; and (2) a
learned gating network, which produces sample-adaptive weights for the experts. Both approaches
leverage MEDRO’s multiple heads without requiring explicit environment labels at inference.
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Approach 1 (simple ensemble) Let each expert i produce a logit vector (ωi ◦ ϕ)(x) ∈ RK for
i = 1, . . . ,m. Then, the ensemble logit is:

ẑ =
1

m

m∑
i=1

(ωi ◦ ϕ)(x).

Finally, the predicted label is ŷ(x) = argmaxk ẑk. This approach is straightforward and requires
no additional training.

Approach 2 (gating network) Alternatively, a gating function g : Z → Rm can be employed.
This approach is a form of a Mixture of Experts (MoE) model [34, 35, 36], where the gating function
learns to assign weights to different experts based on the input. Specifically, the gating function takes
the shared features ϕ(x) as input and produces logits (g ◦ϕ)(x). These logits are then passed through
a softmax function to obtain environment-specific gating weights α(x) = softmax

(
(g ◦ ϕ)(x)

)
∈

∆m, where ∆m =
{
α ∈ Rm≥0 |

∑m
i=1 αi = 1

}
. Each expert i still produces its logit vector

(ωi ◦ ϕ)(x) ∈ RK . The final combined logit vector is then computed as a weighted sum:

ẑ =

m∑
i=1

αi(x)(ωi ◦ ϕ)(x),

from which the final predicted label ŷ(x) = argmaxk ẑk is derived. The choice between these
inference strategies can depend on factors such as the availability of a suitable validation set for
training an effective gating mechanism; in its absence, the simple ensemble provides a robust default
(see Appendix A.2 for details). In our experiments, we default to the ensemble approach unless
specified otherwise.

4 Experiments

4.1 Experimental design and datasets

Our experimental evaluation uses datasets that span diverse data modalities and distribution shift
scenarios to thoroughly evaluate the effectiveness of MEDRO. These datasets are summarized in
Table 5 of Appendix E. We selected these datasets for the following key reasons:

1. Comprehensive coverage of shift types: Our selection includes both subpopulation shift
datasets (Waterbirds [37], CelebA [38], CivilComments [39], MultiNLI [40], MetaShift [41],
NICO++ [42], CheXpert [43], Living17 [44]) and domain generalization datasets (Came-
lyon17 [45], iWildCam [46]), as well as hybrid settings (PovertyMap [47]) that exhibit both
types of shifts simultaneously.

2. Controlled validation: CelebA and Waterbirds serve as our foundational evaluation envi-
ronments, following the experimental setup of GroupDRO [6], enabling direct comparison
with this established baseline.

3. Standardized benchmarks: By leveraging datasets from established benchmarks such as
SubpopBench [12] and WILDS [5], we ensure that our evaluation follows rigorous protocols
that facilitate fair comparison with state-of-the-art methods.

4. Varied technical challenges: These datasets present different technical challenges, from
handling high-dimensional image data to processing natural language, and from simple
binary classification to multi-class classification with hundreds of categories.

This diversity allows us to evaluate whether MEDRO can provide consistent improvements across
different types of distribution shifts, data modalities, and application areas, demonstrating its potential
as a general-purpose solution for robust learning.

4.2 Method validation on controlled settings

We followed the experimental protocol established in [6], using strong ℓ2 regularization to prevent
overfitting to majority groups. All methods used identical ResNet-50 architectures and optimizer
configurations. Additional training and hyperparameter details are in Appendix E.1.
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Figure 2: Effect of balancing factor γ on CelebA
and Waterbirds (log scale). Left: average accu-
racy; Right: worst-group accuracy.
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Figure 3: Worst-case training risk of MEDRO
(blue) and GroupDRO (gray), over training itera-
tions. Left: CelebA; Right: Waterbirds.

Table 1: Average and worst-group accuracy (%) on CelebA and Waterbirds. Mean and standard
deviation are calculated across five independent runs. The best worst-group accuracy is boldfaced.

CelebA

Method Avg. Worst

ERM 95.9 (±0.1) 39.2 (±2.1)
GroupDRO 93.7 (±0.3) 85.7 (±2.2)
MEDRO (ours) 92.2 (±0.8) 89.4 (±1.2)

Waterbirds

Method Avg. Worst

ERM 95.5 (±1.5) 23.5 (±3.8)
GroupDRO 96.1 (±1.3) 84.1 (±2.4)
MEDRO (ours) 94.2 (±1.8) 86.3 (±1.9)

Balance factor sensitivity analysis We analyzed how the balancing coefficient γ affects model
performance in our controlled settings, varying γ from 10−3 to 102. As shown in Figure 2, average
accuracy increased with larger γ values and saturated near γ = 1, while worst-group accuracy peaked
at γ = 0.5 and declined for larger values. These results suggest that intermediate γ values offer the
best trade-off between average and worst-case performance for these experimental conditions.

Comparing worst-case training risk Figure 3 illustrates the worst-case training risk, defined as
the empirical loss of the most challenging expert-environment pairing at each training iteration for
MEDRO, compared to GroupDRO’s worst-group risk. MEDRO’s explicit consideration of all m2

cross-environment mismatches (i.e., evaluating expert i on environment j) means its objective may
identify a higher worst-case risk in early training stages, particularly if certain specialized experts
initially perform very poorly on non-native environments. This initial emphasis on the most severe of
these m2 potential failure modes directly shapes the learning process. It compels the model (both
the shared feature extractor ϕ and the expert heads ωk) to prioritize the mitigation of these specific,
high-risk vulnerabilities from the outset. As training progresses, MEDRO actively minimizes these
challenging mismatch risks. This process cultivates expert heads that are not only proficient in their
native domains (due to the specialization term in MEDRO’s objective) but also more resilient when
applied to mismatched data, ultimately leading to improved robustness on the most challenging
subpopulations where such vulnerabilities are critical.

Results in controlled settings Under these controlled conditions (Table 1), MEDRO consistently
improved worst-group accuracy over GroupDRO (+3.7% on CelebA, +2.2% on Waterbirds) while
maintaining comparable average accuracy (e.g., 92.2% vs. 93.7% for GroupDRO on CelebA). This
demonstrates MEDRO’s ability to substantially close the performance gap on challenging groups
with only a minor trade-off in overall average accuracy. These findings suggest MEDRO’s explicit
consideration of cross-environment risks effectively mitigates spurious correlations and enhances
robustness for underrepresented groups.

4.3 Large-scale evaluation on SubpopBench

Following the controlled evaluations, we now investigate the robustness of MEDRO under more
diverse and challenging subpopulation shifts. To this end, we evaluate on SubpopBench [12], a
comprehensive benchmark designed to systematically assess robustness under subpopulation shift
across various application areas.
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Table 2: Worst-group accuracy (%) on eight SubpopBench datasets, reported as mean ± standard
deviation over three runs. Best results per column are bolded.

Method Waterbirds CelebA CivilC. MultiNLI MetaShift NICO++ CheXpert Living17 Overall

ERM 69.1 ±4.7 62.6 ±1.5 63.7 ±1.1 66.8 ±0.5 82.6 ±0.4 37.6 ±2.0 50.2 ±3.8 28.2 ±1.5 57.6
Mixup 78.2 ±0.4 57.8 ±0.8 66.1 ±1.3 68.5 ±0.6 81.0 ±0.8 42.7 ±1.4 37.4 ±3.5 29.8 ±1.8 57.7
GroupDRO 78.6 ±1.0 89.0 ±0.7 70.6 ±1.2 76.0 ±0.7 85.6 ±0.4 37.8 ±1.8 74.5 ±0.2 27.2 ±1.5 67.4
IRM 74.5 ±1.5 63.0 ±2.5 63.2 ±0.8 63.6 ±1.3 83.0 ±0.1 40.0 ±0.0 34.4 ±1.7 28.2 ±1.5 56.2
CVaRDRO 75.5 ±2.2 64.1 ±2.8 68.7 ±1.3 63.0 ±1.5 84.6 ±0.0 36.7 ±2.7 57.9 ±0.4 28.3 ±0.7 59.9
JTT 72.0 ±0.3 70.0 ±10.2 64.3 ±1.5 69.1 ±0.1 83.6 ±0.4 40.0 ±0.0 61.3 ±4.9 28.8 ±1.1 61.1
LfF 75.2 ±0.7 53.0 ±4.3 51.0 ±6.1 63.6 ±2.9 73.1 ±1.6 30.4 ±1.3 13.7 ±9.8 26.2 ±1.1 48.3
LISA 88.7 ±0.6 86.5 ±1.2 73.7 ±0.3 73.3 ±1.0 84.1 ±0.4 42.7 ±2.2 75.6 ±0.6 29.8 ±0.9 69.3
MMD 83.9 ±1.4 24.4 ±2.0 54.5 ±1.4 69.1 ±1.5 85.9 ±0.7 40.7 ±0.5 50.2 ±3.8 26.6 ±1.8 54.4
ReSample 77.7 ±1.2 87.4 ±0.8 73.3 ±0.5 72.3 ±0.8 85.6 ±0.4 40.0 ±0.0 75.3 ±0.5 30.7 ±2.1 67.8
ReWeight 86.9 ±0.7 89.7 ±0.2 72.5 ±0.0 68.8 ±0.4 85.6 ±0.4 41.9 ±1.6 75.7 ±0.1 28.2 ±1.5 68.7
SqrtReWeight 78.6 ±0.1 82.4 ±0.5 71.7 ±0.4 69.5 ±0.7 84.6 ±0.7 40.0 ±0.0 70.0 ±2.3 28.2 ±1.5 65.6
CBLoss 86.2 ±0.3 89.4 ±0.7 73.3 ±0.2 72.2 ±0.3 85.5 ±0.4 37.8 ±1.8 74.7 ±0.3 28.2 ±1.5 68.4
Focal 71.6 ±0.8 59.1 ±2.0 62.0 ±1.0 69.4 ±0.7 81.5 ±0.0 36.7 ±2.7 42.1 ±4.0 28.0 ±1.2 56.3
LDAM 71.0 ±1.8 59.6 ±2.4 37.4 ±8.1 69.6 ±1.6 83.6 ±0.4 42.0 ±0.9 36.4 ±0.3 24.7 ±0.8 53.0
BSoftmax 74.1 ±0.9 83.3 ±0.5 71.2 ±0.4 66.9 ±0.4 83.1 ±0.7 40.4 ±0.3 75.4 ±0.5 27.5 ±0.8 65.2
DFR 91.0 ±0.3 90.4 ±0.1 69.6 ±0.2 68.5 ±0.2 85.4 ±0.4 23.7 ±0.7 71.7 ±0.2 29.0 ±0.2 66.2
CRT 79.7 ±0.3 87.2 ±0.3 71.1 ±0.1 70.7 ±0.1 84.1 ±0.4 43.3 ±2.7 74.6 ±0.3 33.9 ±0.1 68.1
ReWeightCRT 78.4 ±0.1 87.2 ±0.3 71.0 ±0.1 69.0 ±0.2 85.6 ±0.4 23.3 ±1.4 76.0 ±0.1 33.7 ±0.1 65.5
MEDRO 83.8 ±1.3 90.4 ±0.4 73.4 ±0.5 75.7 ±0.8 85.9 ±0.4 39.1 ±2.5 75.0 ±0.4 32.6 ±0.7 69.5
MEDRO (w/ gating) 84.1 ±1.0 91.1 ±0.2 74.1 ±0.4 75.7 ±0.7 87.2 ±0.7 39.1 ±2.5 75.0 ±0.4 33.6 ±0.6 70.0

Experimental setup We evaluated MEDRO on eight representative SubpopBench tasks spanning
diverse modalities. Following the official benchmark protocol, we used worst-group accuracy as the
primary metric. Full experimental details and baseline descriptions are provided in Appendix E.2.

Results on SubpopBench Table 2 reports the worst-group accuracy for all methods across the eight
SubpopBench datasets. Consistent with previous findings [12], many existing robustness methods
exhibit strong performance on specific datasets but do not generalize their effectiveness universally
across the varied subpopulation shift scenarios present in the benchmark. In this challenging evalu-
ation, MEDRO (ours) achieved the highest overall worst-group accuracy of 69.5% when averaged
across all eight tasks. This leading performance underscores MEDRO’s ability to effectively address
a diverse range of subpopulation shifts. We attribute this strong generalization to its expanded risk
structure, which explicitly considers m2 cross-environment risks, allowing it to better identify and
mitigate vulnerabilities beyond conventional worst-case weighting over groups. Furthermore, when
augmented with a lightweight gating mechanism for inference (MEDRO w/ gating, as described in
Section 3.6), the overall worst-group accuracy improved further to 70.0%, demonstrating the potential
for adaptive expert combination at test time.

Isolating the effect of multi-head architecture Since MEDRO employs multiple expert heads, a
natural concern is whether its improvements arise from the expanded uncertainty formulation or from
ensemble effects. To isolate these factors, we evaluated GroupDRO with a multi-head architecture—a
controlled baseline that maintains the same architectural structure but trains each head independently
on the standard GroupDRO objective, differing only in random initialization. Both methods use
identical ensemble inference at test time. As detailed in Appendix E.2.6, across eight SubpopBench
datasets, GroupDRO with multi-head architecture achieves 67.8% overall worst-group accuracy, a
+0.4% improvement over single-head GrouupDRO (67.4%). MEDRO achieves 69.5%, a +1.7%
improvement over the multi-head variant. This pattern indicates that MEDRO’s gains stem primarily
from modeling cross-environment risks through its expanded m2 uncertainty set rather than from
architectural choices.

4.4 Evaluation under domain shifts

While MEDRO was initially designed primarily with subpopulation shifts in mind, we now investigate
its effectiveness in broader domain generalization scenarios, where shifts between training and test
distributions can be more substantial. To this end, we evaluated MEDRO on three representative
tasks from the WILDS benchmark [5]: Camelyon17 (histopathology image classification), iWildCam
(wildlife camera trap image classification), and PovertyMap (satellite image regression for poverty
prediction). These datasets are characterized by more fundamental and structural differences between
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Table 3: Performance on WILDS benchmarks, reported as mean ± standard deviation. (a) Came-
lyon17: OOD validation and test accuracy (%) from 10 independent runs. (b) iWildCam: OOD
validation and test macro F1 scores (%) from 3 independent runs. The best result in each column is
bolded. A dash indicates missing results that were unavailable in the original benchmark study [18].

Method (a) Camelyon17 (b) iWildCam

Validation Test Validation Test

ERM (scratch) 84.9 (±3.1) 70.8 (±7.2) - -
ERM (ImageNet) 91.3 (±0.2) 84.2 (±2.1) 37.4 (±1.3) 31.0 (±1.3)
CORAL 86.2 (±1.4) 59.5 (±7.7) 37.0 (±1.2) 32.8 (±0.1)
IRM 86.2 (±1.4) 64.2 (±8.1) 20.2 (±7.6) 15.1 (±4.9)
GroupDRO 85.5 (±2.4) 68.4 (±7.3) 26.3 (±0.2) 23.9 (±2.1)
DANN - - - 31.9 (±1.4)
VREx 82.3 (±1.3) 71.5 (±8.3) - -
LISA 81.8 (±1.3) 77.1 (±6.5) - -
Fish 82.5 (±1.2) 79.5 (±6.0) 25.8 (±0.5) 24.2 (±0.9)
SWAD 88.1 (±1.5) 83.9 (±0.9) 31.6 (±0.2) 29.1 (±0.1)
L2A-OT 86.3 (±3.4) 77.5 (±6.7) 22.8 (±2.9) 18.1 (±3.2)
HeckmanDG 90.6 (±2.4) 87.3 (±2.4) 34.5 (±0.9) 31.8 (±0.3)
MEDRO (ours) 92.6 (±0.5) 87.8 (±1.9) 34.1 (±0.7) 31.5 (±0.8)

training and test environments compared to the group-level variations typically seen in subpopulation
shift problems. Theoretical motivations for domain generalization are provided in Appendix D.

Experimental setup Following the official WILDS protocol, we used the designated out-of-
distribution (OOD) validation sets for model selection and reported performance on the OOD test
sets using dataset-specific metrics (accuracy for Camelyon17, macro F1 for iWildCam, and Pearson
correlation for PovertyMap). All baseline results were taken from prior work that adheres to the
WILDS codebase and evaluation guidelines [18]. Additional experimental details are provided in
Appendix E.3.

Results on WILDS The performance of MEDRO and baseline methods on these challenging
domain generalization tasks is presented in Table 3 and Table 4. On Camelyon17 (Table 3a), MEDRO
achieves the best OOD validation (92.6%) and test (87.8%) performance, surpassing all listed
baselines, including GroupDRO and other strong domain generalization methods. For iWildCam
(Table 3b), MEDRO (31.5% test F1) again substantially outperforms GroupDRO and remains
highly competitive. In the regression task on PovertyMap (Table 4), using a linear regressor head,
MEDRO demonstrates strong results. Its average Pearson correlation (0.80 test) is competitive with
top-performing methods and notably surpasses GroupDRO. For worst-group correlation, MEDRO
(0.49 test) shows significant improvement over GroupDRO and is second only to HeckmanDG.
Across these diverse WILDS benchmarks, MEDRO consistently delivers substantial improvements
over GroupDRO. These results indicate its expanded uncertainty set, which considers specific
expert-environment mismatches, is beneficial for tackling complex domain shifts and enhances
out-of-distribution performance, complementing existing domain generalization strategies.

5 Conclusion

In this work, we investigated the limitations of single-classifier GroupDRO in handling heterogeneous
environments and proposed MEDRO, which significantly broadens the uncertainty set to include
cross-environment mismatches. By assigning individual heads to each environment but sharing a
common feature extractor, MEDRO retains the core adversarial weighting principle of GroupDRO
while offering greater flexibility to specialize across a range of subpopulations or domains. Our
empirical results on both subpopulation-shift and domain-shift benchmarks confirm that this approach
substantially improves test-time robustness, especially in settings with strong spurious correlations or
large domain discrepancies.
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Table 4: Performance comparison on the PovertyMap dataset from WILDS benchmark, reported as
the Pearson correlation coefficient (mean ± std over five runs) on both the OOD validation and test
sets. Experiments use the original 5-fold dataset splits provided in WILDS. The best result in each
column is bolded. We do not report worst-group performance for ’Fish’, because it has not been
reported in [23].

Method Average Corr. Worst-Group Corr.

Validation Test Validation Test

ERM 0.80 (±0.04) 0.78 (±0.03) 0.51 (±0.06) 0.45 (±0.06)
CORAL 0.80 (±0.04) 0.77 (±0.05) 0.52 (±0.06) 0.44 (±0.06)
IRM 0.81 (±0.03) 0.77 (±0.05) 0.53 (±0.06) 0.43 (±0.07)
GroupDRO 0.78 (±0.05) 0.75 (±0.07) 0.46 (±0.07) 0.39 (±0.06)
DANN 0.77 (±0.04) 0.69 (±0.04) 0.44 (±0.11) 0.33 (±0.10)
Fish 0.81 (±0.01) 0.81 (±0.01) – –
SWAD 0.78 (±0.03) 0.77 (±0.04) 0.48 (±0.09) 0.45 (±0.11)
HeckmanDG 0.81 (±0.03) 0.81 (±0.03) 0.53 (±0.06) 0.51 (±0.04)
MEDRO (ours) 0.80 (±0.04) 0.80 (±0.03) 0.50 (±0.06) 0.49 (±0.03)

In addition, we showed that MEDRO naturally accommodates situations where environment labels
are unavailable at inference by employing either a simple ensemble of experts or a learned gating
mechanism. These test-time strategies enable practical deployment without the need to know the
environment membership of new samples. Moving forward, we see multiple directions for advancing
this methodology: examining semi-supervised or dynamically evolving environments, and exploring
theoretical questions regarding the minimal conditions under which expert heads significantly enhance
robustness. Overall, our findings affirm that environment-specific parameterization is a compelling
way to address complex, real-world distribution shifts, offering a principled balance between worst-
case robustness and overall accuracy.
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A Supplementary Details for Multi-Expert DRO (MEDRO)

A.1 Rationale for the expanded uncertainty set of MEDRO

Distributional robustness hinges on what set of risks the learner treats as plausible test–time failures.
GroupDRO considers the m risks {Re}me=1 of a single classifier across the m training environments
and safeguards against their worst-case mixture. This is effective when a common decision rule can
serve all environments, but becomes brittle whenever the Bayes-optimal strategies diverge.

MEDRO remedies this by (i) allocating an expert ωi ◦ ϕ to each environment Pi and (ii) enlarging
the uncertainty set to the m2 cross-environment risks:

Ri,j(θ) := E(x,y)∼Pj
[ℓ((ωi ◦ ϕ)(x), y)], 1 ≤ i, j ≤ m.

These risks quantify specialization (the diagonal Ri,i) and mismatch (the off-diagonal Ri,j) in a
single view. The min-max term in Eq. (6) therefore searches the convex hull of all m2 points—visually
the shaded polytope in Figure 1c—instead of the simple in Figure 1a. Because the former strictly
contains the latter, MEDRO does not underestimate worst-case error and reduces to GroupDRO when
λi,j = 0 for i ̸= j.

A toy illustration helps ground this expansion. In the Waterbirds dataset, an expert trained on land
backgrounds (i.e., environment eland) may rely on background cues that are spurious for water birds. If
at test time, a water-background image were mis-routed to the land expert, the loss could spike despite
GroupDRO’s guarantee. MEDRO penalizes exactly this scenario throughRland,water, compelling the
shared encoder ϕ either to discard the cue or to make the experts mutually resilient.

Finally, the additional specialization term
∑
iRi,i(θ) keeps each expert near its environment’s

Bayes risk, preventing the trivial solution where all heads collapse into an identical, over-regularized
classifier. The balance hyperparameter γ mediates this trade-off and is studied empirically in
Section 4.2 (Figure 2).

In summary, MEDRO’s uncertainty set is deliberately broader, capturing both per-environment
optimality and cross-expert vulnerabilities, while retaining the computational structure of GroupDRO.

A.2 Gating network for inference: training details

The gating network g can, in principle, be trained end-to-end with the main MEDRO objective, a
common strategy in MoE literature [35, 36], or trained separately on a held-out validation set with
known environment labels. In our experiments, we adopted the latter approach, training the gating
network on a dedicated validation set. This staged training approach, while potentially suboptimal
compared to joint optimization, is often employed for practical reasons such as simplifying the
training process or when expert models are pre-trained [48, 49]. For the gate to learn effectively,
this validation set should ideally be representative of the various environments. For instance, in
subpopulation shift problems, having roughly balanced representation of subgroups within this
validation data may be beneficial, although this constitutes a practical consideration regarding data
availability. While a sufficiently large and balanced validation set is ideal, a relatively small number
of labeled examples per environment might still suffice to train a useful gate. We opted not to
explore end-to-end training of the gating network concurrently with the MEDRO objective due to the
anticipated complexities in the optimization dynamics arising from such joint training.
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A.3 MEDRO Training Algorithm

Algorithm 1 Multi-Expert Distributionally Robust Optimization (MEDRO) Training Procedure

1: Require: Training data from m environments {De ∼ Pe}me=1
2: Require: Balance factor γ > 0
3: Require: Learning rate for model parameters ηθ
4: Require: Learning rate for risk weights ηΛ
5: Require: Number of training iterations (batch steps) T
6: Initialize: Model parameters θ0 = {ϕ0, ω1,0, . . . , ωm,0}
7: Initialize: Risk weights Λ0 = {(λ0)i,j} (e.g., uniform: (λ0)i,j = 1/m2 for all i, j)
8: for t = 0, . . . , T − 1 do
9: # Step 1: Estimate all cross-environment risks

10: for i = 1, . . . ,m do
11: for j = 1, . . . ,m do
12: Sample a mini-batch Bj ∼ Pj from environment j.
13: Estimate R̂i,j(θt) = 1

|Bj |
∑

(x,y)∈Bj
ℓ
(
(ωi,t ◦ ϕt)(x), y

)
.

14: end for
15: end for
16: # Step 2: Update risk weights Λ
17: Let Rt = {R̂i,j(θt)}mi,j=1.
18: Update Λt+1 from Λt to emphasize higher risks in Rt. # e.g., using exponentiated gradient
19: for i = 1, . . . ,m do
20: for j = 1, . . . ,m do
21: (λ′

t+1)i,j ← (λt)i,j exp(ηΛ · R̂i,j(θt)).
22: end for
23: end for
24: Normalize Λt+1: (λt+1)i,j ← (λ′

t+1)i,j/
∑
a,b(λ

′
t+1)a,b.

25: # Step 3: Update model parameters θ
26: Define the loss for parameter update using Λt+1:
27: LMEDRO(θt,Λt+1) =

∑m
k=1 R̂k,k(θt) + γ

∑m
i=1

∑m
j=1(λt+1)i,j R̂i,j(θt).

28: Compute gradient gt = ∇θLMEDRO(θt,Λt+1).
29: Update parameters: θt+1 ← θt − ηθgt. # This involves updating ϕt+1 and all ωk,t+1

30: end for
31: Return: Trained parameters θT .

B Containment analysis of GroupDRO in MEDRO

In this appendix, we provide an argument that our proposed MEDRO formulation either exactly or
approximately contains the standard GroupDRO objective. We show how GroupDRO’s worst-case
weighting over m environments can be embedded in our (m2 − 1)-dimensional simplex, ensuring
that MEDRO subsumes GroupDRO as a special (or near-special) case, even when the diagonal risk
Ri,i in MEDRO does not perfectly match the single-classifier riskRi from GroupDRO.

B.1 Revisiting GroupDRO and MEDRO

GroupDRO Let there be m environments {e1, . . . , em}, each associated with a distribution Pe.
The GroupDRO objective is

min
θG∈ΘG

max
λ∈∆m

m∑
e=1

λeRe(θG), (7)

where ∆m is the (m− 1)-dimensional simplex, andRe(θG) is the expected loss under environment
e with parameters θG.

MEDRO In our approach, we no longer rely on a single set of parameters θG. Instead, we introduce
a shared parameter ϕ, and environment-specific heads {ω1, . . . , ωm}, one per environment. We
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combine them as θ = {ϕ, ω1, . . . , ωm}. This entire set of parameters defines a multi-head model.
The MEDRO objective is

min
θ

[
m∑
i=1

Ri,i(θ) + γ max
Λ∈∆m2

m∑
i=1

m∑
j=1

λi,j Ri,j(θ)

]
, (8)

where ∆m2 =
{
Λ ∈ Rm2

≥0 |
∑m
i=1

∑m
j=1 λi,j = 1

}
is the probability simplex of dimension (m2−1).

Parameter space relationship An important connection between GroupDRO and MEDRO exists
when we constrain all classifier heads in MEDRO to be identical (ω1 = ω2 = · · · = ωm = ω). In
this restricted case, our MEDRO model with parameters θ = {ϕ, ω, . . . , ω} becomes functionally
equivalent to a GroupDRO model with parameters θG = {ϕ, ω}. This equivalence allows us to
compareRi,i(θ) withRi(θG) in following analysis.

B.2 Embedding GroupDRO’s weights into (m2 − 1) dimensions

A key step in showing that MEDRO can replicate GroupDRO’s worst-case solution is to embed any
weighting λ = {λ1, . . . , λm} ∈ ∆m into Λ ∈ ∆m2 by placing all mass on the diagonal entries:

λi,j =

{
λi if i = j,

0 otherwise.
(9)

Since
∑
i,j λi,j =

∑m
j λj = 1, indeed Λ lies in ∆m2 . Moreover, for any function Fi,j ,

m∑
i=1

m∑
j=1

λi,jFi,j =

m∑
j=1

λjFj,j .

This diagonal embedding is crucial as it enables MEDRO’s maxΛ optimization to directly capture
GroupDRO’s maxλ objective when focusing on diagonal elements.

B.3 Exact containment ifRi,i(θ) = Ri(θG)

If each diagonal risk in MEDRO equals the single-classifier risk from GroupDRO, we obtain exact
containment.

Exact case Consider the setting where MEDRO parameter θ = {ϕ, ω, . . . , ω} have identical
classifier heads, corresponding to GroupDRO parameters θG = {ϕ, ω}. Suppose that Ri,i(θ) =
Ri(θG) for each i in this setting. Then,

max
Λ∈∆m2

m∑
i=1

m∑
j=1

λi,jRi,j(θ) ≥ max
λ∈∆m

m∑
j=1

λjRj,j(θ) = max
λ∈∆m

m∑
j=1

λjRj(θG), (10)

where the last equality follows from the assumption that Rj,j(θ) = Rj(θG). Minimizing over θ
shows that MEDRO’s min-max objective is at most the GroupDRO optimum, hence MEDRO includes
GroupDRO as a subproblem.

B.4 Approximate containment if
∣∣Ri,i(θ)−Ri(θG)∣∣ ≤ εi

While the exact containment provides a clean theoretical guarantee when Ri,i(θ) = Ri(θG), in
practice there may be a small discrepancy even when using identical classifier heads. We now analyze
how MEDRO approximates GroupDRO when these risks are not exactly equal.

Approximate case Suppose that
∣∣Ri,i(θ)−Ri(θG)∣∣ ≤ εi for i = 1, . . . ,m when using equivalent

parameter configurations. Let λ∗ be the optimal worst-case weighting for GroupDRO. We embed λ∗
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into Λ∗ via diagonal entries as in (9). Then

∑
i,j

λ∗
i,jRi,j(θ) =

m∑
j=1

λ∗
jRj,j(θ)

≥
m∑
j=1

λ∗
j

[
Rj(θG)− εj

]
=

m∑
j=1

λ∗
jRj(θG) −

m∑
j=1

λ∗
jεj

≥
m∑
j=1

λ∗
jRj(θG) −

m∑
j=1

λ∗
j max

k
εk

=

m∑
j=1

λ∗
jRj(θG) − max

j
εj ,

because
∑m
j=1 λ

∗
j = 1. Hence MEDRO approximates GroupDRO to within O(maxj εj), providing

a precise bound on the approximation error.

B.5 Empirical illustration: GroupDRO-MEDRO continuum

The theoretical analysis above shows that MEDRO contains GroupDRO as a special case when expert
heads are constrained to be identical. To illustrate this relationship empirically, we conducted a
preliminary experiment on Waterbirds.

We added a regularization term to MEDRO that penalizes expert dissimilarity: C · 1m
∑m
i=1 ∥ωi− ω̄∥2,

where ω̄ is the average parameter vector across all m expert heads. As C increases, this penalty drives
experts toward similar parameters. Small C values allow expert specialization (MEDRO-like), while
large C values enforce similarity (GroupDRO-like).
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Figure 4: Worst-group test accuracy on Waterbirds as a function of constraint strength C. Error bars
represent standard deviation across five runs.

As shown in Figure 4, performance exhibits a power-law decay from 86.3% (C = 0.001) to 83.9%
(C ≥ 1000). At high constraint levels, performance converges to the GroupDRO baseline (84.1%
from Table 1), consistent with the theoretical prediction. The 2.4 percentage point gap between the
two extremes suggests that expert specialization provides measurable benefits on this dataset, though
evaluation across multiple datasets would be needed to characterize this effect more broadly.
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C Convergence analysis of MEDRO

C.1 Problem formulation and assumptions

As established in Section 3, MEDRO operates in an expanded uncertainty set compared to GroupDRO.
Considering m2 cross-environment risks rather than m environment risks. Recall that MEDRO
involves optimizing over a shared parameter ϕ and environment-specific experts {ω1, . . . , ωm}, with
the objective including both a specialization term and a worst-case cross-environment robustness
term.

Saddle-point reformulation Let θ := {ϕ, ω1, . . . , ωm} collectively denote all parameters of the
model. By introducing randomness ξ (e.g., stochastic mini-batches) in the data sampling, we can
write the expected objective in min-max (saddle-point) form:

min
θ

max
Λ∈∆m2

Eξ[L(θ,Λ, ξ)], (11)

where L(θ,Λ, ξ) =
∑m
i=1Ri,i(θ, ξ) + γ

∑m
i=1

∑m
j=1 λi,jRi,j(θ, ξ).

Assumptions

1. Convexity / Concavity: Ri,j(θ, ξ) is convex in θ and Λ 7→ −
∑
i,j λi,jRi,j(θ, ξ) is concave

over ∆m2 .
2. Compactness: The parameter set θ is compact, ∥θ∥ ≤ Bθ, and ∆m2 is a simplex, whose

geometry yields a log(m2) term in mirror descent.
3. Lipschitz gradients: ∥∇θRi,j(θ, ξ)∥ ≤ B∇ implies ∥gt∥ ≤ B∇, and ∥lt∥∞ ≤ γBl on the

dual side, where lt = {γRi,j(θt, ξt)}1≤i,j≤m. See Eq. (12) for a formal definition of gt.

Under these assumptions, we show an O(1/
√
T ) convergence rate under an online mirror descent

procedure.

C.2 Online mirror descent algorithm

Gradient definitions At iteration t, we observe a stochastic mini-batch ξt. We define:

gt = ∇θ

 m∑
i=1

Ri,i(θt, ξt) + γ

m∑
i=1

m∑
j=1

[Λt]i,jRi,j(θt, ξt)

 , (12)

where [Λt]i,j denotes the (i, j)-th element of the weight matrix Λt at iteration t. The primal gradient
gt is w.r.t. θ, and the dual update uses lt (a matrix of scaled risks).

Primal update (mirror descent) We update θ by a mirror descent step:
θt+1 = argmin

θ
{ηθ⟨gt, θ⟩+Dψ(θ, θt)}, (13)

where ηθ ≥ 0 is the primal learning rate, and Dψ is a Bregman divergence measuring the distance
between θ and θt.

Dual update (mirror ascent) Simultaneously, we update the dual variable Λ ∈ ∆m2 by a mirror-
ascent step:

Λt+1 = arg max
Λ∈∆m2

{ηΛ⟨lt,Λ⟩ −Dν(Λ,Λt)}, (14)

where ηΛ ≥ 0 is the dual learning rate and Dν is a Bregman divergence on the ∆m2 simplex. This
extends GroupDRO’s dual update to our expanded uncertainty set.

The dual updates operate over an (m2− 1)-dimensional simplex rather than the (m− 1)-dimensional
simplex in GroupDRO. Repeating this procedure for t = 1, 2, . . . , T yields sequences {θt,Λt}.

C.3 Regret analysis

Our convergence analysis follows the approach in [6], which builds upon the stochastic approximation
framework of [50]. Let θ∗ and Λ∗ be a saddle point of the min-max objective.
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Regret definitions Define the cumulative regrets for primal and dual variables:

RθT =

T∑
t=1

⟨gt, θt − θ∗⟩, RΛ
T =

T∑
t=1

⟨lt,Λ∗ − Λt⟩, (15)

where ⟨lt,Λ⟩ =
∑m
i=1

∑m
j=1[lt]i,j [Λ]i,j represents the element-wise product sum between matrices.

Primal regret bound From mirror descent theory for saddle-point optimization [50], if ∥θ∥ ≤ Bθ
and ∥gt∥ ≤ B∇, then

E[RθT ] = E

[
T∑
t=1

⟨gt, θt − θ∗⟩

]
(16)

≤ B2
θ

ηθ
+

ηθ
2

T∑
t=1

E[∥gt∥2]. (17)

For simplicity, assume E[∥gt∥2] ≤ B2
∇. Then

E[RθT ] ≤
B2
θ

ηθ
+

ηθTB
2
∇

2
. (18)

Dual regret bound For mirror ascent on the simplex ∆m2 , If ∥lt∥∞ ≤ γBl, the standard regret
bound gives

E[RΛ
T ] = E

[
T∑
t=1

⟨lt,Λ∗ − Λt⟩

]
(19)

≤ log(m2)

ηΛ
+

ηΛT [γBl]
2

2
. (20)

The log(m2) term arises from the maximum divergence between any two points in the (m2 − 1)-
dimensional simplex.

Total regret bound Summing the two regrets:

E[RT ] = E[RθT +RΛ
T ] (21)

≤ B2
θ

ηθ
+

log(m2)

ηΛ
+

ηθTB
2
∇

2
+

ηΛTγ
2B2

l

2
. (22)

Optimal learning rate The optimal learning rates that minimize this bound are:

η∗θ =

√
2B2

θ

TB2
∇
, η∗Λ =

√
2 log(m2)

Tγ2B2
l

. (23)

Substituting these optimal learning rates:

E[RT ] ≤
√
2TB2

θB
2
∇ +

√
2T log(m2)γ2B2

l = O(
√
T ). (24)

Dividing by T shows the average regret is O(1/
√
T ).

C.4 Convergence rate

Given the bound on the average regret:

E[RT ]
T

=
1

T
E[RθT +RΛ

T ] = O
(

1√
T

)
, (25)
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we can define the average iterates θ̄T = 1
T

∑T
t=1 θt and Λ̄T = 1

T

∑T
t=1 Λt. By Jensen’s inequality

applied to the convex-concave objective, the expected suboptimality at these average iterates is
bounded by the average regret:

E[L(θ̄T ,Λ∗)− L(θ∗, Λ̄T )] ≤
E[RT ]
T

= O
(

1√
T

)
. (26)

This establishes that MEDRO achieves the same convergence rate of O(1/
√
T ) as standard Group-

DRO, despite expanded parameter and uncertainty spaces. The log(m2) term in the dual regret bound
introduces a constant factor of 2 compared to the log(m) term in GroupDRO.

D Theoretical connection between MEDRO objective, expert optimality, and
feature invariance

This subsection lays the theoretical groundwork for understanding how the Multi-Expert Distribu-
tionally Robust Optimization (MEDRO) objective facilitates domain generalization. We begin by
defining key terms and then explore the relationship between the objective function, the optimality of
individual environment experts, and the emergence of domain-invariant feature representations under
specific conditions.

D.1 Preliminaries and definitions

We consider a domain generalization setting with m distinct source domains, each with a data
distribution Pe over the input-output space X ×Y , for e ∈ {1, 2, . . . ,m}. Our model, parameterized
by θ = {ϕ, ω1, . . . , ωm}, consists of a shared feature extractor ϕ : X → Z and m environment-
specific “expert” heads ωk : Z → Y for k ∈ {1, . . . ,m}.
The cross-environment risk for expert head i evaluated on data from environment j is defined as:

Ri,j(θ) = E(x,y)∼Pj

[
ℓ((ωi ◦ ϕ)(x), y)

]
(27)

where ℓ(·, ·) is a given loss function. The MEDRO objective function to be minimized is:

L(θ) =

m∑
k=1

Rk,k(θ) + γ max
i,j∈{1,...,m}

Ri,j(θ) (28)

where γ > 0 is a hyperparameter balancing native-environment specialization with worst-case
cross-environment robustness.

Let R∗
k denote the Bayes risk for environment k:

R∗
k = min

f :X→Y
E(x,y)∼Pk

[
ℓ(f(x), y)

]
(29)

This minimum is achieved by the Bayes optimal predictor f∗
k for environment k. Let θ∗ =

{ϕ∗, ω∗
1 , . . . , ω

∗
m} be a set of parameters that globally minimizes L(θ). We define the deviation

from native Bayes risk for expert k under θ∗ as δk(θ∗) = Rk,k(θ∗)−R∗
k. Note that δk(θ∗) ≥ 0.

We consider a hypothetical parameter configuration, denoted θBayes =
{ϕBayes, ω1,Bayes, . . . , ωm,Bayes}, where each expert achieves its native Bayes risk. That
is, Rk,k(θBayes) = R∗

k for all k ∈ {1, . . . ,m}. The existence of such a θBayes within
the model’s hypothesis space is assumed under conditions of sufficient model capacity. Let
M(θ) = maxi,j Ri,j(θ). We can then define MBayes = M(θBayes) and M∗ = M(θ∗).

D.2 Bound on deviation from native Bayes optimality

The MEDRO objective, while promoting robustness, also includes a specialization term∑m
k=1Rk,k(θ) that encourages each expert ωk ◦ϕ to perform well on its native environment Pk. The

following proposition quantifies how far the native risksRk,k(θ∗) might deviate from their theoretical
minima R∗

k at the MEDRO optimum θ∗.
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Proposition 1 (bound on deviation from native Bayes optimality) Let θ∗ be a global minimizer
of the MEDRO objective L(θ) as defined in Eq. (28), with γ > 0. Under the assumption that a
configuration θBayes exists such thatRk,k(θBayes) = R∗

k for all k, the sum of deviations from native
Bayes risks at θ∗ is bounded as:

m∑
k=1

δk(θ
∗) ≤ γ (MBayes −M∗) (30)

Furthermore, since M∗ ≥ 0 (assuming non-negative risks), a simpler bound is:
m∑
k=1

δk(θ
∗) ≤ γMBayes (31)

Proof. By the optimality of θ∗, we have L(θ∗) ≤ L(θBayes). Substituting the definitions:
m∑
k=1

Rk,k(θ∗) + γM∗ ≤
m∑
k=1

Rk,k(θBayes) + γMBayes

UsingRk,k(θ∗) = R∗
k + δk(θ

∗) andRk,k(θBayes) = R∗
k:

m∑
k=1

(R∗
k + δk(θ

∗)) + γM∗ ≤
m∑
k=1

R∗
k + γMBayes

The
∑

R∗
k terms cancel:

m∑
k=1

δk(θ
∗) + γM∗ ≤ γMBayes

Rearranging yields the first bound in Eq. (30). Since MBayes −M∗ ≤ MBayes (as M∗ ≥ 0), the
second bound in Eq. (31) also holds.

Discussion Proposition 1 demonstrates that the total deviation from native Bayes optimality,∑
δk(θ

∗), is controlled by γ and the extent of robustness improvement, MBayes−M∗. The deviation∑
δk(θ

∗) will be small if (i) γ is chosen to be sufficiently small; or (ii) the term (MBayes −M∗) is
small. This latter case occurs if MBayes itself is small (i.e., native Bayes optimal predictors are inher-
ently robust), or if MBayes is not significantly larger than M∗ (i.e., there’s limited scope for MEDRO
to improve worst-case robustness beyond what θBayes already offers, possibly in “robustness-hard”
problem settings where further reduction in M∗ incurs substantial costs to native performance).

D.3 Assumption on expert optimality

The specialization term
∑m
k=1Rk,k(θ) in the MEDRO objective directly encourages each expert

ωk ◦ ϕ to minimize risk on its corresponding environment Pk. Proposition 1 provides a quantitative
framework for understanding when the resulting native risksRk,k(θ∗) will be close to their theoretical
minima R∗

k. For the subsequent analysis concerning the properties of the learned representation ϕ∗,
we make the following assumption:

Assumption 1 (expert optimality) For each environment i ∈ {1, . . . ,m}, the expert head ω∗
i

combined with the shared feature extractor ϕ∗ at the MEDRO optimum θ∗ achieves, or closely
approximates, the Bayes-optimal prediction on environment i:

ω∗
i ◦ ϕ∗ ≈ arg min

f :X→Y
E(x,y)∼Pi

[
ℓ(f(x), y)

]
(32)

This is equivalent to assuming that each deviation δi(θ
∗) is small or negligible.

Justification This assumption is grounded in the structure of the MEDRO objective and the insights
from Proposition 1. It posits that under ideal conditions (e.g., sufficient model capacity, successful
convergence to a global optimum θ∗) and an appropriate choice of γ, the balance struck by the
MEDRO objective is such that the conditions for the bound in Proposition 1 to be small (e.g., small γ,
or a problem structure where MBayes −M∗ is small for reasons not presupposing advanced feature
invariance) are effectively met. This ensures that experts remain highly proficient in their native
domains.
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D.4 Domain-invariant conditionals under equalized risks

Building upon the assumption of expert optimality, we now explore the properties of the learned rep-
resentation ϕ∗ under a particularly strong and idealized scenario of cross-environment generalization.
We consider a situation where not only does each expert ω∗

i achieve near-Bayes optimality on its
native domain Pi (per Assumption 1), but also its performance level on any other domain Pj matches
this optimal native performance. This implies thatRi,j(θ∗) ≈ Ri,i(θ∗) ≈ R∗

i for all j.

While the MEDRO objective aims to minimize the single worst-case risk maxa,bRa,b(θ), it does
not explicitly enforce that all Ri,j are reduced precisely to R∗

i . However, if the minimization of
maxa,bRa,b were so effective that all such risks were driven down to this fundamental limit, the
following proposition elucidates a crucial property of ϕ∗. Proposition 2 thus explores the structure of
ϕ∗ in such an idealized state of uniform expert generalization.

Proposition 2 (domain-invariant conditionals) Under Assumption 1 (Expert Optimality), if an
MEDRO solution θ∗ = {ϕ∗, ω∗

1 , . . . , ω
∗
m} achieves equal risk across all source domain pairs, i.e.,

for all i, j ∈ {1, . . . ,m},
Ri,j(θ∗) = Ri,i(θ∗) (33)

then the conditional distribution of labels given the learned representation ϕ∗(x) is invariant across
these domains:

Pi
(
Y | ϕ∗(x)

)
= Pj

(
Y | ϕ∗(x)

)
∀i, j ∈ {1, . . . ,m}, for ϕ∗(x) in the support. (34)

Proof. By Assumption 1, ω∗
i ◦ ϕ∗ (denoted hi(ϕ

∗(x)) for brevity) achieves (near) Bayes-optimal
risk on environment i. Thus, Ri,i(θ∗) ≈ R∗

i , the minimal possible risk on environment i given
the representation ϕ∗(x). The condition in Eq. (33), Ri,j(θ∗) = Ri,i(θ∗), implies that hi(ϕ∗(x))
also achieves this same (minimal) risk R∗

i when evaluated on data from environment j. This means
hi(ϕ

∗(x)) is effectively Bayes-optimal for predicting Y from ϕ∗(x) under Pj as well, and achieves
the same risk value R∗

i .

Let z = ϕ∗(x). The Bayes-optimal predictor for environment k using representation z is f∗
k (z) =

argminy′∈Y EY∼Pk(Y |Z=z)[ℓ(y
′, Y )]. Our premise is that ω∗

i (z) serves as f∗
i (z) (achieving risk

R∗
i ) and also as f∗

j (z) (achieving the same risk R∗
i ). For the same predictor ω∗

i (·) to be Bayes-
optimal for two different conditional distributions Pi(Y |Z = z) and Pj(Y |Z = z) and yield the
same Bayes risk value, these conditional distributions must be identical. If they were different, say
Pi(Y |z) ̸= Pj(Y |z) for some z in the support, then f∗

i (z) would generally differ from f∗
j (z), or

if they were the same function, the achieved Bayes risks would generally differ, contradicting the
premise that ω∗

i (z) achieves risk R∗
i for both. Thus, Pi(Y |ϕ∗(x) = z) = Pj(Y |ϕ∗(x) = z) for all z

in the common support of the representations across these domains.

Remark (approximate domain invariance) If for all i, j,
∣∣Ri,j(θ∗)−Ri,i(θ∗)∣∣ ≤ ε, then under

mild smoothness assumptions on the loss, the conditional distributions Pi(Y | ϕ∗(x)) and Pj(Y |
ϕ∗(x)) differ by at most O(

√
ε) in total variation.

Implication Proposition 2 suggests that if MEDRO can find a solution where each expert is not only
optimal in its native domain but also performs identically well (at its optimal native-domain risk level)
across all other source domains, then the learned feature extractor ϕ∗ must capture a representation
that neutralizes domain-specific variations relevant to P (Y |X), revealing a core, domain-invariant
conditional relationship P (Y |ϕ∗(X)). This is a highly desirable property for out-of-distribution
generalization.

E Experimental details and hyperparameter search

Our codes are available at https://github.com/jyjeongku/MEDRO.

E.1 Controlled experiments on CelebA and Waterbirds

We followed the experimental protocol introduced in the GroupDRO paper [6] to evaluate MEDRO
under controlled binary classification tasks. These experiments were conducted on the CelebA and
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Table 5: Summary of benchmark datasets used in our experiments.
Dataset Modality # Samples # Classes Domains/Attributes Task Shift Type

Waterbirds Natural image 11,788 2 2 (background) Bird classification Subpop.
CelebA Natural image 202,599 2 2 (gender) Hair color prediction Subpop.
CivilComments Text 448,000 2 8 (demographics) Toxicity detection Subpop.
MultiNLI Text 392,702 3 2 (negation) Natural language inference Subpop.
MetaShift Natural image 3,499 2 2 (background) Cat/Dog classification Subpop.
NICO++ Natural image 88,866 60 6 (background) Multi-category classification Subpop.
CheXpert Biomedical image 222,792 2 6 (race×gender) Disease diagnosis Subpop.
Living17 Natural image 45,900 17 N/A (Attr. generalization) Multi-category classification Subpop.
PovertyMap Satellite image 19,669 Regression 23×2 (country/area) Asset wealth prediction Hybrid
Camelyon17 Biomedical image 455,954 2 5 (hospitals) Tumor detection Domain
iWildCam Natural image 203,029 182 323 (locations) Animal classification Domain

Waterbirds datasets, which exhibit clear subpopulation shifts due to strong correlations between target
labels and spurious attributes. We compared MEDRO against ERM and GroupDRO under the same
backbone architecture and optimization settings, using known group labels for both training and
validation.

E.1.1 CelebA

We used the binary attribute Blond_Hair as the prediction target and Male as the confounding
variable. This results in four subgroups based on combinations of hair color and gender. The training
set is highly imbalanced, with the smallest group (blond-haired males) accounting for only a small
fraction of samples.

Training subgroup sizes:

• (0, 0): 71,629 (not blond, female)
• (0, 1): 66,874 (not blond, male)
• (1, 0): 22,880 (blond, female)
• (1, 1): 1,387 (blond, male)

Models were trained for 50 epochs using a pretrained ResNet-50 backbone [51]. We used SGD with
momentum 0.9, batch size 128, learning rate 10−5, and strong ℓ2 regularization (weight decay = 0.1).
No data augmentation was used.

We evaluated all methods using the final epoch model (i.e., without validation-based model selection),
as GroupDRO typically converges near the end of training and our setup reused its original fixed
hyperparameters. A 10% validation split was retained for consistency with GroupDRO, but it was not
used for early stopping or model selection.

In both GroupDRO and MEDRO, we followed the same robust optimization setup by setting the step
size for the adversarial group weighting update (also called DRO step size) to 0.01, as used in the
original GroupDRO implementation.

The balance factor γ was selected as 0.5 based on sensitivity analysis conducted on both CelebA and
Waterbirds under strong ℓ2 regularization. We reported results averaged over five runs with different
random seeds.

E.1.2 Waterbirds

We followed the same setup for the Waterbirds dataset (also known as CUB), where the binary target
label waterbird_complete95 indicates whether the bird is a waterbird (1) or landbird (0), and
the confounder forest2water2 denotes the background environment (water or forest). This setup
produces four subgroups with strong spurious correlations.

Training subgroup sizes:

• (0, 0): 3,498 (landbird on land)
• (0, 1): 184 (landbird on water)
• (1, 0): 56 (waterbird on land)
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• (1, 1): 1,057 (waterbird on water)

Models were trained for 300 epochs using the same ResNet-50 backbone. We used SGD (momentum
0.9), batch size 128, learning rate 10−5, and weight decay 1.0. No data augmentation was used.

We again evaluated using the final epoch model, without validation-based model selection. The 10%
validation split was retained for comparability but unused in selection.

As in CelebA, we set the DRO step size to 0.01, consistent with the GroupDRO implementation. The
same value γ = 0.5 was used for MEDRO, as determined from sensitivity analysis. No additional
tuning was conducted for Waterbirds.

E.2 SubpopBench settings

E.2.1 Benchmark overview

SubpopBench covers a wide range of real-world datasets and subpopulation structures. We focused
on eight representative tasks—Waterbirds, CelebA, CivilComments, MultiNLI, MetaShift, NICO++,
CheXpert, and Living17—chosen to span different modalities and types of subpopulation shift. For
all datasets, we followed the SubpopBench-provided data splits, group definitions, and preprocessing
procedures without modification.

E.2.2 Evaluation metric

Consistent with the official protocol, we adopted worst-group accuracy as the primary evaluation
metric. It is the standard criterion used in the benchmark and enables direct comparison across
methods under a shared notion of robustness. Although it does not capture all performance trade-offs
(e.g., precision-recall balance), worst-group accuracy remains the most widely accepted measure of
subgroup-level reliability, particularly in scenarios where minimizing failure on the most vulnerable
group is critical.

E.2.3 Model selection

We adopted the oracle selection setting, where group attributes were available during both training and
validation. This is considered the most ideal scenario in the benchmark specification, allowing test
set worst-group accuracy to identify optimal algorithm performance. While not feasible in real-world
deployment, this setup provides a standardized estimate of each method’s potential under full group
supervision. It enables fair comparison by isolating algorithmic differences from model selection
challenges.

E.2.4 Hyperparameter search

For MEDRO, we followed the official protocol, tuning across 16 randomized hyperparameter configu-
rations. Each configuration was drawn from a predefined search space in Table 6. Best configurations
were selected based on validation worst-group accuracy, using group labels as specified in the protocol.
For final evaluation, MEDRO was retrained using the best hyperparameters and evaluated with three
different random seeds.

To ensure consistency across tasks, we fixed the balance factor γ to 1 in all experiments. This choice
simplifies tuning and reflects a realistic scenario for evaluating MEDRO’s generalization under a
uniform configuration.

In addition to tuning the model learning rate ηθ (as part of the general search space), we tuned
the risk weight step size ηΛ, which controls the group weight update during training. The range
10Uniform[−3,−1] was used, consistent with the GroupDRO setting.

E.2.5 Implementation details

We followed the SubpopBench protocol for backbone, preprocessing, and optimization. For image
datasets, we used ResNet-50 pretrained on ImageNet-1K [51]; for text datasets, we used BERT-base
(bert-base-uncased) [52]. Image inputs were resized and center-cropped to 224×224, then normalized
using ImageNet statistics. Image models were trained with SGD (momentum 0.9), and text models
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Table 6: Search space for general hyperparameters used for MEDRO in our SubpopBench experiments.
All values were sampled per run via random search.

Backbone Parameter Search Range

ResNet-50

Learning rate 10Uniform[−4,−2]

Weight decay 10Uniform[−6,−3]

Batch size 2Uniform[6,6.75]

Dropout 0.0 (fixed)

BERT-base

Learning rate 10Uniform[−5.5,−4]

Weight decay 10Uniform[−6,−3]

Batch size 2Uniform[3,5.5]

Dropout Choice{0.0, 0.1, 0.5}

with AdamW [53]. Training steps followed the SubpopBench standard: 5k for Waterbirds and
MetaShift, 20k for CheXpert, 30k for CelebA, CivilComments, MultiNLI, and NICO++, and 60k for
Living17.

E.2.6 Isolating ensemble effects: Multi-head architecture analysis

To determine whether MEDRO’s performance improvements stem from its expanded uncertainty
formulation or from ensemble effects of using multiple expert heads, we conducted a controlled
comparison with GroupDRO applied to a multi-head architecture. We implemented this variant with
the following characteristics:

• Same multi-head structure (m heads + shared feature extractor)

• Each head independently performs GroupDRO optimization

• Total loss = average of GroupDRO losses across heads

• Same ensemble inference at test time

Heads differ only in random initialization and are not environment-specific experts. We evaluated
this variant on eight SubpopBench datasets using the same hyperparameter search protocol as other
baselines.

Table 7 presents the comparison. GroupDRO with multi-head architecture achieves 67.8% overall
worst-group accuracy, a +0.4% difference from single-head GroupDRO (67.4%). MEDRO achieves
69.5%, a +1.7% difference from the multi-head variant. These results indicate that the performance
difference between MEDRO and single-head GroupDRO (+2.1%) exceeds the difference between
multi-head and single-head GroupDRO (+0.4%). This suggests that MEDRO’s gains arise primarily
from its algorithmic formulation rather than from ensemble effects.

Table 7: Worst-group accuracy (%) comparison across SubpopBench datasets. Mean and standard
deviation over three runs.

Method Waterbirds CelebA CivilC. MultiNLI MetaShift NICO++ CheXpert Living17 Overall

GroupDRO 78.6 ±1.0 89.0 ±0.7 70.6 ±1.2 76.0 ±0.7 85.6 ±0.4 37.8 ±1.8 74.5 ±0.2 27.2 ±1.5 67.4
GroupDRO (w/ multi-head) 81.1 ±1.3 90.2 ±0.3 71.5 ±1.4 74.8 ±1.3 85.4 ±1.0 36.7 ±2.4 73.5 ±0.1 28.8 ±1.1 67.8
MEDRO 83.8 ±1.3 90.4 ±0.4 73.4 ±0.5 75.7 ±0.8 85.9 ±0.4 39.1 ±2.5 75.0 ±0.4 32.6 ±0.7 69.5

E.2.7 Baseline method descriptions

We compared MEDRO against 19 baseline methods as implemented and defined in SubpopBench [12].
These span a broad spectrum of approaches for mitigating subpopulation shift, including robust
optimization, data augmentation, loss reweighting, and two-stage learning:

• ERM [31]: Standard empirical risk minimization without robustness interventions.
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• GroupDRO [6]: Minimizes worst-group risk by dynamically upweighting poorly perform-
ing groups during training.

• IRM [13]: Encourages predictors to remain invariant across multiple environments by
enforcing equal optimality of predictors across domains.

• Mixup [54]: Regularizes training by interpolating random pairs of inputs and labels to
generate synthetic examples.

• JTT [55]: Two-stage method that identifies high-loss examples via ERM and retrains a
model by upsampling them once.

• DFR [56], CRT [57], ReWeightCRT: Two-stage methods that first learn representations
via ERM and then retrain the classifier head on a balanced or reweighted dataset.

• LfF [58]: Simultaneously trains a biased model and a main model, reweighting samples in
the latter based on difficulty estimated by the former.

• LISA [21]: Uses selective mixup across domains and classes to promote invariant prediction
while reducing reliance on spurious features.

• CVaRDRO [59]: Minimizes conditional value-at-risk over per-group losses to target high-
loss groups.

• MMD [60]: Minimizes the maximum mean discrepancy between group feature distributions
to align representations.

• CBLoss [61], Focal [62], LDAM [63]: Loss-level modifications designed to address class
imbalance: CBLoss and Focal adjust per-sample loss weights, while LDAM adds class-
dependent margins to logits improve separation.

• ReSample, ReWeight, SqrtReWeight [64]: Sampling- or weighting-based methods that
rebalance subgroup proportions during training.

• BSoftmax [65]: Adjusts softmax normalization to account for class imbalance by using
empirical class frequencies.

E.3 WILDS settings

We evaluated MEDRO on three domain generalization tasks from the WILDS benchmark: Came-
lyon17, iWildCam, PovertyMap. All experiments followed the official WILDS codebase and evalua-
tion protocol without modification. The balance factor γ was fixed to 1 for all tasks, consistent with
our SubpopBench configuration.

Table 8 summarizes the training configurations used for MEDRO on WILDS datasets. For Came-
lyon17, we enabled ImageNet pretraining, following prior work [18] that demonstrated improved
performance with this setting.

Following the original GroupDRO implementation, we used a default risk weight step size ηΛ = 0.01
for MEDRO. For iWildCam, we found that a smaller step size of ηΛ = 0.0001 improved training
stability and therefore adopted this value. We also enabled data augmentation specifically for
iWildCam, using the corresponding option in the WILDS codebase, as it was found to enhance
generalization in this setting.

E.3.1 Baseline method descriptions

We compared MEDRO against 11 baseline methods commonly used in domain generalization,
as evaluated in the WILDS benchmark. These methods span diverse strategies such as invariant
representation learning, adversarial alignment, risk variance minimization, data augmentation, model
averaging, and two-stage selection correction:

• ERM [31]: Standard empirical risk minimization over pooled domains, without explicit
robustness to domain shift.

• GroupDRO [6]: Minimizes the worst-case domain risk by upweighting domains with higher
current loss during training.

• IRM [13]: Learns representations such that a shared optimal classifier performs well across
all training domains.
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Table 8: Training configurations used for MEDRO on the WILDS datasets. Learning rate and weight
decay were selected from the official WILDS search grids. For PovertyMap, the learning rate decays
by a factor of 0.96 per epoch. Other settings follow the benchmark defaults unless otherwise noted.

Parameter Camelyon17 iWildCam PovertyMap

Backbone DenseNet-121 ResNet-50 ResNet-18-MS
ImageNet Pretrained True True True
Data Augmentation None RandAugment None
Optimizer SGD Adam Adam
Learning Rate 10−4 3× 10−5 10−3

Weight Decay 10−2 0 0
Batch Size 32 16 64
Epochs 10 12 200

• CORAL [16]: Aligns feature distributions across domains by minimizing discrepancies in
second-order statistics (mean and covariance).

• DANN [15]: Uses adversarial training to learn domain-invariant features by confusing a
domain classifier.

• VREx [9]: Minimizes the variance in per-domain training risks to enforce uniform perfor-
mance across domains.

• LISA [21]: Applies selective mixup augmentation between domains and classes to weaken
spurious correlations and promote invariant prediction.

• Fish [23]: Encourages gradient alignment across domains to learn representations that
generalize consistently.

• SWAD [66]: Averages model weights during training to find flatter minima that generalize
better to unseen domains.

• L2A-OT [22]: Synthesizes pseudo-novel domains via optimal transport-based data augmen-
tation to expand domain diversity.

• HeckmanDG [18]: Models domain selection bias via a two-stage Heckman-style estimator
to correct for distributional mismatch during training.

28



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s contributions.
The proposed multi-expert DRO (MEDRO) framework and its motivation, which involve
addressing the limitations of GroupDRO under distribution shifts, are clearly stated. These
claims are supported by theoretical analysis (Section 3) and empirical evaluation (Section 4).
The paper also substantiates claims regarding improved robustness, an expanded uncertainty
set through expert–environment modeling, and practical inference strategies for test-time
deployment.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: While the main paper does not include a dedicated limitations section, Ap-
pendix D contains a theoretical analysis linking MEDRO to domain generalization. This
connection relies on strong assumptions, including expert optimality and uniformity of
cross-environment risk, which may not hold in practical settings. These assumptions are
acknowledged in the appendix, and we recognize that the theoretical claims under these
assumptions may have limited applicability in more complex real-world scenarios.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper includes theoretical results with clearly stated assumptions and
proofs. Appendix B formally shows that GroupDRO is exactly or approximately contained
within MEDRO, providing embedding arguments and approximation bounds. Appendix
C presents a convergence analysis of the MEDRO optimization procedure under standard
assumptions (convexity, Lipschitz gradients, compactness), establishing an O(1/

√
T ) re-

gret bound. Appendix D provides a theoretical connection between MEDRO’s objective
and domain-conditional invariance, proving that under idealized conditions the learned
representation becomes label-conditionally invariant across domains. Key assumptions and
objectives are defined in Section 3, and intuitive proof sketches are provided in the main
text to aid understanding.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All experiments follow established and publicly documented protocols. Con-
trolled setting evaluations replicate the procedure from the original GroupDRO paper [6]
(Section 4.2), SubpopBench evaluations follow the official benchmark protocol [12] (Sec-
tion 4.3), and WILDS evaluations use the standardized WILDS protocol [5] (Section 4.4).
Section 4 provides high-level summaries of model configurations, metrics, and evaluation
settings, while full implementation details—covering datasets, architectures, optimization
hyperparameters, and training procedures—are provided in Appendix E. These disclosures
ensure that the main results and claims can be independently reproduced based on publicly
available benchmarks, even without access to the original codebase.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: All datasets used in our experiments are publicly available. For subpopulation
shift experiments, we use datasets from SubpopBench (e.g., CelebA, CivilComments), and
for domain shift experiments, we use datasets from WILDS (e.g., Camelyon17, iWildCam).
Data access and preparation follow the official benchmark protocols, and links or scripts
will be included in the supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experiments follow the official protocols of the GroupDRO paper, Sub-
popBench, and WILDS benchmarks. Relevant implementation and configuration details are
provided in Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report mean and standard deviation for all main experiments. For controlled
setting experiments (CelebA and Waterbirds), results are averaged over five independent
runs with different random seeds. For SubpopBench and WILDS benchmarks, we follow the
number of repetitions defined by the respective protocols (e.g., 3 runs for SubpopBench and
iWildCam, 10 for Camelyon17, and 5 for PovertyMap). Error bars represent the standard
deviation across these runs and are reported as mean ± std in the corresponding tables. The
number of runs and method of calculation are clearly stated in the captions and experimental
sections.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]
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Justification: The paper does not include detailed information on compute resources such as
GPU type or runtime. However, all experiments were executed using standard resources
compatible with the official benchmark protocols (e.g., SubpopBench and WILDS), which
are designed to be runnable on a single modern GPU such as an NVIDIA RTX 3090 or
4090.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research uses only publicly available datasets (e.g., WILDS, Subpop-
Bench), involves no human subjects or private data, and follows the experimental protocols
of prior work. No ethical concerns related to privacy, safety, or fairness were identified. We
have reviewed the NeurIPS Code of Ethics and confirm full compliance.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All benchmarks have been properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We plan to provide the full codebase on a public GitHub repository.

Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing o=nor research with human sub-
jects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.
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• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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