UNDERSTANDING EXPONENTIAL MOVING AVERAGE: A CASE STUDY IN LINEAR REGRESSION

Anonymous authors

000

001

002003004

006

008

009

010

011

012

013

014

015

016

017

018

019

021

022

025

026

027

028

029

031

033

034

037

040

041

042

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Exponential moving average (EMA) has recently gained significant popularity in training modern deep learning models, especially diffusion-based generative models. However, there have been few theoretical results explaining the effectiveness of EMA. In this paper, to better understand EMA, we establish the risk bound of online SGD with EMA for high-dimensional linear regression, one of the simplest overparameterized learning tasks that shares similarities with neural networks. Our results indicate that (i) the variance error of SGD with EMA is always smaller than that of SGD without averaging, and (ii) unlike SGD with iterate averaging from the beginning, the bias error of SGD with EMA decays exponentially in every eigen-subspace of the data covariance matrix. Additionally, we develop proof techniques applicable to the analysis of a broad class of averaging schemes.

1 Introduction

The exponential moving average (EMA, Polyak & Juditsky 1992; Ruppert 1988) in conjunction with stochastic optimization algorithms is being extensively used in training deep learning models. EMA is most popular in training generative models based on GAN (Yaz et al., 2018; Karras, 2019; Kang et al., 2023), and more recently in diffusion models (Song et al., 2020b; Dhariwal & Nichol, 2021; Nichol & Dhariwal, 2021; Song et al., 2020a; Balaji et al., 2022; Karras et al., 2022; Rombach et al., 2022; Karras et al., 2024), among other applications (Block et al., 2023; Busbridge et al., 2024). By maintaining an averaged set of model parameters, EMA displays the capability to stabilize training by suppressing the noise of stochastic gradients, and it has been shown empirically that the effect of EMA is similar to that of learning rate scheduling (Sandler et al., 2023). However, this phenomenon is less studied from a theoretical perspective. Notable exceptions include a recent work by Ahn & Cutkosky (2024), which studied Adam with EMA in nonconvex optimization. However, this work is restricted to the finite-dimensional setting, which departs from the practical training of overparameterized neural networks. Block et al. (2023) revealed the variance-reducing benefit of EMA, but the bias contraction of stochastic optimization algorithms with EMA remains unknown. Meanwhile, a recent line of works (Défossez & Bach, 2015; Dieuleveut et al., 2017; Jain et al., 2018b; Berthier et al., 2020; Zou et al., 2021; Wu et al., 2022) characterized the generalization properties of SGD in overparameterized linear regression with other averaging schemes (e.g., iterate averaging from the beginning and tail averaging). In particular, Zou et al. (2021) presented an instance-dependent and dimension-free excess risk bound for SGD with iterate averaging and tail averaging. Given these results, a characterization of the generalization properties of SGD with EMA and a comparison against SGD with other averaging schemes becomes an urgent subject of study, especially in the setting of high-dimensional linear regression.

In this paper, we tackle this open problem by studying SGD with EMA in the overparameterized linear regression setting, and comparing the results with SGD without averaging, along with iterate averaging and tail averaging in Zou et al. (2021). Our contributions are summarized as follows:

- We derive the first instance-dependent excess risk bound of the linear regression model trained with SGD with EMA. We also show that the analysis is tight by presenting a lower bound that almost matches the upper bound. The excess risk bound consists of the effective bias and the effective variance, both of them further decomposed into each eigen-subspace of the data covariance matrix. Thus, the excess risk bound is only related to the eigenvalue spectrum, and is irrelevant to the ambient model dimension, making the result applicable to the overparameterized regime.
- We compare the excess risk bound of SGD with EMA against SGD without averaging as well
 as other averaging schemes, e.g., iterate averaging from the beginning and tail averaging, which
 was studied in Zou et al. (2021), summarized in Table 1. We show that (i) the effective bias of
 SGD with EMA decays exponentially in the number of iterations, and (ii) the effective variance

Table 1: Comparison of SGD with EMA against SGD without averaging, SGD with iterate averaging from the beginning and with tail averaging. We fix the eigenvalue spectrum of the covariance matrix $\{\lambda_i\}$, the learning rate δ , and the number of iterations N. We assume that tail averaging is performed over the last N-s iterates, and α is the weight of the moving average in EMA. Compared with SGD without averaging which has the same exponentially decaying effective bias as EMA, SGD with EMA has a smaller variance error. SGD with either iterate averaging or tail averaging enjoys a smaller variance error than SGD without averaging, and the variance error and the effective dimension of SGD with tail averaging are identical to that of EMA when $(1-\alpha)(N-s)=1$. However, SGD with neither iterate averaging nor tail averaging achieves the effective bias decay rate that is exponential in N.

Averaging scheme	Effective bias decay rate	Variance error in subspace of λ_i	Eigenvalue at effective dim.
w/o averaging	Exponential in N	$\mathcal{O}(\min\{\delta\lambda_i, N\delta^2\lambda_i^2\})$	$1/(N\delta)$
Iterate averaging	Polynomial in N	$\mathcal{O}(\min\{1/N, N\delta^2\lambda_i^2\})$	$1/(N\delta)$
Tail averaging	Exponential in s	$\mathcal{O}(\min\{1/(N-s),\delta\lambda_i,N\delta^2\lambda_i^2\})$	$1/((N-s)\delta), 1/(N\delta)$
EMA	Exponential in N	$\mathcal{O}(\min\{1-\alpha,\delta\lambda_i,N\delta^2\lambda_i^2\})$	$(1-\alpha)/\delta, 1/(N\delta)$

of SGD with EMA is smaller than SGD without averaging, and is comparable to that of SGD with iterate averaging or tail averaging. Specifically, we observe a strong connection between EMA and tail averaging in terms of the effective variance: Suppose the tail averaging is performed over the last N-s iterates in a total of N iterations; if α , the averaging parameter of EMA, satisfies $(1-\alpha)(N-s)=1$, then the effective variance of SGD with EMA is identical to that of SGD with tail averaging. However, the exponential decay rate of the effective bias can be achieved by SGD with tail averaging only when setting $s=\Theta(N)$ with a known training horizon N. This indicates that SGD with EMA has an advantage over tail averaging in the setting of unknown training budget.

From a technical viewpoint, we identify a broad class of averaging schemes that covers all averaging methods discussed in this work. Using a standard bias-variance decomposition, we derive a crucial reformulation of the both the bias error and the variance error. Built on this reformulation, an analysis framework for all averaging schemes belonging to this class is developed in this work.

Notations. For a vector \mathbf{x} , we use $(\mathbf{x})_i$ to denote its i-th entry. We use \circ to denote the operation of linear operators on matrices. We use $\langle \mathbf{A}, \mathbf{B} \rangle \coloneqq \operatorname{tr}(\mathbf{A}\mathbf{B}^\top)$ to denote the inner product of matrices \mathbf{A} and \mathbf{B} . For a PSD matrix \mathbf{A} and a vector $\mathbf{x} \in \mathcal{H}$, define $\|\mathbf{x}\|_{\mathbf{A}} \coloneqq \sqrt{\mathbf{x}^\top \mathbf{A}\mathbf{x}}$. For any positive integer n, we use [n] to denote the set $\{1, 2, \dots, n\}$. We use standard asymptotic notations $\mathcal{O}(\cdot)$, $\Omega(\cdot)$, and $\Theta(\cdot)$. We write $a \simeq b$ if there exist c_1, c_2 such that $c_1 a \leq b \leq c_2 a$.

2 Related Work

Online SGD in high-dimensional linear regression. There is a line of works studying the excess risk bound of online SGD in the overparameterized setting using a bias-variance decomposition (Bach & Moulines, 2013; Dieuleveut & Bach, 2015; Défossez & Bach, 2015; Dieuleveut et al., 2017; Lakshminarayanan & Szepesvari, 2018; Jain et al., 2018b; Berthier et al., 2020; Zou et al., 2021; Wu et al., 2022; Lin et al., 2024). In particular, Zou et al. (2021) focused on constant-stepsize SGD with iterate averaging from the beginning or tail averaging, and derived the first instance-dependent excess risk bound of SGD in overparameterized linear regression. Wu et al. (2022) studied the last iterate risk bound of SGD with exponentially decaying stepsize, which is found to achieve a excess risk bound similar to SGD with iterate averaging. SGD with Nesterov momentum (Nesterov, 2013) and tail averaging has also been studied (Jain et al., 2018a; Varre & Flammarion, 2022; Li et al., 2023), with Li et al. (2023) obtaining an instance-dependent risk bound.

Understanding the effect of EMA. The favorable generalization properties of EMA in practice have been observed in several works (Tarvainen & Valpola, 2017; Izmailov et al., 2018). Through empirical experiments, Sandler et al. (2023) connected the stabilizing effect of averaging methods (e.g., EMA) with learning rate scheduling, which coincides with the finding of Wu et al. (2022). A similar theoretical result was given by Defazio (2020), but the EMA is performed on the momentum instead of the iterates.

3 PRELIMINARIES

3.1 LINEAR REGRESSION AND SGD WITH EMA

We consider the high-dimensional linear regression setting similar to Zou et al. (2021). Both the weight vectors and the data features lie within \mathbb{R}^d where the ambient dimension d can be arbitrarily large. The goal is to minimize the risk function

$$L(\mathbf{w}) := 1/2 \cdot \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}}[(y - \langle \mathbf{w}, \mathbf{x} \rangle)^2],$$

where \mathcal{D} is an underlying distribution of the data, $\mathbf{x} \in \mathbb{R}^d$ is the input feature vector, $y \in \mathbb{R}$ is the response, and $\mathbf{w} \in \mathcal{H}$ is the weight vector to be optimized.

We consider optimizing the objective using SGD with EMA. At iteration t, a random sample $(\mathbf{x}_t, y_t) \sim \mathcal{D}$ is observed, and the weight vector is updated as

$$\mathbf{w}_t = \mathbf{w}_{t-1} + \delta(y_t - \langle \mathbf{w}_{t-1}, \mathbf{x}_t \rangle) \mathbf{x}_t,$$

where $\delta > 0$ is a constant learning rate. Meanwhile, we maintain the EMA of the iterates by the following recursive formula:

$$\overline{\mathbf{w}}_0 = \mathbf{w}_0; \qquad \overline{\mathbf{w}}_t = \alpha \overline{\mathbf{w}}_{t-1} + (1 - \alpha) \mathbf{w}_{t-1},$$
 (3.1)

where $\alpha \in (0,1)$ is the averaging parameter. Let N be the number of iterations. The final output is the $\overline{\mathbf{w}}_N$, which can be decomposed into the weighted sum of \mathbf{w}_t :

$$\overline{\mathbf{w}}_N = \alpha^N \mathbf{w}_0 + (1 - \alpha) \sum_{t=0}^{N-1} \alpha^{N-1-t} \mathbf{w}_t.$$
 (3.2)

3.2 Assumptions

We now introduce the assumptions used in the analysis of SGD with EMA, following Zou et al. (2021); Wu et al. (2022); Li et al. (2023). The first assumption is a regularity condition that characterizes the second-order moment of the feature vector.

Assumption 3.1 (Second-order moment). We assume that the data covariance matrix $\mathbf{H} = \mathbb{E}[\mathbf{x}\mathbf{x}^{\top}]$ exists. Without loss of generality, we assume that $\mathbf{H} = \operatorname{diag}(\lambda_1, \lambda_2, \dots)$ is a diagonal matrix with eigenvalues listed in descending order. We further assume that $\operatorname{tr}(\mathbf{H}) = \sum_{i=1}^{\infty} \lambda_i$ is finite. We assume that $\mathbf{H} \succ \mathbf{0}$, i.e., $L(\mathbf{w})$ admits a unique minimum \mathbf{w}_* .

We then present the assumptions that characterize the fourth-order moment of the data:

Assumption 3.2 (Fourth moment condition, upper bound). We assume that the fourth moment operator $\mathcal{M} \circ \mathbf{A} = \mathbb{E}[\mathbf{x}\mathbf{x}^{\top}\mathbf{A}\mathbf{x}\mathbf{x}^{\top}]$ exists. Furthermore, there exists a scalar $\psi > 0$ such that for any PSD matrix \mathbf{A} , we have $\mathcal{M} \circ \mathbf{A} = \mathbb{E}[\mathbf{x}\mathbf{x}^{\top}\mathbf{A}\mathbf{x}\mathbf{x}^{\top}] \leq \psi \operatorname{tr}(\mathbf{H}\mathbf{A})\mathbf{H}$.

Assumption 3.3 (Fourth moment condition, lower bound). We assume that the fourth moment \mathcal{M} exists. Furthermore, there exists a scalar $\beta > 0$ such that for any PSD matrix \mathbf{A} , we have $\mathcal{M} \circ \mathbf{A} - \mathbf{H}\mathbf{A}\mathbf{H} \succeq \beta \operatorname{tr}(\mathbf{H}\mathbf{A})\mathbf{H}$.

A special case is that the marginal distribution $\mathcal{D}|_{\mathbf{x}}$ is a Gaussian distribution. In this case, the fourth moment operator satisfies $\mathcal{M} \circ \mathbf{A} = \mathbf{H}\mathbf{A}\mathbf{H} + 2\operatorname{tr}(\mathbf{H}\mathbf{A})\mathbf{H}$. Note that $\mathbf{H}\mathbf{A}\mathbf{H} \leq \operatorname{tr}(\mathbf{H}\mathbf{A})\mathbf{H}$, so we can set $\psi = 3$ in Assumption 3.2 and $\beta = 2$ in Assumption 3.3.

Finally, we present assumptions that characterize the label noise $\xi_t = y_t - \langle \mathbf{w}_*, \mathbf{x}_t \rangle$. The following assumption is a weaker condition used in the proof of the upper bound of the excess risk:

Assumption 3.4 (Weak label noise condition). The covariance matrix of the stochastic gradient at \mathbf{w}_* , i.e., $\mathbf{\Sigma} := \mathbb{E}[\xi^2 \mathbf{x} \mathbf{x}^\top]$ and the noise level $\sigma^2 := \|\mathbf{H}^{-\frac{1}{2}} \mathbf{\Sigma} \mathbf{H}^{-\frac{1}{2}}\|_2$ both exist and are finite.

By Assumption 3.4, we have $\Sigma \leq \sigma^2 \mathbf{H}$ because $\mathbf{0} \leq \mathbf{H}^{\frac{1}{2}}(\sigma^2 \mathbf{I} - \mathbf{H}^{-\frac{1}{2}} \Sigma \mathbf{H}^{-\frac{1}{2}}) \mathbf{H}^{\frac{1}{2}} = \sigma^2 \mathbf{H} - \Sigma$.

We then present the present the stronger assumption used in the proof of the lower bound, which is referred to as the well-specified setting in the literature (Zou et al., 2021):

Assumption 3.5 (Strong label noise condition). We assume that the label noise ξ is independent of \mathbf{x} , and $\mathbb{E}[\xi^2] = \sigma^2$. In other words, $\mathbf{\Sigma} = \sigma^2 \mathbf{H}$.

4 MAIN RESULTS

In this section, we present the upper and lower bounds of the excess risk, which is the difference between the risk function evaluated at the output weight vector $\overline{\mathbf{w}}_N$ and at the ground truth weight vector \mathbf{w}_* . Before we present the main results, we introduce the shorthand notation of sub-matrices: For any positive integers $k_1 \leq k_2$, we define $\mathbf{H}_{k_1:k_2} \coloneqq \mathrm{diag}(0,\ldots,0,\lambda_{k_1+1},\ldots,\lambda_{k_2},0,\ldots)$, and $\mathbf{H}_{k_2:\infty} \coloneqq \mathrm{diag}(0,\ldots,0,\lambda_{k_2+1},\lambda_{k_2+2},\ldots)$. We define $\mathbf{I}_{k_1:k_2}$ and $\mathbf{I}_{k_2:\infty}$ similarly.

4.1 UPPER AND LOWER BOUNDS OF EXCESS RISK

Theorem 4.1 (Upper bound). Suppose that Assumptions 3.1, 3.2 and 3.4 hold, and the hyperparameters satisfy $N(1-\alpha) \ge 1$ and $\delta < 1/(\psi \operatorname{tr}(\mathbf{H}))$. Then the excess risk satisfies

$$\mathbb{E}[L(\overline{\mathbf{w}}_N)] - L(\mathbf{w}_*) \leq \underline{\text{EffectiveBias}} + \underline{\text{EffectiveVar}},$$

where the effective bias satisfies

EffectiveBias =
$$\sum_{i=1}^{d} (\mathbf{w}_0 - \mathbf{w}_*)_i^2 \lambda_i \cdot b_i^2$$
, where $b_i := \frac{(\delta \lambda_i) \alpha^N - (1 - \alpha)(1 - \delta \lambda_i)^N}{\delta \lambda_i - (1 - \alpha)}$,

and the effective variance satisfies

$$\begin{split} \text{EffectiveVar} & \leq \left[k^* (1-\alpha)^2 + \delta^2 \sum_{i>k^*} \lambda_i^2 \right] \cdot \frac{\psi(\|\mathbf{w}_0 - \mathbf{w}_*\|_{\mathbf{I}_{0:k^\dagger}}^2 + N\delta \|\mathbf{w}_0 - \mathbf{w}_*\|_{\mathbf{H}_{k^\dagger:\infty}}^2)}{\delta (1-\psi \delta \operatorname{tr}(\mathbf{H}))} \\ & + \frac{\sigma^2}{1-\psi \delta \operatorname{tr}(\mathbf{H})} \Big[(1-\alpha)k^* + \delta \sum_{i=k^*+1}^{k^\dagger} \lambda_i + N\delta^2 \sum_{i>k^\dagger} \lambda_i^2 \Big], \end{split}$$

where the cutoffs are defined as $k^* \coloneqq \max\{i : \lambda_i \ge (1-\alpha)/\delta\}$ and $k^\dagger \coloneqq \max\{i : \lambda_i \ge 1/(N\delta)\}$.

The proof of Theorem 4.1 is given in Appendix C.1. Theorem 4.1 characterizes the first instance-dependent excess risk bound of SGD with EMA. The excess risk bound includes the effective bias and the effective variance, both decomposed into each eigen-subspace of \mathbf{H} . The effective bias corresponds to the convergence rate of the risk function if GD is applied instead of SGD. In the eigen-subspace corresponding to λ_i , the effective bias is $\lambda_i(\mathbf{w}_0 - \mathbf{w}_*)_i^2$, which is the initial bias error in the eigen-subspace of λ_i , multiplied by the square of the decay rate b_i , which will detailed in Subsection 4.3. The effective variance stems from the stochastic gradient, including the randomness of both \mathbf{x}_t and y_t . We will discuss key elements of the effective variance in Subsection 4.2. We also obtain the lower bound of the excess risk of SGD with EMA:

Theorem 4.2 (Lower bound). Suppose that Assumptions 3.1, 3.3 and 3.5 hold, and the hyperparameters satisfy $\delta \leq 1/\lambda_1$, $\alpha^{N-1} \leq 1/N$, and $N \geq 2$. The excess risk then satisfies

$$\mathbb{E}[L(\overline{\mathbf{w}}_N)] - L(\mathbf{w}_*) = (\text{EffectiveBias} + \text{EffectiveVar})/2,$$

where the effective bias is identical to that in Theorem 4.1, and the effective variance satisfies

Effective Var
$$\gtrsim (\beta \|\mathbf{w}_0 - \mathbf{w}_*\|_{\mathbf{H}_{k^{\dagger}:\infty}}^2 + \sigma^2) \cdot \left[(1 - \alpha)k^* + \delta \sum_{i=k^*+1}^{k^{\dagger}} \lambda_i + N\delta^2 \sum_{i>k^{\dagger}} \lambda_i^2 \right].$$

The lower bound is matching with the upper bound except for the first term of the effective variance, which will be discussed in Subsection 4.2. Although Theorem 4.2 requires a stronger condition about N and α , it is still a mild condition in practice because α^{N-1} , which is the weight of \mathbf{w}_0 in (3.2), should be smaller than the average weight 1/N.

4.2 DISCUSSION OF VARIANCE ERROR

Both the upper bound and the lower bound of the effective variance contain two terms: The second term stems from the label noise, which is referred to as the *(real) variance error*. The upper bound and the lower bound are matching for this term up to constant factors. The first term comes from the randomness of the feature vector, and is thus nonzero even if there is no label noise. The upper and lower bounds are not matching for this term due to the additional term $\|\mathbf{w}_0 - \mathbf{w}_*\|_{\mathbf{I}_{0:k^{\dagger}}}^2$ in the upper bound, which is similar to the case of SGD with tail averaging (Zou et al., 2021). We conjecture that finer analysis can bridge the gap.

Effective dimensions. The cutoffs k^* and k^\dagger are referred to as effective dimensions, which can be significantly smaller than the real model dimension d, especially when the eigenvalue spectrum decays fast. Similar quantities also appear in previous works analyzing high-dimensional linear regression (Zou et al., 2021; Wu et al., 2022; Li et al., 2023), and the double effective dimensions k^* and k^\dagger for SGD with EMA is very similar to that of SGD with tail averaging (Zou et al., 2021). We will draw more connections between SGD with EMA and SGD with tail averaging in Section 5. We then discuss the influence of hyperparameters δ , α , and N on the effective variance bound. The following equalities about the effective variance will be useful in our discussion:

$$k^*(1-\alpha)^2 + \delta^2 \sum_{i>k^*} \lambda_i^2 = \sum_{i=1}^d (\min\{1-\alpha, \delta\lambda_i\})^2;$$
 (4.1)

$$\|\mathbf{w}_{0} - \mathbf{w}_{*}\|_{\mathbf{I}_{0:k^{\dagger}}}^{2} + N\delta\|\mathbf{w}_{0} - \mathbf{w}_{*}\|_{\mathbf{H}_{k^{\dagger},\infty}}^{2} = \sum_{i=1}^{d} \lambda_{i}(\mathbf{w}_{0} - \mathbf{w}_{*})_{i}^{2} \min\{1, N\delta\lambda_{i}\};$$
(4.2)

$$(1 - \alpha)k^* + \delta \sum_{i=k^*+1}^{k^{\dagger}} \lambda_i + N\delta^2 \sum_{i>k^{\dagger}} \lambda_i^2 = \sum_{i=1}^d \min\{1 - \alpha, \delta\lambda_i, N\delta^2\lambda_i^2\}.$$
 (4.3)

Learning rate δ . In the upper bound of the excess risk (Theorem 4.1), we require that δ $1/(\psi \operatorname{tr}(\mathbf{H}))$ similar to Zou et al. (2021), to ensure that $(1-\psi\delta \operatorname{tr}(\mathbf{H}))^{-1}$ is positive. Larger learning rates may cause the effect of the fourth moment to accumulate and diverge.

Number of iterations N. Due to (4.2) and (4.3), the effective variance increases as N increases. Furthermore, as N goes to infinity, k^{\dagger} also goes to infinity, while k^* remains unchanged.

Averaging parameter α . Due to (4.1) and (4.3), the effective variance decreases as α increases. However, choosing α very close to 1 does not truly benefit the learning process because the reduced variance error stems partly from the large weight of \mathbf{w}_0 (which has no randomness) in (3.2). We will further elaborate this point in the next subsection.

4.3 DECAY RATE OF BIAS ERROR

216

217

218

219 220

221

222

223

224

225

226

227

228

229

230

231

232

233 234 235

236

237

238 239

240 241 242

243

244

245

246

247

248 249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264 265

266

267

268

269

We then study the quantity b_i in Theorems 4.1 and 4.2, which is the decay rate of the effective bias in the eigen-subspace of λ_i . We first note that

$$b_i = (1 - \delta \lambda_i)^N + (\delta \lambda_i) \sum_{t=0}^{N-1} \alpha^t (1 - \delta \lambda_i)^{N-1-t},$$

so the smaller α is, the faster b_i decays. Together with the analysis of the effective variance in Subsection 4.2, we conclude that there exists a bias-variance trade-off concerning the choice of α : Larger α brings about smaller effective variance, but makes the effective bias decay slower. The following proposition presents a finer characterization of the decay rate b_i :

Proposition 4.3. For any $i \in [d]$, the exponential decay rate b_i satisfies

- 1. When $(1 \delta \lambda_i)/\alpha \le (N 1)/N$, we have $b_i \simeq (\delta \lambda_i) \alpha^N/(\delta \lambda_i (1 \alpha))$; 2. When $(N 1)/N < (1 \delta \lambda_i)/\alpha \le 1$, we have $b_i \simeq (1 \alpha)N\alpha^{N-1}$; 3. When $1 < (1 \delta \lambda_i)/\alpha \le N/(N 1)$, we have $b_i \simeq \delta \lambda_i N(1 \delta \lambda_i)^{N-1}$;

- 4. When $(1 \delta \lambda_i)/\alpha > N/(N-1)$, we have $b_i = (1 \alpha)(1 \delta \lambda_i)^N/((1 \alpha) \delta \lambda_i)$.

Proposition 4.3 implies that (i) the effective bias decays exponentially in N within every eigensubspace of H; (ii) the decay rate of the effective bias has a phase transition at the eigen-subspace corresponding to λ_{k^*} : The decay rate is α^{2N} in the eigen-subspace of large eigenvalues, and is $(1-\delta\lambda_i)^{2N}$ in the eigen-subspace of small eigenvalues, and (iii) when $1-\delta\lambda_i$ is close to α , the decay rate of the effective bias contains additional factors polynomial in N.

COMPARING EMA WITH OTHER AVERAGING SCHEMES

In this section, we compare the excess risk of SGD with EMA against SGD without averaging and other averaging schemes, including iterate averaging from the beginning and tail averaging. Similar to EMA, the excess risk of all averaging schemes of interest can be decomposed into effective bias and effective variance (Zou et al., 2021). For each averaging scheme, we focus on its comparison with EMA in terms of effective variance (including the effective dimension) and the decay rate of the effective bias, i.e., b_i .

Comparison with SGD without averaging. SGD without averaging is equivalent to EMA with $\alpha = 0$. Specifically, the effective dimension k^* becomes 0, and the decay rate of the effective bias is $b_i^{\rm w/o}=(1-\delta\lambda_i)^{N-1}$. Based on the discussion about the impact of α on the excess risk bound in Subsections 4.2 and 4.3, we conclude that SGD with EMA has a smaller effective variance, but its effective bias decays slower than that of SGD without averaging.

Comparison with iterate averaging. Zou et al. (2021) studied SGD with iterate averaging, which is defined as $\overline{\mathbf{w}}_N^{\mathrm{IA}} \coloneqq N^{-1} \sum_{t=0}^{N-1} \mathbf{w}_t$. The variance error of SGD with iterate averaging is

$$\Theta \big(\sigma^2 \sum\nolimits_{i=1}^d \min\{1/N, N\delta^2 \lambda_i^2\} \big).$$

If N is not too large, i.e., $N\alpha^{N-1}=\Theta(1)$, the difference between 1/N and $1-\alpha$ is only $\operatorname{polylog}(N)$. In this case, SGD with EMA achieves a variance error similar to that of SGD with iterate averaging. Due to the gap between the upper and lower bounds of SGD with EMA, we leave the comparison of the remaining part of the effective variance for future work. The decay rate of effective bias of SGD with iterate averaging is $b_i^{\rm IA} = (1 - (1 - \delta \lambda_i)^N)/(N\delta \lambda_i) = \Theta(\min\{1/(N\delta \lambda_i), 1\}).$

Therefore, SGD with EMA enjoys the advantage of exponentially decaying effective variance compared with SGD with iterate averaging.

Comparison with tail averaging. Zou et al. (2021) also studied SGD with tail averaging, where averaging is only performed for the last N-s iterates, i.e., $\overline{\mathbf{w}}_{s:N}^{\mathrm{TA}} \coloneqq (N-s)^{-1} \sum_{t=s}^{N-1} \mathbf{w}_t$. Similar to the case in Subsection 4.1, the upper and lower bounds of the excess risk of SGD with tail averaging are not matching in Zou et al. (2021), so we focus on the comparison of the effective dimension and the real variance error in the effective variance. According to Zou et al. (2021), the effective dimensions of SGD with tail averaging are $k_{\mathrm{TA}}^* = \max\{i: \lambda_i \geq 1/(N-s)\delta\}$ and $k_{\mathrm{TA}}^{\dagger} = \max\{i: \lambda_i \geq 1/(N\delta)\}$. We thus observe that $k_{\mathrm{TA}}^{\dagger}$ is exactly the same as k^{\dagger} in SGD with EMA, and $k_{\mathrm{TA}}^* = k^*$ under the condition $(1-\alpha)(N-s)=1$. Furthermore, the real variance of SGD with tail averaging is

Variance =
$$\Theta\left(\sigma^2 \sum_{i=1}^d \min\left\{1/(N-s), \delta\lambda_i, N\delta^2\lambda_i^2\right\}\right)$$
,

which also matches that of SGD with EMA if $(1-\alpha)(N-s)=1$. For the decay rate of the effective bias, we have $b_i^{\mathrm{TA}}=((1-\delta\lambda_i)^s-(1-\delta\lambda_i)^N)/((N-s)\delta\lambda_i)$. We then compare b_i with b_i^{TA} under the condition $(1-\alpha)(N-s)=1$. When $\alpha\geq 1/2$ (which is a mild condition in practice), we have $\log\alpha\geq (\alpha-1)/2$, and $1/\sqrt{e}=e^{(\alpha-1)(N-s)/2}\leq e^{(N-s)\log\alpha}=\alpha^{N-s}$. We thus have

$$b_{i} = (1 - \alpha) \sum_{t=s}^{N-1} \alpha^{N-1-t} (1 - \delta \lambda_{i})^{t} + \alpha^{N-s} \frac{(\delta \lambda_{i}) \alpha^{s} - (1 - \alpha) (1 - \delta \lambda_{i})^{s}}{\delta \lambda_{i} - (1 - \alpha)}$$
$$\geq \frac{1 - \alpha}{\sqrt{e}} \sum_{t=s}^{N-1} (1 - \delta \lambda_{i})^{t} = \frac{(1 - \delta \lambda_{i})^{s} - (1 - \delta \lambda_{i})^{N}}{\sqrt{e}(N - s)\delta \lambda_{i}},$$

where the inequality holds due to a dropped positive term and $\alpha^{N-s} \geq 1/\sqrt{e}$. Therefore, the exponential decay rate of SGD with EMA b_i is $\Omega(b_i^{\mathrm{TA}})$. However, b_i is exponential in N while b_i^{TA} is exponential only in s, which means that SGD with EMA has the advantage that the effective bias in every eigen-subspace decays exponentially fast in N compared with polynomial decay in N for SGD with tail averaging if s is fixed before training.

6 EXTENSION TO MINI-BATCH SGD

We now extend our analysis of SGD with EMA to mini-batch SGD. Let B be the batch size, and $\{(\mathbf{x}_{t,i}, y_{t,i})\}_{i=1}^{B}$ be the mini-batch sampled from the distribution \mathcal{D} at iteration t. An iterate of mini-batch SGD is

$$\mathbf{w}_{t}^{\text{MB}} = \mathbf{w}_{t-1}^{\text{MB}} + \delta/B \cdot \sum_{i-1}^{B} (y_{i,t} - \langle \mathbf{w}_{t-1}^{\text{MB}}, \mathbf{x}_{t,i} \rangle) \mathbf{x}_{t,i}.$$

We then consider the excess risk of the exponential moving average of the mini-batch SGD iterates, defined as

$$\overline{\mathbf{w}}_N^{\mathrm{MB}} = \alpha^N \mathbf{w}_0^{\mathrm{MB}} + (1 - \alpha) \sum\nolimits_{t = 0}^{N - 1} {{\alpha ^{N - 1 - t}}\mathbf{w}_t^{\mathrm{MB}}}.$$

Theorem 6.1. Suppose that Assumptions 3.1, 3.2, and 3.4 hold, and the learning rate satisfies $\delta < \min\{B/(2\psi\operatorname{tr}(\mathbf{H})),1/\|\mathbf{H}\|_2\}$. Then the excess risk of mini-batch SGD satisfies

$$\mathbb{E}[L(\overline{\mathbf{w}}_N)] - L(\mathbf{w}_*) \le \text{EffectiveBias} + \text{EffectiveVar},$$

where the effective bias is identical to that in Theorem 4.1, and the excess variance satisfies

$$\begin{split} & \underline{\text{EffectiveVar}} \leq 2\sigma^2/B \cdot \left[(1-\alpha)k^* + \delta \sum\nolimits_{i=k^*+1}^{k^\dagger} \lambda_i + N\delta^2 \sum\nolimits_{i>k^\dagger} \lambda_i^2 \right] \\ & + 2\psi/(\delta B) \cdot \left(k^*(1-\alpha)^2 + \delta^2 \sum\nolimits_{i>k^*} \lambda_i^2 \right) \cdot \left(2\psi(\|\mathbf{w}_0 - \mathbf{w}_*\|_{\mathbf{I}_{0:k^\dagger}}^2 + N\delta\|\mathbf{w}_0 - \mathbf{w}_*\|_{\mathbf{H}_{k^\dagger:\infty}}^2 \right) \right). \end{split}$$

A lower bound corresponding to Theorem 6.1 can be proved similar to Theorem 4.2.

Based on Theorem 6.1, we aim to derive the critical batch size (Zhang et al., 2024), which is the batch size that causes a phase transition on the excess risk bound. Since the effective variance decays exponentially in N, we present the following corollary for only the effective variance:

Corollary 6.2. Suppose the eigenvalue spectrum satisfies $\lambda_i = i^{-a}$, and the initialization satisfies $\lambda_i(\mathbf{w}_0 - \mathbf{w}_*)_i^2 = i^{-b}$ where b < a+1. Let M be the number of examples. Then under the same assumptions as Theorem 6.1, we have

Effective Var =
$$\Theta(B^{-1}\delta^{1/a}(1-\alpha)^{1-1/a}) + \Theta(B^{-1}\delta^{(2-b)/a}(1-\alpha)^{2-1/a}N^{1-(b-1)/a}).$$

The assumption of the eigenvalue spectrum and the initialization is referred to as the source condition (Caponnetto & De Vito, 2007; Zhang et al., 2024). The assumption of b < a+1 ensures that upper bound and the lower bounds are matching. If we further let N = M/B where M is the total number of samples, then the critical batch size is $B^* = \mathcal{O}(M\delta^{\frac{1-b}{a-b+1}}(1-\alpha)^{\frac{a}{a-b+1}})$. We observe that the critical batch size of SGD with EMA is sharply different from SGD with iterate averaging in Zhang et al. (2024). This is because the critical batch size is determined by both the effective bias and the effective variance for SGD with iterate averaging due to the effective bias that decays only polynomially in N. However, the effective bias of SGD with EMA decays exponentially in N, making it negligible in the analysis of the critical batch size.

7 OVERVIEW OF PROOF TECHNIQUES

In this section, we present the proof technique that is not only used in our analysis of EMA, but also applicable to a class of averaging schemes.

We first introduce the class of averaging schemes that covers EMA and iterate averaging, among others. In (3.1), instead of using a uniform α in all iterates, we allow the averaging parameter to depend on t, i.e.,

$$\overline{\mathbf{w}}_0 = \mathbf{w}_0; \qquad \overline{\mathbf{w}}_t = \alpha_{t-1} \overline{\mathbf{w}}_{t-1} + (1 - \alpha_{t-1}) \mathbf{w}_{t-1}.$$

where $\alpha_t \in [0,1]$ is the time-dependent averaging parameter. The final output can be written as

$$\overline{\mathbf{w}}_N = \beta_0 \mathbf{w}_0 + \sum\nolimits_{t=0}^{N-1} (\beta_{t+1} - \beta_t) \mathbf{w}_t,$$

where β_t is defined as $\beta_t = \prod_{k=t}^{N-1} \alpha_t$. Most averaging schemes belong to this class, e.g.,

- EMA: $\alpha_t = \alpha$, and $\beta_t = \alpha^{N-t}$.
- SGD without averaging: $\alpha_t = 0$, $\beta_N = 1$, and $\beta_t = 0$ for all $t = 0, \dots, N-1$.
- Iterate averaging: $\alpha_t = t/(t+1)$, and $\beta_t = t/N$.
- Tail averaging:

$$\alpha_t = \begin{cases} 0 & t < s, \\ \frac{t-s}{t-s+1} & t \ge s; \end{cases}, \qquad \beta_t = \begin{cases} 0 & t < s, \\ \frac{t-s}{N-s} & t \ge s. \end{cases}$$

We now define several notations following Zou et al. (2021). We first define the centered SGD iterate as $\eta_t = \mathbf{w}_t - \mathbf{w}_*$, and the EMA of the centered SGD iterates is $\overline{\eta}_N = \overline{\mathbf{w}}_N - \mathbf{w}_*$. We define the centered bias and variance vectors recursively as

$$\begin{split} \boldsymbol{\eta}_0^{\text{bias}} &= \boldsymbol{\eta}_0, \quad \boldsymbol{\eta}_t^{\text{bias}} = (\mathbf{I} - \delta \mathbf{x}_t \mathbf{x}_t^\top) \boldsymbol{\eta}_{t-1}^{\text{bias}}; \\ \boldsymbol{\eta}_0^{\text{var}} &= \mathbf{0}, \quad \boldsymbol{\eta}_t^{\text{var}} = (\mathbf{I} - \delta \mathbf{x}_t \mathbf{x}_t^\top) \boldsymbol{\eta}_{t-1}^{\text{var}} + \delta \xi_t \mathbf{x}_t. \end{split}$$

We can define the EMA of the centered vectors $\overline{\eta}_N$, $\overline{\eta}_N^{\rm bias}$, and $\overline{\eta}_N^{\rm var}$ similar to the definition of $\overline{\mathbf{w}}_N$ in (3.2). Following previous works (Défossez & Bach, 2015; Dieuleveut et al., 2017; Jain et al., 2018b; Berthier et al., 2020; Zou et al., 2021; Wu et al., 2022; Lin et al., 2024; Li et al., 2023), under Assumption 3.4, the excess risk can be decomposed as (See Lemma C.1 for details) $\mathbb{E}[L(\overline{\mathbf{w}}_N)] - L(\mathbf{w}_*) \leq \mathrm{bias} + \mathrm{var}$, where the bias and variance errors are defined as

bias =
$$\langle \mathbf{H}, \mathbb{E}[\overline{\boldsymbol{\eta}}_N^{\text{bias}} \otimes \overline{\boldsymbol{\eta}}_N^{\text{bias}}] \rangle$$
, var = $\langle \mathbf{H}, \mathbb{E}[\overline{\boldsymbol{\eta}}_N^{\text{var}} \otimes \overline{\boldsymbol{\eta}}_N^{\text{var}}] \rangle$. (7.1)

Since $\overline{\eta}_N^{\mathrm{bias}}$ and $\overline{\eta}_N^{\mathrm{var}}$ are the weighted sums of η_t^{bias} and η_t^{var} , respectively, in order to bound bias and var which depends on the covariance matrix of $\overline{\eta}_N^{\mathrm{bias}}$ and $\overline{\eta}_N^{\mathrm{var}}$, it suffices to (i) study terms of the form $\mathbb{E}[\eta_t^{\mathrm{bias}} \otimes \eta_k^{\mathrm{bias}}]$ and $\mathbb{E}[\eta_t^{\mathrm{var}} \otimes \eta_k^{\mathrm{var}}]$, and (ii) represent the bias and variance errors in a tractable form. For Step (i), following Zou et al. (2021), we define the covariance matrices as $\mathbf{B}_t = \mathbb{E}[\eta_t^{\mathrm{bias}} \otimes \eta_t^{\mathrm{bias}}]$ and $\mathbf{C}_t = \mathbb{E}[\eta_t^{\mathrm{var}} \otimes \eta_t^{\mathrm{var}}]$. With these definitions, for $k \geq t$, we have $\mathbb{E}[\eta_t^{\mathrm{bias}} \otimes \eta_k^{\mathrm{bias}}] = \mathbf{B}_t(\mathbf{I} - \delta \mathbf{H})^{k-t}$ and $\mathbb{E}[\eta_t^{\mathrm{var}} \otimes \eta_k^{\mathrm{var}}] = \mathbf{C}_t(\mathbf{I} - \delta \mathbf{H})^{k-t}$. We are now ready to represent $\mathbb{E}[\overline{\eta}_D^{\mathrm{bias}} \otimes \overline{\eta}_D^{\mathrm{bias}}]$ using \mathbf{B}_t :

$$\mathbb{E}[\overline{\boldsymbol{\eta}}_{N}^{\text{bias}} \otimes \overline{\boldsymbol{\eta}}_{N}^{\text{bias}}] = \beta_{0}^{2} \mathbf{B}_{0} + \sum_{t=0}^{N-1} \beta_{0} (\beta_{t} - \beta_{t+1}) [(\mathbf{I} - \delta \mathbf{H})^{t} \mathbf{B}_{0} + \mathbf{B}_{0} (\mathbf{I} - \delta \mathbf{H})^{t}]$$

$$+\sum_{t=0}^{N-1}(\beta_{t}-\beta_{t+1})\left[(\beta_{t}-\beta_{t+1})\mathbf{B}_{t}+\sum_{k=t+1}^{N-1}(\beta_{k}-\beta_{k+1})[(\mathbf{I}-\delta\mathbf{H})^{k-t}\mathbf{B}_{t}+\mathbf{B}_{t}(\mathbf{I}-\delta\mathbf{H})^{k-t}]\right].$$
(7.2)

For Step (ii), the analysis in Zou et al. (2021); Wu et al. (2022) that adds the terms \mathbf{B}_t and transforms (7.2) into a "triangular" sum does not work due to the *inhomogeneous* $\beta_t - \beta_{t+1}$. To tackle this issue, we make the critical observation that

$$(\beta_{t} - \beta_{t+1}) \left[(\beta_{t} - \beta_{t+1}) \mathbf{B}_{t} + \sum_{k=t+1}^{N-1} (\beta_{k} - \beta_{k+1}) [(\mathbf{I} - \delta \mathbf{H})^{k-t} \mathbf{B}_{t} + \mathbf{B}_{t} (\mathbf{I} - \delta \mathbf{H})^{k-t}] \right]$$

$$= \left[\sum_{k=t}^{N-1} (\beta_{k} - \beta_{k+1}) (\mathbf{I} - \delta \mathbf{H})^{k-t} \right] \cdot \mathbf{B}_{t} \cdot \left[\sum_{k=t}^{N-1} (\beta_{k} - \beta_{k+1}) (\mathbf{I} - \delta \mathbf{H})^{k-t} \right]$$

$$- \left[\sum_{k=t+1}^{N-1} (\beta_{k} - \beta_{k+1}) (\mathbf{I} - \delta \mathbf{H})^{k-t-1} \right] \cdot (\widetilde{\beta} \circ \mathbf{B}_{t}) \cdot \left[\sum_{k=t+1}^{N-1} (\beta_{k} - \beta_{k+1}) (\mathbf{I} - \delta \mathbf{H})^{k-t-1} \right],$$

where the matrix operator $\widetilde{\mathcal{B}}$ is defined as $\widetilde{\mathcal{B}} = (\mathbf{I} - \delta \mathbf{H}) \otimes (\mathbf{I} - \delta \mathbf{H})$. Similar properties were first used in Li et al. (2023) to study the generalization of SGD with Nesterov momentum. Using this property, by applying the telescope sum, (7.2) can be reformulated as

$$\mathbb{E}[\overline{\boldsymbol{\eta}}_{N}^{\text{bias}} \otimes \overline{\boldsymbol{\eta}}_{N}^{\text{bias}}] = \left[\beta_{0}\mathbf{I} + \sum_{k=0}^{N-1} (\beta_{k} - \beta_{k+1})(\mathbf{I} - \delta \mathbf{H})^{k}\right] \mathbf{B}_{0} \left[\beta_{0}\mathbf{I} + \sum_{k=0}^{N-1} (\beta_{k} - \beta_{k+1})(\mathbf{I} - \delta \mathbf{H})^{k}\right] + \sum_{t=1}^{N-1} \left[\sum_{k=t}^{N-1} (\beta_{k} - \beta_{k+1})(\mathbf{I} - \delta \mathbf{H})^{k-t}\right] (\mathbf{B}_{t} - \widetilde{\boldsymbol{\beta}} \circ \mathbf{B}_{t-1}) \left[\sum_{k=t}^{N-1} (\beta_{k} - \beta_{k+1})(\mathbf{I} - \delta \mathbf{H})^{k-t}\right],$$
(7.3)

where the first term corresponds to the effective bias, and the second term contributes to the effective variance. A similar reformulation can also be applied to the variance error. Further simplifications are possible due to the fact that $C_0 = 0$, so the variance term corresponding to the first term in (7.3) is 0. Afterwards, B_t and C_t can be further characterized by the analysis similar to Zou et al. (2021).

8 EXPERIMENTS

In this section, we verify our theoretical findings with empirical experiments. We present the experiments in the linear regression setting, and experiments on the single-neuron ReLU network (Wu et al., 2023) in Appendix A. We (i) compare the generalization performance of SGD with different schemes, and (ii) explore the impact of the choice of the averaging parameter α on the excess risk of SGD with EMA. We consider the well specified setting (Assumption 3.5) with $\sigma^2=1$. The data feature vectors follow the Gaussian distribution $\mathbf{x}_t \sim \mathcal{N}(\mathbf{0},\mathbf{H})$ where the eigenvalue spectrum of \mathbf{H} is $\lambda_i=i^{-2}$ with d=2000, which is also the experiment setting in Zou et al. (2021); Wu et al. (2022); Li et al. (2023). The centered model weight vector is initialized as a Gaussian random vector $\mathbf{w}_0-\mathbf{w}_*\sim \mathcal{N}(\mathbf{0},\mathbf{I})$. According to Theorem 4.1, the learning rate δ should satisfy $\delta<1/(\psi\operatorname{tr}(\mathbf{H}))=2/\pi^2\approx0.203$, so we choose $\delta=0.2$. The total number of iterations is fixed as N=3000. In all experiments, we record both the bias error and the variance error as defined in (7.1). We run each experiment 100 times and plot the confidence band¹. The experiments are runnable on a PC within minutes.

Comparison of different averaging schemes. In the comparison of EMA with other averaging schemes, the averaging parameter of EMA is $\alpha=0.995$, and $s\in\{100,200,500,1000\}$ in tail averaging. The comparisons of the bias error and the variance error are shown in Figures 1(a) and 1(b), respectively. Although the bias error of SGD with EMA decays slowly at the beginning, it achieves a fast decay rate similar to that of SGD without averaging. However, the bias error of SGD with EMA is far more stable than without averaging, due to the reduced variance of the data feature. The variance error of SGD with EMA remains at a low level though slightly larger than SGD with iterate averaging or tail averaging (because $(1-\alpha)(N-s)\gg 1$). We also conclude that averaging

¹For the variance error, we only show the confidence band for iterate averaging, tail averaging with s=100, and EMA for variance error, for clarity.

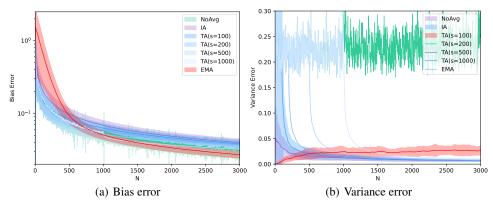


Figure 1: Comparison of SGD with different averaging schemes. The bias error of SGD with EMA is more stable than SGD without averaging, and decays faster than iterate averaging and tail averaging when *N* is large. The variance error of SGD with EMA remains relatively small, and is comparable to that of SGD with iterate averaging or tail averaging.

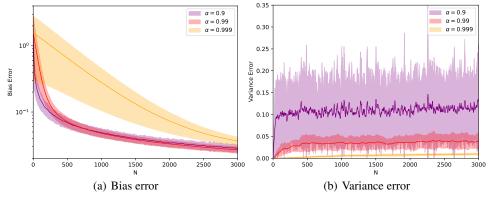


Figure 2: Comparison of SGD with EMA with different α . The bias error of SGD with EMA with smaller alpha decays faster at the beginning of training, but the advantage is less significant when N is large. The variance error of SGD with EMA decreases as α increases.

in general is crucial in variance reduction due to the observation that the variance error of SGD with tail averaging decays sharply when averaging starts.

Comparison of SGD with EMA with different α . We compare SGD with EMA with $\alpha=0.9$, 0.99 and 0.999, and the experiments results are the average of 10 independent runs. The variance error (Figure 2(a)) of SGD with EMA with larger α is significantly smaller than that with smaller α , and the bias error (Figure 2(b)) is also more stable. The bias error of SGD with EMA when $\alpha=0.9$ or 0.99 decays much faster than when $\alpha=0.999$, but they all approach a similar level when N=3000. We conjecture that this is because the decay rate of the bias error is dominated by the slowest decaying component, which is the bias error in the eigen-subspaces of the smallest eigenvalues. As we have pointed out in Proposition 4.3, the exponential decay rate of the bias error in such eigen-subspaces is independent of α .

9 CONCLUSION

In this work, we study the generalization of SGD with EMA in the high-dimensional linear regression setting. Our excess risk bound of SGD with EMA depends solely on the eigenvalue spectrum, which is instance-dependent and dimension-free. Similar results can also be derived for mini-batch SGD. In a comparison with SGD with other averaging schemes, we reveal the two-fold advantage of SGD with EMA: the exponentially decaying effective bias error and the modest effective variance error. Our analysis provides the framework for the study of a class of averaging schemes we proposed.

REPRODUCIBILITY STATEMENT

In the numerical experiments, we have described the details of the model, generation of synthetic data, and evaluation metrics in Section 8. The proof of theoretical results are given in Appendix C, and the proof of supporting lemmas are given in subsequent sections.

REFERENCES

- Kwangjun Ahn and Ashok Cutkosky. Adam with model exponential moving average is effective for nonconvex optimization. *arXiv preprint arXiv:2405.18199*, 2024.
- Francis Bach and Eric Moulines. Non-strongly-convex smooth stochastic approximation with convergence rate o (1/n). *Advances in neural information processing systems*, 26, 2013.
- Yogesh Balaji, Seungjun Nah, Xun Huang, A Vahdat, J Song, K Kreis, and MY Liu. Ediffi: Text-to-image diffusion models with an ensemble of expert denoisers. arxiv 2022. arXiv preprint arXiv:2211.01324, 2022.
- Raphaël Berthier, Francis Bach, and Pierre Gaillard. Tight nonparametric convergence rates for stochastic gradient descent under the noiseless linear model. *Advances in Neural Information Processing Systems*, 33:2576–2586, 2020.
- Adam Block, Dylan J Foster, Akshay Krishnamurthy, Max Simchowitz, and Cyril Zhang. Butterfly effects of sgd noise: Error amplification in behavior cloning and autoregression. *arXiv* preprint *arXiv*:2310.11428, 2023.
- Dan Busbridge, Jason Ramapuram, Pierre Ablin, Tatiana Likhomanenko, Eeshan Gunesh Dhekane, Xavier Suau Cuadros, and Russell Webb. How to scale your ema. *Advances in Neural Information Processing Systems*, 36, 2024.
- Andrea Caponnetto and Ernesto De Vito. Optimal rates for the regularized least-squares algorithm. *Foundations of Computational Mathematics*, 7:331–368, 2007.
- Aaron Defazio. Momentum via primal averaging: Theoretical insights and learning rate schedules for non-convex optimization. *arXiv preprint arXiv:2010.00406*, 2020.
- Alexandre Défossez and Francis Bach. Averaged least-mean-squares: Bias-variance trade-offs and optimal sampling distributions. In *Artificial Intelligence and Statistics*, pp. 205–213. PMLR, 2015.
- Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances in neural information processing systems*, 34:8780–8794, 2021.
- Aymeric Dieuleveut and Francis Bach. Non-parametric stochastic approximation with large step sizes. *The Annals of Statistics*, 44(4), 2015.
- Aymeric Dieuleveut, Nicolas Flammarion, and Francis Bach. Harder, better, faster, stronger convergence rates for least-squares regression. *J. Mach. Learn. Res.*, 18(1):3520–3570, January 2017. ISSN 1532-4435.
- Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson. Averaging weights leads to wider optima and better generalization. *arXiv preprint arXiv:1803.05407*, 2018.
- Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Accelerating stochastic gradient descent for least squares regression. In *Conference On Learning Theory*, pp. 545–604. PMLR, 2018a.
- Prateek Jain, Sham M Kakade, Rahul Kidambi, Praneeth Netrapalli, and Aaron Sidford. Parallelizing stochastic gradient descent for least squares regression: mini-batching, averaging, and model misspecification. *Journal of machine learning research*, 18(223):1–42, 2018b.
- Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, and Taesung Park. Scaling up gans for text-to-image synthesis. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 10124–10134, 2023.

- Tero Karras. A style-based generator architecture for generative adversarial networks. *arXiv* preprint *arXiv*:1812.04948, 2019.
- Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based generative models. *Advances in neural information processing systems*, 35:26565–26577, 2022.
 - Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyzing and improving the training dynamics of diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 24174–24184, 2024.
 - Chandrashekar Lakshminarayanan and Csaba Szepesvari. Linear stochastic approximation: How far does constant step-size and iterate averaging go? In *International conference on artificial intelligence and statistics*, pp. 1347–1355. PMLR, 2018.
 - Xuheng Li, Yihe Deng, Jingfeng Wu, Dongruo Zhou, and Quanquan Gu. Risk bounds of accelerated sgd for overparameterized linear regression. *arXiv* preprint arXiv:2311.14222, 2023.
 - Licong Lin, Jingfeng Wu, Sham M Kakade, Peter L Bartlett, and Jason D Lee. Scaling laws in linear regression: Compute, parameters, and data. *arXiv preprint arXiv:2406.08466*, 2024.
 - Yurii Nesterov. *Introductory lectures on convex optimization: A basic course*, volume 87. Springer Science & Business Media, 2013.
 - Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. In *International conference on machine learning*, pp. 8162–8171. PMLR, 2021.
 - Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging. *SIAM journal on control and optimization*, 30(4):838–855, 1992.
 - Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10684–10695, 2022.
 - David Ruppert. Efficient estimations from a slowly convergent robbins-monro process. Technical report, Cornell University Operations Research and Industrial Engineering, 1988.
 - Mark Sandler, Andrey Zhmoginov, Max Vladymyrov, and Nolan Miller. Training trajectories, minibatch losses and the curious role of the learning rate. *arXiv* preprint arXiv:2301.02312, 2023.
 - Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv* preprint arXiv:2010.02502, 2020a.
 - Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. *arXiv* preprint *arXiv*:2011.13456, 2020b.
 - Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. *Advances in neural information processing systems*, 30, 2017.
 - Aditya Varre and Nicolas Flammarion. Accelerated sgd for non-strongly-convex least squares. In *Conference on Learning Theory*, pp. 2062–2126. PMLR, 2022.
 - Jingfeng Wu, Difan Zou, Vladimir Braverman, Quanquan Gu, and Sham Kakade. Last iterate risk bounds of sgd with decaying stepsize for overparameterized linear regression. In *International Conference on Machine Learning*, pp. 24280–24314. PMLR, 2022.
 - Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, and Sham M Kakade. Finite-sample analysis of learning high-dimensional single relu neuron. In *International Conference on Machine Learning*, pp. 37919–37951. PMLR, 2023.
 - Yasin Yaz, Chuan-Sheng Foo, Stefan Winkler, Kim-Hui Yap, Georgios Piliouras, Vijay Chandrasekhar, et al. The unusual effectiveness of averaging in gan training. In *International Conference on Learning Representations*, 2018.

Hanlin Zhang, Depen Morwani, Nikhil Vyas, Jingfeng Wu, Difan Zou, Udaya Ghai, Dean Foster, and Sham Kakade. How does critical batch size scale in pre-training? *arXiv preprint arXiv:2410.21676*, 2024.

Difan Zou, Jingfeng Wu, Vladimir Braverman, Quanquan Gu, and Sham M Kakade. Benign over-fitting of constant-stepsize sgd for linear regression. *The 34th Annual Conference on Learning Theory*, 2021.

A ADDITIONAL EXPERIMENTS

 In this section, we present additional experiments on the single-neuron ReLU network. The results are similar to the linear regression model.

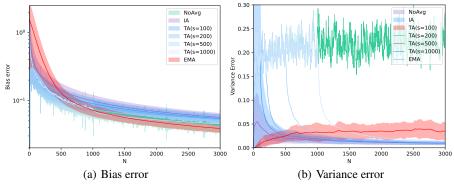


Figure 3: Comparison of SGD with different averaging schemes for the single-neuron ReLU network.

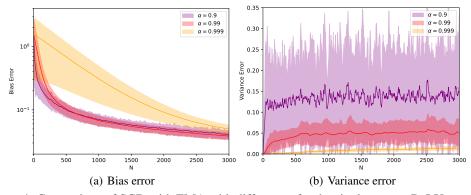


Figure 4: Comparison of SGD with EMA with different α for the single-neuron ReLU network.

B ADDITIONAL NOTATIONS

Linear Operators on Matrices. We define the following linear operators on matrix following Zou et al. (2021):

$$\mathcal{I} = \mathbf{I} \otimes \mathbf{I}, \qquad \mathcal{M} = \mathbb{E}[\mathbf{x} \otimes \mathbf{x} \otimes \mathbf{x} \otimes \mathbf{x}], \qquad \widetilde{\mathcal{M}} = \mathbf{H} \otimes \mathbf{H},$$
$$\mathcal{B} = \mathbb{E}[(\mathbf{I} - \delta \mathbf{x} \mathbf{x}^{\top}) \otimes (\mathbf{I} - \delta \mathbf{x} \mathbf{x}^{\top})], \qquad \widetilde{\mathcal{B}} = (\mathbf{I} - \delta \mathbf{H}) \otimes (\mathbf{I} - \delta \mathbf{H})$$

Denote the σ -algebra generated by samples $\{(\mathbf{x}_k, y_k)\}_{k=1}^t$ as \mathcal{F}_t . Due to the optimality of \mathbf{w}_* , we have $\nabla L(\mathbf{w}_*) = \mathbf{0}$, which implies that

$$\mathbf{0} = \nabla L(\mathbf{w}_*) = \mathbb{E}[\mathbf{x}(\mathbf{x}^\top \mathbf{w}_* - y)] = \mathbf{H}\mathbf{w}_* - \mathbb{E}[\mathbf{x} \cdot y]. \tag{B.1}$$

Due to the equality above, we have

$$\mathbb{E}[\boldsymbol{\eta}_t^{\text{bias}}|\mathcal{F}_{t-1}] = (\mathbf{I} - \delta \mathbf{H})\boldsymbol{\eta}_{t-1}^{\text{bias}}, \qquad \mathbb{E}[\boldsymbol{\eta}_t^{\text{var}}|\mathcal{F}_{t-1}] = (\mathbf{I} - \delta \mathbf{H})\boldsymbol{\eta}_{t-1}^{\text{var}}$$

Iterating this property, using the double expectation formula, we have for any $k \leq t$, we have

$$\mathbb{E}[\boldsymbol{\eta}_t^{\text{bias}}|\mathcal{F}_k] = (\mathbf{I} - \delta \mathbf{H})^{t-k} \boldsymbol{\eta}_k^{\text{bias}}, \qquad \mathbb{E}[\boldsymbol{\eta}_t^{\text{var}}|\mathcal{F}_k] = (\mathbf{I} - \delta \mathbf{H})^{t-k} \boldsymbol{\eta}_k^{\text{var}}, \tag{B.2}$$

which indicates that $\mathbb{E}[\eta_t^{\text{var}}] = \mathbf{0}$. We also have

$$\mathbf{B}_{t} = \mathbb{E}[\mathbb{E}[\boldsymbol{\eta}_{t}^{\text{bias}} \otimes \boldsymbol{\eta}_{t}^{\text{bias}} | \mathcal{F}_{t-1}]]$$

$$= \mathbb{E}[\mathbb{E}[((\mathbf{I} - \delta \mathbf{x}_{t} \mathbf{x}_{t}^{\top}) \otimes (\mathbf{I} - \delta \mathbf{x}_{t} \mathbf{x}_{t}^{\top})) \cdot (\boldsymbol{\eta}_{t-1}^{\text{bias}} \otimes \boldsymbol{\eta}_{t-1}^{\text{bias}}) | \mathcal{F}_{t-1}]]$$

$$= \mathbb{E}[\boldsymbol{\mathcal{B}} \circ (\boldsymbol{\eta}_{t-1}^{\text{bias}} \otimes \boldsymbol{\eta}_{t-1}^{\text{bias}})]$$

$$= \boldsymbol{\mathcal{B}} \circ \mathbf{B}_{t-1}, \tag{B.3}$$

and

$$\mathbf{C}_{t} = \mathbb{E}[\mathbb{E}[\boldsymbol{\eta}_{t}^{\text{var}} \otimes \boldsymbol{\eta}_{t}^{\text{var}} | \mathcal{F}_{t-1}]]
= \mathbb{E}\Big[\mathbb{E}[((\mathbf{I} - \delta \mathbf{x}_{t} \mathbf{x}_{t}^{\top}) \otimes (\mathbf{I} - \delta \mathbf{x}_{t} \mathbf{x}_{t}^{\top})) \cdot (\boldsymbol{\eta}_{t-1}^{\text{var}} \otimes \boldsymbol{\eta}_{t-1}^{\text{var}}) + \delta^{2} \xi_{t}^{2} \mathbf{x}_{t} \mathbf{x}_{t}^{\top}
- \delta \xi_{t} \mathbf{x}_{t} (\boldsymbol{\eta}_{t-1}^{\text{var}})^{\top} (\mathbf{I} - \delta \mathbf{x}_{t} \mathbf{x}_{t}^{\top}) - \delta \xi_{t} (\mathbf{I} - \delta \mathbf{x}_{t} \mathbf{x}_{t}^{\top}) \boldsymbol{\eta}_{t-1}^{\text{var}} \mathbf{x}_{t}^{\top} | \mathcal{F}_{t-1}]\Big]
= \mathcal{B} \circ \mathbf{C}_{t-1} + \delta^{2} \mathbf{\Sigma},$$
(B.4)

where the last equality holds because (\mathbf{x}_t, y_t) is independent from $\boldsymbol{\eta}_{t-1}^{\text{var}}$ and $\mathbb{E}[\boldsymbol{\eta}_{t-1}^{\text{var}}] = \mathbf{0}$. Several other key properties of the centered iterates and the linear operators are given in Appendix G.

C PROOF OF MAIN RESULTS

C.1 PROOF OF THEOREM 4.1

To prove Theorem 4.1, we first decompose the excess risk into the bias error and the variance error (Lemma C.1), and then bound them separately (Lemma C.2 and Lemma C.3).

Lemma C.1. The excess risk can be decomposed as

$$\mathbb{E}[L(\overline{\mathbf{w}}_N)] - L(\mathbf{w}_*) \le \text{bias} + \text{var},$$

where

$$\text{bias} = \langle \mathbf{H}, \mathbb{E}[\overline{\boldsymbol{\eta}}_N^{\text{bias}} \otimes \overline{\boldsymbol{\eta}}_N^{\text{bias}}] \rangle, \qquad \text{var} = \langle \mathbf{H}, \mathbb{E}[\overline{\boldsymbol{\eta}}_N^{\text{var}} \otimes \overline{\boldsymbol{\eta}}_N^{\text{var}}] \rangle.$$

Lemma C.2. Suppose that Assumption 3.2 holds, and the learning rate satisfies $\delta \leq 1/(\psi \operatorname{tr}(\mathbf{H}))$. Then the variance error satisfies

$$\operatorname{var} \leq \frac{\sigma^2}{1 - \psi \delta \operatorname{tr}(\mathbf{H})} \left[(1 - \alpha) k^* + \delta \sum_{i=k^*}^{k^{\dagger}} \lambda_i + N \delta^2 \sum_{i>k^{\dagger}} \lambda_i^2 \right].$$

Lemma C.3. Suppose that Assumption 3.2 holds, and the learning rate satisfies $\delta \leq 1/(\psi \operatorname{tr}(\mathbf{H}))$. Then the bias error satisfies

$$\begin{aligned} \operatorname{bias} & \leq \frac{\psi(\|\mathbf{w}_0 - \mathbf{w}_*\|_{\mathbf{I}_{0:k^{\dagger}}}^2 + N\delta\|\mathbf{w}_0 - \mathbf{w}_*\|_{\mathbf{H}_{k^{\dagger}:\infty}}^2)}{\delta(1 - \psi\delta\operatorname{tr}(\mathbf{H}))} \bigg(k^*(1 - \alpha)^2 + \delta^2 \sum_{i > k^*} \lambda_i^2\bigg) \\ & + \sum_{i=1}^n (\mathbf{w}_0 - \mathbf{w}_*)_i^2 \lambda_i \bigg[\frac{(\delta\lambda_i)\alpha^N - (1 - \alpha)(1 - \delta\lambda_i)^N}{\delta\lambda_i - (1 - \alpha)}\bigg]^2. \end{aligned}$$

C.2 PROOF OF THEOREM 4.2

The lower bound can be proved using the bias-variance decomposition similar to proof of the upper bound.

Lemma C.4. Under Assumption 3.5, the excess risk can be decomposed as

$$\mathbb{E}[L(\overline{\mathbf{w}}_N)] - L(\mathbf{w}_*) = \frac{1}{2}(\text{bias} + \text{var}).$$

Lemma C.5. Assume that the hyperparameters satisfy $\delta \leq 1/\lambda_i$, $N \geq 2$ and $\alpha^{N-1} \leq 1/N$. Then the variance error satisfies

$$\operatorname{var} \ge \sigma^2 \left[\frac{3\alpha^2 (1 - \alpha) k^*}{16} + \frac{\delta}{100} \sum_{i=k^*+1}^{k^{\dagger}} \lambda_i + \frac{N\delta^2}{180} \sum_{i>k^{\dagger}} \lambda_i^2 \right].$$

Lemma C.6. Under the same assumptions as Lemma C.5, the bias error satisfies

bias
$$\geq \beta e^{-2} \| \boldsymbol{\eta}_0 \|_{\mathbf{H}_{k^{\dagger}:\infty}}^2 \left[\frac{3\alpha^2 (1-\alpha)k^*}{16} + \frac{\delta}{100} \sum_{i=k^*+1}^{k^{\dagger}} \lambda_i + \frac{N\delta^2}{180} \sum_{i>k^{\dagger}} \lambda_i^2 \right]$$

 $+ \sum_{i=1}^d \eta_{0,i}^2 \lambda_i \left[\frac{(\delta \lambda_i)\alpha^N - (1-\alpha)(1-\delta \lambda_i)^N}{\delta \lambda_i - (1-\alpha)} \right]^2.$

The proofs of Lemma C.1 and Lemma C.4 are given in Appendix E.1. The proofs of Lemma C.2 and Lemma C.5 are given in Appendix E.2. The proofs of Lemma C.3 and Lemma C.6 are given in Appendix E.3.

C.3 Proof of Theorem 6.1

In this subsection, we modify the proof of Theorem 4.1 to derive the excess risk upper bound for mini-batch SGD.

Proof of Theorem 6.1. Define the residual vector of mini-batch SGD in the same way as SGD. We then define the bias and variance residual vectors as

$$oldsymbol{\eta}_0^{ ext{bias}} = oldsymbol{\eta}_0, \qquad oldsymbol{\eta}_t^{ ext{bias}} = \left(\mathbf{I} - rac{\delta}{B} \sum_{i=1}^B \mathbf{x}_{t,i} \mathbf{x}_{t,i}^{ op}
ight) oldsymbol{\eta}_{t-1}^{ ext{bias}};
onumber \ oldsymbol{\eta}_0^{ ext{var}} = \mathbf{0}, \qquad oldsymbol{\eta}_t^{ ext{var}} = \left(\mathbf{I} - rac{\delta}{B} \sum_{i=1}^B \mathbf{x}_{t,i} \mathbf{x}_{t,i}^{ op}
ight) oldsymbol{\eta}_{t-1}^{ ext{var}} + rac{\delta}{B} \sum_{i=1}^B \xi_{t,i} \mathbf{x}_{t,i}.$$

We define the exponential moving average of the bias and variance residual vectors as well as the second moment matrices \mathbf{B}_t and \mathbf{C}_t in the same way as SGD. We then have the bias-variance decomposition lemma similar to Lemma C.1.

We define all linear matrix operators in the same way as SGD except for \mathcal{B} , which is defined as

$$\mathcal{B} := \mathbb{E}\bigg[\bigg(\mathbf{I} - \frac{\delta}{B} \sum_{i=1}^{B} \mathbf{x}_{t,i} \mathbf{x}_{t,i}^{\top}\bigg) \otimes \bigg(\mathbf{I} - \frac{\delta}{B} \sum_{i=1}^{B} \mathbf{x}_{t,i} \mathbf{x}_{t,i}^{\top}\bigg)\bigg],$$

then \mathbf{B}_t and \mathbf{C}_t satisfy the following recursive formulas:

$$\mathbf{B}_{t+1} = \mathcal{B} \circ \mathbf{B}_t, \qquad \mathbf{C}_{t+1} = \mathcal{B} \circ \mathbf{C}_t + \frac{\delta^2}{R} \mathbf{\Sigma}.$$

We also note that $\mathcal{B} - \widetilde{\mathcal{B}} = \delta^2/B \cdot (\mathcal{M} - \widetilde{\mathcal{M}})$ is still a PSD operator, and for any PSD matrix \mathbf{A} , we have

$$(\mathcal{B} - \widetilde{\mathcal{B}}) \circ \mathbf{A} \preceq \frac{\psi \delta^2}{B} \operatorname{tr}(\mathbf{H}\mathbf{A})\mathbf{H}.$$

Therefore, we can substitute the parameters in Theorem 4.1 as $\sigma^2 \leftarrow \sigma^2/B$ and $\psi \leftarrow \psi/B$, and obtain the upper bound for the excess risk of mini-batch SGD.

D DISCUSSION ABOUT DECAY RATE OF BIAS ERROR

In this section, we study the term

$$b_i = \alpha^N + (1 - \alpha) \sum_{k=0}^{N-1} \alpha^{N-1-k} (1 - \delta \lambda_i)^k$$

$$= \frac{(\delta \lambda_i) \alpha^N - (1 - \alpha) (1 - \delta \lambda_i)^N}{\delta \lambda_i - (1 - \alpha)}$$

$$= (1 - \delta \lambda_i)^N + (\delta \lambda_i) \sum_{k=0}^{N-1} \alpha^{N-1-k} (1 - \delta \lambda_i)^k.$$

To upper bound b_i , when $i \leq k^*$, i.e., $1 - \delta \lambda_i \leq \alpha$, we have

$$b_i = \frac{(\delta \lambda_i) \alpha^N - (1 - \alpha)(1 - \delta \lambda_i)^N}{\delta \lambda_i - (1 - \alpha)} \le \frac{\delta \lambda_i}{\delta \lambda_i - (1 - \alpha)} \alpha^N,$$

where the inequality holds because $(1 - \alpha)(1 - \delta\lambda_i)^N \ge 0$. We also have

$$b_{i} = \alpha^{N} + (1 - \alpha) \sum_{k=0}^{N-1} \alpha^{N-1-k} (1 - \delta \lambda_{i})^{k}$$

$$\leq \alpha^{N} + (1 - \alpha) \sum_{k=0}^{N} \alpha^{N-1-k} \alpha^{k} = \alpha^{N} + N(1 - \alpha)\alpha^{N-1},$$

where the inequality holds because $1 - \delta \lambda_i \leq \alpha$.

When $i > k^*$, i.e., $1 - \delta \lambda_i > \alpha$, we have

$$b_{i} = (1 - \delta \lambda_{i})^{N} + (\delta \lambda_{i}) \sum_{k=0}^{N-1} \alpha^{N-1-k} \cdot (1 - \delta \lambda_{i})^{k}$$

$$\leq (1 - \delta \lambda_{i})^{N} + (\delta \lambda_{i}) \sum_{k=0}^{N-1} (1 - \delta \lambda_{i})^{N-1-k} \cdot (1 - \delta \lambda_{i})^{k}$$

$$= (1 - \delta \lambda_{i})^{N} + N \delta \lambda_{i} (1 - \delta \lambda_{i})^{N-1},$$

where the inequality holds because $\alpha \leq 1 - \delta \lambda_i$. We also have

$$b_i = \frac{(1 - \alpha)(1 - \delta\lambda_i)^N - (\delta\lambda_i)\alpha^N}{1 - \alpha - \delta\lambda_i} \le \frac{1 - \alpha}{1 - \alpha - \delta\lambda_i} (1 - \delta\lambda_i)^N,$$

where the inequality holds because $(\delta \lambda_i)\alpha^N \geq 0$. To lower bound b_i , we consider the following cases:

Case 1. When $(1 - \delta \lambda_i)/\alpha \le 1 - 1/N$, we have

$$b_{i} = \frac{(\delta\lambda_{i})\alpha^{N} - (1 - \alpha)(1 - \delta\lambda_{i})^{N}}{\delta\lambda_{i} - (1 - \alpha)} \ge \frac{\delta\lambda_{i}(\alpha^{N} - (1 - \delta\lambda_{i})^{N})}{\delta\lambda_{i} - (1 - \alpha)}$$
$$\ge \frac{(\delta\lambda_{i})(1 - (1 - 1/N)^{N})}{\delta\lambda_{i} - (1 - \alpha)}\alpha^{N} \ge \frac{(1 - e^{-1})\delta\lambda_{i}}{\delta\lambda_{i} - (1 - \alpha)}\alpha^{N},$$

where the first inequality holds because $1 - \alpha \le \delta \lambda_i$, the second inequality holds because $1 - \delta \lambda_i / \alpha \le 1 - 1/N$, and the last inequality holds because $(1 - 1/N)^N \le 1/e$.

Case 2. When $1 - 1/N < (1 - \delta \lambda_i)/\alpha \le 1$, we have

$$b_i \ge \alpha^N + (1 - \alpha) \sum_{k=0}^{N-1} \alpha^N (1 - 1/N)^k = \alpha^N + (1 - \alpha) \alpha^{N-1} \cdot N (1 - (1 - 1/N)^N)$$

$$\ge \alpha^N + (1 - e^{-1})(1 - \alpha) N \alpha^{N-1},$$

where the first inequality holds because $1 - \delta \lambda_i \ge (1 - 1/N)\alpha$, and the second inequality holds because $(1 - 1/N)^N \le 1/e$.

Case 3. When $1 < (1 - \delta \lambda_i)/\alpha \le N/(N-1)$, similar to Case 2, we have

$$b_i \ge (1 - \delta \lambda_i)^N (1 - e^{-1}) N \delta \lambda_i (1 - \delta \lambda_i)^{N-1}.$$

Case 4. When $(1 - \delta \lambda_i)/\alpha > N/(N-1)$, similar to Case 1, we have

$$b_i \ge \frac{(1 - e^{-1})(1 - \alpha)}{1 - \alpha - \delta \lambda_i} (1 - \delta \lambda_i)^N.$$

E Proof of Lemmas in Appendix C

E.1 BIAS-VARIANCE DECOMPOSITION

In this subsection, we prove Lemma C.1 and Lemma C.4. The proof is similar to Zou et al. (2021), and is presented here for completeness.

Proof of Lemma C.1. By Lemma G.2, the excess risk can be written as

$$\begin{split} & \mathbb{E}[L(\overline{\mathbf{w}}_{N})] - L(\mathbf{w}_{*}) \\ &= \frac{1}{2} \langle \mathbf{H}, \mathbb{E}[\overline{\boldsymbol{\eta}}_{N} \otimes \overline{\boldsymbol{\eta}}_{N}] \rangle \\ &= \frac{1}{2} \mathbb{E}\Big[\langle \mathbf{H}, (\overline{\boldsymbol{\eta}}_{N}^{\text{bias}} + \overline{\boldsymbol{\eta}}_{N}^{\text{var}}) \otimes (\overline{\boldsymbol{\eta}}_{N}^{\text{bias}} + \overline{\boldsymbol{\eta}}_{N}^{\text{var}}) \rangle \Big] \\ &\leq \frac{1}{2} \mathbb{E}\Big[\mathbf{H}, (\overline{\boldsymbol{\eta}}_{N}^{\text{bias}} + \overline{\boldsymbol{\eta}}_{N}^{\text{var}}) \otimes (\overline{\boldsymbol{\eta}}_{N}^{\text{bias}} + \overline{\boldsymbol{\eta}}_{N}^{\text{var}}) + \langle \mathbf{H}, (\overline{\boldsymbol{\eta}}_{N}^{\text{bias}} - \overline{\boldsymbol{\eta}}_{N}^{\text{var}}) \otimes (\overline{\boldsymbol{\eta}}_{N}^{\text{bias}} - \overline{\boldsymbol{\eta}}_{N}^{\text{var}}) \rangle \Big] \\ &= \langle \mathbf{H}, \mathbb{E}[\overline{\boldsymbol{\eta}}_{N}^{\text{bias}} \otimes \overline{\boldsymbol{\eta}}_{N}^{\text{bias}}] \rangle + \langle \mathbf{H}, \overline{\boldsymbol{\eta}}_{N}^{\text{var}} \otimes \overline{\boldsymbol{\eta}}_{N}^{\text{var}} \rangle \\ &= \text{bias} + \text{var}, \end{split}$$

where the second equality holds due to Lemma G.3, and the inequality holds because a positive term is added. \Box

Proof of Lemma C.4. By Lemma G.3, the excess risk can be written as

$$\begin{split} \mathbb{E}[L(\overline{\mathbf{w}}_N)] - L(\mathbf{w}_*) &= \frac{1}{2} \mathbb{E}\Big[\langle \mathbf{H}, (\overline{\boldsymbol{\eta}}_N^{\mathrm{bias}} + \overline{\boldsymbol{\eta}}_N^{\mathrm{var}}) \otimes (\overline{\boldsymbol{\eta}}_N^{\mathrm{bias}} + \overline{\boldsymbol{\eta}}_N^{\mathrm{var}}) \rangle \Big] \\ &= \frac{1}{2} \langle \mathbf{H}, \mathbb{E}[\overline{\boldsymbol{\eta}}_N^{\mathrm{bias}} \otimes \overline{\boldsymbol{\eta}}_N^{\mathrm{bias}}] \rangle + \frac{1}{2} \langle \mathbf{H}, \mathbb{E}[\overline{\boldsymbol{\eta}}_N^{\mathrm{var}} \otimes \overline{\boldsymbol{\eta}}_N^{\mathrm{var}}] \rangle + \langle \mathbf{H}, \mathbb{E}[\overline{\boldsymbol{\eta}}_N^{\mathrm{var}} \otimes \overline{\boldsymbol{\eta}}_N^{\mathrm{bias}}] \rangle. \end{split}$$

It then suffices to show that $\mathbb{E}[\overline{\eta}_N^{\mathrm{var}} \otimes \overline{\eta}_N^{\mathrm{bias}}] = \mathbf{0}$, and it further suffices to prove that $\mathbb{E}[\eta_t^{\mathrm{var}} \otimes \eta_s^{\mathrm{bias}}] = \mathbf{0}$ for all t and s. According to the recursive formulas of the residual vectors, we have

$$egin{aligned} oldsymbol{\eta}_t^{ ext{var}} &= \delta \sum_{k=1}^t \prod_{l=k+1}^t (\mathbf{I} - \delta \mathbf{x}_l \mathbf{x}_l^{ op}) (\xi_k \mathbf{x}_k), \ oldsymbol{\eta}_s^{ ext{bias}} &= \prod_{j=1}^s (\mathbf{I} - \delta \mathbf{x}_j \mathbf{x}_j^{ op}) oldsymbol{\eta}_0. \end{aligned}$$

We then have

$$\mathbb{E}[\boldsymbol{\eta}_t^{\text{var}} \otimes \boldsymbol{\eta}_s^{\text{bias}}] = \delta \sum_{k=1}^t \mathbb{E}\bigg[\bigg(\prod_{l=k+1}^t (\mathbf{I} - \delta \mathbf{x}_l \mathbf{x}_l^\top)(\xi_k \mathbf{x}_k)\bigg) \otimes \bigg(\prod_{i=1}^s (\mathbf{I} - \delta \mathbf{x}_j \mathbf{x}_j^\top) \boldsymbol{\eta}_0\bigg)\bigg] = \mathbf{0},$$

where the second inequality holds because ξ_k is zero-mean and independent of feature vectors (Assumption 3.5).

E.2 VARIANCE BOUND

We need the following lemma to prove Lemma C.2.

Lemma E.1. Suppose that $\delta \leq 1/(\psi \operatorname{tr}(\mathbf{H}))$. Then for any $t \geq 0$, the inner product of \mathbf{C}_t and \mathbf{H} is upper bounded by

$$\operatorname{tr}(\mathbf{HC}_t) \le \frac{\sigma^2 \delta \operatorname{tr}(\mathbf{H})}{1 - \psi \delta \operatorname{tr}(\mathbf{H})}$$

The proof of Lemma E.1 is given in Appendix F.1. We now provide the proof for Lemma C.2.

Proof of Lemma C.2. According to the definition of var and Lemma G.4, we have

$$\operatorname{var} = (1 - \alpha)^{2} \sum_{t=0}^{N-1} \left\langle \mathbf{H}, \left(\sum_{k=0}^{N-2-t} \alpha^{N-2-t-k} (\mathbf{I} - \delta \mathbf{H})^{k} \right) ((\mathcal{B} - \widetilde{\mathcal{B}}) \circ \mathbf{C}_{t} + \delta^{2} \mathbf{\Sigma}) \right.$$
$$\left. \cdot \left(\sum_{k=0}^{N-2-t} \alpha^{N-2-t-k} (\mathbf{I} - \delta \mathbf{H})^{k} \right) \right\rangle$$
$$\leq \sum_{t=0}^{N-1} (1 - \alpha)^{2} \delta^{2} (\psi \operatorname{tr}(\mathbf{H} \mathbf{C}_{t}) + \sigma^{2})$$

$$\cdot \left\langle \mathbf{H}, \left(\sum_{k=0}^{N-2-t} \alpha^{N-2-t-k} (\mathbf{I} - \delta \mathbf{H})^k \right) \mathbf{H} \left(\sum_{k=0}^{N-2-t} \alpha^{N-2-t-k} (\mathbf{I} - \delta \mathbf{H})^k \right) \right\rangle \\
\leq \frac{\sigma^2}{1 - \psi \delta \operatorname{tr}(\mathbf{H})} \sum_{i=1}^d \underbrace{(1 - \alpha)^2 (\delta \lambda_i)^2 \sum_{t=0}^{N-1} \left(\sum_{k=0}^{N-2-t} \alpha^{N-2-t-k} (1 - \delta \lambda_i)^k \right)^2}_{J_i}, \quad (E.1)$$

where the first inequality holds due to Lemma G.1 part b and Assumption 3.4, and the second inequality holds due to Lemma E.1. We then study the upper bound for J_i . Firstly, we have

$$J_{i} \leq (1 - \alpha)^{2} (\delta \lambda_{i})^{2} \sum_{t=0}^{\infty} \left(\sum_{k=0}^{N-2-t} \alpha^{N-2-t-k} (1 - \delta \lambda_{i})^{k} \right)^{2}$$

$$= \frac{(1 - \alpha)\delta \lambda_{i}}{1 - \alpha + \alpha \delta \lambda_{i}} \cdot \frac{1 + \alpha - \alpha \delta \lambda_{i}}{(1 + \alpha)(2 - \delta \lambda_{i})}$$

$$\leq \frac{(1 - \alpha)\delta \lambda_{i}}{1 - \alpha + \alpha \delta \lambda_{i}} \cdot 1$$

$$\leq \min\{1 - \alpha, \delta \lambda_{i}\}, \tag{E.2}$$

where the first inequality holds because positive terms are added, the second inequality holds because $1 + \alpha - \delta \lambda_i \le 1 + \alpha \le (1 + \alpha)(2 - \delta \lambda_i)$, and the second inequality holds because $1 - \alpha + \alpha \delta \lambda_i \ge \max\{1 - \alpha, \delta \lambda_i\}$. Secondly, we have

$$J_i \le (1 - \alpha)^2 (\delta \lambda_i)^2 \sum_{t=0}^{N-1} \left(\sum_{k=0}^{N-2-t} \alpha^{N-2-t-k} \right)^2 = (\delta \lambda_i)^2 \sum_{t=0}^{N-1} (1 - \alpha^{N-t-1})^2 \le N \delta^2 \lambda_i^2, \quad (E.3)$$

where the first inequality holds because $1 - \delta \lambda_i \le 1$, and the second inequality holds because $1 - \alpha^{N-1-t} \le 1$. Substituting (E.2) and (E.3) into (E.1), we have

$$\begin{aligned} & \operatorname{var} \leq \frac{\sigma^2}{1 - \psi \delta \operatorname{tr}(\mathbf{H})} \sum_{i=1}^d \min \left\{ 1 - \alpha, \delta \lambda_i, N \delta^2 \lambda_i^2 \right\} \\ & = \frac{\sigma^2}{1 - \psi \delta \operatorname{tr}(\mathbf{H})} \bigg[(1 - \alpha) k^* + \delta \sum_{i=k^*+1}^{k^\dagger} \lambda_i + N \delta^2 \sum_{i>k^\dagger} \lambda_i^2 \bigg]. \end{aligned}$$

Proof of Lemma C.5. According to the definition of var and Lemma G.4, we have

$$\operatorname{var} = (1 - \alpha)^{2} \sum_{t=0}^{N-1} \left\langle \mathbf{H}, \left(\sum_{k=0}^{N-2-t} \alpha^{N-2-t-k} (\mathbf{I} - \delta \mathbf{H})^{k} \right) ((\mathcal{B} - \widetilde{\mathcal{B}}) \circ \mathbf{C}_{t} + \delta^{2} \mathbf{\Sigma} \right)$$

$$\left(\sum_{k=0}^{N-2-t} \alpha^{N-2-t-k} (\mathbf{I} - \delta \mathbf{H})^{k} \right) \right\rangle$$

$$\geq \sigma^{2} \sum_{t=0}^{N-1} (1 - \alpha)^{2} \delta^{2} \left\langle \mathbf{H}, \left(\sum_{k=0}^{N-2-t} \alpha^{N-2-t-k} (\mathbf{I} - \delta \mathbf{H})^{k} \right) \mathbf{H} \left(\sum_{k=0}^{N-2-t} \alpha^{N-2-t-k} (\mathbf{I} - \delta \mathbf{H})^{k} \right) \right\rangle$$

$$= \sigma^{2} \sum_{i=1}^{d} \underbrace{(1 - \alpha)^{2} (\delta \lambda_{i})^{2} \sum_{t=0}^{N-1} \left(\sum_{k=0}^{t-1} \alpha^{t-1-k} (1 - \delta \lambda_{i})^{k} \right)^{2}}_{I},$$

where the inequality holds due to Lemma G.1 part b. We then study the lower bound for J_i , based on the regime that λ_i falls into:

Case 1: $i \leq k^*$. In this case, $1 - \delta \lambda_i \leq \alpha$, and we have

$$\begin{split} J_i &= \frac{\delta \lambda_i (1-\alpha)(1+\alpha-\alpha\delta\lambda_i)(1-\alpha^{2N})}{(1-\alpha+\alpha\delta\lambda_i)(1+\alpha)(2-\delta\lambda_i)} \\ &- \frac{2\delta \lambda_i (1-\alpha)^2 (1-\delta\lambda_i)\alpha^N}{(1-\alpha+\alpha\delta\lambda_i)(2-\delta\lambda_i)} \cdot \frac{\alpha^N - (1-\delta\lambda_i)^N}{\alpha - (1-\delta\lambda_i)} - \frac{(1-\alpha)^2\delta\lambda_i}{2-\delta\lambda_i} \left(\frac{\alpha^N - (1-\delta\lambda_i)^N}{\alpha - (1-\delta\lambda_i)^N}\right)^2 \\ &\geq \frac{\delta \lambda_i (1-\alpha)(1+\alpha-\alpha\delta\lambda_i)(1-\alpha^{2N})}{(1-\alpha+\alpha\delta\lambda_i)(1+\alpha)(2-\delta\lambda_i)} - \frac{2\delta\lambda_i (1-\alpha)^2 (1-\delta\lambda_i)\alpha^N}{(1-\alpha+\alpha\delta\lambda_i)(2-\delta\lambda_i)} - \frac{\delta\lambda_i (1-\alpha)^2}{2-\delta\lambda_i} \\ &= \frac{\delta\lambda_i (1-\alpha)(1+\alpha-\alpha\delta\lambda_i)(\alpha^2-\alpha^{2N})}{(1-\alpha+\alpha\delta\lambda_i)(1+\alpha)(2-\delta\lambda_i)} + \frac{2\delta\lambda_i (1-\alpha)^2 (1-\delta\lambda_i)(\alpha-\alpha^N)}{(1-\alpha+\alpha\delta\lambda_i)(2-\delta\lambda_i)} \\ &\geq \frac{\delta\lambda_i (1-\alpha)(1+\alpha-\alpha\delta\lambda_i)(\alpha^2-\alpha^{2N})}{(1-\alpha+\alpha\delta\lambda_i)(1+\alpha)(2-\delta\lambda_i)}, \end{split}$$

where the first inequality holds because $\frac{\alpha^N-(1-\delta\lambda_i)^N}{\alpha-(1-\delta\lambda_i)} \leq N\alpha^{N-1} \leq 1$, and the second inequality holds because a positive term is dropped. We then consider the function

$$f(x) = \frac{(1-x)(1+\alpha x)}{(1-\alpha x)(1+x)} = 1 - \frac{2(1-\alpha)}{1/x - \alpha x + (1-\alpha)}, \quad x \in (0,\alpha],$$

so f(x) is decreasing in x, and $f(x) \ge f(\alpha) = (1+\alpha^2)/(1+\alpha)^2 \ge 1/2$ (Cauchy-Schwarz inequality). Since $\alpha^{N-1} \le 1/N$, we also have $1-\alpha^{2(N-1)} \ge 1-1/N^2 \ge 3/4$ because $N \ge 2$. We thus have

$$J_{i} = (1 - \alpha) \cdot f(1 - \delta \lambda_{i}) \cdot \frac{\alpha^{2}(1 - \alpha^{2(N-1)})}{1 + \alpha}$$

$$\geq (1 - \alpha) \cdot \frac{1}{2} \cdot \frac{3\alpha^{2}}{4(1 + \alpha)}$$

$$\geq \frac{3(1 - \alpha)\alpha^{2}}{16},$$

where the last inequality holds because $\alpha \leq 1$.

Case 2: $k^* < i \le k^{\dagger}$. In this case, $1 - 1/N \le 1 - \delta \lambda_i \le \alpha$, and for any $\mu \in (1, N)$, we have

$$J_{i} \geq (1 - \alpha)^{2} (\delta \lambda_{i})^{2} \sum_{t=0}^{N-1} \left((1 - \delta \lambda_{i})^{t-1} \sum_{k=0}^{t-1} \alpha^{k} \right)^{2}$$

$$= (\delta \lambda_{i})^{2} \sum_{t=0}^{N-1} (1 - \delta \lambda_{i})^{2(t-1)} (1 - \alpha^{t})^{2}$$

$$\geq (\delta \lambda_{i})^{2} \sum_{t=\lceil \log_{1/\alpha} \mu \rceil}^{N-1} (1 - \delta \lambda_{i})^{2(t-1)} (1 - \alpha^{t})^{2}$$

$$\geq (\delta \lambda_{i})^{2} (1 - 1/\mu)^{2} \sum_{t=\lceil \log_{1/\alpha} \mu \rceil}^{N-1} (1 - \delta \lambda_{i})^{2(t-1)}$$

$$= \frac{\delta \lambda_{i} (1 - 1/\mu)^{2}}{2 - \delta \lambda_{i}} [(1 - \delta \lambda_{i})^{2(\lceil \log_{1/\alpha} \mu \rceil - 1)} - (1 - \delta \lambda_{i})^{2(N-1)}],$$

where the first inequality holds because $(1 - \delta \lambda_i)^k \leq (1 - \delta \lambda_i)^{t-1}$, the second inequality holds because negative terms are dropped, and the last inequality holds because $\alpha^t \leq \alpha^{\lceil \log_{1/\alpha} \mu \rceil} \leq 1/\mu$. Since $1 - \delta \lambda_i \geq \alpha$, we have

$$(1 - \delta \lambda_i)^{2(\lceil \log_{1/\alpha} \mu \rceil - 1)} \ge \alpha^{2(\lceil \log_{1/\alpha} \mu \rceil - 1)} \ge \alpha^{2 \log_{1/\alpha} \mu} = \mu^{-2}.$$

Furthermore, since $1 - \delta \lambda_i \le 1 - 1/N$, we have

$$(1 - \delta \lambda_i)^{2(N-1)} \le (1 - 1/N)^{2(N-1)} \le (1/2)^2 = 1/4,$$

where the second inequality holds because $(1-1/N)^{2N-2}$ is decreasing in N when $N \ge 2$. Therefore, by taking $\mu^{-1} = (1+\sqrt{3})/4$, we have

$$J_i \ge \frac{\delta \lambda_i}{2} \cdot \frac{6\sqrt{3} - 9}{64} \ge \frac{\delta \lambda_i}{100}.$$

Case 3 : $i > k^{\dagger}$. In this case $\lambda_i \leq 1/N\delta$, and for all k < N, we have

$$(1 - \delta \lambda_i)^k \ge (1 - 1/N)^{N-1} \ge e^{-1}$$

where the second inequality holds because $(1-1/N)^{N-1}$ is decreasing in N when $N \geq 2$ and the limit is e^{-1} . We then have

$$J_{i} \geq e^{-2} (1 - \alpha)^{2} (\delta \lambda_{i})^{2} \sum_{t=0}^{N-1} \left(\sum_{k=0}^{t-1} \alpha^{k}\right)^{2}$$

$$= e^{-2} (\delta \lambda_{i})^{2} \sum_{t=0}^{N-1} (1 - \alpha^{t})^{2}$$

$$\geq e^{-2} (\delta \lambda_{i})^{2} \sum_{t=\lfloor N/2 \rfloor}^{N-1} (1 - \alpha^{t})^{2}$$

$$\geq \frac{N}{2e^{2}} \delta^{2} \lambda_{i}^{2} (1 - \alpha^{(N-1)/2})^{2}$$

$$\geq N \delta^{2} \lambda_{i}^{2} \cdot \frac{1}{2e^{2}} \cdot (1 - 1/\sqrt{2})^{2} \geq \frac{N \delta^{2} \lambda_{i}^{2}}{180},$$

where the second inequality holds because positive terms are dropped, the third inequality holds because for all $t \geq \lfloor N/2 \rfloor$, we have $\alpha^t \leq \alpha^{(N-1)/2}$, and the fourth inequality holds because $\alpha^{N-1} \leq 1/N \leq 1/2$.

Combining all the above, we have

$$\operatorname{var} \ge \sigma^2 \left[\frac{3\alpha^2 (1 - \alpha) k^*}{16} + \frac{\delta}{100} \sum_{i=k^*+1}^{k^{\dagger}} \lambda_i + \frac{N\delta^2}{180} \sum_{i>k^{\dagger}} \lambda_i^2 \right].$$

E.3 BIAS BOUND

We need the following lemma to prove Lemma C.3

Lemma E.2. The matrices \mathbf{B}_t satisfies

$$\sum_{k=1}^{t} \operatorname{tr}(\mathbf{H}\mathbf{B}_{k}) \leq \frac{1}{\delta(1 - \psi \delta \operatorname{tr}(\mathbf{H}))} \sum_{i=1}^{d} \eta_{0,i}^{2} [1 - (1 - \delta \lambda_{i})^{t}].$$

The proof of Lemma E.2 is given in Appendix F.2. We then prove Lemma C.3.

Proof of Lemma C.3. By definition of the bias error and Lemma G.4, we have

bias
$$\leq \psi \sum_{i=1}^{d} \underbrace{(1-\alpha)^2 (\delta \lambda_i)^2 \sum_{t=0}^{N-1} \operatorname{tr}(\mathbf{H} \mathbf{B}_t) \left(\sum_{k=0}^{N-2-t} \alpha^{N-2-t-k} (1-\delta \lambda_i)^k \right)^2}_{J_i} + \sum_{i=1}^{d} \eta_{0,i}^2 \lambda_i \left[\frac{(1-\alpha)(1-\delta \lambda_i)^N - (\delta \lambda_i)\alpha^N}{1-\delta \lambda_i - \alpha} \right]^2,$$

where the inequality holds due to Lemma G.1 part b. We then study the upper bound of J_i . Firstly, we have

$$J_i \le (1 - \alpha)^2 (\delta \lambda_i)^2 \sum_{t=0}^{N-1} \operatorname{tr}(\mathbf{H} \mathbf{B}_t) \left(\sum_{k=0}^{N-2-t} (1 - \delta \lambda_i)^k \right)^2$$

1026
1027
1028
$$= (1 - \alpha)^2 \sum_{t=0}^{N-1} \operatorname{tr}(\mathbf{H}\mathbf{B}_t) (1 - (1 - \delta\lambda_i)^{N-1-t})^2$$
1029
1030
$$\leq (1 - \alpha)^2 \sum_{t=0}^{N-1} \operatorname{tr}(\mathbf{H}\mathbf{B}_t)$$
1031
$$\leq \frac{(1 - \alpha)^2}{\delta(1 - \psi \operatorname{tr}(\mathbf{H}))} \sum_{i=1}^d \eta_{0,i}^2 [1 - (1 - \delta\lambda_i)^N]$$
1034
1035
$$\leq \frac{(1 - \alpha)^2}{\delta(1 - \psi \operatorname{tr}(\mathbf{H}))} (\|\boldsymbol{\eta}_0\|_{\mathbf{I}_{0:k^{\dagger}}}^2 + N\delta\|\boldsymbol{\eta}_0\|_{\mathbf{H}_{k^{\dagger}:\infty}}^2),$$
1037

where the first inequality holds because $\alpha \leq 1$, the second inequality holds because $1 - (1 - \delta \lambda_i)^{N-1-t} \leq 1$, the third inequality holds due to Lemma E.2, and the last inequality holds because $1 - (1 - \delta \lambda_i)^N \leq \min\{1, N\delta\lambda_i\}$. Secondly, we have

$$J_{i} \leq (1 - \alpha)^{2} (\delta \lambda_{i})^{2} \sum_{t=0}^{N-1} \operatorname{tr}(\mathbf{H}\mathbf{B}_{t}) \left(\sum_{k=0}^{N-2-t} \alpha^{N-2-t-k} \right)^{2}$$

$$= (\delta \lambda_{i})^{2} \sum_{t=0}^{N-1} \operatorname{tr}(\mathbf{H}\mathbf{B}_{t}) (1 - \alpha^{N-1-t})^{2}$$

$$\leq (\delta \lambda_{i})^{2} \sum_{t=0}^{N-1} \operatorname{tr}(\mathbf{H}\mathbf{B}_{t})$$

$$\leq \frac{\delta \lambda_{i}^{2}}{1 - \psi \delta \operatorname{tr}(\mathbf{H})} \sum_{i=1}^{d} \eta_{0,i}^{2} [1 - (1 - \delta \lambda_{i})^{N}]$$

$$\leq \frac{\delta \lambda_{i}^{2}}{1 - \psi \delta \operatorname{tr}(\mathbf{H})} (\|\boldsymbol{\eta}_{0}\|_{\mathbf{I}_{0:k^{\dagger}}}^{2} + N\delta \|\boldsymbol{\eta}_{0}\|_{\mathbf{H}_{k^{\dagger}:\infty}}^{2}),$$

where the first inequality holds because $1 - \delta \lambda_i \le 1$, the second inequality holds because $1 - \alpha^{N-1-t} \le 1$, the third inequality holds due to Lemma E.2, and the last inequality holds because $1 - (1 - \delta \lambda_i)^N \le \min\{1, N\delta \lambda_i\}$. Combining all the above, we have

$$\begin{aligned} \operatorname{bias} & \leq \frac{\psi(\|\mathbf{w}_0 - \mathbf{w}_*\|_{\mathbf{I}_{0:k^{\dagger}}}^2 + N\delta\|\mathbf{w}_0 - \mathbf{w}_*\|_{\mathbf{H}_{k^{\dagger}:\infty}}^2)}{\delta(1 - \psi\delta\operatorname{tr}(\mathbf{H}))} \bigg(k^*(1 - \alpha)^2 + \delta^2 \sum_{i > k^*} \lambda_i^2\bigg) \\ & + \sum_{i=1}^n (\mathbf{w}_0 - \mathbf{w}_*)_i^2 \lambda_i \bigg[\frac{(\delta\lambda_i)\alpha^N - (1 - \alpha)(1 - \delta\lambda_i)^N}{\delta\lambda_i - (1 - \alpha)}\bigg]^2. \end{aligned}$$

Proof of Lemma C.6. According to the definition of the bias error and Lemma G.4, we have

$$\begin{aligned} \operatorname{bias} & \geq \beta \sum_{i=1}^{d} (1 - \alpha)^{2} (\delta \lambda_{i})^{2} \sum_{t=0}^{N-1} \operatorname{tr}(\mathbf{H}\mathbf{B}_{t}) \left(\sum_{k=0}^{N-2-t} \alpha^{N-2-t-k} (1 - \delta \lambda_{i})^{k} \right)^{2} \\ & + \sum_{i=1}^{d} \eta_{0,i}^{2} \lambda_{i} \left[\frac{(\delta \lambda_{i}) \alpha^{N} - (1 - \alpha) (1 - \delta \lambda_{i})^{N}}{\delta \lambda_{i} - (1 - \alpha)} \right]^{2} \\ & \geq \beta \operatorname{tr}(\mathbf{B}_{0} \mathbf{H} (\mathbf{I} - \delta \mathbf{H})^{2(N-1)}) \sum_{i=1}^{d} \underbrace{(1 - \alpha)^{2} (\delta \lambda_{i})^{2} \sum_{t=0}^{N-1} \left(\sum_{k=0}^{t-1} \alpha^{t-1-k} (1 - \delta \lambda_{i})^{k} \right)^{2}}_{J_{i}} \\ & + \sum_{i=1}^{d} \eta_{0,i}^{2} \lambda_{i} \left[\underbrace{(\delta \lambda_{i}) \alpha^{N} - (1 - \alpha) (1 - \delta \lambda_{i})^{N}}_{\delta \lambda_{i} - (1 - \alpha)} \right]^{2}, \end{aligned}$$

where the second inequality holds because

$$\mathbf{B}_t = \mathcal{B}^t \circ \mathbf{B}_0 \succeq \widetilde{\mathcal{B}}^t \circ \mathbf{B}_0 = (\mathbf{I} - \delta \mathbf{H})^t \mathbf{B}_0 (\mathbf{I} - \delta \mathbf{H})^t \succeq (\mathbf{I} - \delta \mathbf{H})^{N-1} \mathbf{B}_0 (\mathbf{I} - \delta \mathbf{H})^{N-1}.$$

Note that the lower bound for J_i is the same as that in the proof of Lemma C.5. For the term $tr(\mathbf{B}_0\mathbf{H}(\mathbf{I}-\delta\mathbf{H})^{2N})$, we have

$$\operatorname{tr}(\mathbf{B}_0\mathbf{H}(\mathbf{I} - \delta\mathbf{H})^{2N}) = \sum_{i=1}^d \eta_{0,i}^2 \lambda_i (1 - \delta\lambda_i)^{2(N-1)} \ge \sum_{i>k^{\dagger}} \eta_{0,i}^2 \lambda_i (1 - 1/N)^{2(N-1)} \ge e^{-2} \|\boldsymbol{\eta}_0\|_{\mathbf{H}_{k^{\dagger}:\infty}}^2,$$

where the second inequality holds because $\delta \lambda_i \leq 1/N$ when $i > k^{\dagger}$, and the second inequality holds because $(1 - 1/N)^{2(N-1)} > 1/e^2$. We thus have

bias
$$\geq \beta e^{-2} \| \boldsymbol{\eta}_0 \|_{\mathbf{H}_{k^{\dagger}:\infty}}^2 \left[\frac{3\alpha^2 (1-\alpha)k^*}{16} + \frac{\delta}{100} \sum_{i=k^*+1}^{k^{\dagger}} \lambda_i + \frac{N\delta^2}{180} \sum_{i>k^{\dagger}} \lambda_i^2 \right]$$

 $+ \sum_{i=1}^d \eta_{0,i}^2 \lambda_i \left[\frac{(\delta \lambda_i)\alpha^N - (1-\alpha)(1-\delta \lambda_i)^N}{\delta \lambda_i - (1-\alpha)} \right]^2.$

F PROOF OF LEMMAS IN APPENDIX E

F.1 PROOF OF LEMMA E.1

We need the following lemmas to prove Lemma E.1:

Lemma F.1. C_t satisfies

$$\mathbf{C}_t = \sum_{k=0}^{k-1} \mathcal{B}^k \circ \mathbf{\Sigma}.$$

Since \mathcal{B} is a PSD operator (Lemma G.1), we have

$$\mathbf{C}_0 \leq \mathbf{C}_1 \leq \cdots \mathbf{C}_t \leq \cdots$$
.

Proof. The expression for C_t follows directly from the recursive formula for C_t .

We now provide the proof of Lemma E.1.

Proof of Lemma E.1. According to the recursive formula, we have

$$\mathbf{C}_{t} = \mathcal{B} \circ \mathbf{C}_{t-1} + \delta^{2} \mathbf{\Sigma} \leq \widetilde{\mathcal{B}} \circ \mathbf{C}_{t-1} + \delta^{2} (\psi \operatorname{tr}(\mathbf{H}\mathbf{C}_{t-1}) + \sigma^{2}) \mathbf{H}$$

$$\leq \sum_{k=0}^{t-1} (\psi \delta^{2} \operatorname{tr}(\mathbf{H}\mathbf{C}_{t-1-k}) + \sigma^{2}) \cdot \widetilde{\mathcal{B}}^{k} \circ \mathbf{H}$$

$$\leq \delta^{2} (\psi \operatorname{tr}(\mathbf{H}\mathbf{C}_{t}) + \sigma^{2}) \sum_{k=0}^{t-1} \widetilde{\mathcal{B}}^{k} \circ \mathbf{H}$$

$$\leq \delta^{2} (\psi \operatorname{tr}(\mathbf{H}\mathbf{C}_{t}) + \sigma^{2}) \sum_{k=0}^{\infty} \widetilde{\mathcal{B}}^{k} \circ \mathbf{H},$$

where the first inequality holds due to Lemma G.1 part b and Assumption 3.2, the second inequality holds by recursively applying the first inequality, the third inequality holds due to Lemma F.1, and the last inequality holds because $\widetilde{\mathcal{B}}$ is a PSD operator (Lemma G.1, part a). Taking the inner product with \mathbf{H} on both sides of the inequality, we have

$$\operatorname{tr}(\mathbf{H}\mathbf{C}_{t}) \leq \delta^{2}(\psi \operatorname{tr}(\mathbf{H}\mathbf{C}_{t}) + \sigma^{2}) \sum_{k=0}^{\infty} \operatorname{tr}(\mathbf{H}(\mathbf{I} - \delta \mathbf{H})^{k} \mathbf{H}(\mathbf{I} - \delta \mathbf{H})^{k})$$
$$= \delta^{2}(\psi \operatorname{tr}(\mathbf{H}\mathbf{C}_{t}) + \sigma^{2}) \sum_{k=0}^{\infty} \operatorname{tr}(\mathbf{H}(\mathbf{I} - \delta \mathbf{H})^{2k} \mathbf{H})$$

1134
1135
$$\leq \delta^{2}(\psi \operatorname{tr}(\mathbf{H}\mathbf{C}_{t}) + \sigma^{2}) \sum_{k=0}^{\infty} \operatorname{tr}(\mathbf{H}(\mathbf{I} - \delta \mathbf{H})^{k} \mathbf{H})$$
1136
$$= \delta(\psi \operatorname{tr}(\mathbf{H}\mathbf{C}_{t}) + \sigma^{2}) \operatorname{tr}(\mathbf{H}),$$

where the second inequality holds because $\mathbf{I} - \delta \mathbf{H} \succ 0$. Rearranging terms, as long as $\delta < 1/(\psi \operatorname{tr}(\mathbf{H}))$, we have

$$\operatorname{tr}(\mathbf{H}\mathbf{C}_t) \leq \frac{\sigma^2 \delta \operatorname{tr}(\mathbf{H})}{1 - \psi \delta \operatorname{tr}(\mathbf{H})}$$

F.2 Proof of Lemma E.2

Proof of Lemma E.2. Define

$$\mathbf{S}_t^1 = \sum_{k=0}^{t-1} \mathbf{B}_t.$$

Note that \mathbf{S}_t^1 satisfies $\mathbf{S}_t^1 = \mathcal{B} \circ \mathbf{S}_{t-1} + \mathbf{B}_0$, so according to Lemma G.1 part b, \mathbf{S}_t^1 can be bounded by

$$\begin{split} \mathbf{S}_{t}^{1} & \leq \widetilde{\mathcal{B}} \circ \mathbf{S}_{t-1}^{1} + \psi \delta^{2} \operatorname{tr}(\mathbf{H} \mathbf{S}_{t-1}^{1}) \mathbf{H} + \mathbf{B}_{0} \\ & \leq \sum_{k=0}^{t-1} \widetilde{\mathcal{B}}^{k} \circ (\psi \delta^{2} \operatorname{tr}(\mathbf{H} \mathbf{S}_{t-1-k}^{1}) \mathbf{H} + \mathbf{B}_{0}) \\ & \leq \sum_{k=0}^{t-1} \widetilde{\mathcal{B}}^{k} \circ (\psi \delta^{2} \operatorname{tr}(\mathbf{H} \mathbf{S}_{t}^{1}) \mathbf{H} + \mathbf{B}_{0}) \\ & = \psi \delta^{2} \operatorname{tr}(\mathbf{H} \mathbf{S}_{t}^{1}) \sum_{k=0}^{t-1} (\mathbf{I} - \delta \mathbf{H})^{k} \mathbf{H} (\mathbf{I} - \delta \mathbf{H})^{k} + \sum_{k=0}^{t-1} (\mathbf{I} - \delta \mathbf{H})^{k} \mathbf{B}_{0} (\mathbf{I} - \delta \mathbf{H})^{k}, \end{split}$$

where the second inequality holds by recursively applying the first inequality, and the third inequality holds because $\mathbf{S}_{t-1-k}^1 \leq \mathbf{S}_t^1$. Taking the inner produce on both sides of the inequality, we have

$$\operatorname{tr}(\mathbf{H}\mathbf{S}_{t}^{1}) \leq \psi \delta^{2} \operatorname{tr}(\mathbf{H}\mathbf{S}_{t}^{1}) \sum_{k=0}^{t-1} \operatorname{tr}(\mathbf{H}^{2}(\mathbf{I} - \delta \mathbf{H})^{2k}) + \sum_{k=0}^{t-1} \operatorname{tr}(\mathbf{B}_{0}\mathbf{H}(\mathbf{I} - \delta \mathbf{H})^{2k})$$

$$\leq \psi \delta^{2} \operatorname{tr}(\mathbf{H}\mathbf{S}_{t}^{1}) \sum_{k=0}^{t-1} \operatorname{tr}(\mathbf{H}^{2}(\mathbf{I} - \delta \mathbf{H})^{k}) + \sum_{k=0}^{t-1} \operatorname{tr}(\mathbf{B}_{0}\mathbf{H}(\mathbf{I} - \delta \mathbf{H})^{k})$$

$$\leq \psi \delta^{2} \operatorname{tr}(\mathbf{H}\mathbf{S}_{t}^{1}) \sum_{k=0}^{\infty} \operatorname{tr}(\mathbf{H}^{2}(\mathbf{I} - \delta \mathbf{H})^{k}) + \sum_{k=0}^{t-1} \operatorname{tr}(\mathbf{B}_{0}\mathbf{H}(\mathbf{I} - \delta \mathbf{H})^{k})$$

$$= \psi \delta \operatorname{tr}(\mathbf{H}) \operatorname{tr}(\mathbf{H}\mathbf{S}_{t}^{1}) + \delta^{-1} \sum_{i=1}^{d} \eta_{0,i}^{2} (1 - (1 - \delta \lambda_{i})^{t}),$$

where the second inequality holds because $(\mathbf{I} - \delta \mathbf{H})^{2k} \leq (\mathbf{I} - \delta \mathbf{H})^k$, and the third inequality holds because positive terms $\operatorname{tr}(\mathbf{H}^2(\mathbf{I} - \delta \mathbf{H})^k)$ for $k \geq t$ are added. Rearranging terms, we have

$$\operatorname{tr}(\mathbf{HS}_t^1) \le \frac{1}{\delta(1 - \psi \delta \operatorname{tr}(\mathbf{H}))} \sum_{i=1}^d \eta_{0,i}^2 [1 - (1 - \delta \lambda_i)^t].$$

G PROPERTIES OF CENTERED ITERATES AND LINEAR OPERATORS ON MATRICES

Lemma G.1. The linear operators on matrix enjoy the following properties:

- a. $\mathcal{M}, \widetilde{\mathcal{M}}, \mathcal{B}$, and $\widetilde{\mathcal{B}}$ are all PSD operators, i.e., for any PSD matrix \mathbf{A} , we have that $\mathcal{M} \circ \mathbf{A}, \widetilde{\mathcal{M}} \circ \mathbf{A}$, $\mathcal{B} \circ \mathbf{A}$, and $\widetilde{\mathcal{B}} \circ \mathbf{A}$ are all PSD matrices.
- b. $\mathcal{B} \widetilde{\mathcal{B}} = \delta^2(\mathcal{M} \widetilde{\mathcal{M}})$ is also a PSD operator, which is bounded by

$$\beta \delta^2 \operatorname{tr}(\mathbf{H} \mathbf{A}) \mathbf{H} \preceq (\mathcal{B} - \widetilde{\mathcal{B}}) \circ \mathbf{A} = \delta^2 (\mathcal{M} - \widetilde{\mathcal{M}}) \circ \mathbf{A} \preceq \delta^2 \mathcal{M} \circ \mathbf{A} \preceq \psi \delta^2 \operatorname{tr}(\mathbf{H} \mathbf{A}) \mathbf{H}.$$

Proof. a. Let A denote any PSD matrix, and v be any vector. We then have

$$\mathbf{v}^{\top}(\mathcal{M} \circ \mathbf{A})\mathbf{v} = \mathbb{E}[(\mathbf{v}^{\top}\mathbf{x})^{2}(\mathbf{x}^{\top}\mathbf{A}\mathbf{x})] \geq 0,$$

where the equality holds because $(\mathbf{v}^{\top}\mathbf{x})^2 \geq 0$ and $\mathbf{x}^{\top}\mathbf{A}\mathbf{x} \geq 0$. Furthermore,

$$\mathbf{v}^{\top}(\mathcal{B} \circ \mathbf{A})\mathbf{v} = \mathbb{E}[\mathbf{v}^{\top}(\mathbf{I} - \delta \mathbf{x} \mathbf{x}^{\top})\mathbf{A}(\mathbf{I} - \delta \mathbf{H} \mathbf{x} \mathbf{x}^{\top})\mathbf{v}] = \mathbb{E}[(\mathbf{v} - \delta(\mathbf{v}^{\top} \mathbf{x})\mathbf{x})^{\top}\mathbf{A}(\mathbf{v} - \delta(\mathbf{v}^{\top} \mathbf{x})\mathbf{x})] \ge 0,$$

where the inequality holds because for any vector \mathbf{u} ($\mathbf{u} = \mathbf{v} - \delta(\mathbf{v}^{\top}\mathbf{x})\mathbf{x}$ in this case), we have $\mathbf{u}^{\top}\mathbf{A}\mathbf{u} \geq 0$. Finally, $\widetilde{\mathcal{M}}$ and $\widetilde{\mathcal{B}}$ are PSD operators because any matrix similar to a PSD matrix is also a PSD matrix.

b. The difference between \mathcal{B} and $\widetilde{\mathcal{B}}$ is

$$\mathcal{B} - \widetilde{\mathcal{B}} = \mathbb{E}[(\mathbf{I} - \delta \mathbf{x} \mathbf{x}^{\top}) \otimes (\mathbf{I} - \delta \mathbf{x} \mathbf{x}^{\top})] - (\mathbf{I} - \delta \mathbf{H}) \otimes (\mathbf{I} - \delta \mathbf{H})$$

$$= (\mathbf{I} \otimes \mathbf{I} - \delta \mathbf{H} \otimes \mathbf{I} - \delta \mathbf{I} \otimes \mathbf{H} + \delta^{2} \mathcal{M}) - (\mathbf{I} \otimes \mathbf{I} - \delta \mathbf{H} \otimes \mathbf{I} - \delta \mathbf{I} \otimes \mathbf{H} + \delta^{2} \widetilde{\mathcal{M}})$$

$$= \delta^{2}(\mathcal{M} - \widetilde{\mathcal{M}}).$$

Furthermore,

$$\mathcal{M} - \widetilde{\mathcal{M}} = \mathbb{E}[(\mathbf{x}\mathbf{x}^{\top} - \mathbf{H}) \otimes (\mathbf{x}\mathbf{x}^{\top} - \mathbf{H})],$$

so $\mathcal{M} - \widetilde{\mathcal{M}}$ is a PSD operator. The upper bound follows directly from the fact that $\widetilde{\mathcal{M}}$ is PSD and Assumption 3.2.

Lemma G.2 and Lemma G.3 are similar to their counterparts in Zou et al. (2021), and are presented here for completeness.

Lemma G.2. The excess risk is equivalent to

$$L(\overline{\mathbf{w}}_N) - L(\mathbf{w}_*) = \frac{1}{2} \langle \mathbf{H}, \overline{\boldsymbol{\eta}}_N \otimes \overline{\boldsymbol{\eta}}_N \rangle.$$

Proof. By definition of the risk function, we have

$$L(\overline{\mathbf{w}}_{N}) - L(\overline{\mathbf{w}}_{*}) = \frac{1}{2} \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}}[(y - \langle \overline{\mathbf{w}}_{N}, \mathbf{x} \rangle)^{2} - (y - \langle \mathbf{w}_{*}, \mathbf{x} \rangle)^{2}]$$

$$= \frac{1}{2} \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}}[(\mathbf{w}_{*} - \overline{\mathbf{w}}_{N})^{\top} (\mathbf{x} \cdot 2y - \mathbf{x} \mathbf{x}^{\top} (\overline{\mathbf{w}}_{N} + \mathbf{w}_{*}))]$$

$$= \frac{1}{2} (\mathbf{w}_{*} - \overline{\mathbf{w}}_{N})^{\top} (2\mathbf{H} \mathbf{w}_{*} - \mathbf{H} (\overline{\mathbf{w}}_{N} + \mathbf{w}_{*}))$$

$$= \frac{1}{2} \langle \mathbf{H}, \overline{\boldsymbol{\eta}}_{N} \otimes \overline{\boldsymbol{\eta}}_{N} \rangle,$$

where the third equality holds due to (B.1) and the definition of H.

Lemma G.3. For any t > 0, we have

$$\eta_t = \eta_t^{\text{bias}} + \eta_t^{\text{var}}.$$

We thus have

$$\overline{oldsymbol{\eta}}_N = \overline{oldsymbol{\eta}}_N^{\mathrm{bias}} + \overline{oldsymbol{\eta}}_N^{\mathrm{var}}.$$

Proof. We prove the lemma by induction. When t = 0, the lemma holds trivially. Suppose that the lemma holds for t - 1, then we have

$$\eta_t = \mathbf{w}_t - \mathbf{w}_* = (\mathbf{w}_{t-1} - \mathbf{w}_*) + \delta(y_t - \langle \mathbf{w}_{t-1}, \mathbf{x}_t \rangle) \mathbf{x}_t$$
$$= (\mathbf{w}_{t-1} - \mathbf{w}_*) + \delta(\xi_t - \langle \mathbf{w}_{t-1} - \mathbf{w}_*, \mathbf{x}_t \rangle) \mathbf{x}_t$$

1249 1250

1262

1263

1242
$$= (\mathbf{I} - \delta \mathbf{x}_t \mathbf{x}_t^{\top}) \boldsymbol{\eta}_{t-1} + \delta \xi_t \mathbf{x}_t$$
1244
$$= (\mathbf{I} - \delta \mathbf{x}_t \mathbf{x}_t^{\top}) (\boldsymbol{\eta}_t^{\text{bias}} + \boldsymbol{\eta}_t^{\text{var}}) + \delta \xi_t \mathbf{x}_t$$
1245
$$= [(\mathbf{I} - \delta \mathbf{x}_t \mathbf{x}_t^{\top}) \boldsymbol{\eta}_t^{\text{bias}}] + [(\mathbf{I} - \delta \mathbf{x}_t \mathbf{x}_t^{\top}) \boldsymbol{\eta}_t^{\text{var}} + \delta \xi_t \mathbf{x}_t]$$
1246
$$= \boldsymbol{\eta}_t^{\text{bias}} + \boldsymbol{\eta}_t^{\text{var}},$$

where the fifth equality holds due to the induction hypothesis. Therefore, the lemma holds for t. Combining all the above, the lemma is proved for all $t \ge 0$.

Lemma G.4. The second moment of the residual vectors can be decomposed as

1251
1252
$$\mathbb{E}[\overline{\boldsymbol{\eta}}_{N}^{\text{bias}} \otimes \overline{\boldsymbol{\eta}}_{N}^{\text{bias}}] = (1 - \alpha)^{2}$$
1253
1254
$$\cdot \sum_{t=0}^{N-1} \left(\sum_{k=0}^{N-2-t} \alpha^{N-2-t-k} (\mathbf{I} - \delta \mathbf{H})^{k}\right) ((\mathcal{B} - \widetilde{\mathcal{B}}) \circ \mathbf{B}_{t}) \left(\sum_{k=0}^{N-2-t} \alpha^{N-2-t-k} (\mathbf{I} - \delta \mathbf{H})^{k}\right)$$
1255
1256
$$+ \left(\alpha^{N} \mathbf{I} + (1 - \alpha) \sum_{k=0}^{N-1} \alpha^{N-1-k} (\mathbf{I} - \delta \mathbf{H})^{k}\right) \mathbf{B}_{0} \left(\alpha^{N} \mathbf{I} + (1 - \alpha) \sum_{k=0}^{N-1} \alpha^{N-1-k} (\mathbf{I} - \delta \mathbf{H})^{k}\right),$$
1258
1259
1260
$$\mathbb{E}[\overline{\boldsymbol{\eta}}_{N}^{\text{var}} \otimes \overline{\boldsymbol{\eta}}_{N}^{\text{var}}] = (1 - \alpha)^{2}$$
1260
$$\cdot \sum_{k=0}^{N-1} \left(\sum_{k=0}^{N-2-t} \alpha^{N-2-t-k} (\mathbf{I} - \delta \mathbf{H})^{k}\right) ((\mathcal{B} - \widetilde{\mathcal{B}}) \circ \mathbf{C}_{t} + \delta^{2} \mathbf{\Sigma}) \left(\sum_{k=0}^{N-2-t-k} \alpha^{N-2-t-k} (\mathbf{I} - \delta \mathbf{H})^{k}\right).$$

Proof. To simplify notations, we omit the superscripts of η_t and $\overline{\eta}_N$, and denote $\mathbf{D}_t = \mathbb{E}[\eta_t \otimes \eta_t]$. According to the definition of $\overline{\eta}_N$, we have

According to the definition of
$$\overline{\eta}_N$$
, we have
$$\mathbb{E}[\overline{\eta}_N \otimes \overline{\eta}_N] = \mathbb{E}\left[\left(\alpha^N \eta_0 + (1-\alpha) \sum_{t=0}^{N-1} \alpha^{N-1-t} \eta_t\right) \otimes \left(\alpha^N \eta_0 + (1-\alpha) \sum_{t=0}^{N-1} \alpha^{N-1-t} \eta_t\right)\right]$$

$$= \alpha^{2N} \mathbf{D}_0 + (1-\alpha) \sum_{t=0}^{N-1} \alpha^{2N-1-t} \left[\mathbb{E}[\eta_0 \otimes \eta_t] + \mathbb{E}[\eta_t \otimes \eta_0]\right]$$

$$+ (1-\alpha)^2 \sum_{s=0}^{N-1} \sum_{t=0}^{N-1} \alpha^{2N-2-s-t} \mathbb{E}[\eta_s \otimes \eta_t]$$

$$= \alpha^{2N} \mathbf{D}_0 + (1-\alpha) \sum_{s=0}^{N-1} \alpha^{2N-2-s-t} \mathbb{E}[\eta_s \otimes \eta_t]$$

$$= \alpha^{2N} \mathbf{D}_0 + (1-\alpha) \sum_{t=0}^{N-1} \alpha^{2N-1-t} [\mathbf{D}_0 (\mathbf{I} - \delta \mathbf{H})^t + (\mathbf{I} - \delta \mathbf{H})^t \mathbf{D}_0]$$

$$+ (1-\alpha)^2 \sum_{t=0}^{N-1} \left[\alpha^{2N-2-2t} \mathbf{D}_t + \sum_{k=1}^{N-1-t} \alpha^{2N-2-2t-k} [\mathbf{D}_t (\mathbf{I} - \delta \mathbf{H})^k + (\mathbf{I} - \delta \mathbf{H})^k \mathbf{D}_t] \right]$$

$$= \left(\alpha^N \mathbf{I} + (1-\alpha)^2 \sum_{t=0}^{N-1} \alpha^{N-1-k} (\mathbf{I} - \delta \mathbf{H})^k \right) \mathbf{D}_0 \left(\alpha^N \mathbf{I} + (1-\alpha) \sum_{k=0}^{N-1} \alpha^{N-1-k} (\mathbf{I} - \delta \mathbf{H})^k \right)$$

$$- (1-\alpha)^2 \left(\sum_{k=0}^{N-1} \alpha^{N-1-k} (\mathbf{I} - \delta \mathbf{H})^k \right) \mathbf{D}_0 \left(\sum_{k=0}^{N-1} \alpha^{N-1-k} (\mathbf{I} - \delta \mathbf{H})^k \right)$$

$$+ (1-\alpha)^2 \sum_{t=0}^{N-1} \left[\left(\sum_{k=0}^{N-1-t} \alpha^{N-1-t-k} (\mathbf{I} - \delta \mathbf{H})^k \right) \mathbf{D}_t \left(\sum_{k=0}^{N-1-t} \alpha^{N-1-t-k} (\mathbf{I} - \delta \mathbf{H})^k \right) \right]$$

$$- \left(\sum_{k=1}^{N-1-t} \alpha^{N-1-t-k} (\mathbf{I} - \delta \mathbf{H})^k \right) \mathbf{D}_t \left(\sum_{k=0}^{N-1-t-k} \alpha^{N-1-t-k} (\mathbf{I} - \delta \mathbf{H})^k \right)$$

$$- \left(\sum_{k=1}^{N-1-t} \alpha^{N-1-t-k} (\mathbf{I} - \delta \mathbf{H})^k \right) \mathbf{D}_t \left(\sum_{k=0}^{N-1-t-k} \alpha^{N-1-t-k} (\mathbf{I} - \delta \mathbf{H})^k \right)$$

$$- \left(\sum_{k=0}^{N-1-t} \alpha^{N-1-t-k} (\mathbf{I} - \delta \mathbf{H})^k \right) \mathbf{D}_t \left(\sum_{k=0}^{N-1-t-k} \alpha^{N-1-t-k} (\mathbf{I} - \delta \mathbf{H})^k \right)$$

$$+ (1-\alpha)^2 \sum_{k=0}^{N-1} \left[\left(\sum_{k=0}^{N-1-t-k} \alpha^{N-1-t-k} (\mathbf{I} - \delta \mathbf{H})^k \right) \mathbf{D}_t \left(\sum_{k=0}^{N-1-t-k} \alpha^{N-1-t-k} (\mathbf{I} - \delta \mathbf{H})^k \right)$$

$$+ (1-\alpha)^2 \sum_{t=0}^{N-1} \left[\left(\sum_{k=0}^{N-1-t-k} \alpha^{N-1-t-k} (\mathbf{I} - \delta \mathbf{H})^k \right) \mathbf{D}_t \left(\sum_{k=0}^{N-1-t-k} \alpha^{N-1-t-k} (\mathbf{I} - \delta \mathbf{H})^k \right)$$

$$+ (1-\alpha)^2 \sum_{t=0}^{N-1} \left[\left(\sum_{k=0}^{N-2-t-k} \alpha^{N-2-t-k} (\mathbf{I} - \delta \mathbf{H})^k \right) \mathbf{D}_t \left(\sum_{k=0}^{N-1-t-k} \alpha^{N-1-t-k} (\mathbf{I} - \delta \mathbf{H})^k \right)$$

$$+ (1-\alpha)^2 \sum_{t=0}^{N-1} \left[\left(\sum_{k=0}^{N-2-t-k} \alpha^{N-2-t-k} (\mathbf{I} - \delta \mathbf{H})^k \right) \mathbf{D}_t \left(\sum_{k=0}^{N-1-t-k} \alpha^{N-1-t-k} (\mathbf{I} - \delta \mathbf{H})^k \right)$$

$$+ (1-\alpha)^2 \sum_{t=0}^{N-1} \left[\left(\sum_{k=0}^{N-1-t-k} \alpha^{N-1-t-k} (\mathbf{I} - \delta \mathbf{H})^k$$

$$-\left(\sum_{k=1}^{N-1-t} \alpha^{N-1-t-k} (\mathbf{I} - \delta \mathbf{H})^{k}\right) \mathbf{D}_{t} \left(\sum_{k=1}^{N-1-t} \alpha^{N-1-t-k} (\mathbf{I} - \delta \mathbf{H})^{k}\right) \right]$$

$$= \left(\alpha^{N} \mathbf{I} + (1-\alpha) \sum_{k=0}^{N-1} \alpha^{N-1-k} (\mathbf{I} - \delta \mathbf{H})^{k}\right) \mathbf{D}_{0} \left(\alpha^{N} \mathbf{I} + (1-\alpha) \sum_{k=0}^{N-1} \alpha^{N-1-k} (\mathbf{I} - \delta \mathbf{H})^{k}\right)$$

$$+ (1-\alpha)^{2} \sum_{t=0}^{N-1} \left(\sum_{k=0}^{N-2-t} \alpha^{N-2-t-k} (\mathbf{I} - \delta \mathbf{H})^{k}\right) (\mathbf{D}_{t+1} - \widetilde{\mathcal{B}} \circ \mathbf{D}_{t}) \left(\sum_{k=0}^{N-2-t} \alpha^{N-2-t-k} (\mathbf{I} - \delta \mathbf{H})^{k}\right),$$

where the third inequality holds because $\mathbb{E}[\eta_{t+k} \otimes \eta_t] = \mathbb{E}[\mathbb{E}[\eta_{t+k} \otimes \eta_t | \mathcal{F}_t]] = \mathbb{E}[(\mathbf{I} - \delta \mathbf{H})^k (\eta_t \otimes \eta_t)] = (\mathbf{I} - \delta \mathbf{H})^k \mathbf{D}_t$, and the fifth equality holds due to telescope sum. Specifically, for the bias residual, we have $\mathbf{B}_{t+1} = \mathcal{B} \circ \mathbf{B}_t$, so

$$\begin{split} & \mathbb{E}[\overline{\boldsymbol{\eta}}_{N}^{\text{bias}} \otimes \overline{\boldsymbol{\eta}}_{N}^{\text{bias}}] = (1 - \alpha)^{2} \\ & \cdot \sum_{t=0}^{N-1} \bigg(\sum_{k=0}^{N-2-t} \alpha^{N-2-t-k} (\mathbf{I} - \delta \mathbf{H})^{k} \bigg) ((\mathcal{B} - \widetilde{\mathcal{B}}) \circ \mathbf{B}_{t}) \bigg(\sum_{k=0}^{N-2-t} \alpha^{N-2-t-k} (\mathbf{I} - \delta \mathbf{H})^{k} \bigg) \\ & + \bigg(\alpha^{N} \mathbf{I} + (1 - \alpha) \sum_{k=0}^{N-1} \alpha^{N-1-k} (\mathbf{I} - \delta \mathbf{H})^{k} \bigg) \mathbf{B}_{0} \bigg(\alpha^{N} \mathbf{I} + (1 - \alpha) \sum_{k=0}^{N-1} \alpha^{N-1-k} (\mathbf{I} - \delta \mathbf{H})^{k} \bigg). \end{split}$$

For the variance residual, we have $C_{t+1} = \mathcal{B} \circ C_t + \delta^2 \Sigma$ and $C_0 = 0$, so

$$\mathbb{E}[\overline{\boldsymbol{\eta}}_{N}^{\text{var}} \otimes \overline{\boldsymbol{\eta}}_{N}^{\text{var}}] = (1 - \alpha)^{2}$$

$$\cdot \sum_{t=0}^{N-1} \left(\sum_{k=0}^{N-2-t} \alpha^{N-2-t-k} (\mathbf{I} - \delta \mathbf{H})^{k} \right) ((\mathcal{B} - \widetilde{\mathcal{B}}) \circ \mathbf{C}_{t} + \delta^{2} \mathbf{\Sigma}) \left(\sum_{k=0}^{N-2-t} \alpha^{N-2-t-k} (\mathbf{I} - \delta \mathbf{H})^{k} \right).$$