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ABSTRACT
Exponential moving average (EMA) has recently gained significant popularity
in training modern deep learning models, especially diffusion-based generative
models. However, there have been few theoretical results explaining the effec-
tiveness of EMA. In this paper, to better understand EMA, we establish the risk
bound of online SGD with EMA for high-dimensional linear regression, one of the
simplest overparameterized learning tasks that shares similarities with neural net-
works. Our results indicate that (i) the variance error of SGD with EMA is always
smaller than that of SGD without averaging, and (ii) unlike SGD with iterate aver-
aging from the beginning, the bias error of SGD with EMA decays exponentially
in every eigen-subspace of the data covariance matrix. Additionally, we develop
proof techniques applicable to the analysis of a broad class of averaging schemes.

1 INTRODUCTION

The exponential moving average (EMA, Polyak & Juditsky 1992; Ruppert 1988) in conjunction with
stochastic optimization algorithms is being extensively used in training deep learning models. EMA
is most popular in training generative models based on GAN (Yaz et al., 2018; Karras, 2019; Kang
et al., 2023), and more recently in diffusion models (Song et al., 2020b; Dhariwal & Nichol, 2021;
Nichol & Dhariwal, 2021; Song et al., 2020a; Balaji et al., 2022; Karras et al., 2022; Rombach et al.,
2022; Karras et al., 2024), among other applications (Block et al., 2023; Busbridge et al., 2024). By
maintaining an averaged set of model parameters, EMA displays the capability to stabilize training
by suppressing the noise of stochastic gradients, and it has been shown empirically that the effect of
EMA is similar to that of learning rate scheduling (Sandler et al., 2023). However, this phenomenon
is less studied from a theoretical perspective. Notable exceptions include a recent work by Ahn
& Cutkosky (2024), which studied Adam with EMA in nonconvex optimization. However, this
work is restricted to the finite-dimensional setting, which departs from the practical training of
overparameterized neural networks. Block et al. (2023) revealed the variance-reducing benefit of
EMA, but the bias contraction of stochastic optimization algorithms with EMA remains unknown.
Meanwhile, a recent line of works (Défossez & Bach, 2015; Dieuleveut et al., 2017; Jain et al.,
2018b; Berthier et al., 2020; Zou et al., 2021; Wu et al., 2022) characterized the generalization
properties of SGD in overparameterized linear regression with other averaging schemes (e.g., iterate
averaging from the beginning and tail averaging). In particular, Zou et al. (2021) presented an
instance-dependent and dimension-free excess risk bound for SGD with iterate averaging and tail
averaging. Given these results, a characterization of the generalization properties of SGD with EMA
and a comparison against SGD with other averaging schemes becomes an urgent subject of study,
especially in the setting of high-dimensional linear regression.
In this paper, we tackle this open problem by studying SGD with EMA in the overparameterized
linear regression setting, and comparing the results with SGD without averaging, along with iterate
averaging and tail averaging in Zou et al. (2021). Our contributions are summarized as follows:
• We derive the first instance-dependent excess risk bound of the linear regression model trained

with SGD with EMA. We also show that the analysis is tight by presenting a lower bound that
almost matches the upper bound. The excess risk bound consists of the effective bias and the ef-
fective variance, both of them further decomposed into each eigen-subspace of the data covariance
matrix. Thus, the excess risk bound is only related to the eigenvalue spectrum, and is irrelevant to
the ambient model dimension, making the result applicable to the overparameterized regime.

• We compare the excess risk bound of SGD with EMA against SGD without averaging as well
as other averaging schemes, e.g., iterate averaging from the beginning and tail averaging, which
was studied in Zou et al. (2021), summarized in Table 1. We show that (i) the effective bias of
SGD with EMA decays exponentially in the number of iterations, and (ii) the effective variance
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Table 1: Comparison of SGD with EMA against SGD without averaging, SGD with iterate averaging
from the beginning and with tail averaging. We fix the eigenvalue spectrum of the covariance matrix
{λi}, the learning rate δ, and the number of iterationsN . We assume that tail averaging is performed
over the last N − s iterates, and α is the weight of the moving average in EMA. Compared with
SGD without averaging which has the same exponentially decaying effective bias as EMA, SGD
with EMA has a smaller variance error. SGD with either iterate averaging or tail averaging enjoys a
smaller variance error than SGD without averaging, and the variance error and the effective dimen-
sion of SGD with tail averaging are identical to that of EMA when (1− α)(N − s) = 1. However,
SGD with neither iterate averaging nor tail averaging achieves the effective bias decay rate that is
exponential in N .

Averaging scheme Effective bias decay rate Variance error in subspace of λi Eigenvalue at effective dim.

w/o averaging Exponential in N O(min{δλi, Nδ2λ2i }) 1/(Nδ)
Iterate averaging Polynomial in N O(min{1/N,Nδ2λ2i }) 1/(Nδ)

Tail averaging Exponential in s O(min{1/(N − s), δλi, Nδ2λ2i }) 1/((N − s)δ), 1/(Nδ)
EMA Exponential in N O(min{1− α, δλi, Nδ2λ2i }) (1− α)/δ, 1/(Nδ)

of SGD with EMA is smaller than SGD without averaging, and is comparable to that of SGD with
iterate averaging or tail averaging. Specifically, we observe a strong connection between EMA
and tail averaging in terms of the effective variance: Suppose the tail averaging is performed over
the last N − s iterates in a total of N iterations; if α, the averaging parameter of EMA, satisfies
(1 − α)(N − s) = 1, then the effective variance of SGD with EMA is identical to that of SGD
with tail averaging. However, the exponential decay rate of the effective bias can be achieved by
SGD with tail averaging only when setting s = Θ(N) with a known training horizon N . This
indicates that SGD with EMA has an advantage over tail averaging in the setting of unknown
training budget.

• From a technical viewpoint, we identify a broad class of averaging schemes that covers all aver-
aging methods discussed in this work. Using a standard bias-variance decomposition, we derive a
crucial reformulation of the both the bias error and the variance error. Built on this reformulation,
an analysis framework for all averaging schemes belonging to this class is developed in this work.

Notations. For a vector x, we use (x)i to denote its i-th entry. We use ◦ to denote the operation of
linear operators on matrices. We use ⟨A,B⟩ := tr(AB⊤) to denote the inner product of matrices A
and B. For a PSD matrix A and a vector x ∈ H, define ∥x∥A :=

√
x⊤Ax. For any positive integer

n, we use [n] to denote the set {1, 2, . . . , n}. We use standard asymptotic notations O(·), Ω(·), and
Θ(·). We write a ≃ b if there exist c1, c2 such that c1a ≤ b ≤ c2a.

2 RELATED WORK

Online SGD in high-dimensional linear regression. There is a line of works studying the excess
risk bound of online SGD in the overparameterized setting using a bias-variance decomposition
(Bach & Moulines, 2013; Dieuleveut & Bach, 2015; Défossez & Bach, 2015; Dieuleveut et al., 2017;
Lakshminarayanan & Szepesvari, 2018; Jain et al., 2018b; Berthier et al., 2020; Zou et al., 2021;
Wu et al., 2022; Lin et al., 2024). In particular, Zou et al. (2021) focused on constant-stepsize SGD
with iterate averaging from the beginning or tail averaging, and derived the first instance-dependent
excess risk bound of SGD in overparameterized linear regression. Wu et al. (2022) studied the last
iterate risk bound of SGD with exponentially decaying stepsize, which is found to achieve a excess
risk bound similar to SGD with iterate averaging. SGD with Nesterov momentum (Nesterov, 2013)
and tail averaging has also been studied (Jain et al., 2018a; Varre & Flammarion, 2022; Li et al.,
2023), with Li et al. (2023) obtaining an instance-dependent risk bound.

Understanding the effect of EMA. The favorable generalization properties of EMA in practice
have been observed in several works (Tarvainen & Valpola, 2017; Izmailov et al., 2018). Through
empirical experiments, Sandler et al. (2023) connected the stabilizing effect of averaging methods
(e.g., EMA) with learning rate scheduling, which coincides with the finding of Wu et al. (2022). A
similar theoretical result was given by Defazio (2020), but the EMA is performed on the momentum
instead of the iterates.
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3 PRELIMINARIES

3.1 LINEAR REGRESSION AND SGD WITH EMA
We consider the high-dimensional linear regression setting similar to Zou et al. (2021). Both the
weight vectors and the data features lie within Rd where the ambient dimension d can be arbitrarily
large. The goal is to minimize the risk function

L(w) := 1/2 · E(x,y)∼D[(y − ⟨w,x⟩)2],

where D is an underlying distribution of the data, x ∈ Rd is the input feature vector, y ∈ R is the
response, and w ∈ H is the weight vector to be optimized.
We consider optimizing the objective using SGD with EMA. At iteration t, a random sample
(xt, yt) ∼ D is observed, and the weight vector is updated as

wt = wt−1 + δ(yt − ⟨wt−1,xt⟩)xt,

where δ > 0 is a constant learning rate. Meanwhile, we maintain the EMA of the iterates by the
following recursive formula:

w0 = w0; wt = αwt−1 + (1− α)wt−1, (3.1)

where α ∈ (0, 1) is the averaging parameter. Let N be the number of iterations. The final output is
the wN , which can be decomposed into the weighted sum of wt:

wN = αNw0 + (1− α)
∑N−1

t=0
αN−1−twt. (3.2)

3.2 ASSUMPTIONS

We now introduce the assumptions used in the analysis of SGD with EMA, following Zou et al.
(2021); Wu et al. (2022); Li et al. (2023). The first assumption is a regularity condition that charac-
terizes the second-order moment of the feature vector.
Assumption 3.1 (Second-order moment). We assume that the data covariance matrix H = E[xx⊤]
exists. Without loss of generality, we assume that H = diag(λ1, λ2, . . . ) is a diagonal matrix with
eigenvalues listed in descending order. We further assume that tr(H) =

∑∞
i=1 λi is finite. We

assume that H ≻ 0, i.e., L(w) admits a unique minimum w∗.
We then present the assumptions that characterize the fourth-order moment of the data:
Assumption 3.2 (Fourth moment condition, upper bound). We assume that the fourth moment op-
eratorM◦A = E[xx⊤Axx⊤] exists. Furthermore, there exists a scalar ψ > 0 such that for any
PSD matrix A, we haveM◦A = E[xx⊤Axx⊤] ⪯ ψ tr(HA)H.
Assumption 3.3 (Fourth moment condition, lower bound). We assume that the fourth momentM
exists. Furthermore, there exists a scalar β > 0 such that for any PSD matrix A, we haveM◦A−
HAH ⪰ β tr(HA)H.
A special case is that the marginal distributionD|x is a Gaussian distribution. In this case, the fourth
moment operator satisfiesM◦A = HAH + 2 tr(HA)H. Note that HAH ⪯ tr(HA)H, so we
can set ψ = 3 in Assumption 3.2 and β = 2 in Assumption 3.3.
Finally, we present assumptions that characterize the label noise ξt = yt − ⟨w∗,xt⟩. The following
assumption is a weaker condition used in the proof of the upper bound of the excess risk:
Assumption 3.4 (Weak label noise condition). The covariance matrix of the stochastic gradient at
w∗, i.e., Σ := E[ξ2xx⊤] and the noise level σ2 := ∥H− 1

2ΣH− 1
2 ∥2 both exist and are finite.

By Assumption 3.4, we have Σ ⪯ σ2H because 0 ⪯ H
1
2 (σ2I−H− 1

2ΣH− 1
2 )H

1
2 = σ2H−Σ.

We then present the present the stronger assumption used in the proof of the lower bound, which is
referred to as the well-specified setting in the literature (Zou et al., 2021):
Assumption 3.5 (Strong label noise condition). We assume that the label noise ξ is independent of
x, and E[ξ2] = σ2. In other words, Σ = σ2H.

4 MAIN RESULTS

In this section, we present the upper and lower bounds of the excess risk, which is the difference
between the risk function evaluated at the output weight vector wN and at the ground truth weight
vector w∗. Before we present the main results, we introduce the shorthand notation of sub-matrices:
For any positive integers k1 ≤ k2, we define Hk1:k2

:= diag(0, . . . , 0, λk1+1, . . . , λk2 , 0, . . . ), and
Hk2:∞ := diag(0, . . . , 0, λk2+1, λk2+2, . . . ). We define Ik1:k2 and Ik2:∞ similarly.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4.1 UPPER AND LOWER BOUNDS OF EXCESS RISK

Theorem 4.1 (Upper bound). Suppose that Assumptions 3.1, 3.2 and 3.4 hold, and the hyperparam-
eters satisfy N(1− α) ≥ 1 and δ < 1/(ψ tr(H)). Then the excess risk satisfies

E[L(wN )]− L(w∗) ≤ EffectiveBias + EffectiveVar,

where the effective bias satisfies

EffectiveBias =
∑d

i=1
(w0 −w∗)

2
iλi · b2i , where bi :=

(δλi)α
N − (1− α)(1− δλi)N

δλi − (1− α)
,

and the effective variance satisfies

EffectiveVar ≤
[
k∗(1− α)2 + δ2

∑
i>k∗

λ2i

]
·
ψ(∥w0 −w∗∥2I

0:k†
+Nδ∥w0 −w∗∥2H

k†:∞
)

δ(1− ψδ tr(H))

+
σ2

1− ψδ tr(H)

[
(1− α)k∗ + δ

∑k†

i=k∗+1
λi +Nδ2

∑
i>k†

λ2i

]
,

where the cutoffs are defined as k∗ := max{i : λi ≥ (1−α)/δ} and k† := max{i : λi ≥ 1/(Nδ)}.
The proof of Theorem 4.1 is given in Appendix C.1. Theorem 4.1 characterizes the first instance-
dependent excess risk bound of SGD with EMA. The excess risk bound includes the effective bias
and the effective variance, both decomposed into each eigen-subspace of H. The effective bias
corresponds to the convergence rate of the risk function if GD is applied instead of SGD. In the
eigen-subspace corresponding to λi, the effective bias is λi(w0 − w∗)

2
i , which is the initial bias

error in the eigen-subspace of λi, multiplied by the square of the decay rate bi, which will detailed in
Subsection 4.3. The effective variance stems from the stochastic gradient, including the randomness
of both xt and yt. We will discuss key elements of the effective variance in Subsection 4.2.
We also obtain the lower bound of the excess risk of SGD with EMA:
Theorem 4.2 (Lower bound). Suppose that Assumptions 3.1, 3.3 and 3.5 hold, and the hyperpa-
rameters satisfy δ ≤ 1/λ1, αN−1 ≤ 1/N , and N ≥ 2. The excess risk then satisfies

E[L(wN )]− L(w∗) = (EffectiveBias + EffectiveVar)/2,

where the effective bias is identical to that in Theorem 4.1, and the effective variance satisfies

EffectiveVar ≳ (β∥w0 −w∗∥2H
k†:∞

+ σ2) ·
[
(1− α)k∗ + δ

∑k†

i=k∗+1
λi +Nδ2

∑
i>k†

λ2i

]
.

The lower bound is matching with the upper bound except for the first term of the effective variance,
which will be discussed in Subsection 4.2. Although Theorem 4.2 requires a stronger condition
about N and α, it is still a mild condition in practice because αN−1, which is the weight of w0 in
(3.2), should be smaller than the average weight 1/N .
4.2 DISCUSSION OF VARIANCE ERROR

Both the upper bound and the lower bound of the effective variance contain two terms: The second
term stems from the label noise, which is referred to as the (real) variance error. The upper bound
and the lower bound are matching for this term up to constant factors. The first term comes from the
randomness of the feature vector, and is thus nonzero even if there is no label noise. The upper and
lower bounds are not matching for this term due to the additional term ∥w0 −w∗∥2I

0:k†
in the upper

bound, which is similar to the case of SGD with tail averaging (Zou et al., 2021). We conjecture that
finer analysis can bridge the gap.

Effective dimensions. The cutoffs k∗ and k† are referred to as effective dimensions, which can
be significantly smaller than the real model dimension d, especially when the eigenvalue spectrum
decays fast. Similar quantities also appear in previous works analyzing high-dimensional linear
regression (Zou et al., 2021; Wu et al., 2022; Li et al., 2023), and the double effective dimensions
k∗ and k† for SGD with EMA is very similar to that of SGD with tail averaging (Zou et al., 2021).
We will draw more connections between SGD with EMA and SGD with tail averaging in Section 5.
We then discuss the influence of hyperparameters δ, α, and N on the effective variance bound. The
following equalities about the effective variance will be useful in our discussion:

k∗(1− α)2 + δ2
∑

i>k∗
λ2i =

∑d

i=1
(min{1− α, δλi})2; (4.1)

4
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∥w0 −w∗∥2I
0:k†

+Nδ∥w0 −w∗∥2H
k†:∞

=
∑d

i=1
λi(w0 −w∗)

2
i min{1, Nδλi}; (4.2)

(1− α)k∗ + δ
∑k†

i=k∗+1
λi +Nδ2

∑
i>k†

λ2i =
∑d

i=1
min{1− α, δλi, Nδ2λ2i }. (4.3)

Learning rate δ. In the upper bound of the excess risk (Theorem 4.1), we require that δ <
1/(ψ tr(H)) similar to Zou et al. (2021), to ensure that (1−ψδ tr(H))−1 is positive. Larger learning
rates may cause the effect of the fourth moment to accumulate and diverge.

Number of iterations N . Due to (4.2) and (4.3), the effective variance increases as N increases.
Furthermore, as N goes to infinity, k† also goes to infinity, while k∗ remains unchanged.

Averaging parameter α. Due to (4.1) and (4.3), the effective variance decreases as α increases.
However, choosing α very close to 1 does not truly benefit the learning process because the reduced
variance error stems partly from the large weight of w0 (which has no randomness) in (3.2). We will
further elaborate this point in the next subsection.
4.3 DECAY RATE OF BIAS ERROR

We then study the quantity bi in Theorems 4.1 and 4.2, which is the decay rate of the effective bias
in the eigen-subspace of λi. We first note that

bi = (1− δλi)N + (δλi)
∑N−1

t=0
αt(1− δλi)N−1−t,

so the smaller α is, the faster bi decays. Together with the analysis of the effective variance in
Subsection 4.2, we conclude that there exists a bias-variance trade-off concerning the choice of α:
Larger α brings about smaller effective variance, but makes the effective bias decay slower.
The following proposition presents a finer characterization of the decay rate bi:
Proposition 4.3. For any i ∈ [d], the exponential decay rate bi satisfies

1. When (1− δλi)/α ≤ (N − 1)/N , we have bi ≃ (δλi)α
N/(δλi − (1− α));

2. When (N − 1)/N < (1− δλi)/α ≤ 1, we have bi ≃ (1− α)NαN−1;
3. When 1 < (1− δλi)/α ≤ N/(N − 1), we have bi ≃ δλiN(1− δλi)N−1;
4. When (1− δλi)/α > N/(N − 1), we have bi = (1− α)(1− δλi)N/((1− α)− δλi).
Proposition 4.3 implies that (i) the effective bias decays exponentially in N within every eigen-
subspace of H; (ii) the decay rate of the effective bias has a phase transition at the eigen-subspace
corresponding to λk∗ : The decay rate is α2N in the eigen-subspace of large eigenvalues, and is
(1 − δλi)2N in the eigen-subspace of small eigenvalues, and (iii) when 1 − δλi is close to α, the
decay rate of the effective bias contains additional factors polynomial in N .

5 COMPARING EMA WITH OTHER AVERAGING SCHEMES

In this section, we compare the excess risk of SGD with EMA against SGD without averaging and
other averaging schemes, including iterate averaging from the beginning and tail averaging. Similar
to EMA, the excess risk of all averaging schemes of interest can be decomposed into effective bias
and effective variance (Zou et al., 2021). For each averaging scheme, we focus on its comparison
with EMA in terms of effective variance (including the effective dimension) and the decay rate of
the effective bias, i.e., bi.

Comparison with SGD without averaging. SGD without averaging is equivalent to EMA with
α = 0. Specifically, the effective dimension k∗ becomes 0, and the decay rate of the effective bias
is bw/o

i = (1− δλi)N−1. Based on the discussion about the impact of α on the excess risk bound in
Subsections 4.2 and 4.3, we conclude that SGD with EMA has a smaller effective variance, but its
effective bias decays slower than that of SGD without averaging.

Comparison with iterate averaging. Zou et al. (2021) studied SGD with iterate averaging, which
is defined as wIA

N := N−1
∑N−1

t=0 wt. The variance error of SGD with iterate averaging is

Θ
(
σ2

∑d

i=1
min{1/N,Nδ2λ2i }

)
.

If N is not too large, i.e., NαN−1 = Θ(1) , the difference between 1/N and 1 − α is only
polylog(N). In this case, SGD with EMA achieves a variance error similar to that of SGD with iter-
ate averaging. Due to the gap between the upper and lower bounds of SGD with EMA, we leave the
comparison of the remaining part of the effective variance for future work. The decay rate of effec-
tive bias of SGD with iterate averaging is bIAi = (1−(1−δλi)N )/(Nδλi) = Θ(min{1/(Nδλi), 1}).
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Therefore, SGD with EMA enjoys the advantage of exponentially decaying effective variance com-
pared with SGD with iterate averaging.

Comparison with tail averaging. Zou et al. (2021) also studied SGD with tail averaging, where
averaging is only performed for the last N − s iterates, i.e., wTA

s:N := (N − s)−1
∑N−1

t=s wt. Similar
to the case in Subsection 4.1, the upper and lower bounds of the excess risk of SGD with tail
averaging are not matching in Zou et al. (2021), so we focus on the comparison of the effective
dimension and the real variance error in the effective variance. According to Zou et al. (2021), the
effective dimensions of SGD with tail averaging are k∗TA = max{i : λi ≥ 1/((N − s)δ)} and
k†TA = max{i : λi ≥ 1/(Nδ)}. We thus observe that k†TA is exactly the same as k† in SGD with
EMA, and k∗TA = k∗ under the condition (1 − α)(N − s) = 1. Furthermore, the real variance of
SGD with tail averaging is

Variance = Θ
(
σ2

∑d

i=1
min

{
1/(N − s), δλi, Nδ2λ2i

})
,

which also matches that of SGD with EMA if (1−α)(N −s) = 1. For the decay rate of the effective
bias, we have bTAi = ((1− δλi)s− (1− δλi)N )/((N − s)δλi). We then compare bi with bTAi under
the condition (1− α)(N − s) = 1. When α ≥ 1/2 (which is a mild condition in practice), we have
logα ≥ (α− 1)/2, and 1/

√
e = e(α−1)(N−s)/2 ≤ e(N−s) logα = αN−s. We thus have

bi = (1− α)
∑N−1

t=s
αN−1−t(1− δλi)t + αN−s (δλi)α

s − (1− α)(1− δλi)s

δλi − (1− α)

≥ 1− α√
e

∑N−1

t=s
(1− δλi)t =

(1− δλi)s − (1− δλi)N√
e(N − s)δλi

,

where the inequality holds due to a dropped positive term and αN−s ≥ 1/
√
e. Therefore, the

exponential decay rate of SGD with EMA bi is Ω(bTAi ). However, bi is exponential in N while bTAi
is exponential only in s, which means that SGD with EMA has the advantage that the effective bias
in every eigen-subspace decays exponentially fast in N compared with polynomial decay in N for
SGD with tail averaging if s is fixed before training.

6 EXTENSION TO MINI-BATCH SGD
We now extend our analysis of SGD with EMA to mini-batch SGD. Let B be the batch size, and
{(xt,i, yt,i)}Bi=1 be the mini-batch sampled from the distribution D at iteration t. An iterate of
mini-batch SGD is

wMB
t = wMB

t−1 + δ/B ·
∑B

i=1
(yi,t − ⟨wMB

t−1,xt,i⟩)xt,i.

We then consider the excess risk of the exponential moving average of the mini-batch SGD iterates,
defined as

wMB
N = αNwMB

0 + (1− α)
∑N−1

t=0
αN−1−twMB

t .

Theorem 6.1. Suppose that Assumptions 3.1, 3.2, and 3.4 hold, and the learning rate satisfies δ <
min{B/(2ψ tr(H)), 1/∥H∥2}. Then the excess risk of mini-batch SGD satisfies

E[L(wN )]− L(w∗) ≤ EffectiveBias + EffectiveVar,

where the effective bias is identical to that in Theorem 4.1, and the excess variance satisfies

EffectiveVar ≤ 2σ2/B ·
[
(1− α)k∗ + δ

∑k†

i=k∗+1
λi +Nδ2

∑
i>k†

λ2i
]

+ 2ψ/(δB) ·
(
k∗(1− α)2 + δ2

∑
i>k∗

λ2i
)
·
(
2ψ(∥w0 −w∗∥2I

0:k†
+Nδ∥w0 −w∗∥2H

k†:∞
)
)
.

A lower bound corresponding to Theorem 6.1 can be proved similar to Theorem 4.2.
Based on Theorem 6.1, we aim to derive the critical batch size (Zhang et al., 2024), which is the
batch size that causes a phase transition on the excess risk bound. Since the effective variance decays
exponentially in N , we present the following corollary for only the effective variance:
Corollary 6.2. Suppose the eigenvalue spectrum satisfies λi = i−a, and the initialization satisfies
λi(w0 −w∗)

2
i = i−b where b < a + 1. Let M be the number of examples. Then under the same

assumptions as Theorem 6.1, we have

EffectiveVar = Θ(B−1δ1/a(1− α)1−1/a) + Θ(B−1δ(2−b)/a(1− α)2−1/aN1−(b−1)/a).

6
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The assumption of the eigenvalue spectrum and the initialization is referred to as the source condition
(Caponnetto & De Vito, 2007; Zhang et al., 2024). The assumption of b < a+ 1 ensures that upper
bound and the lower bounds are matching. If we further let N = M/B where M is the total
number of samples, then the critical batch size is B∗ = O(Mδ

1−b
a−b+1 (1 − α)

a
a−b+1 ). We observe

that the critical batch size of SGD with EMA is sharply different from SGD with iterate averaging
in Zhang et al. (2024). This is because the critical batch size is determined by both the effective
bias and the effective variance for SGD with iterate averaging due to the effective bias that decays
only polynomially in N . However, the effective bias of SGD with EMA decays exponentially in N ,
making it negligible in the analysis of the critical batch size.

7 OVERVIEW OF PROOF TECHNIQUES

In this section, we present the proof technique that is not only used in our analysis of EMA, but also
applicable to a class of averaging schemes.
We first introduce the class of averaging schemes that covers EMA and iterate averaging, among
others. In (3.1), instead of using a uniform α in all iterates, we allow the averaging parameter to
depend on t, i.e.,

w0 = w0; wt = αt−1wt−1 + (1− αt−1)wt−1.

where αt ∈ [0, 1] is the time-dependent averaging parameter. The final output can be written as

wN = β0w0 +
∑N−1

t=0
(βt+1 − βt)wt,

where βt is defined as βt =
∏N−1

k=t αt. Most averaging schemes belong to this class, e.g.,

• EMA: αt = α, and βt = αN−t.
• SGD without averaging: αt = 0, βN = 1, and βt = 0 for all t = 0, . . . , N − 1.
• Iterate averaging: αt = t/(t+ 1), and βt = t/N .
• Tail averaging:

αt =

{
0 t < s,
t−s

t−s+1 t ≥ s; , βt =

{
0 t < s,
t−s
N−s t ≥ s.

We now define several notations following Zou et al. (2021). We first define the centered SGD iterate
as ηt = wt − w∗, and the EMA of the centered SGD iterates is ηN = wN − w∗. We define the
centered bias and variance vectors recursively as

ηbias
0 = η0, ηbias

t = (I− δxtx
⊤
t )η

bias
t−1 ;

ηvar
0 = 0, ηvar

t = (I− δxtx
⊤
t )η

var
t−1 + δξtxt.

We can define the EMA of the centered vectors ηN , ηbias
N , and ηvar

N similar to the definition of
wN in (3.2). Following previous works (Défossez & Bach, 2015; Dieuleveut et al., 2017; Jain
et al., 2018b; Berthier et al., 2020; Zou et al., 2021; Wu et al., 2022; Lin et al., 2024; Li et al.,
2023), under Assumption 3.4, the excess risk can be decomposed as (See Lemma C.1 for details)
E[L(wN )]− L(w∗) ≤ bias + var, where the bias and variance errors are defined as

bias = ⟨H,E[ηbias
N ⊗ ηbias

N ]⟩, var = ⟨H,E[ηvar
N ⊗ ηvar

N ]⟩. (7.1)

Since ηbias
N and ηvar

N are the weighted sums of ηbias
t and ηvar

t , respectively, in order to bound bias
and var which depends on the covariance matrix of ηbias

N and ηvar
N , it suffices to (i) study terms

of the form E[ηbias
t ⊗ ηbias

k ] and E[ηvar
t ⊗ ηvar

k ], and (ii) represent the bias and variance errors in
a tractable form. For Step (i), following Zou et al. (2021), we define the covariance matrices as
Bt = E[ηbias

t ⊗ ηbias
t ] and Ct = E[ηvar

t ⊗ ηvar
t ]. With these definitions, for k ≥ t, we have

E[ηbias
t ⊗ ηbias

k ] = Bt(I − δH)k−t and E[ηvar
t ⊗ ηvar

k ] = Ct(I − δH)k−t. We are now ready to
represent E[ηbias

N ⊗ ηbias
N ] using Bt:

E[ηbias
N ⊗ ηbias

N ] = β2
0B0 +

N−1∑
t=0

β0(βt − βt+1)[(I− δH)tB0 +B0(I− δH)t]

7
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+

N−1∑
t=0

(βt − βt+1)

[
(βt − βt+1)Bt +

N−1∑
k=t+1

(βk − βk+1)[(I− δH)k−tBt +Bt(I− δH)k−t]

]
.

(7.2)

For Step (ii), the analysis in Zou et al. (2021); Wu et al. (2022) that adds the terms Bt and transforms
(7.2) into a “triangular” sum does not work due to the inhomogeneous βt−βt+1. To tackle this issue,
we make the critical observation that

(βt − βt+1)

[
(βt − βt+1)Bt +

N−1∑
k=t+1

(βk − βk+1)[(I− δH)k−tBt +Bt(I− δH)k−t]

]

=

[N−1∑
k=t

(βk − βk+1)(I− δH)k−t
]
·Bt ·

[∑N−1

k=t
(βk − βk+1)(I− δH)k−t

]

−
[ N−1∑
k=t+1

(βk − βk+1)(I− δH)k−t−1

]
· (B̃ ◦Bt) ·

[ N−1∑
k=t+1

(βk − βk+1)(I− δH)k−t−1

]
,

where the matrix operator B̃ is defined as B̃ = (I − δH) ⊗ (I − δH). Similar properties were first
used in Li et al. (2023) to study the generalization of SGD with Nesterov momentum. Using this
property, by applying the telescope sum, (7.2) can be reformulated as

E[ηbias
N ⊗ ηbias

N ] =

[
β0I+

N−1∑
k=0

(βk − βk+1)(I− δH)k
]
B0

[
β0I+

N−1∑
k=0

(βk − βk+1)(I− δH)k
]

+

N−1∑
t=1

[N−1∑
k=t

(βk − βk+1)(I− δH)k−t

]
(Bt − B̃ ◦Bt−1)

[N−1∑
k=t

(βk − βk+1)(I− δH)k−t

]
,

(7.3)

where the first term corresponds to the effective bias, and the second term contributes to the effective
variance. A similar reformulation can also be applied to the variance error. Further simplifications
are possible due to the fact that C0 = 0, so the variance term corresponding to the first term in (7.3)
is 0. Afterwards, Bt and Ct can be further characterized by the analysis similar to Zou et al. (2021).

8 EXPERIMENTS

In this section, we verify our theoretical findings with empirical experiments. We present the ex-
periments in the linear regression setting, and experiments on the single-neuron ReLU network (Wu
et al., 2023) in Appendix A. We (i) compare the generalization performance of SGD with different
schemes, and (ii) explore the impact of the choice of the averaging parameter α on the excess risk
of SGD with EMA. We consider the well specified setting (Assumption 3.5) with σ2 = 1. The
data feature vectors follow the Gaussian distribution xt ∼ N (0,H) where the eigenvalue spectrum
of H is λi = i−2 with d = 2000, which is also the experiment setting in Zou et al. (2021); Wu
et al. (2022); Li et al. (2023). The centered model weight vector is initialized as a Gaussian ran-
dom vector w0 − w∗ ∼ N (0, I). According to Theorem 4.1, the learning rate δ should satisfy
δ < 1/(ψ tr(H)) = 2/π2 ≈ 0.203, so we choose δ = 0.2. The total number of iterations is fixed
as N = 3000. In all experiments, we record both the bias error and the variance error as defined
in (7.1). We run each experiment 100 times and plot the confidence band1. The experiments are
runnable on a PC within minutes.

Comparison of different averaging schemes. In the comparison of EMA with other averaging
schemes, the averaging parameter of EMA is α = 0.995, and s ∈ {100, 200, 500, 1000} in tail
averaging. The comparisons of the bias error and the variance error are shown in Figures 1(a) and
1(b), respectively. Although the bias error of SGD with EMA decays slowly at the beginning, it
achieves a fast decay rate similar to that of SGD without averaging. However, the bias error of SGD
with EMA is far more stable than without averaging, due to the reduced variance of the data feature.
The variance error of SGD with EMA remains at a low level though slightly larger than SGD with
iterate averaging or tail averaging (because (1− α)(N − s)≫ 1). We also conclude that averaging

1For the variance error, we only show the confidence band for iterate averaging, tail averaging with s = 100,
and EMA for variance error, for clarity.
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(a) Bias error
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Figure 1: Comparison of SGD with different averaging schemes. The bias error of SGD with EMA is
more stable than SGD without averaging, and decays faster than iterate averaging and tail averaging
when N is large. The variance error of SGD with EMA remains relatively small, and is comparable
to that of SGD with iterate averaging or tail averaging.
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Figure 2: Comparison of SGD with EMA with different α. The bias error of SGD with EMA with
smaller alpha decays faster at the beginning of training, but the advantage is less significant when N
is large. The variance error of SGD with EMA decreases as α increases.

in general is crucial in variance reduction due to the observation that the variance error of SGD with
tail averaging decays sharply when averaging starts.

Comparison of SGD with EMA with different α. We compare SGD with EMA with α = 0.9,
0.99 and 0.999, and the experiments results are the average of 10 independent runs. The variance
error (Figure 2(a)) of SGD with EMA with larger α is significantly smaller than that with smaller
α, and the bias error (Figure 2(b)) is also more stable. The bias error of SGD with EMA when
α = 0.9 or 0.99 decays much faster than when α = 0.999, but they all approach a similar level
when N = 3000. We conjecture that this is because the decay rate of the bias error is dominated
by the slowest decaying component, which is the bias error in the eigen-subspaces of the smallest
eigenvalues. As we have pointed out in Proposition 4.3, the exponential decay rate of the bias error
in such eigen-subspaces is independent of α.

9 CONCLUSION

In this work, we study the generalization of SGD with EMA in the high-dimensional linear regres-
sion setting. Our excess risk bound of SGD with EMA depends solely on the eigenvalue spectrum,
which is instance-dependent and dimension-free. Similar results can also be derived for mini-batch
SGD. In a comparison with SGD with other averaging schemes, we reveal the two-fold advantage
of SGD with EMA: the exponentially decaying effective bias error and the modest effective vari-
ance error. Our analysis provides the framework for the study of a class of averaging schemes we
proposed.

9
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REPRODUCIBILITY STATEMENT

In the numerical experiments, we have described the details of the model, generation of synthetic
data, and evaluation metrics in Section 8. The proof of theoretical results are given in Appendix C,
and the proof of supporting lemmas are given in subsequent sections.
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A ADDITIONAL EXPERIMENTS

In this section, we present additional experiments on the single-neuron ReLU network. The results
are similar to the linear regression model.
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Figure 3: Comparison of SGD with different averaging schemes for the single-neuron ReLU net-
work.
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Figure 4: Comparison of SGD with EMA with different α for the single-neuron ReLU network.

B ADDITIONAL NOTATIONS

Linear Operators on Matrices. We define the following linear operators on matrix following Zou
et al. (2021):

I = I⊗ I, M = E[x⊗ x⊗ x⊗ x], M̃ = H⊗H,

B = E[(I− δxx⊤)⊗ (I− δxx⊤)], B̃ = (I− δH)⊗ (I− δH)

Denote the σ-algebra generated by samples {(xk, yk)}tk=1 as Ft. Due to the optimality of w∗, we
have∇L(w∗) = 0, which implies that

0 = ∇L(w∗) = E[x(x⊤w∗ − y)] = Hw∗ − E[x · y]. (B.1)

Due to the equality above, we have

E[ηbias
t |Ft−1] = (I− δH)ηbias

t−1 , E[ηvar
t |Ft−1] = (I− δH)ηvar

t−1.

Iterating this property, using the double expectation formula, we have for any k ≤ t, we have

E[ηbias
t |Fk] = (I− δH)t−kηbias

k , E[ηvar
t |Fk] = (I− δH)t−kηvar

k , (B.2)

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

which indicates that E[ηvar
t ] = 0. We also have

Bt = E[E[ηbias
t ⊗ ηbias

t |Ft−1]]

= E[E[((I− δxtx
⊤
t )⊗ (I− δxtx

⊤
t )) · (ηbias

t−1 ⊗ ηbias
t−1 )|Ft−1]]

= E[B ◦ (ηbias
t−1 ⊗ ηbias

t−1 )]

= B ◦Bt−1, (B.3)

and

Ct = E[E[ηvar
t ⊗ ηvar

t |Ft−1]]

= E
[
E[((I− δxtx

⊤
t )⊗ (I− δxtx

⊤
t )) · (ηvar

t−1 ⊗ ηvar
t−1) + δ2ξ2t xtx

⊤
t

− δξtxt(η
var
t−1)

⊤(I− δxtx
⊤
t )− δξt(I− δxtx

⊤
t )η

var
t−1x

⊤
t |Ft−1]

]
= B ◦Ct−1 + δ2Σ, (B.4)

where the last equality holds because (xt, yt) is independent from ηvar
t−1 and E[ηvar

t−1] = 0.
Several other key properties of the centered iterates and the linear operators are given in Appendix G.

C PROOF OF MAIN RESULTS

C.1 PROOF OF THEOREM 4.1
To prove Theorem 4.1, we first decompose the excess risk into the bias error and the variance error
(Lemma C.1), and then bound them separately (Lemma C.2 and Lemma C.3).
Lemma C.1. The excess risk can be decomposed as

E[L(wN )]− L(w∗) ≤ bias + var,

where

bias = ⟨H,E[ηbias
N ⊗ ηbias

N ]⟩, var = ⟨H,E[ηvar
N ⊗ ηvar

N ]⟩.

Lemma C.2. Suppose that Assumption 3.2 holds, and the learning rate satisfies δ ≤ 1/(ψ tr(H)).
Then the variance error satisfies

var ≤ σ2

1− ψδ tr(H)

[
(1− α)k∗ + δ

k†∑
i=k∗

λi +Nδ2
∑
i>k†

λ2i

]
.

Lemma C.3. Suppose that Assumption 3.2 holds, and the learning rate satisfies δ ≤ 1/(ψ tr(H)).
Then the bias error satisfies

bias ≤
ψ(∥w0 −w∗∥2I

0:k†
+Nδ∥w0 −w∗∥2H

k†:∞
)

δ(1− ψδ tr(H))

(
k∗(1− α)2 + δ2

∑
i>k∗

λ2i

)

+

n∑
i=1

(w0 −w∗)
2
iλi

[
(δλi)α

N − (1− α)(1− δλi)N

δλi − (1− α)

]2
.

C.2 PROOF OF THEOREM 4.2
The lower bound can be proved using the bias-variance decomposition similar to proof of the upper
bound.
Lemma C.4. Under Assumption 3.5, the excess risk can be decomposed as

E[L(wN )]− L(w∗) =
1

2
(bias + var).

Lemma C.5. Assume that the hyperparameters satisfy δ ≤ 1/λi, N ≥ 2 and αN−1 ≤ 1/N . Then
the variance error satisfies

var ≥ σ2

[
3α2(1− α)k∗

16
+

δ

100

k†∑
i=k∗+1

λi +
Nδ2

180

∑
i>k†

λ2i

]
.

13
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Lemma C.6. Under the same assumptions as Lemma C.5, the bias error satisfies

bias ≥ βe−2∥η0∥2H
k†:∞

[
3α2(1− α)k∗

16
+

δ

100

k†∑
i=k∗+1

λi +
Nδ2

180

∑
i>k†

λ2i

]

+

d∑
i=1

η20,iλi

[
(δλi)α

N − (1− α)(1− δλi)N

δλi − (1− α)

]2
.

The proofs of Lemma C.1 and Lemma C.4 are given in Appendix E.1. The proofs of Lemma C.2
and Lemma C.5 are given in Appendix E.2. The proofs of Lemma C.3 and Lemma C.6 are given in
Appendix E.3.
C.3 PROOF OF THEOREM 6.1
In this subsection, we modify the proof of Theorem 4.1 to derive the excess risk upper bound for
mini-batch SGD.

Proof of Theorem 6.1. Define the residual vector of mini-batch SGD in the same way as SGD. We
then define the bias and variance residual vectors as

ηbias
0 = η0, ηbias

t =

(
I− δ

B

B∑
i=1

xt,ix
⊤
t,i

)
ηbias
t−1 ;

ηvar
0 = 0, ηvar

t =

(
I− δ

B

B∑
i=1

xt,ix
⊤
t,i

)
ηvar
t−1 +

δ

B

B∑
i=1

ξt,ixt,i.

We define the exponential moving average of the bias and variance residual vectors as well as the
second moment matrices Bt and Ct in the same way as SGD. We then have the bias-variance
decomposition lemma similar to Lemma C.1.
We define all linear matrix operators in the same way as SGD except for B, which is defined as

B := E
[(

I− δ

B

B∑
i=1

xt,ix
⊤
t,i

)
⊗

(
I− δ

B

B∑
i=1

xt,ix
⊤
t,i

)]
,

then Bt and Ct satisfy the following recursive formulas:

Bt+1 = B ◦Bt, Ct+1 = B ◦Ct +
δ2

B
Σ.

We also note that B− B̃ = δ2/B · (M−M̃) is still a PSD operator, and for any PSD matrix A, we
have

(B − B̃) ◦A ⪯ ψδ2

B
tr(HA)H.

Therefore, we can substitute the parameters in Theorem 4.1 as σ2 ← σ2/B and ψ ← ψ/B, and
obtain the upper bound for the excess risk of mini-batch SGD.

D DISCUSSION ABOUT DECAY RATE OF BIAS ERROR

In this section, we study the term

bi = αN + (1− α)
N−1∑
k=0

αN−1−k(1− δλi)k

=
(δλi)α

N − (1− α)(1− δλi)N

δλi − (1− α)

= (1− δλi)N + (δλi)

N−1∑
k=0

αN−1−k(1− δλi)k.

To upper bound bi, when i ≤ k∗, i.e., 1− δλi ≤ α, we have

bi =
(δλi)α

N − (1− α)(1− δλi)N

δλi − (1− α)
≤ δλi
δλi − (1− α)

αN ,

14
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where the inequality holds because (1− α)(1− δλi)N ≥ 0. We also have

bi = αN + (1− α)
N−1∑
k=0

αN−1−k(1− δλi)k

≤ αN + (1− α)
N∑

k=0

αN−1−kαk = αN +N(1− α)αN−1,

where the inequality holds because 1− δλi ≤ α.
When i > k∗, i.e., 1− δλi > α, we have

bi = (1− δλi)N + (δλi)

N−1∑
k=0

αN−1−k · (1− δλi)k

≤ (1− δλi)N + (δλi)

N−1∑
k=0

(1− δλi)N−1−k · (1− δλi)k

= (1− δλi)N +Nδλi(1− δλi)N−1,

where the inequality holds because α ≤ 1− δλi. We also have

bi =
(1− α)(1− δλi)N − (δλi)α

N

1− α− δλi
≤ 1− α

1− α− δλi
(1− δλi)N ,

where the inequality holds because (δλi)α
N ≥ 0.

To lower bound bi, we consider the following cases:

Case 1. When (1− δλi)/α ≤ 1− 1/N , we have

bi =
(δλi)α

N − (1− α)(1− δλi)N

δλi − (1− α)
≥ δλi(α

N − (1− δλi)N )

δλi − (1− α)

≥ (δλi)(1− (1− 1/N)N )

δλi − (1− α)
αN ≥ (1− e−1)δλi

δλi − (1− α)
αN ,

where the first inequality holds because 1 − α ≤ δλi, the second inequality holds because 1 −
δλi/α ≤ 1− 1/N , and the last inequality holds because (1− 1/N)N ≤ 1/e.

Case 2. When 1− 1/N < (1− δλi)/α ≤ 1, we have

bi ≥ αN + (1− α)
N−1∑
k=0

αN (1− 1/N)k = αN + (1− α)αN−1 ·N(1− (1− 1/N)N )

≥ αN + (1− e−1)(1− α)NαN−1,

where the first inequality holds because 1 − δλi ≥ (1 − 1/N)α, and the second inequality holds
because (1− 1/N)N ≤ 1/e.

Case 3. When 1 < (1− δλi)/α ≤ N/(N − 1), similar to Case 2, we have

bi ≥ (1− δλi)N (1− e−1)Nδλi(1− δλi)N−1.

Case 4. When (1− δλi)/α > N/(N − 1), similar to Case 1, we have

bi ≥
(1− e−1)(1− α)

1− α− δλi
(1− δλi)N .

E PROOF OF LEMMAS IN APPENDIX C
E.1 BIAS-VARIANCE DECOMPOSITION

In this subsection, we prove Lemma C.1 and Lemma C.4. The proof is similar to Zou et al. (2021),
and is presented here for completeness.
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Proof of Lemma C.1. By Lemma G.2, the excess risk can be written as

E[L(wN )]− L(w∗)

=
1

2
⟨H,E[ηN ⊗ ηN ]⟩

=
1

2
E
[
⟨H, (ηbias

N + ηvar
N )⊗ (ηbias

N + ηvar
N )⟩

]
≤ 1

2
E
[
H, (ηbias

N + ηvar
N )⊗ (ηbias

N + ηvar
N ) + ⟨H, (ηbias

N − ηvar
N )⊗ (ηbias

N − ηvar
N )⟩

]
= ⟨H,E[ηbias

N ⊗ ηbias
N ]⟩+ ⟨H,ηvar

N ⊗ ηvar
N ⟩

= bias + var,

where the second equality holds due to Lemma G.3, and the inequality holds because a positive term
is added.

Proof of Lemma C.4. By Lemma G.3, the excess risk can be written as

E[L(wN )]− L(w∗) =
1

2
E
[
⟨H, (ηbias

N + ηvar
N )⊗ (ηbias

N + ηvar
N )⟩

]
=

1

2
⟨H,E[ηbias

N ⊗ ηbias
N ]⟩+ 1

2
⟨H,E[ηvar

N ⊗ ηvar
N ]⟩+ ⟨H,E[ηvar

N ⊗ ηbias
N ]⟩.

It then suffices to show that E[ηvar
N ⊗ηbias

N ] = 0, and it further suffices to prove that E[ηvar
t ⊗ηbias

s ] =
0 for all t and s. According to the recursive formulas of the residual vectors, we have

ηvar
t = δ

t∑
k=1

t∏
l=k+1

(I− δxlx
⊤
l )(ξkxk),

ηbias
s =

s∏
j=1

(I− δxjx
⊤
j )η0.

We then have

E[ηvar
t ⊗ ηbias

s ] = δ

t∑
k=1

E
[( t∏

l=k+1

(I− δxlx
⊤
l )(ξkxk)

)
⊗
( s∏

j=1

(I− δxjx
⊤
j )η0

)]
= 0,

where the second inequality holds because ξk is zero-mean and independent of feature vectors (As-
sumption 3.5).

E.2 VARIANCE BOUND

We need the following lemma to prove Lemma C.2.

Lemma E.1. Suppose that δ ≤ 1/(ψ tr(H)). Then for any t ≥ 0, the inner product of Ct and H is
upper bounded by

tr(HCt) ≤
σ2δ tr(H)

1− ψδ tr(H)
.

The proof of Lemma E.1 is given in Appendix F.1. We now provide the proof for Lemma C.2.

Proof of Lemma C.2. According to the definition of var and Lemma G.4, we have

var = (1− α)2
N−1∑
t=0

〈
H,

(N−2−t∑
k=0

αN−2−t−k(I− δH)k
)
((B − B̃) ◦Ct + δ2Σ)

·
(N−2−t∑

k=0

αN−2−t−k(I− δH)k
)〉

≤
N−1∑
t=0

(1− α)2δ2(ψ tr(HCt) + σ2)

16
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·
〈
H,

(N−2−t∑
k=0

αN−2−t−k(I− δH)k
)
H

(N−2−t∑
k=0

αN−2−t−k(I− δH)k
)〉

≤ σ2

1− ψδ tr(H)

d∑
i=1

(1− α)2(δλi)2
N−1∑
t=0

(N−2−t∑
k=0

αN−2−t−k(1− δλi)k
)2

︸ ︷︷ ︸
Ji

, (E.1)

where the first inequality holds due to Lemma G.1 part b and Assumption 3.4, and the second
inequality holds due to Lemma E.1. We then study the upper bound for Ji. Firstly, we have

Ji ≤ (1− α)2(δλi)2
∞∑
t=0

(N−2−t∑
k=0

αN−2−t−k(1− δλi)k
)2

=
(1− α)δλi

1− α+ αδλi
· 1 + α− αδλi
(1 + α)(2− δλi)

≤ (1− α)δλi
1− α+ αδλi

· 1

≤ min{1− α, δλi}, (E.2)

where the first inequality holds because positive terms are added, the second inequality holds be-
cause 1 + α − δλi ≤ 1 + α ≤ (1 + α)(2 − δλi), and the second inequality holds because
1− α+ αδλi ≥ max{1− α, δλi}. Secondly, we have

Ji ≤ (1− α)2(δλi)2
N−1∑
t=0

(N−2−t∑
k=0

αN−2−t−k

)2

= (δλi)
2
N−1∑
t=0

(1− αN−t−1)2 ≤ Nδ2λ2i , (E.3)

where the first inequality holds because 1 − δλi ≤ 1, and the second inequality holds because
1− αN−1−t ≤ 1. Substituting (E.2) and (E.3) into (E.1), we have

var ≤ σ2

1− ψδ tr(H)

d∑
i=1

min

{
1− α, δλi, Nδ2λ2i

}

=
σ2

1− ψδ tr(H)

[
(1− α)k∗ + δ

k†∑
i=k∗+1

λi +Nδ2
∑
i>k†

λ2i

]
.

Proof of Lemma C.5. According to the definition of var and Lemma G.4, we have

var = (1− α)2
N−1∑
t=0

〈
H,

(N−2−t∑
k=0

αN−2−t−k(I− δH)k
)
((B − B̃) ◦Ct + δ2Σ)

(N−2−t∑
k=0

αN−2−t−k(I− δH)k
)〉

≥ σ2
N−1∑
t=0

(1− α)2δ2
〈
H,

(N−2−t∑
k=0

αN−2−t−k(I− δH)k
)
H

(N−2−t∑
k=0

αN−2−t−k(I− δH)k
)〉

= σ2
d∑

i=1

(1− α)2(δλi)2
N−1∑
t=0

( t−1∑
k=0

αt−1−k(1− δλi)k
)2

︸ ︷︷ ︸
Ji

,

where the inequality holds due to Lemma G.1 part b. We then study the lower bound for Ji, based
on the regime that λi falls into:
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Case 1: i ≤ k∗ . In this case, 1− δλi ≤ α, and we have

Ji =
δλi(1− α)(1 + α− αδλi)(1− α2N )

(1− α+ αδλi)(1 + α)(2− δλi)

− 2δλi(1− α)2(1− δλi)αN

(1− α+ αδλi)(2− δλi)
· α

N − (1− δλi)N

α− (1− δλi)
− (1− α)2δλi

2− δλi

(
αN − (1− δλi)N

α− (1− δλi)

)2

≥ δλi(1− α)(1 + α− αδλi)(1− α2N )

(1− α+ αδλi)(1 + α)(2− δλi)
− 2δλi(1− α)2(1− δλi)αN

(1− α+ αδλi)(2− δλi)
− δλi(1− α)2

2− δλi

=
δλi(1− α)(1 + α− αδλi)(α2 − α2N )

(1− α+ αδλi)(1 + α)(2− δλi)
+

2δλi(1− α)2(1− δλi)(α− αN )

(1− α+ αδλi)(2− δλi)

≥ δλi(1− α)(1 + α− αδλi)(α2 − α2N )

(1− α+ αδλi)(1 + α)(2− δλi)
,

where the first inequality holds because αN−(1−δλi)
N

α−(1−δλi)
≤ NαN−1 ≤ 1, and the second inequality

holds because a positive term is dropped. We then consider the function

f(x) =
(1− x)(1 + αx)

(1− αx)(1 + x)
= 1− 2(1− α)

1/x− αx+ (1− α)
, x ∈ (0, α],

so f(x) is decreasing in x, and f(x) ≥ f(α) = (1 + α2)/(1 + α)2 ≥ 1/2 (Cauchy-Schwarz
inequality). Since αN−1 ≤ 1/N , we also have 1 − α2(N−1) ≥ 1 − 1/N2 ≥ 3/4 because N ≥ 2.
We thus have

Ji = (1− α) · f(1− δλi) ·
α2(1− α2(N−1))

1 + α

≥ (1− α) · 1
2
· 3α2

4(1 + α)

≥ 3(1− α)α2

16
,

where the last inequality holds because α ≤ 1.

Case 2: k∗ < i ≤ k†. In this case, 1− 1/N ≤ 1− δλi ≤ α, and for any µ ∈ (1, N), we have

Ji ≥ (1− α)2(δλi)2
N−1∑
t=0

(
(1− δλi)t−1

t−1∑
k=0

αk

)2

= (δλi)
2
N−1∑
t=0

(1− δλi)2(t−1)(1− αt)2

≥ (δλi)
2

N−1∑
t=⌈log1/α µ⌉

(1− δλi)2(t−1)(1− αt)2

≥ (δλi)
2(1− 1/µ)2

N−1∑
t=⌈log1/α µ⌉

(1− δλi)2(t−1)

=
δλi(1− 1/µ)2

2− δλi
[(1− δλi)2(⌈log1/α µ⌉−1) − (1− δλi)2(N−1)],

where the first inequality holds because (1 − δλi)k ≤ (1 − δλi)t−1, the second inequality holds
because negative terms are dropped, and the last inequality holds because αt ≤ α⌈log1/α µ⌉ ≤ 1/µ.
Since 1− δλi ≥ α, we have

(1− δλi)2(⌈log1/α µ⌉−1) ≥ α2(⌈log1/α µ⌉−1) ≥ α2 log1/α µ = µ−2.

Furthermore, since 1− δλi ≤ 1− 1/N , we have

(1− δλi)2(N−1) ≤ (1− 1/N)2(N−1) ≤ (1/2)2 = 1/4,
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where the second inequality holds because (1− 1/N)2N−2 is decreasing in N when N ≥ 2. There-
fore, by taking µ−1 = (1 +

√
3)/4, we have

Ji ≥
δλi
2
· 6
√
3− 9

64
≥ δλi

100
.

Case 3 : i > k†. In this case λi ≤ 1/Nδ, and for all k < N , we have

(1− δλi)k ≥ (1− 1/N)N−1 ≥ e−1,

where the second inequality holds because (1− 1/N)N−1 is decreasing in N when N ≥ 2 and the
limit is e−1. We then have

Ji ≥ e−2(1− α)2(δλi)2
N−1∑
t=0

( t−1∑
k=0

αk

)2

= e−2(δλi)
2
N−1∑
t=0

(1− αt)2

≥ e−2(δλi)
2

N−1∑
t=⌊N/2⌋

(1− αt)2

≥ N

2e2
δ2λ2i (1− α(N−1)/2)2

≥ Nδ2λ2i ·
1

2e2
· (1− 1/

√
2)2 ≥ Nδ2λ2i

180
,

where the second inequality holds because positive terms are dropped, the third inequality holds
because for all t ≥ ⌊N/2⌋, we have αt ≤ α(N−1)/2, and the fourth inequality holds because
αN−1 ≤ 1/N ≤ 1/2.
Combining all the above, we have

var ≥ σ2

[
3α2(1− α)k∗

16
+

δ

100

k†∑
i=k∗+1

λi +
Nδ2

180

∑
i>k†

λ2i

]
.

E.3 BIAS BOUND

We need the following lemma to prove Lemma C.3
Lemma E.2. The matrices Bt satisfies

t∑
k=1

tr(HBk) ≤
1

δ(1− ψδ tr(H))

d∑
i=1

η20,i[1− (1− δλi)t].

The proof of Lemma E.2 is given in Appendix F.2. We then prove Lemma C.3.

Proof of Lemma C.3. By definition of the bias error and Lemma G.4, we have

bias ≤ ψ
d∑

i=1

(1− α)2(δλi)2
N−1∑
t=0

tr(HBt)

(N−2−t∑
k=0

αN−2−t−k(1− δλi)k
)2

︸ ︷︷ ︸
Ji

+

d∑
i=1

η20,iλi

[
(1− α)(1− δλi)N − (δλi)α

N

1− δλi − α

]2
,

where the inequality holds due to Lemma G.1 part b. We then study the upper bound of Ji. Firstly,
we have

Ji ≤ (1− α)2(δλi)2
N−1∑
t=0

tr(HBt)

(N−2−t∑
k=0

(1− δλi)k
)2
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= (1− α)2
N−1∑
t=0

tr(HBt)(1− (1− δλi)N−1−t)2

≤ (1− α)2
N−1∑
t=0

tr(HBt)

≤ (1− α)2

δ(1− ψ tr(H))

d∑
i=1

η20,i[1− (1− δλi)N ]

≤ (1− α)2

δ(1− ψ tr(H))
(∥η0∥2I

0:k†
+Nδ∥η0∥2H

k†:∞
),

where the first inequality holds because α ≤ 1, the second inequality holds because 1 − (1 −
δλi)

N−1−t ≤ 1, the third inequality holds due to Lemma E.2, and the last inequality holds because
1− (1− δλi)N ≤ min{1, Nδλi}. Secondly, we have

Ji ≤ (1− α)2(δλi)2
N−1∑
t=0

tr(HBt)

(N−2−t∑
k=0

αN−2−t−k

)2

= (δλi)
2
N−1∑
t=0

tr(HBt)(1− αN−1−t)2

≤ (δλi)
2
N−1∑
t=0

tr(HBt)

≤ δλ2i
1− ψδ tr(H)

d∑
i=1

η20,i[1− (1− δλi)N ]

≤ δλ2i
1− ψδ tr(H)

(∥η0∥2I
0:k†

+Nδ∥η0∥2H
k†:∞

),

where the first inequality holds because 1 − δλi ≤ 1, the second inequality holds because 1 −
αN−1−t ≤ 1, the third inequality holds due to Lemma E.2, and the last inequality holds because
1− (1− δλi)N ≤ min{1, Nδλi}. Combining all the above, we have

bias ≤
ψ(∥w0 −w∗∥2I

0:k†
+Nδ∥w0 −w∗∥2H

k†:∞
)

δ(1− ψδ tr(H))

(
k∗(1− α)2 + δ2

∑
i>k∗

λ2i

)

+

n∑
i=1

(w0 −w∗)
2
iλi

[
(δλi)α

N − (1− α)(1− δλi)N

δλi − (1− α)

]2
.

Proof of Lemma C.6. According to the definition of the bias error and Lemma G.4, we have

bias ≥ β
d∑

i=1

(1− α)2(δλi)2
N−1∑
t=0

tr(HBt)

(N−2−t∑
k=0

αN−2−t−k(1− δλi)k
)2

+

d∑
i=1

η20,iλi

[
(δλi)α

N − (1− α)(1− δλi)N

δλi − (1− α)

]2

≥ β tr(B0H(I− δH)2(N−1))

d∑
i=1

(1− α)2(δλi)2
N−1∑
t=0

( t−1∑
k=0

αt−1−k(1− δλi)k
)2

︸ ︷︷ ︸
Ji

+

d∑
i=1

η20,iλi

[
(δλi)α

N − (1− α)(1− δλi)N

δλi − (1− α)

]2
,
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where the second inequality holds because

Bt = Bt ◦B0 ⪰ B̃t ◦B0 = (I− δH)tB0(I− δH)t ⪰ (I− δH)N−1B0(I− δH)N−1.

Note that the lower bound for Ji is the same as that in the proof of Lemma C.5. For the term
tr(B0H(I− δH)2N ), we have

tr(B0H(I− δH)2N ) =

d∑
i=1

η20,iλi(1− δλi)2(N−1) ≥
∑
i>k†

η20,iλi(1− 1/N)2(N−1) ≥ e−2∥η0∥2H
k†:∞

,

where the second inequality holds because δλi ≤ 1/N when i > k†, and the second inequality
holds because (1− 1/N)2(N−1) ≥ 1/e2. We thus have

bias ≥ βe−2∥η0∥2H
k†:∞

[
3α2(1− α)k∗

16
+

δ

100

k†∑
i=k∗+1

λi +
Nδ2

180

∑
i>k†

λ2i

]

+

d∑
i=1

η20,iλi

[
(δλi)α

N − (1− α)(1− δλi)N

δλi − (1− α)

]2
.

F PROOF OF LEMMAS IN APPENDIX E
F.1 PROOF OF LEMMA E.1
We need the following lemmas to prove Lemma E.1:
Lemma F.1. Ct satisfies

Ct =

k−1∑
k=0

Bk ◦Σ.

Since B is a PSD operator (Lemma G.1), we have

C0 ⪯ C1 ⪯ · · ·Ct ⪯ · · · .
Proof. The expression for Ct follows directly from the recursive formula for Ct.

We now provide the proof of Lemma E.1.

Proof of Lemma E.1. According to the recursive formula, we have

Ct = B ◦Ct−1 + δ2Σ ⪯ B̃ ◦Ct−1 + δ2(ψ tr(HCt−1) + σ2)H

⪯
t−1∑
k=0

(ψδ2 tr(HCt−1−k) + σ2) · B̃k ◦H

⪯ δ2(ψ tr(HCt) + σ2)

t−1∑
k=0

B̃k ◦H

⪯ δ2(ψ tr(HCt) + σ2)

∞∑
k=0

B̃k ◦H,

where the first inequality holds due to Lemma G.1 part b and Assumption 3.2, the second inequality
holds by recursively applying the first inequality, the third inequality holds due to Lemma F.1, and
the last inequality holds because B̃ is a PSD operator (Lemma G.1, part a). Taking the inner product
with H on both sides of the inequality, we have

tr(HCt) ≤ δ2(ψ tr(HCt) + σ2)

∞∑
k=0

tr(H(I− δH)kH(I− δH)k)

= δ2(ψ tr(HCt) + σ2)

∞∑
k=0

tr(H(I− δH)2kH)
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≤ δ2(ψ tr(HCt) + σ2)

∞∑
k=0

tr(H(I− δH)kH)

= δ(ψ tr(HCt) + σ2) tr(H),

where the second inequality holds because I − δH ≻ 0. Rearranging terms, as long as δ <
1/(ψ tr(H)), we have

tr(HCt) ≤
σ2δ tr(H)

1− ψδ tr(H)
.

F.2 PROOF OF LEMMA E.2
Proof of Lemma E.2. Define

S1
t =

t−1∑
k=0

Bt.

Note that S1
t satisfies S1

t = B ◦ St−1 +B0, so according to Lemma G.1 part b, S1
t can be bounded

by

S1
t ⪯ B̃ ◦ S1

t−1 + ψδ2 tr(HS1
t−1)H+B0

⪯
t−1∑
k=0

B̃k ◦ (ψδ2 tr(HS1
t−1−k)H+B0)

⪯
t−1∑
k=0

B̃k ◦ (ψδ2 tr(HS1
t )H+B0)

= ψδ2 tr(HS1
t )

t−1∑
k=0

(I− δH)kH(I− δH)k +

t−1∑
k=0

(I− δH)kB0(I− δH)k,

where the second inequality holds by recursively applying the first inequality, and the third inequality
holds because S1

t−1−k ⪯ S1
t . Taking the inner produce on both sides of the inequality, we have

tr(HS1
t ) ≤ ψδ2 tr(HS1

t )

t−1∑
k=0

tr(H2(I− δH)2k) +

t−1∑
k=0

tr(B0H(I− δH)2k)

≤ ψδ2 tr(HS1
t )

t−1∑
k=0

tr(H2(I− δH)k) +

t−1∑
k=0

tr(B0H(I− δH)k)

≤ ψδ2 tr(HS1
t )

∞∑
k=0

tr(H2(I− δH)k) +

t−1∑
k=0

tr(B0H(I− δH)k)

= ψδ tr(H) tr(HS1
t ) + δ−1

d∑
i=1

η20,i(1− (1− δλi)t),

where the second inequality holds because (I− δH)2k ⪯ (I− δH)k, and the third inequality holds
because positive terms tr(H2(I− δH)k) for k ≥ t are added. Rearranging terms, we have

tr(HS1
t ) ≤

1

δ(1− ψδ tr(H))

d∑
i=1

η20,i[1− (1− δλi)t].

G PROPERTIES OF CENTERED ITERATES AND LINEAR OPERATORS ON
MATRICES

Lemma G.1. The linear operators on matrix enjoy the following properties:
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a. M, M̃, B, and B̃ are all PSD operators, i.e., for any PSD matrix A, we have thatM◦A, M̃◦A,
B ◦A, and B̃ ◦A are all PSD matrices.

b. B − B̃ = δ2(M−M̃) is also a PSD operator, which is bounded by

βδ2 tr(HA)H ⪯ (B − B̃) ◦A = δ2(M−M̃) ◦A ⪯ δ2M◦A ⪯ ψδ2 tr(HA)H.

Proof. a. Let A denote any PSD matrix, and v be any vector. We then have

v⊤(M◦A)v = E[(v⊤x)2(x⊤Ax)] ≥ 0,

where the equality holds because (v⊤x)2 ≥ 0 and x⊤Ax ≥ 0. Furthermore,

v⊤(B ◦A)v = E[v⊤(I− δxx⊤)A(I− δHxx⊤)v] = E[(v − δ(v⊤x)x)⊤A(v − δ(v⊤x)x)] ≥ 0,

where the inequality holds because for any vector u (u = v − δ(v⊤x)x in this case), we have
u⊤Au ≥ 0. Finally, M̃ and B̃ are PSD operators because any matrix similar to a PSD matrix is
also a PSD matrix.

b. The difference between B and B̃ is

B − B̃ = E[(I− δxx⊤)⊗ (I− δxx⊤)]− (I− δH)⊗ (I− δH)

= (I⊗ I− δH⊗ I− δI⊗H+ δ2M)− (I⊗ I− δH⊗ I− δI⊗H+ δ2M̃)

= δ2(M−M̃).

Furthermore,

M−M̃ = E[(xx⊤ −H)⊗ (xx⊤ −H)],

soM−M̃ is a PSD operator. The upper bound follows directly from the fact that M̃ is PSD and
Assumption 3.2.

Lemma G.2 and Lemma G.3 are similar to their counterparts in Zou et al. (2021), and are presented
here for completeness.
Lemma G.2. The excess risk is equivalent to

L(wN )− L(w∗) =
1

2
⟨H,ηN ⊗ ηN ⟩.

Proof. By definition of the risk function, we have

L(wN )− L(w∗) =
1

2
E(x,y)∼D[(y − ⟨wN ,x⟩)2 − (y − ⟨w∗,x⟩)2]

=
1

2
E(x,y)∼D[(w∗ −wN )⊤(x · 2y − xx⊤(wN +w∗))]

=
1

2
(w∗ −wN )⊤(2Hw∗ −H(wN +w∗))

=
1

2
⟨H,ηN ⊗ ηN ⟩,

where the third equality holds due to (B.1) and the definition of H.

Lemma G.3. For any t > 0, we have

ηt = ηbias
t + ηvar

t .

We thus have

ηN = ηbias
N + ηvar

N .

Proof. We prove the lemma by induction. When t = 0, the lemma holds trivially. Suppose that the
lemma holds for t− 1, then we have

ηt = wt −w∗ = (wt−1 −w∗) + δ(yt − ⟨wt−1,xt⟩)xt

= (wt−1 −w∗) + δ(ξt − ⟨wt−1 −w∗,xt⟩)xt
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= (I− δxtx
⊤
t )ηt−1 + δξtxt

= (I− δxtx
⊤
t )(η

bias
t + ηvar

t ) + δξtxt

= [(I− δxtx
⊤
t )η

bias
t ] + [(I− δxtx

⊤
t )η

var
t + δξtxt]

= ηbias
t + ηvar

t ,

where the fifth equality holds due to the induction hypothesis. Therefore, the lemma holds for t.
Combining all the above, the lemma is proved for all t ≥ 0.

Lemma G.4. The second moment of the residual vectors can be decomposed as

E[ηbias
N ⊗ ηbias

N ] = (1− α)2

·
N−1∑
t=0

(N−2−t∑
k=0

αN−2−t−k(I− δH)k
)
((B − B̃) ◦Bt)

(N−2−t∑
k=0

αN−2−t−k(I− δH)k
)

+

(
αNI+ (1− α)

N−1∑
k=0

αN−1−k(I− δH)k
)
B0

(
αNI+ (1− α)

N−1∑
k=0

αN−1−k(I− δH)k
)
,

E[ηvar
N ⊗ ηvar

N ] = (1− α)2

·
N−1∑
t=0

(N−2−t∑
k=0

αN−2−t−k(I− δH)k
)
((B − B̃) ◦Ct + δ2Σ)

(N−2−t∑
k=0

αN−2−t−k(I− δH)k
)
.

Proof. To simplify notations, we omit the superscripts of ηt and ηN , and denote Dt = E[ηt ⊗ ηt].
According to the definition of ηN , we have

E[ηN ⊗ ηN ] = E
[(
αNη0 + (1− α)

N−1∑
t=0

αN−1−tηt

)
⊗

(
αNη0 + (1− α)

N−1∑
t=0

αN−1−tηt

)]

= α2ND0 + (1− α)
N−1∑
t=0

α2N−1−t
[
E[η0 ⊗ ηt] + E[ηt ⊗ η0]

]
+ (1− α)2

N−1∑
s=0

N−1∑
t=0

α2N−2−s−tE[ηs ⊗ ηt]

= α2ND0 + (1− α)
N−1∑
t=0

α2N−1−t[D0(I− δH)t + (I− δH)tD0]

+ (1− α)2
N−1∑
t=0

[
α2N−2−2tDt +

N−1−t∑
k=1

α2N−2−2t−k[Dt(I− δH)k + (I− δH)kDt]

]

=

(
αNI+ (1− α)

N−1∑
k=0

αN−1−k(I− δH)k
)
D0

(
αNI+ (1− α)

N−1∑
k=0

αN−1−k(I− δH)k
)

− (1− α)2
(N−1∑

k=0

αN−1−k(I− δH)k
)
D0

(N−1∑
k=0

αN−1−k(I− δH)k
)

+ (1− α)2
N−1∑
t=0

[(N−1−t∑
k=0

αN−1−t−k(I− δH)k
)
Dt

(N−1−t∑
k=0

αN−1−t−k(I− δH)k
)

−
(N−1−t∑

k=1

αN−1−t−k(I− δH)k
)
Dt

(N−1−t∑
k=1

αN−1−t−k(I− δH)k
)]

=

(
αNI+ (1− α)

N−1∑
k=0

αN−1−k(I− δH)k
)
D0

(
αNI+ (1− α)

N−1∑
k=0

αN−1−k(I− δH)k
)

+ (1− α)2
N−2∑
t=0

[(N−2−t∑
k=0

αN−2−t−k(I− δH)k
)
Dt+1

(N−2−t∑
k=0

αN−2−t−k(I− δH)k
)
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−
(N−1−t∑

k=1

αN−1−t−k(I− δH)k
)
Dt

(N−1−t∑
k=1

αN−1−t−k(I− δH)k
)]

=

(
αNI+ (1− α)

N−1∑
k=0

αN−1−k(I− δH)k
)
D0

(
αNI+ (1− α)

N−1∑
k=0

αN−1−k(I− δH)k
)

+ (1− α)2
N−1∑
t=0

(N−2−t∑
k=0

αN−2−t−k(I− δH)k
)
(Dt+1 − B̃ ◦Dt)

(N−2−t∑
k=0

αN−2−t−k(I− δH)k
)
,

where the third inequality holds because E[ηt+k ⊗ ηt] = E[E[ηt+k ⊗ ηt|Ft]] = E[(I− δH)k(ηt ⊗
ηt)] = (I − δH)kDt, and the fifth equality holds due to telescope sum. Specifically, for the bias
residual, we have Bt+1 = B ◦Bt, so

E[ηbias
N ⊗ ηbias

N ] = (1− α)2

·
N−1∑
t=0

(N−2−t∑
k=0

αN−2−t−k(I− δH)k
)
((B − B̃) ◦Bt)

(N−2−t∑
k=0

αN−2−t−k(I− δH)k
)

+

(
αNI+ (1− α)

N−1∑
k=0

αN−1−k(I− δH)k
)
B0

(
αNI+ (1− α)

N−1∑
k=0

αN−1−k(I− δH)k
)
.

For the variance residual, we have Ct+1 = B ◦Ct + δ2Σ and C0 = 0, so

E[ηvar
N ⊗ ηvar

N ] = (1− α)2

·
N−1∑
t=0

(N−2−t∑
k=0

αN−2−t−k(I− δH)k
)
((B − B̃) ◦Ct + δ2Σ)

(N−2−t∑
k=0

αN−2−t−k(I− δH)k
)
.
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