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Abstract

Scaling laws have allowed Pre-trained Language Models (PLMs) into the field of
causal reasoning. Causal reasoning of PLM relies solely on text-based descriptions,
in contrast to causal discovery which aims to determine the causal relationships
between variables utilizing data. Recently, there has been current research regarding
a method that mimics causal discovery by aggregating the outcomes of repetitive
causal reasoning, achieved through specifically designed prompts [16]. It highlights
the usefulness of PLMs in discovering cause and effect, which is often limited by
a lack of data, especially when dealing with multiple variables. Conversely, the
characteristics of PLMs which are that PLMs do not analyze data and they are highly
dependent on prompt design leads to a crucial limitation for directly using PLMs
in causal discovery. Accordingly, PLM-based causal reasoning deeply depends on
the prompt design and carries out the risk of overconfidence and false predictions
in determining causal relationships. In this paper, we empirically demonstrate the
aforementioned limitations of PLM-based causal reasoning through experiments
on physics-inspired synthetic data. Then, we propose a new framework that
integrates prior knowledge obtained from PLM with a causal discovery algorithm.
This is accomplished by initializing an adjacency matrix for causal discovery and
incorporating regularization using prior knowledge. Our proposed framework not
only demonstrates improved performance through the integration of PLM and
causal discovery but also suggests how to leverage PLM-extracted prior knowledge
with existing causal discovery algorithms.

1 Introduction

Discovering causal structure, which is often represented as a directed acyclic graph (DAG) is a crucial
problem across diverse scientific and industrial fields [9, 1]. The fact that the number of possible
DAGs grows super exponentially as the number of variables increases can lead to a data scarcity
problem, which is a potential limitation when discovering a causal structure among a large number of
variables. One approach to address the issue is using prior knowledge [4, 5, 14, 22]. For example,
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Which of the following causal relationship is correct?
A. Changing {α} can directly change {β}.
B. Changing {β} can directly change {α}.
C. Both A and B are true.
D. None of the above. No direct relationship exists.
Let’s think step-by-step to make sure that we have the
right answer. Then provide your final answer within
the tags, ⟨Answer⟩ A/B/C/D ⟨/Answer⟩

(a) prompt template

ER

SAT MC

(b) ground truth

ER

SAT MC

(c) PLM prediction

Figure 1: (a) A multiple-choice template for determining causality. (b) Ground truth and (c) PLM
prediction for a causal graph consisting of Surface Air Temperature (SAT), Evaporation Rate (ER),
and the Moisture Content of the object (MC) using the prompt template.

one can determine a graph from a Markov equivalence class by figuring out edge direction using
prior knowledge of specific edges [5, 22]

Recent breakthroughs in Pre-trained Language Models (PLMs) [29, 18, 2, 27] have demonstrated
its potential for diverse reasoning tasks. Given the broad spectrum of text corpora utilized during
pre-training, it is known that PLMs can, by employing specifically crafted task descriptions known as
prompts, perform a wide range of real-world tasks including commonsense and numerical reasoning
[25], code generation [6], and dialogue generation [26]. The growing reasoning capability of PLM
enables reasoning-based causal discovery via a designed prompt template (see Figure 1a), which
uses variable names as nodes for a causal graph [8, 16]. In particular, by employing chain-of-thought
prompting [30], which decomposes a problem into a series of simpler tasks, Kıcıman et al. exhibited
the potential of PLM in causal discovery by outperforming conventional causal discovery algorithms
on some benchmark datasets [16]. Besides the potential in performance, relying only on variable
names makes PLM-based causal reasoning bypass the data scarcity problem.

However, this approach has inherent limitations with respect to the following aspects. First, as
PLM-based causal reasoning relies on variable names alone, the discovered causal graph does not
reflect rich information in underlying data. Second, the black-box nature of PLMs means that we can
not inspect the process of causal reasoning. The third limitation, which we will exemplify soon, is
the absence of a prompt design that allows PLMs to perceive entire variables, failing to distinguish
direct and indirect causal relationships. Therefore we suggest our framework which integrates causal
reasoning of PLM and data-driven causal discovery to overcome those limitations.

Motivation We provide a motivating example based on physics to explain the potential of the
integration of data-driven causal discovery and PLM-based causal reasoning to overcome the limi-
tations. First, we illustrate the limitations through a causal reasoning example based on GPT-4 in
Figure 1 where Figure 1a shows the prompt modified from that of [16]. Figure 1b depicts the ground
truth where SAT, ER, and MC, respectively, represents surface air temperature, evaporation rate, and
moisture content of the object. Figure 1c shows the case in which PLM would falsely predict indirect
relation as if direct relation because in the prompt, only pairs of variables are examined without
information of other nodes. Furthermore, the resulting graph contains bidirectional edges3, violating
acyclicity.

Consider a chain causal structure (Figure 2a), introduced in Figure 1 where an imaginary variable
Apollon (AP) is inserted for illustrative purposes. The causal relationship between Total Solar
Irradiance (TSI) and its impact on the evaporation rate (ER) exhibits a weak connection, primarily
attributed to significant noise within the data; nonetheless, it still reflects a well-established fact. On
the other hand, a different edge between Apollon (AP) and TSI symbolizes a newly emergent causal
relation, which the PLM cannot discern, perhaps due to the object being discovered after the PLM’s
pre-training or highly domain-specific.

For demonstration, we synthesized a dataset where Gaussian noise is scaled up between TSI and ER
than that between AP and TSI so that the cause-effect relation of the noisy edge would still be clear
for a PLM but less clear for typical causal discovery algorithms to detect (details in Appendix B).
In contrast, the cause-effect relation of the imaginary edge would be easily identifiable for causal

3In some literature, bidirected edges are employed to represent unmeasured confounding. In this work, a
bidirected edge represents two directed edges indicating both causal relations hold true.
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AP

TSI

ER

(a) ground truth

AP

TSI

ER

(b) PLM

AP

TSI

ER

(c) DAG-GNN

AP

TSI

ER

(d) our method

Figure 2: The combination of relationships that are challenging to capture due to unknown associations
and data noise. (a) Ground truth causal relation of the previously unobserved variable for PLM
(Apollon, AP) and previously observed Total Solar Irradiance (TSI) and Evaporation Rate (ER), and
(b, c, d) the predicted causal relations by PLM, DAG-GNN [31], and our approach.

discovery algorithms but not for a PLM. Indeed, according to our experimental results, the PLM easily
determines the causal relation of the noisy edge but, as anticipated, struggles to recognize the causal
relation relating to the novel variables (Figure 2b). On the other hand, the causal discovery algorithm
(Figure 2c) identifies direct causation for the imaginary edge. However, due to the significant noise,
the causal discovery algorithm discovers false causal relations between AP and ER.

Contributions The above examples naturally raise the question:

Can we utilize a PLM with a causal discovery algorithm, taking advantage of both
methods?

To this end, we propose a framework to pioneer the potential of integration of causal discovery and
PLMs. Our contributions are summarized as follows.

• We reveal the limitations of PLM-based causal reasoning, such as non-adherence to DAG
constraint and false discovery due to limited prompt design. To investigate the limitations,
we propose a method to construct a synthetic dataset, based on physical commonsense
knowledge for evaluating our framework.

• We propose a PLM-integrated causal discovery framework that combines PLM-generated
graphs as prior knowledge in causal discovery algorithms. The proposed framework repre-
sents a convergence of data-driven and knowledge-driven methodologies, opening up an
option for improved causal inference.

• We show that the proposed framework could generally improve the performance of existing
causal discovery algorithms across synthetic and real datasets.

2 Preliminaries

Causal discovery seeks to identify a causal graph that represents causal relations among variables
from data [7, 24, 23, 10]. Among many approaches to causal discovery, a score-based approach uses
a score function to evaluate candidate graphs based on how well a graph explains observed data. In
this section, we briefly introduce three score-based methods used in this paper.

Non-combinatorial Optimization via Trace Exponential and Augmented Lagrangian for Structure
Learning (NOTEARS) [32] proposed a DAG constraint using matrix exponential so as to change
a combinatorial optimization problem over DAGs into a continuous optimization problem. Given
d variables, a causal graph can be expressed as a structural coefficients matrix W ∈ Rd×d under
a linear assumption. Given a dataset X ∈ Rn×d with n observation, NOTEARS uses a training
objective as follows.

min
W∈Rd×d

L(W) :=
1

2n
∥X−XW∥2F︸ ︷︷ ︸

Fitting Loss

+ λ∥W∥1︸ ︷︷ ︸
Sparsity Loss

(1)

subject to tr(eW◦W)− d = 0.

The loss is designed to capture underlying causal relations with a smaller number of edges (controlled
by a hyperparameter λ) while ensuring the acyclicity of the learned graph. A fitting loss aims to
minimize the Frobenius norm between dataset X and coefficient matrix W. This is complemented by
a sparsity loss, which helps reduce the occurrence of false discoveries where λ is a hyperparameter
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1 0.25 0.32 -1.23

2 0.29 0.15 -0.05

3 0.21 0.42 0.15

4 0.32 0.07 0.24

Pre-trained 
Language Model

Prior-Regularized
Causal Discovery

0 10.5

Estimation

0 1 0

0 0 1

0 0 0

Final output

0 1 1

1 0 1

0 1 0

Prior

Threshold

Numerical Data

Dataset

Variable 
Names

Q. Which of the following 
causal relationship is correct?
A.  Two variables are 𝜶 → 𝜷
B.  Two variables are 𝜶 ← 𝜷
C.  Two variables are 𝜶 ↔ 𝜷
D.  Two variables are 𝜶 𝜷

Let’s think step-by-step.
⟨Answer⟩ A/B/C/D ⟨/Answer⟩

Prompt Template

A. ⟨Answer⟩ C ⟨/Answer⟩

Pre-trained Language Model-based Prior Initialization

X1 X2 X3

Pairwise 
Selection

(𝒙𝟏, 𝒙𝟐)
(𝒙𝟏, 𝒙𝟑)
(𝒙𝟐, 𝒙𝟑)

Figure 3: Overview of the proposed framework. For a dataset composed of observation of variables
and corresponding names, PLM-based causal reasoning predicts an adjacency matrix as prior, using
only the names of variables. With the prior extracted and observations in the dataset, train a causal
discovery algorithm with the support of the prior extracted for adjacency matrix initialization and
regularization.

for scaling sparsity loss. In the end, a threshold sets the element of the structural coefficient matrix
to 0 or 1, transforming it into an adjacency matrix, with weights below the threshold being rounded
down and those above being rounded up.

We also employed DAG-GNN [31] and CGNN [11]. DAG-GNN is a continuous optimization-based
causal discovery algorithm. By explicit parameterization and the acyclicity constraint as NOTEARS,
DAG-GNN directly learns a DAG’s structural coefficient matrix. Given X ∈ Rd,W ∈ Rd×d

representing a sample of d variables and the corresponding structural coefficient matrix, DAG-GNN
use the linear Structural Equation Modeling (SEM) assumption:

X = WTX + Z (2)

where each Z ∈ Rd is a latent variable representing random noise. Eq. (2) can be modeled as

Z = (I −WT )X (3)

X = (I −WT )−1Z, (4)

which enables separated parametric modeling of Eq. (3) as latent variable encoder and Eq. (4) as
decoder for the given latent variable. With the encoder-decoder architecture, DAG-GNN is formulated
as a variational autoencoder (VAE) [15], minimizing the evidence lower bound (ELBO). Causal
Generative Neural Network (CGNN) is a differentiable generative model that first constructs a
skeleton graph and then refines the skeleton graph via a greedy procedure. Defining score function
for given data, CGNN optimizes the skeleton graph by reverse, adding, or removing edges.

3 Causal Discovery with PLM-derived Priors

The following sections illustrate methods for incorporating PLM prior knowledge K ∈ {0, 1}d×d

with optimization-based causal discovery algorithms. The overall framework is depicted in Figure 3.
Given a dataset containing d variables and the corresponding names, select pairs of variable names to
complete the prompt template. PLM proceeds causal reasoning given the prompts for each pairwise
variable to complete PLM prior K. Next, the causal discovery algorithm leverages data and the PLM
prior to predict continuous values of the adjacency matrix. One method for incorporating K is to
initialize the initial graph for causal discovery algorithms using K instead of a simple, empty skeleton
graph. Another method is to regularize the training of W with regard to K. The final prediction
is completed through the subsequent thresholding step applied for post-processing the coefficient
matrix.

3.1 Graph Initialization via Prior Knowledge

Many optimization-driven causal discovery methods, including NOTEARS and DAG-GNN, use
structural coefficient W ∈ Rd×d to represent the adjacency matrix of the ground truth causal graph.
Typically, W is initialized as a zero matrix. However, we hypothesize that such an initialization for
the structural coefficient matrix could lead to a suboptimal state by getting caught in local optima.

Given that K represents the adjacency matrix of a causal graph and the element of W is set between
0 and 1, we suggest initializing W = λinitK, expecting that K of appropriate quality prevents W
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getting caught in local optima. Here, the scaling factor λinit is introduced for adjustment of the large
elementwise gaps between K and W.

On the other hand, causal discovery algorithms that do not use a structural coefficient matrix can
utilize K in different ways. An example of utilizing K involves employing element-wise expectations
on K. Given a PLM f and input prompt Ti,j , we can think of PLM as a stochastic function that
maps f : T → K. Then EKi,j∼f(Ti,j)[Ki,j ] so it changes K into Kmean ∈ Rd×d. By introducing the
concept of probabilistic edges through Kmean, we can explore a continuous range of edges beyond
simple binary 0 or 1 values. In particular, we select CGNN [11] as a representative method to
showcase the effectiveness of graph initialization, considering that CGNN modifies the skeleton
graph by adding, removing, and reversing individual edges. For this, we employed Kmean instead of
K in CGNN to prevent CGNN being captured in local minimum originated from the discrete value
of W. In addition, since creating the skeleton graph through GNN can be time-consuming, utilizing
PLM-based prior information bypasses the time for making a skeleton graph.

3.2 Regularization with Prior Knowledge

We suggest incorporating an additional loss term for the regularization of W based on prior knowledge
K. The regularization term is designed to allow the causal discovery algorithms to learn the causal
relationships from K that cannot be inferred solely through the data. This additive approach facilitates
a model-agnostic utilization of K for causal discovery algorithms that employ structural coefficients
matrix.

The proposed regularization loss minimizes ℓ1-regularization between the prior and estimated adja-
cency matrix, with the definition below.

Lsim(W) :=
∑
i,j

|(σ(t|Wi,j |)−Ki,j)| (5)

Subscript i, j means an edge has a direction from variable i to variable j in an adjacency matrix. The
hyperparameter t adjusts the steepness of the sigmoid function. Then, our goal is to find an optimal
matrix W∗ which satisfies

W∗ = argmin
W

L(W) + λLsim(W), (6)

where λ is the hyperparameter for scaling prior loss. Since Wi,j can take negative values, only the
magnitude of W is utilized. To align W closely with a given prior, an activation function σ such
as the sigmoid function is employed to guarantee the edge-ness of Wi,j , by mapping Wi,j to [0, 1].
Subsequently, the difference between the two edges is computed to calculate the ℓ1 norm value. This
approach allows for flexible application when utilizing optimization-based causal discovery methods
with the structural coefficient matrix.

4 Experiments

In the subsequent section, we describe our experiments and the performance of each algorithm
conducted by the proposed framework for a physical commonsense-based synthetic dataset and two
real-world datasets: Arctic Sea Ice [12] and cellular signaling networks on protein expression [20],
called Sachs. Experiments on the synthetic dataset highlight the limitations of PLM-based causal
reasoning. Experiments on the Arctic Sea Ice dataset demonstrate the effectiveness of PLM-causal
reasoning in data-scarce cases, while the Sachs dataset is employed to represent the efficacy under
data-rich scenarios.

4.1 Experimental Setting

We explain the details of the datasets, metrics, and experimental setup used.

Physical commonsense-based synthetic dataset Since data often comes without the ground truth
causal structure, the use of synthetic data with known causal structure is crucial to evaluate causal
discovery methods. In generating a synthetic dataset for evaluating PLM’s causal reasoning and the
proposed framework, it is necessary that the causal relationships among the variables in the graph
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TSI

RNFL

Wgt

SAT

ER

WS

MC

Figure 4: Physical knowledge-based synthetic graph with size 7. The components of the graph are
Rainfall (RNFL), Total Solar Irradiance (TSI), Surface Air Temperature (SAT), Wind Speed (WS),
Evaporation Rate (ER), Moisture Content of object (MC), and Weight of object (Wgt).

are faithfully mirrored in real-world linguistic usage. This ensures PLM’s ability to accurately infer
a causal structure. The condition is especially challenging in that causality embedded in the text is
often in the realm of controversy.

We selected the physical commonsense domain upon which most people can readily agree given its
long-standing history of experimental demonstrations in physics. We collected event descriptions
expressing the physical commonsense related to the evaporation of water, utilizing datasets including
[3, 21]. From the collected description of nodes and corresponding causal relations, we make a graph
of different sizes, 7, 5, and 3 (see Figure 4 for the 7-node graph). To construct 5-node graph, we
removed the Wind Speed and Weight of objects from the 7-node graph. Further, Rainfall and Total
Solar Irradiance are removed from the 5-node graph to construct 3-node graph. To generate data for
each graph, we assumed linear relationships and independent Gaussian noises (see Appendix B for
details).

Real-world datasets The Arctic Sea Ice dataset [12] comprises 12 Earth science-related variables
and only 486 instances. Its evaluation causal graph, constructed by a meta-analysis of literature
referred in [12], contains 48 edges, including some bidirected edges and cycles. This dataset presents
two challenges for conventional causal discovery algorithms due to 1) a small sample size and 2)
possible discrepancies between the causal relationships in the underlying data and the ground truth.
Regardless of these challenges, PLMs are not affected since each causal relation in the ground truth
is based on published papers, thus, PLM could have learned related knowledge.

The Sachs dataset [20] consists of protein signaling pathways and comprises 11 variables with 7,466
observations. Its associated causal graph has a DAG structure with 19 edges [19]. The Sachs dataset,
in contrast to the Arctic Sea Ice dataset, is a wealth of data and exhibits strong alignment with
the causal graph. Given that the dataset uses abbreviations for variable names, which are highly
domain-specific, we replaced these abbreviations with their full names to fully utilize PLM.

Metrics We report various metrics to evaluate the performance of each method from diverse
perspectives. SHD (Structural Hamming Distance) is the sum of the number of missing, extra, and
reversed edges [28] in the estimated graph (i.e., adjacency matrix). NHD and NHD ratio are the
variants of SHD where NHD is SHD divided by the size of the matrix, and NHD ratio divides NHD
by the worst case NHD. Further, False Discovery Rate (FDR), False Positive Rate (FPR), and True
Positive Rate (TPR) are employed to discern Type-I or Type-II errors [17] in causal discovery.

Experimental setup We detailed baseline performances, hyperparameters, and settings for each
algorithm. First, we employed GPT-4 as PLM since GPT-4 is known for its unique reasoning ability.
In the Arctic Sea Ice dataset, we reproduced the GPT-4 performance of [16] and used it for baseline.
We collected twenty GPT-4 causal reasoning results from the Sachs dataset and we selected PLM
prior that reflects an average performance level over various metrics (40%-65% performance for
FDR, TPR, FPR, SHD, NHD, and NHR ratio among 20 different PLM results). We also replicated
baseline performances of causal discovery to align closely with the results reported by [32, 31, 16].

Second, the hyperparameters of each algorithm are as follows: The hyperparameter t of NOTEARS
is 10 and λ of sparsity loss is 1 and λ of prior similarity loss is 0.7 by the hyperparameter tuning.
We used the Adam optimizer for DAG-GNN and the architecture of the encoder and decoder in
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Figure 5: SHD, FDR, and TPR of NOTEARS and CGNN on the physical knowledge-based synthetic
datasets with and without PLM prior.

DAG-GNN consisted of two layers each. In terms of hidden features in the encoder and decoder,
we allocated 64 features for the Arctic Sea Ice and 128 features for the Sachs. CGNN does not use
prior regularization in contrast to NOTEARS and DAG-GNN. The reason is that CGNN does not use
explicit modeling of the structural coefficient matrix, which is essential in prior regularization.

The Appendix A provides metric definitions and offers details of hyperparameters and thresholds.

4.2 Empirical Results

This section will report the experimental results and provide an analysis. Further, we explain our
framework’s noteworthy features and implications.

Physical synthetic dataset We report in Figure 5 the SHD, FDR, and TPR for synthetic datasets.
Overall, we observed that the integration of PLM prior improves performance when the number of
nodes is larger than three (except for TPR of CGNN on five node dataset). When the number of nodes
is three, the causal graph of the dataset is too simple for NOTEARS so that it exactly predicted causal
graphs of the dataset, resulting in no difference whether integrating PLM prior or not. If the number
of nodes is larger than three, vanilla NOTEARS fails to predict the causal graph, and integration of
PLM prior brings out consistent performance enhancement for all metrics.

Similarly to NOTEARS, when the node size is smallest, CGNN showed no difference following the
integration of PLM prior. However, except for TPR, CGNN performance is improved with a huge
difference, more than that of NOTEARS. From the insights of [11], which indicate that utilizing
priors closer to the ground truth graph enhances the performance of CGNN, we interpret that the use
of PLM prior provides a promising skeleton graph.

Generally, the bigger the number of nodes gets, the harder the combinatorial problems are so SHD
and TPR are getting worse. In contrast, our framework mitigated the decline in performance than
conventional causal discovery algorithms and GPT-4. NOTEARS is another representative causal
discovery algorithm with which integration of PLM prior could enhance causal discovery performance.
For the five and seven nodes datasets, NOTEARS shows enhancement of all the metrics concretely
when integrated with PLM prior.

Arctic Sea Ice We present our findings in Table 1. To start, it’s important to note that Arctic Sea Ice
has a limitation, as the causal graph is annotated based on a literature review, without a comprehensive
examination of alignment among the sources. This implies that the annotated causal graph could be
misaligned with the ground truth in the data generation process in nature (e.g., cyclic). In addition to
that, the number of observations is limited. The two challenges mentioned previously contribute to
the difficulties faced by traditional causal discovery algorithms in producing accurate predictions.
For example, NHD being 0.33 (NOTEARS and CGNN) is equivalent to NHD of an empty graph.
Indeed, CGNN actually outputs an empty adjacency matrix.

In contrast, the application of the proposed framework induces overall performance improvement with
a big margin compared to causal discovery algorithms. CGNN’s performance generally improves
upon integrating the PLM prior, with the exception of the NHD ratio (comparisons using FDR, FPR,
and TPR metrics are not feasible since CGNN predicts no edges.) This improvement is attributable
to the utilization of a well-constructed underlying graph skeleton by PLM. The low NHD ratio of
CGNN can be attributed to the fact that when there are not any predicted edges, the denominator
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Method NHD (↓) NHD Ratio (↓) SHD (↓) No. Edge FDR (↓) FPR (↓) TPR (↑)

GPT-4 0.21 0.34 19 43 0.30 0.13 0.62

NOTEARS 0.33 0.77 28 14 0.50 0.07 0.14
w/ random prior 0.44 (▲0.11) 0.60 (▼0.17) 37 (▲5) 56 0.63 (▲0.13) 0.37 (▲0.30) 0.43 (▲0.29)
w/ GPT-4 prior 0.24 (▼0.09) 0.46 (▼0.31) 17 (▼11) 27 0.25 (▼0.25) 0.07 0.41 (▲0.27)

CGNN(*) 0.33 0.33 48 0 - - -
w/ random prior 0.42 (▲0.09) 0.66 (▼0.33) 39 (▼9) 43 0.64 0.28 0.31
w/ GPT-4 prior 0.22 (▼0.11) 0.39 (▲0.06) 19 (▼29) 35 0.28 0.10 0.52

DAG-GNN 0.31 0.76 27 12 0.41 0.05 0.14
w/ random prior 0.41 (▲0.10) 0.64 (▼0.12) 37 (▲10) 44 0.62 (▲0.21) 0.29 (▲0.24) 0.33 (▲0.19)
w/ GPT-4 prior 0.20 (▼0.11) 0.33 (▼0.43) 18 (▼9) 42 0.28 (▼0.13) 0.12 (▲0.07) 0.62 (▲0.48)

Table 1: Performances of NOTEARS, CGNN, and DAG-GNN on the Arctic Sea Ice dataset. For
each algorithm, with and without GPT-4 prior, and uniform random prior whose number of the edge
is the same with GPT-4 prior are investigated.

b) DAG-GNN (No prior)
False Positive
False Negativec) DAG-GNN (GPT-4 prior)a) GPT-4 d) False Prediction

Figure 6: Outputs by (a) GPT-4, (b) DAG-GNN, and (c) DAG-GNN with GPT-4 prior. (d) false
prediction of DAG-GNN.

of the NHD ratio becomes 1 so its NHD ratio is low. Interestingly, when incorporating PLM prior
knowledge, the FDR decreases by 25%p for NOTEARS and 13%p for DAG-GNN, in contrast to
FPR. This means integrating PLM prior knowledge significantly improves the credibility of model
prediction on causal relations.

Next, when compared to the GPT-4 prior, our methodology exhibited both areas of improvement and
instances of slightly reduced performance. We illustrate the results for DAG-GNN using heatmaps in
Figure 6. When compared Figure 6 (b) and (c), DAG-GNN generally showed a slight improvement
in performance when using PLM prior compared to GPT-4. As shown in Figure 6 d), increasing
the threshold results in an increase in true negative, leading to a decrease in the FPR. While the
reduction in predictions leads to a decrease in true positives and, consequently, FDR, the reduction in
false positives is more pronounced, contributing to its decrease. NOTEARS and CGNN exhibited a
decline in performance in NHD, NHD ratio, and TPR, but they demonstrated better scores in terms
of SHD, FDR, FPR, and TPR, compared with GPT-4. This result is interpreted as follows: these
algorithms predicted a lower number of edges, which consequently reduced the number of false
positives; however, this also led to a slight decrease in the number of true positives.

In addition, to highlight the advantages of a high-quality prior, we also contrasted the results with
those obtained using a random prior (randomly selected 43 edges, where 43 comes from the number
of edges by GPT-4). Based on 20 repeated trials, the experimental outcomes consistently aligned
with our assumptions, demonstrating higher performance when a better prior was utilized, while
predicting similar numbers of edges.

Sachs The performance trends exhibited different behavior across the causal discovery algorithms,
as reported in Table 2. The performance of CGNN and DAG-GNN is generally improved when
supported by PLM prior, except for the FPR of DAG-GNN. In the case of NOTEARS, similar results
were consistently obtained without normalization of data, even with random priors. This phenomenon
can be attributed that NOTEARS is sometimes trapped on local optima on Sachs dataset, even varying
the regularization coefficient λ of the prior similarity.
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Method NHD (↓) NHD Ratio (↓) SHD (↓) No. Edge FDR (↓) FPR (↓) TPR (↑)

GPT-4 0.19 0.53 21 24 0.58 0.13 0.52

NOTEARS 0.19 0.67 22 18 0.66 0.11 0.31
w/ random prior 0.27 (▲0.09) 0.82 (▲0.15) 28 (▲6) 21 0.83 (▲0.17) 0.17 (▲0.06) 0.18 (▼0.13)
w/ GPT-4 prior 0.18 (▼0.01) 0.68 (▲0.01) 20 (▼2) 13 0.61 (▼0.05) 0.07 (▼0.04) 0.26 (▼0.05)

CGNN 0.26 0.84 30 19 0.84 0.15 0.15
w/ random prior 0.29 (▲0.03) 0.84 31 (▲1) 23 0.85 (▲0.01) 0.20 (▲0.05) 0.17 (▲0.02)
w/ GPT-4 prior 0.14 (▼0.12) 0.47 (▼0.37) 18 (▼12) 19 0.47 (▼0.37) 0.08 (▼0.07) 0.52 (▲0.37)

DAG-GNN 0.18 0.68 19 13 0.61 0.07 0.26
w/ random prior 0.27 (▲0.09) 0.81 (▼0.13) 29 (▲10) 21 0.83 (▼0.22) 0.17 (▲0.10) 0.20 (▲0.06)
w/ GPT-4 prior 0.16 (▼0.02) 0.47 (▼0.21) 19 23 0.52 (▼0.09) 0.11 (▲0.04) 0.57 (▲0.31)

Table 2: Performances of NOTEARS, CGNN, and DAG-GNN on the Sachs dataset. For each
algorithm, with and without GPT-4 prior, and uniform random prior whose number of the edge is
same with GPT-4 prior are investigated.

In contrast, CGNN exhibited improved performance, because the quality of its vanilla skeleton reports
lower performance than PLM prior, indicating a potential for further enhancements. Compared to
PLM, the NHD and SHD metrics showed overall enhancements, although the TPR was somewhat
lower because the number of predicted edges is lower than PLM in Table 2.

Overall improvements were observed for DAG-GNN, except for the FPR of DAG-GNN. The reason
vanilla DAG-GNN recorded a lower FPR without the PLM prior is that it predicted causal relations at
roughly half the number of our framework. On the other hand, by increasing edge predictions, our
model improved performance with respect to NHD, NHD ratio, SHD, and FDR with true positives.
This underscores the usefulness of our framework, as it not only matched but also surpassed PLM’s
performance in the envisioned scenarios. That is, the improvement in FDR and FPR in every
algorithm, compared to TPR, resulted in an overall increase in performance, as evidenced by NHD
and SHD.

Comprehensive insights Based on the comprehensive analysis of both synthetic and real datasets,
the employment of a PLM prior mostly outperforms traditional causal discovery methods in both
scenarios. With respect to the complexity of the data generating process, NOTEARS exhibits
high performance for the synthetic dataset of simple linear assumption. In contrast, DAG-GNN
performs well in both linear assumption and non-linear real-world datasets, consistently demonstrating
enhancement in overall performance via applying our framework. In the Arctic Sea Ice dataset,
vanilla CGNN fails to predict any edge, but when equipped with adequate PLM prior, it showed
overall enhancement in performance metrics.

Concerning the Arctic Sea Ice dataset, although the causal graph is not entirely reliable, we observed
that when PLM prior provides a proper prediction for the causal graph, applying our framework
surpasses conventional causal discovery algorithms in performance. Concurrently, our experiments
with Sachs and synthetic datasets have ascertained that our framework excels even in data-rich
scenarios where causal discovery algorithms are not affected by the data scarcity issue. In other
words, in situations where either PLM stands out, or causal discovery prevails, our framework
suggests the potential to outperform both approaches.

5 Discussion

Although we have shown promising results of our framework, there exist some possible improvements
to our framework by 1) incorporating the uncertainty of PLM’s prediction, 2) designing a better
prompt, and 3) reorganizing the sequence of operations for PLM-based causal reasoning and the
causal discovery algorithm within our framework.

Uncertainty measure for PLM prior As noted in Section 1, since PLM stochastically predicts
causal relations without data, fully trusting K may make it hard to find the causal structure. On this
note, it would be informative for later research to explore the appropriate design of uncertainty in
PLM-based causal reasoning when integrating prior knowledge K into causal discovery.
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When multiple prior knowledge matrices are available, we suggest defining and incorporating a
certainty matrix C ∈ Rd×d where each element represents the certainty of its corresponding edge.
One way to define C is based on the element-wise reciprocal of the standard deviation of K,
Ci,j :=

ϵ√
Var[Ki,j ]+ϵ

where ϵ is a hyperparameter for adjusting certainty when Ki,j nears to zero.

Prompt design The prompt design of Figure 1a and [16] is multiple-choice templates deciding the
existence and direction of an edge. However, the prompt designs have no ‘unknown’ option for PLM,
resulting in over-confident predictions by PLM even when PLM has little or no understanding of
the variables. In addition, the aforementioned prompts only focus on the relationship between two
variables, failing to properly capture chain structures and other intricate causal patterns. The new
prompt design that takes these considerations into account will bring out qualitative or quantitative
improvement of our framework.

Reorganizing the sequence of operations Although we conducted causal discovery with the
prior knowledge generated by PLM, one can consider inverting the framework structure using the
outcomes from causal discovery as prior knowledge for PLM-based causal reasoning. In devising
an inverted framework, one needs to carefully develop a technique to inject the output of causal
discovery algorithm in the form of text into PLM—naively translating the resulting graph as a prompt
(e.g., listing all the edges) may result in a prohibitively long prompt when the number of variables
is large, and it is generally known the longer the prompt is, the harder for PLM to understand the
underlying meaning. One possible limitation of this approach is that the outcome of causal reasoning
is an adjacency matrix made of 0 and 1, thus, lacking fine-grained information such as structural
coefficients.

6 Conclusion

We demonstrated the utilization of PLM in causal discovery algorithms through experiments on
both synthetic and real data. We illustrated through a physical commonsense synthetic dataset that
PLM-based causal reasoning is prone to false prediction. To tackle the problem, we proposed a
novel framework that incorporates the prior knowledge extracted from PLMs into score-based causal
discovery algorithms. The integration is achieved through graph initialization and regularization,
leveraging PLM-based causal reasoning. This approach combines the strengths of both worlds:
reducing the potential for false predictions of PLMs by applying data-driven structural learning
from the causal discovery algorithm and enhancing causal discovery performance by incorporating
prior knowledge extracted from PLMs. In our experiments, we observed that our framework could
fix the PLM’s false causal relations owing to learning available data, improving several important
performance metrics. We have extended the existing realm of causal discovery through the integration
with PLM, thereby unveiling new potentials within causal discovery. We expect that our framework
will open up new avenues for research and exploration in causal discovery. For future studies, it needs
to modify the limitations of the current prompt to extract prior knowledge of PLMs. Moreover, our
framework can not address time series data, so we need an extensive framework that can be applied
to time series causal discovery.
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Method Prior λinit λsim threshold

NOTEARS GPT-4 1 0.7 0.1
CGNN GPT-4 1 - 0.99
DAG-GNN GPT-4 0.3 0.7 0.3
NOTEARS None - - 0.13
CGNN None - - -
DAG-GNN None - - 0.3

Table 3: Hyperparameters of the Arctic Sea Ice for each algorithm and each dataset

Method Prior λinit λsim threshold

NOTEARS GPT-4 1 0.05 0.57
CGNN GPT-4 1 - 0.65
DAG-GNN GPT-4 0.7 0.7 0.6
NOTEARS None - - 0.16
CGNN None - - -
DAG-GNN None - - 0.3

Table 4: Hyperparameters of the Sachs for each algorithm and each dataset

A Experimental Details

A.1 Metrics

SHD is a sum of the number of missing edges (false negative), extra edges (false positive), and
reversed edges [28]. NHD is a metric that normalizes the Hamming distance, representing the number
of differing edges, dividing the Hamming distance by the matrix size. It yields values between 0 and
1, with lower values indicating greater similarity to the causal graph. NHD ratio is that NHD divided
by baseline NHD which means that the worst case for some specific number of edges so that we can
figure out the estimated adjacency matrix how much improved than the worst case. FDR, FPR, and
TPR are derived from the four outcomes of the confusion matrix: False Positive, False Negative, True
Positive, and True Negative and these metrics collectively evaluate the errors in classification:

FDR =
FP

FP + TP
, FPR =

FP
FP + TN

, TPR =
TP

TP + FN
.

A.2 Setup

The baseline code was referenced from [13, 31], CausalNex
(https://github.com/quantumblacklabs/causalnex). The experimental setup, such as hyperpa-
rameter and model architecture, is as follows: First, we detail the hyperparameter—t, λsim,
thresholds in Tables 3 and 4. λinit is the scaling factor for graph initialization and λsim is that
for prior similarity regularization. As we mentioned in the Experimental setup of Section 4,
hyperparameters of baseline were tuned to reproduce baseline experiments, and that of our
experiments were selected for adequate demonstration of our framework. For NOTEARS, the
activation function used in Eq. (5) is a sigmoid function. The hyperparameter for the sigmoid
activation function t is 10. For DAG-GNN, we used clamping with [0, 1] instead of the sigmoid
function. Second, the model architecture and other setups are as follows. For DAG-GNN, we
used the Adam optimizer and two layers each for the encoder and the decoder. We allocated 64
hidden nodes in each layer for the Arctic Sea Ice model and 128 hidden nodes in each layer for the
Sachs model, with a uniform batch size set at 100 for DAG-GNN. Though the experiments are
feasible on CPUs, our experiments were primarily conducted using NVIDIA RTX A6000 and Tesla
V100-SXM2-32GB GPUs.
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B Physical Commonsense-Based Synthetic Dataset

B.1 Construction of Causal Graph Based on Physical Commonsense

In this section, we explain how to construct a physical commonsense-based synthetic dataset for
evaluating causal discovery algorithms and the causal reasoning ability of PLM. To evaluate the
reasoning ability of PLM, we chose to construct a knowledge base of a specific domain. Because
causal reasoning focuses on strict logical relations between variables, the annotated content based
on the selected domain should contain clear ground truth. For this reason, domains dealing with
not exactly decisive problems, such as social or cultural domains, are unsuitable, so we decided to
construct a knowledge base on physics.

We utilized the PIQA [3] to select the proper physical event where causal relationships hold. We
removed text that is ambiguous or described too specifically from our knowledge base. We selectively
annotated entities that describe phase transition. Phase transition refers to phenomena where a
matter’s phase, such as solid, liquid, or gas, transit to another phase. For example, the increase in
‘surface air temperature’ causes a change in the evaporation rate of water, transferring the object from
the liquid phase to the gas phase. Using this strategy to annotate the PIQA dataset, we focused on
the physics of water evaporation, and we found entities involved in the evaporation process. With
the annotated entities, we gathered nodes of a causal graph whose nodes are entities involved in the
phase transition, and human annotators evaluate the causal relationships among the nodes.

B.2 Datasets Generation Given Synthetic Graph

To generate a synthetic dataset based on a physical commonsense-based causal graph, we selected
seven nodes that represent the evaporation of water such that collected nodes and edges satisfy the
DAG constraint. Given the causal graph composed of seven nodes, we added subgraphs of five
and three nodes from the predefined graph by removing the proper node for subgraph construction.
Removing nodes, we add additional edges from ancestor to descendent whenever the removed node
connects the ancestor and descendent so that the chain relation holds. Using the constructed 3, 5,
and 7 nodes graphs, we assumed a linear Structural Equation Model between variables and Gaussian
noise of ϵ ∼ N (0, 0.5) within a given causal graph and generate 5000 data points.

C Other Experimental Results

We also conducted other experimental results and figures. Figure 7 shows FPR, NHD, NHD ratio of
NOTEARS and CGNN on physical knowledge-based synthetic datasets whose sizes are 3, 5, and 7
nodes. Figure 8 and Figure 9 are heatmaps for NOTEARS and CGNN for each dataset.

Figure 7: FPR, NHD, NHD Ratio of comparison on the physical knowledge-based synthetic datasets.
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b) NOTEARS (No prior)
False Positive
False Negativec) NOTEARS (GPT-4 prior)

d) CGNN (No prior) e) CGNN (GPT-4 prior)

a) GPT-4

Figure 8: Heatmaps in Arctic Sea Ice dataset by a) GPT-4, b) NOTEARS, and c) NOTEARS with
GPT-4 prior, d) CGNN, e) CGNN with GPT-4 prior.

b) DAG-GNN (No prior)
False Positive
False Negativec) DAG-GNN (GPT-4 prior)

d) NOTEARS (No prior) e) NOTEARS (GPT-4 prior)

f) CGNN (No prior) g) CGNN (GPT-4 prior)

a) GPT-4

Figure 9: Heatmaps in Sachs dataset by a) GPT-4, b) DAG-GNN, and c) DAG-GNN with GPT-4
prior, d) NOTEARS, and e) NOTEARS with GPT-4 prior, f) CGNN, g) CGNN with GPT-4 prior.
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