Under review as a conference paper at ICLR 2026

UNDERSTANDING EXPONENTIAL MOVING AVERAGE:
A CASE STUDY IN LINEAR REGRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Exponential moving average (EMA) has recently gained significant popularity
in training modern deep learning models, especially diffusion-based generative
models. However, there have been few theoretical results explaining the effec-
tiveness of EMA. In this paper, to better understand EMA, we establish the risk
bound of online SGD with EMA for high-dimensional linear regression, one of the
simplest overparameterized learning tasks that shares similarities with neural net-
works. Our results indicate that (i) the variance error of SGD with EMA is always
smaller than that of SGD without averaging, and (ii) unlike SGD with iterate aver-
aging from the beginning, the bias error of SGD with EMA decays exponentially
in every eigen-subspace of the data covariance matrix. Additionally, we develop
proof techniques applicable to the analysis of a broad class of averaging schemes.

1 INTRODUCTION

The exponential moving average (EMA, Polyak & Juditsky|1992; Ruppert|1988)) in conjunction with
stochastic optimization algorithms is being extensively used in training deep learning models. EMA
is most popular in training generative models based on GAN (Yaz et al., 2018} Karras|, [2019} |Kang
et al., 2023)), and more recently in diffusion models (Song et al., [2020b; [Dhariwal & Nichol, 2021}
Nichol & Dhariwal, 20215 Song et al., 2020a}; Balaji et al.|[2022; |Karras et al.,|2022;|Rombach et al.}
2022; |Karras et al.,|2024), among other applications (Block et al., 2023} Busbridge et al.,2024). By
maintaining an averaged set of model parameters, EMA displays the capability to stabilize training
by suppressing the noise of stochastic gradients, and it has been shown empirically that the effect of
EMA is similar to that of learning rate scheduling (Sandler et al.l|2023). However, this phenomenon
is less studied from a theoretical perspective. Notable exceptions include a recent work by |Ahn
& Cutkosky| (2024), which studied Adam with EMA in nonconvex optimization. However, this
work is restricted to the finite-dimensional setting, which departs from the practical training of
overparameterized neural networks. [Block et al.| (2023)) revealed the variance-reducing benefit of
EMA, but the bias contraction of stochastic optimization algorithms with EMA remains unknown.
Meanwhile, a recent line of works (Défossez & Bachl 2015} Dieuleveut et al.l 2017; Jain et al.,
2018b; Berthier et al.l [2020; Zou et al., 2021; [Wu et al., |2022)) characterized the generalization
properties of SGD in overparameterized linear regression with other averaging schemes (e.g., iterate
averaging from the beginning and tail averaging). In particular, Zou et al.| (2021)) presented an
instance-dependent and dimension-free excess risk bound for SGD with iterate averaging and tail
averaging. Given these results, a characterization of the generalization properties of SGD with EMA
and a comparison against SGD with other averaging schemes becomes an urgent subject of study,
especially in the setting of high-dimensional linear regression.

In this paper, we tackle this open problem by studying SGD with EMA in the overparameterized

linear regression setting, and comparing the results with SGD without averaging, along with iterate

averaging and tail averaging in|Zou et al.| (2021)). Our contributions are summarized as follows:

* We derive the first instance-dependent excess risk bound of the linear regression model trained
with SGD with EMA. We also show that the analysis is tight by presenting a lower bound that
almost matches the upper bound. The excess risk bound consists of the effective bias and the ef-
fective variance, both of them further decomposed into each eigen-subspace of the data covariance
matrix. Thus, the excess risk bound is only related to the eigenvalue spectrum, and is irrelevant to
the ambient model dimension, making the result applicable to the overparameterized regime.

* We compare the excess risk bound of SGD with EMA against SGD without averaging as well
as other averaging schemes, e.g., iterate averaging from the beginning and tail averaging, which
was studied in [Zou et al] (2021)), summarized in Table[]] We show that (i) the effective bias of
SGD with EMA decays exponentially in the number of iterations, and (ii) the effective variance
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Table 1: Comparison of SGD with EMA against SGD without averaging, SGD with iterate averaging
from the beginning and with tail averaging. We fix the eigenvalue spectrum of the covariance matrix
{A:}, the learning rate ¢, and the number of iterations N. We assume that tail averaging is performed
over the last N — s iterates, and « is the weight of the moving average in EMA. Compared with
SGD without averaging which has the same exponentially decaying effective bias as EMA, SGD
with EMA has a smaller variance error. SGD with either iterate averaging or tail averaging enjoys a
smaller variance error than SGD without averaging, and the variance error and the effective dimen-
sion of SGD with tail averaging are identical to that of EMA when (1 — «)(N — s) = 1. However,
SGD with neither iterate averaging nor tail averaging achieves the effective bias decay rate that is
exponential in N.

Averaging scheme Effective bias decay rate ~ Variance error in subspace of \;  Eigenvalue at effective dim.
w/o averaging Exponential in NV O(min{éX;, N62)2}) 1/(N¢)
Iterate averaging Polynomial in N O(min{1/N, N§2)\?}) 1/(Nd)
Tail averaging Exponential in s O(min{1/(N — s),8\;, N6222}) 1/((N — s)d), 1/(N6)
EMA Exponential in N O(min{l — a, 6\;, N62)\?}) (1-a)/8,1/(N5)

of SGD with EMA is smaller than SGD without averaging, and is comparable to that of SGD with
iterate averaging or tail averaging. Specifically, we observe a strong connection between EMA
and tail averaging in terms of the effective variance: Suppose the tail averaging is performed over
the last N — s iterates in a total of N iterations; if «, the averaging parameter of EMA, satisfies
(1 — a)(N — s) = 1, then the effective variance of SGD with EMA is identical to that of SGD
with tail averaging. However, the exponential decay rate of the effective bias can be achieved by
SGD with tail averaging only when setting s = ©(N) with a known training horizon N. This
indicates that SGD with EMA has an advantage over tail averaging in the setting of unknown
training budget.

* From a technical viewpoint, we identify a broad class of averaging schemes that covers all aver-
aging methods discussed in this work. Using a standard bias-variance decomposition, we derive a
crucial reformulation of the both the bias error and the variance error. Built on this reformulation,
an analysis framework for all averaging schemes belonging to this class is developed in this work.

Notations. For a vector x, we use (x); to denote its i-th entry. We use o to denote the operation of
linear operators on matrices. We use (A, B) := tr(AB ) to denote the inner product of matrices A

and B. For a PSD matrix A and a vector x € H, define ||x||a := Vx T Ax. For any positive integer
n, we use [n] to denote the set {1,2,...,n}. We use standard asymptotic notations O(-), (-), and
O(+). We write a ~ b if there exist ¢1, ¢ such that c;a < b < caa.

2 RELATED WORK

Online SGD in high-dimensional linear regression. There is a line of works studying the excess
risk bound of online SGD in the overparameterized setting using a bias-variance decomposition
(Bach & Moulines, [2013; Dieuleveut & Bach,2015;|Défossez & Bach,[2015;Dieuleveut et al.,[2017;
Lakshminarayanan & Szepesvari, 2018 Jain et al., 2018b; |Berthier et al., 2020; Zou et al., 2021}
Wu et al} 2022} [Lin et al.| 2024)). In particular, Zou et al.| (2021) focused on constant-stepsize SGD
with iterate averaging from the beginning or tail averaging, and derived the first instance-dependent
excess risk bound of SGD in overparameterized linear regression. [Wu et al.| (2022)) studied the last
iterate risk bound of SGD with exponentially decaying stepsize, which is found to achieve a excess
risk bound similar to SGD with iterate averaging. SGD with Nesterov momentum (Nesterov, [2013)
and tail averaging has also been studied (Jain et al., |2018aj |Varre & Flammarion, 2022} |L1 et al.,
2023)), with [Li et al.|(2023) obtaining an instance-dependent risk bound.

Understanding the effect of EMA. The favorable generalization properties of EMA in practice
have been observed in several works (Tarvainen & Valpola, 2017} Izmailov et al.,|2018). Through
empirical experiments, [Sandler et al.| (2023) connected the stabilizing effect of averaging methods
(e.g., EMA) with learning rate scheduling, which coincides with the finding of Wu et al.| (2022). A
similar theoretical result was given by Defazio| (2020), but the EMA is performed on the momentum
instead of the iterates.
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3 PRELIMINARIES

3.1 LINEAR REGRESSION AND SGD wiTH EMA

We consider the high-dimensional linear regression setting similar to [Zou et al.| (2021). Both the
weight vectors and the data features lie within R? where the ambient dimension d can be arbitrarily
large. The goal is to minimize the risk function

L(W) = 1/2 : E(X,y)ND[(y - <Wa X>)2]a

where D is an underlying distribution of the data, x € R is the input feature vector, y € R is the
response, and w € H is the weight vector to be optimized.

We consider optimizing the objective using SGD with EMA. At iteration ¢, a random sample
(x¢,y:) ~ D is observed, and the weight vector is updated as

W = W1+ 0(yr — (Wi—1, X¢)) Xy,

where § > 0 is a constant learning rate. Meanwhile, we maintain the EMA of the iterates by the
following recursive formula:

WO = Wp; Wt = O(Wt_l + (1 — Oz)Wt_l, (31)

where « € (0, 1) is the averaging parameter. Let NV be the number of iterations. The final output is
the Wy, which can be decomposed into the weighted sum of wy:
N—1
= _ N _ N—1-t
wy =a " wo+ (1 —a) tho o Wi (3.2)
3.2 ASSUMPTIONS

We now introduce the assumptions used in the analysis of SGD with EMA, following [Zou et al.
(2021); |Wu et al.| (2022)); [Li et al.|(2023)). The first assumption is a regularity condition that charac-
terizes the second-order moment of the feature vector.

Assumption 3.1 (Second-order moment). We assume that the data covariance matrix H = E[xx |
exists. Without loss of generality, we assume that H = diag(Ay, g, ... ) is a diagonal matrix with
eigenvalues listed in descending order. We further assume that tr(H) = >, \; is finite. We
assume that H > 0, i.e., L(w) admits a unique minimum w,.

We then present the assumptions that characterize the fourth-order moment of the data:

Assumption 3.2 (Fourth moment condition, upper bound). We assume that the fourth moment op-
erator M o A = E[xx " Axx "] exists. Furthermore, there exists a scalar ¢ > 0 such that for any
PSD matrix A, we have M o A = E[xx' Axx '] < ¢ tr(HA)H.

Assumption 3.3 (Fourth moment condition, lower bound). We assume that the fourth moment M
exists. Furthermore, there exists a scalar 5 > 0 such that for any PSD matrix A, we have M o A —
HAH > gtr(HA)H.

A special case is that the marginal distribution D| is a Gaussian distribution. In this case, the fourth
moment operator satisfies M o A = HAH + 2 tr(HA)H. Note that HAH < tr(HA)H, so we
can set ¢) = 3 in Assumption[3.2]and § = 2 in Assumption [3.3]

Finally, we present assumptions that characterize the label noise {; = y: — (W, X;). The following
assumption is a weaker condition used in the proof of the upper bound of the excess risk:

Assumption 3.4 (Weak label noise condition). The covariance matrix of the stochastic gradient at
W, ie., X = E[¢2xx "] and the noise level 02 := |[H~2 XH™2 |, both exist and are finite.

By Assumption we have 3 < ¢2H because 0 < Hz (02l — H 2 XH 2)Hz = ¢2H — X.
We then present the present the stronger assumption used in the proof of the lower bound, which is
referred to as the well-specified setting in the literature (Zou et al., 2021):

Assumption 3.5 (Strong label noise condition). We assume that the label noise ¢ is independent of
x, and E[¢2] = o2, In other words, 3 = o2H.

4 MAIN RESULTS

In this section, we present the upper and lower bounds of the excess risk, which is the difference
between the risk function evaluated at the output weight vector W and at the ground truth weight
vector w,.. Before we present the main results, we introduce the shorthand notation of sub-matrices:
For any positive integers k1 < ko, we define Hy,, ., = diag(0,...,0, \g; 41, -+ Aky, 0, .. ), and
Hy, .00 == diag(0,...,0, Agyt1, Akpt2, - - - ). We define I, ., and Iy, .o similarly.
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4.1 UPPER AND LOWER BOUNDS OF EXCESS RISK

Theorem 4.1 (Upper bound). Suppose that Assumptions and[3.4]hold, and the hyperparam-
eters satisfy N(1 —a) > 1 and § < 1/(¢ tr(H)). Then the excess risk satisfies

E[L(Wy)] — L(w.) < EffectiveBias + EffectiveVar,
where the effective bias satisfies

d NN (1 VAN
EffectiveBias = Z¢:1(WO —w,)?\ - b7, where b; = (Oi)a 5)\2'(1 (10[—)(014) = '

and the effective variance satisfies

U(l[wo —well} |+ Nolwo — wil, )
0(1 —¢d tr(H))

EffectiveVar < [k;*(l —a)? 462 Z ,\2} .

i>ks "t

02

kT
S e (O BHNNET ) DA

where the cutoffs are defined as k* := max{i : \; > (1 —a)/d} and k' := max{i : \; > 1/(NJ)}.

The proof of Theorem [.T]is given in Appendix [C.I] Theorem [4.1] characterizes the first instance-
dependent excess risk bound of SGD with EMA. The excess risk bound includes the effective bias
and the effective variance, both decomposed into each eigen-subspace of H. The effective bias
corresponds to the convergence rate of the risk function if GD is applied instead of SGD. In the
eigen-subspace corresponding to \;, the effective bias is \;(wo — w. )2, which is the initial bias
error in the eigen-subspace of \;, multiplied by the square of the decay rate b;, which will detailed in
Subsectiond.3] The effective variance stems from the stochastic gradient, including the randomness
of both x; and y;. We will discuss key elements of the effective variance in Subsection

We also obtain the lower bound of the excess risk of SGD with EMA:

Theorem 4.2 (Lower bound). Suppose that Assumptions [3.1] [3.3] and [3.3] hold, and the hyperpa-
rameters satisfy § < 1/\;, @V ~1 < 1/N, and N > 2. The excess risk then satisfies

E[L(Wy)] — L(w,) = (EffectiveBias + EffectiveVar)/2,

where the effective bias is identical to that in Theorem[4.1] and the effective variance satisfies

kT
- 2 2 * 2 2
EffectiveVar 2 (B[lwo — w.llg,, +07)- {(1 —a)k* 40 g R Ai +NJ g okt )\i}.

The lower bound is matching with the upper bound except for the first term of the effective variance,
which will be discussed in Subsection f.2] Although Theorem requires a stronger condition
about /V and ¢, it is still a mild condition in practice because a* ~*, which is the weight of wq in
(3:2), should be smaller than the average weight 1/N.

4.2 DISCUSSION OF VARIANCE ERROR

Both the upper bound and the lower bound of the effective variance contain two terms: The second
term stems from the label noise, which is referred to as the (real) variance error. The upper bound
and the lower bound are matching for this term up to constant factors. The first term comes from the
randomness of the feature vector, and is thus nonzero even if there is no label noise. The upper and
lower bounds are not matching for this term due to the additional term ||wo — w, ||%0 .+ in the upper

bound, which is similar to the case of SGD with tail averaging (Zou et al.,[2021). We conjecture that
finer analysis can bridge the gap.

Effective dimensions. The cutoffs k* and k' are referred to as effective dimensions, which can
be significantly smaller than the real model dimension d, especially when the eigenvalue spectrum
decays fast. Similar quantities also appear in previous works analyzing high-dimensional linear
regression (Zou et al., 2021; |Wu et al.l 2022} L1 et al., [2023)), and the double effective dimensions
k* and k' for SGD with EMA is very similar to that of SGD with tail averaging (Zou et al., 2021).
We will draw more connections between SGD with EMA and SGD with tail averaging in Section 3}
We then discuss the influence of hyperparameters J, a, and IV on the effective variance bound. The
following equalities about the effective variance will be useful in our discussion:

R0+ Y =3 (minfl - a,00)) @1

i>k*
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d
Iwo — wellf, , + Nollwo — wellfr,, = Zi:l Ai(wo — w,)2 min{1, NoX }; (4.2)

Kt d
* 2 2 _ : CATS2)\2
(1—-a)k*+9 E R Ai +N§ E ot A= g i min{l — a, 6\, N6“X; }. (4.3)

Learning rate J. In the upper bound of the excess risk (Theorem [.1)), we require that § <
1/(¢ tr(H)) similar toZou et al.[(2021), to ensure that (1—1/d tr(H))~! is positive. Larger learning
rates may cause the effect of the fourth moment to accumulate and diverge.

Number of iterations N. Due to @ and ([@.3), the effective variance increases as IV increases.
Furthermore, as N goes to infinity, k' also goes to infinity, while £* remains unchanged.

Averaging parameter o. Due to (@.I)) and (4.3), the effective variance decreases as « increases.
However, choosing « very close to 1 does not truly benefit the learning process because the reduced
variance error stems partly from the large weight of w( (which has no randomness) in (3:2)). We will
further elaborate this point in the next subsection.

4.3 DECAY RATE OF B1AS ERROR

We then study the quantity b; in Theorems [4.T|and [4.2] which is the decay rate of the effective bias
in the eigen-subspace of A;. We first note that

N-1
bi=(1=6A)N +(00) ) at(l—a)N

so the smaller « is, the faster b; decays. Together with the analysis of the effective variance in
Subsection #.2] we conclude that there exists a bias-variance trade-off concerning the choice of a:
Larger o brings about smaller effective variance, but makes the effective bias decay slower.

The following proposition presents a finer characterization of the decay rate b;:

Proposition 4.3. For any i € [d], the exponential decay rate b; satisfies

1. When (1 —6);)/a < (N —1)/N, we have b; >~ (X))o /(6\; — (1 — ));

2. When (N —1)/N < (1 —6)\;)/a <1, wehave b; ~ (1 — a)NaV 715

3. When 1 < (1 —0)\;)/a < N/(N — 1), we have b; ~ §\; N (1 — ;)N 1

4. When (1 —6);)/a > N/(N — 1), wehave b; = (1 — a)(1 — d\)V /(1 — @) — 6\;).
Proposition [4.3] implies that (i) the effective bias decays exponentially in N within every eigen-
subspace of H; (ii) the decay rate of the effective bias has a phase transition at the eigen-subspace
corresponding to \-: The decay rate is o2V in the eigen-subspace of large eigenvalues, and is
(1 — 6X;)*Y in the eigen-subspace of small eigenvalues, and (iii) when 1 — 6); is close to a, the
decay rate of the effective bias contains additional factors polynomial in N.

5 COMPARING EMA WITH OTHER AVERAGING SCHEMES

In this section, we compare the excess risk of SGD with EMA against SGD without averaging and
other averaging schemes, including iterate averaging from the beginning and tail averaging. Similar
to EMA, the excess risk of all averaging schemes of interest can be decomposed into effective bias
and effective variance (Zou et al.| [2021)). For each averaging scheme, we focus on its comparison
with EMA in terms of effective variance (including the effective dimension) and the decay rate of
the effective bias, i.e., b;.

Comparison with SGD without averaging. SGD without averaging is equivalent to EMA with
a = 0. Specifically, the effective dimension k* becomes 0, and the decay rate of the effective bias

is b/° = (1 — 6A;)N~1. Based on the discussion about the impact of « on the excess risk bound in
Subsections {.2] and we conclude that SGD with EMA has a smaller effective variance, but its
effective bias decays slower than that of SGD without averaging.

Comparison with iterate averaging. [Zou et al|(2021)) studied SGD with iterate averaging, which

is defined as Wi == N1 Ziif)l w. The variance error of SGD with iterate averaging is

O(o? Zil min{1/N, N6??}).

If N is not too large, i.e., NaN-1 = ©(1) , the difference between 1/N and 1 — « is only
polylog(N). In this case, SGD with EMA achieves a variance error similar to that of SGD with iter-
ate averaging. Due to the gap between the upper and lower bounds of SGD with EMA, we leave the
comparison of the remaining part of the effective variance for future work. The decay rate of effec-
tive bias of SGD with iterate averaging is b}* = (1—(1—6X;)N)/(NX;) = O(min{1/(NJsN;),1}).
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Therefore, SGD with EMA enjoys the advantage of exponentially decaying effective variance com-
pared with SGD with iterate averaging.

Comparison with tail averaging. [Zou et al.| (2021} also studied SGD with tail averaging, where

averaging is only performed for the last N — s iterates, i.e., wéT/?\, = (N —s)"1 iV: _51 w;. Similar
to the case in Subsection {.1] the upper and lower bounds of the excess risk of SGD with tail
averaging are not matching in Zou et al| (2021), so we focus on the comparison of the effective
dimension and the real variance error in the effective variance. According to|[Zou et al.| (2021), the

effective dimensions of SGD with tail averaging are k., = max{: : \; > 1/((N — s)d)} and
kTA = max{i : \; > 1/(NJ)}. We thus observe that kjFA is exactly the same as k' in SGD with
EMA, and k%, = k* under the condition (1 — o)(N — s) = 1. Furthermore, the real variance of
SGD with tail averaging is

Variance = O (o Zi min {1/(N — s),5X;, N6°A7}),

which also matches that of SGD with EMA if (1 — «)(N — s) = 1. For the decay rate of the effective
bias, we have b7 = ((1—0\;)* — (1 —6X)N)/((N — 5)6);). We then compare b; with b} under
the condition (1 — «)(N — s) = 1. When « > 1/2 (which is a mild condition in practice), we have
loga > (a—1)/2,and 1/y/e = el@=D(N=5)/2 < o(N=s)loga — (N=s We thus have

by =(1—a) Zz:l NI — o) oV (5)‘i)0485;i(i zla_)(al)— 29k
l1—« _ (175)\1)87(176)\7)]\]
= Zt s Ve(N — s)d\; ’

where the 1nequahty holds due to a dropped positive term and o’¥ =% > 1/,/e. Therefore, the
exponential decay rate of SGD with EMA b; is Q(b]*). However, b; is exponential in N while b1*
is exponential only in s, which means that SGD with EMA has the advantage that the effective bzas
in every eigen-subspace decays exponentially fast in N compared with polynomial decay in N for
SGD with tail averaging if s is fixed before training.

6 EXTENSION TO MINI-BATCH SGD

We now extend our analysis of SGD with EMA to mini-batch SGD. Let B be the batch size, and
{(Xt.i,yt.4)}2.; be the mini-batch sampled from the distribution D at iteration t. An iterate of
mini-batch SGD is

P=wN+6/B- Z (Y — (wy B{,th>)Xt,¢~

We then consider the excess risk of the exponential moving average of the mini-batch SGD iterates,
defined as

N-1
wMB N MB N—1-t MB
Wy =o W +(1—a)§t:0a w, .

Theorem 6.1. Suppose that Assumptions and [3.4) hold, and the learning rate satisfies § <
min{B/(2¢y tr(H)), 1/||H||2}. Then the excess risk of mini-batch SGD satisfies
E[L(Wy)] — L(w.) < EffectiveBias + EffectiveVar,

where the effective bias is identical to that in Theorem 4.1} and the excess variance satisfies
Kt
" < 952/8 . [(1 — a)l* , 2 2
EffectiveVar < 26°/B - [(1 — a)k* + & E e Ai + N6 E ikt A7

+2¢/(6B) - (k*(1 — )® + 6 Zpk* A7) - (29(]|wo — W*H%O:kT + Né||lwo — W*H%{Mm)).

A lower bound corresponding to Theorem [6.1]can be proved similar to Theorem

Based on Theorem @ we aim to derive the critical batch size (Zhang et al.| [2024), which is the
batch size that causes a phase transition on the excess risk bound. Since the effective variance decays
exponentially in NV, we present the following corollary for only the effective variance:

Corollary 6.2. Suppose the eigenvalue spectrum satisfies A\; = ¢~ ¢, and the initialization satisfies
Ni(wo — w,)? = i® where b < a + 1. Let M be the number of examples. Then under the same
assumptions as Theorem[6.1] we have

EffectiveVar = ©(B~16Y/9(1 — o)1 71/%) 4 @(B~152Y/a(1 — )2~ Vayi=(b=D/a),
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The assumption of the eigenvalue spectrum and the initialization is referred to as the source condition
(Caponnetto & De Vitol [2007; Zhang et al., 2024)). The assumption of b < a + 1 ensures that upper
bound and the lower bounds are matching. If we further let N = M /B where M is the total

number of samples, then the critical batch size is B* = O(M¢ T (1 — a)=5+1). We observe
that the critical batch size of SGD with EMA is sharply different from SGD with iterate averaging
in [Zhang et al.[(2024). This is because the critical batch size is determined by both the effective
bias and the effective variance for SGD with iterate averaging due to the effective bias that decays
only polynomially in N. However, the effective bias of SGD with EMA decays exponentially in IV,
making it negligible in the analysis of the critical batch size.

7 OVERVIEW OF PROOF TECHNIQUES

In this section, we present the proof technique that is not only used in our analysis of EMA, but also
applicable to a class of averaging schemes.

We first introduce the class of averaging schemes that covers EMA and iterate averaging, among
others. In (3.I), instead of using a uniform « in all iterates, we allow the averaging parameter to
depend on ¢, i.e.,

Wo = Wo; Wi =0 W1+ (1 — 1)W1,

where a; € [0, 1] is the time-dependent averaging parameter. The final output can be written as
N—1
Wy = [Bow Big1 — By)w
N = Do 0+E —o (Bev1 — Br)wy,

where (3; is defined as 3; = szv:—t1 a¢. Most averaging schemes belong to this class, e.g.,

* EMA: oy = o, and 3; = oV .
* SGD without averaging: a; =0, By = 1,and 5, =0 forallt =0,..., N — 1.
* Iterate averaging: o, = t/(t + 1), and 8, = ¢/N.

* Tail averaging:
0 t<s, 0 t<s,
e T Bi=1 t=s t>s
- ) - .

t—s+1 N—s

We now define several notations following|Zou et al.|(2021)). We first define the centered SGD iterate
as 7y = w; — W,, and the EMA of the centered SGD iterates is 7, = Wy — w.. We define the
centered bias and variance vectors recursively as

bias __ bias __ T bias.,
o =mo, m = (I—-0xixy )0

M =0, W™ = (I—xx )™ + 06

We can define the EMA of the centered vectors 77, 72, and % similar to the definition of

Wy in . Following previous works (Défossez & Bachl 2015} Dieuleveut et al.l 2017} Jain
et al.l 2018b; Berthier et al., [2020; [Zou et al., 2021 [Wu et al., 2022; [Lin et al., 2024; L1 et al.|
2023)), under Assumption [33], the excess risk can be decomposed as (See Lemma @] for details)
E[L(Wy)] — L(w.) < bias + var, where the bias and variance errors are defined as

bias = (H, E[f* @ 7)),  var = (H,E[f% @ 7). (7.1)

Since BI* and )" are the weighted sums of 7P and 1}, respectively, in order to bound bias

and var which depends on the covariance matrix of 7 and B}, it suffices to (i) study terms
of the form E[nP#* @ nPias] and E[ny® ® ny™'], and (ii) represent the bias and variance errors in
a tractable form. For Step (i), following [Zou et al| (2021)), we define the covariance matrices as
B, = E[pPi®s ® nP1%] and C; = E[n™ ® n;®]. With these definitions, for k¥ > ¢, we have
E[npias @ phias] = B4(I — 6H)*~! and E[n}® ® ny*"] = C;(I — §H)*~*. We are now ready to

—Dbias —bias

represent E[773*° @ 7x,*°] using By:

N-1

EmR™ @ 7] = B3Bo+ Y Bo(Br — Bis1)[(T — 6H) By + Bo(I — 6H)']
t=0
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N—-1 N-1
+ > (B = Brr) { B —Biy1)Bi+ Y (B — Bry) [ — dH) /By + By (I - 5H)kt}] :
t=0 k=t+1

(7.2)

For Step (ii), the analysis in|Zou et al.|(2021); Wu et al.| (2022) that adds the terms B, and transforms
(7.2)) into a “triangular” sum does not work due to the inhomogeneous 3; — B¢+ 1. To tackle this issue,
we make the critical observation that

N-1
(Bt — Bt41) [(51& —Bey)Be+ Y (Br — Brp)[(I— 6H)* "B, + By (T - 5H)kt]}

k=t+1

N-1

N-1
{Z (B — Brs) (L 6H)* | - B, - {Z
k=t

= N-1
_{ > (5k—5k+1)(1—5H)kt1] (BoBy)- { S (B — Br) (1 — GH)EE 1}

k=t+1 =t+1

(Be = Brr1) (I — 6H) }

where the matrix operator B is defined as B = (I-0H) ® (I — dH). Similar properties were first
used in |Li et al.| (2023)) to study the generalization of SGD with Nesterov momentum. Using this
property, by applying the telescope sum, (7.2)) can be reformulated as

N-1
B[R @ 7h™] = [ ol + Z B — 1) (I~ 6H) ]Bo[ oL+ D (B = B (1 - 6H) ]
k=0

N—-1rN -1

+ Lz: B = Br1) (I — dH)*~ t}(B ~BoB,- 1){

t=1

=

(B — Bress)(I— 5H>“} ,
(7.3)

where the first term corresponds to the effective bias, and the second term contributes to the effective
variance. A similar reformulation can also be applied to the variance error. Further simplifications
are possible due to the fact that Cy = 0, so the variance term corresponding to the first term in
is 0. Afterwards, B; and C; can be further characterized by the analysis similar toZou et al.[(2021).

8 EXPERIMENTS

In this section, we verify our theoretical findings with empirical experiments. We present the ex-
periments in the linear regression setting, and experiments on the single-neuron ReLU network (Wu
et al.,[2023) in Appendix [A] We (i) compare the generalization performance of SGD with different
schemes, and (ii) explore the impact of the choice of the averaging parameter o on the excess risk
of SGD with EMA. We consider the well specified setting (Assumption with 02 = 1. The
data feature vectors follow the Gaussian distribution x; ~ A/(0, H) where the eigenvalue spectrum
of His \; = i~2 with d = 2000, which is also the experiment setting in Zou et al.| (2021); [Wu
et al.| (2022); [Li et al.| (2023)). The centered model weight vector is initialized as a Gaussian ran-
dom vector wo — w, ~ N(0,I). According to Theorem [4.1] - the learning rate J should satisfy
§ < 1/(¢tr(H)) = 2/7% ~ 0.203, so we choose § = 0.2. The total number of iterations is fixed
as N = 3000. In all experiments, we record both the bias error and the variance error as defined
in (7.I). We run each experiment 100 times and plot the confidence ban(ﬂ The experiments are
runnable on a PC within minutes.

>
Il

t

Comparison of different averaging schemes. In the comparison of EMA with other averaging
schemes, the averaging parameter of EMA is a = 0.995, and s € {100,200, 500, 1000} in tail
averaging. The comparisons of the bias error and the variance error are shown in Figures [[{a) and
[[[b), respectively. Although the bias error of SGD with EMA decays slowly at the beginning, it
achieves a fast decay rate similar to that of SGD without averaging. However, the bias error of SGD
with EMA is far more stable than without averaging, due to the reduced variance of the data feature.
The variance error of SGD with EMA remains at a low level though slightly larger than SGD with
iterate averaging or tail averaging (because (1 — «)(N — s) > 1). We also conclude that averaging

'For the variance error, we only show the confidence band for iterate averaging, tail averaging with s = 100,
and EMA for variance error, for clarity.
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Figure 1: Comparison of SGD with different averaging schemes. The bias error of SGD with EMA is
more stable than SGD without averaging, and decays faster than iterate averaging and tail averaging
when N is large. The variance error of SGD with EMA remains relatively small, and is comparable
to that of SGD with iterate averaging or tail averaging.
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Figure 2: Comparison of SGD with EMA with different a. The bias error of SGD with EMA with
smaller alpha decays faster at the beginning of training, but the advantage is less significant when N
is large. The variance error of SGD with EMA decreases as « increases.

in general is crucial in variance reduction due to the observation that the variance error of SGD with
tail averaging decays sharply when averaging starts.

Comparison of SGD with EMA with different a. We compare SGD with EMA with a = 0.9,
0.99 and 0.999, and the experiments results are the average of 10 independent runs. The variance
error (Figure 2a)) of SGD with EMA with larger « is significantly smaller than that with smaller
«, and the bias error (Figure b)) is also more stable. The bias error of SGD with EMA when
a = 0.9 or 0.99 decays much faster than when o = 0.999, but they all approach a similar level
when N = 3000. We conjecture that this is because the decay rate of the bias error is dominated
by the slowest decaying component, which is the bias error in the eigen-subspaces of the smallest
eigenvalues. As we have pointed out in Proposition[d.3] the exponential decay rate of the bias error
in such eigen-subspaces is independent of «.

9 CONCLUSION

In this work, we study the generalization of SGD with EMA in the high-dimensional linear regres-
sion setting. Our excess risk bound of SGD with EMA depends solely on the eigenvalue spectrum,
which is instance-dependent and dimension-free. Similar results can also be derived for mini-batch
SGD. In a comparison with SGD with other averaging schemes, we reveal the two-fold advantage
of SGD with EMA: the exponentially decaying effective bias error and the modest effective vari-
ance error. Our analysis provides the framework for the study of a class of averaging schemes we
proposed.
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REPRODUCIBILITY STATEMENT

In the numerical experiments, we have described the details of the model, generation of synthetic
data, and evaluation metrics in Section[§] The proof of theoretical results are given in Appendix [C|
and the proof of supporting lemmas are given in subsequent sections.
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A ADDITIONAL EXPERIMENTS

In this section, we present additional experiments on the single-neuron ReLLU network. The results
are similar to the linear regression model.
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Figure 3: Comparison of SGD with different averaging schemes for the single-neuron ReLLU net-
work.
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Figure 4: Comparison of SGD with EMA with different « for the single-neuron ReLU network.
B ADDITIONAL NOTATIONS

Linear Operators on Matrices. We define the following linear operators on matrix following /Zou
et al.[|(2021):
I=19I, M=Exox®x®x], M=HG@H,

B=E[I-dxx")®(I-6éxx")], B=(I-0H) (I-5H)

Denote the o-algebra generated by samples {(xx, yx)}i_; as ;. Due to the optimality of w,, we
have VL(w,) = 0, which implies that

0=VL(w,) =E[x(x'w, —y)] = Hw, — E[x - ]. (B.1)
Due to the equality above, we have
Bl |Fii] = (1- SH)nl%,  Enf™|F ] = (- SH)m}™,.
Iterating this property, using the double expectation formula, we have for any k£ < ¢, we have

E[T’?ias‘]:k] _ (I _ (5H)t_k’r[,?ias, E[nzarl}-k] — (I _ 5H)t—kn1\éar’ (B.Z)

12



Under review as a conference paper at ICLR 2026

which indicates that E[n;"] = 0. We also have
B; = E[E[n,"™ © 0| Fi_1]]
= E[E[(T - 0xx/ ) @ (T =% )) - (0™ © 02| Fia]
=E[Bo (™} @ n)]
—BoB,_., (B.3)
and
C: = E[E[n™ @ 0™ |Fi-1]]
= E[E[(X - oxpx[) @ (T = dxx] ) - (m @ m™%) + 6%€Pxix]
— B (m) T (1= 0] ) — 06T — D] Y] | Fial
=BoC_1 +°%, (B.4)

where the last equality holds because (x¢, y¢) is independent from 7y and E[n;?;] = 0.
Several other key properties of the centered iterates and the linear operators are given in Appendix|[G|

C PROOF OF MAIN RESULTS
C.1 PROOF OF THEOREM

To prove Theorem [4.1] we first decompose the excess risk into the bias error and the variance error
(Lemma|[C.T), and then bound them separately (Lemma|[C.2)and Lemma [C.3).

Lemma C.1. The excess risk can be decomposed as
E[L(Wn)] — L(w,) < bias + var,
where
bias = (HLE[@R™ @ 7%™]),  var = (HE[@Y" @ 7%"]).
Lemma C.2. Suppose that Assumption [3.2|holds, and the learning rate satisfies § < 1/(¢ tr(H)).
Then the variance error satisfies

2 K

g *

i=k* i>kt

Lemma C.3. Suppose that Assumption [3.2holds, and the learning rate satisfies § < 1/(¢ tr(H)).
Then the bias error satisfies

U(llwo — wullf, |, + Nollwo — w. I

m;m) w1 N2, 52 2
51— G5 () <"’ -y +e Zki)

i>k*
i Ly [N = (1= a1 = o) N
+;(Wo w*)i)\z{ Sy —" .
C.2 PROOF OF THEOREM

The lower bound can be proved using the bias-variance decomposition similar to proof of the upper
bound.

bias <

Lemma C.4. Under Assumption[3.3] the excess risk can be decomposed as
1
E[L(Wn)] — L(w,) = i(bias + var).

Lemma C.5. Assume that the hyperparameters satisfy 6 < 1/\;, N > 2 and | /N. Then
the variance error satisfies

Kt

3a%(1 — a)k* ] N§?

2 2

var > o — 1 —|—7100- E /\i—|——§ Af -
i=k*+1 i>kt
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Lemma C.6. Under the same assumptions as Lemma|C.5] the bias error satisfies

:
. _ 3a?(1 — a)k* R
bias > Be~>|mollfy,, [16 + 100 > z+ — Z A2
i=k*+1 z>k’r

d
(6A)aN — (1= a)(1—8x)N
i ;"M{ X — (1-a) } '

The proofs of Lemma [C.1]and Lemma [C.4] are given in Appendix [E.T] The proofs of Lemma [C.2]
and Lemma|C.3]are given in Appendix The proofs of Lemma|C.3|and Lemma|C.6]are given in

Appendix [E.3]
C.3 PROOF OF THEOREM

In this subsection, we modify the proof of Theorem [4.1]to derive the excess risk upper bound for
mini-batch SGD.

Proof of Theorem[6.1} Define the residual vector of mini-batch SGD in the same way as SGD. We
then define the bias and variance residual vectors as

bias bias __ bias,
Mo =Mo, My (I E Xuxm)m 1

778“ = 07 var - (I B Z Xt,iX¢ ") ’I’]Var t3 Zét iXt,i-

We define the exponential moving average of the b1as and variance remdual vectors as well as the
second moment matrices B; and C; in the same way as SGD. We then have the bias-variance
decomposition lemma similar to Lemma[C.1]

We define all linear matrix operators in the same way as SGD except for B, which is defined as

B:—E[(I—Zx“x“> (I— Zx“x“ﬂ,

then B, and C, satisfy the following recursive formulas:

52
Biy1 =BoBy, Ct+1:BOCt+EE~

We also note that B — B = §%/B - (M — M) is still a PSD operator, and for any PSD matrix A, we
have

~ 52
(B=B)oA <= 5 tr(HA)H

Therefore, we can substitute the parameters in Theorem as 02 < 0?/B and ¢ + /B, and
obtain the upper bound for the excess risk of mini-batch SGD. O

D DISCUSSION ABOUT DECAY RATE OF BIAS ERROR

In this section, we study the term
N-1
bz’ — aN + (1 —Oé) Z aNflfk(l _ (5>\i)k

()N — (1= a)(1 — AN

oA — (1 — a)
= (1= 0X)N + (6\) ZQN R — 5A)F,
To upper bound b;, when i < k*,i.e., 1 — d\; < «, we have
b; = ()N — (1 —a)(1 —s\)N < S\ o~
A —(1-a) hi—(1—a)"
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where the inequality holds because (1 — «)(1 — §);)Y > 0. We also have

=2

-1

bi=a +(1-0a) N TIR (L = oN)F

<N+ (1-0a)) VR =V £ N1 —a)aV

M- 114

=
Il

0

where the inequality holds because 1 — 6\; < a.
When 7 > k*,i.e., 1 — d)\; > a, we have

bi = (1 —6X)N + (6)\) R O ) P L
0
1

2

ES
Il

2

<@ =)V F(N)) A=)V TR (1 =Nk

Il
=

—ox)N

=

= (1=86X)N + N6
where the inequality holds because o« < 1 — §\;. We also have

(1—a)(1—5X)N — (6M)aN 11—« N
- < —_ S\
bl 170475/\14 - 170475)\1(1 6)\1) ’

where the inequality holds because (5);)a’Y > 0.
To lower bound b;, we consider the following cases:

Case 1. When (1 —d)\;)/a <1—1/N, we have
()N — (1 —a)(1 =)V < (@™ — (1= 38X)N)

bi =

5)\1'—(1—04) - 5)\,'—(1—04)
L BN UNY) (e
- i —(1—a) TN -(1—a) 7

where the first inequality holds because 1 — a < JA;, the second inequality holds because 1 —
§\i/a < 1—1/N, and the last inequality holds because (1 — 1/N )V < 1/e.

Case2. Whenl—1/N < (1 —6)\;)/a <1, we have
N—1
bz +(1-a)> aNA-1/N)F=a" +(1-a)¥ " N1 - (1-1/N)Y)
k=0
>V +(1—-e (1 —a)NaV

where the first inequality holds because 1 — §\; > (1 — 1/N)a, and the second inequality holds
because (1 — 1/N)N < 1/e.

Case3. Whenl < (1—46);)/a < N/(N — 1), similar to Case 2, we have
by > (1 =)V (1 —e H)NoX (1 —o\)V L
Case4. When (1 —6)\;)/a > N/(N — 1), similar to Case 1, we have

(1—e)(1—a)

;>
bz_ 1—&—5)\7;

(1—ox)N.

E PROOF OF LEMMAS IN APPENDIX

E.1 BIAS-VARIANCE DECOMPOSITION

In this subsection, we prove Lemma[C.T|and Lemma|C.4] The proof is similar toZou et al.| (2021),
and is presented here for completeness.
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Proof of Lemma By Lemma|G.2] the excess risk can be written as
E[L(Wn)] = L(w.)

= J(HLElny @ 7,])

1 —bias —var ias —var
SE[(H, @0 + 73 © (R + 7)) |

1 —=blas var 1as =var —Dbias Svar 1as =var
SE[EL @R +7757) © (@R + 70 + (L R —7%7) © (33 — 7))
= (HLE[y™ @ 7y™]) + (H, 7% @ 7y")

= bias + var,

IN

where the second equality holds due to Lemma|G.3] and the inequality holds because a positive term
is added. O

Proof of Lemma By Lemma|G.3] the excess risk can be written as

EL(wx)] — L(w.) = 5E|(H, (IR +75%) © 0% +75)

1 s blas s Pblas Svar Svar svar = blas
S (HLERR™ ©my™)) + §<H,E[nN @ IR']) + (B EmR" @ 7).
It then suffices to show that E[77 33" ®ﬁblas] = 0, and it further suffices to prove that E[ny* @n>1#s] =

0 for all £ and s. According to the recursive formulas of the residual vectors, we have

t

t
var = Z I — (SXle kak),

k=11=k+
no™ = @ - éx,%x] )mo
j=1
We then have
t s
E[ var ® n?l"ﬁ _ Z |:( H I — 6X1Xl—r)(§kxk)) X (H(I — 6XJX;F)’I’]0>:| = 0,
=1 I=k+1 j=1

where the second inequality holds because &, is zero-mean and independent of feature vectors (As-
sumption [3.5)). O
E.2 VARIANCE BOUND

We need the following lemma to prove Lemma [C.2]

Lemma E.1. Suppose that § < 1/(¢ tr(H)). Then for any ¢ > 0, the inner product of C; and H is
upper bounded by

o25tr(H)
T 1—¢dtr(H)
The proof of Lemma[E.T]is given in Appendix [F.I] We now provide the proof for Lemma|C.2]
Proof of Lemma According to the definition of var and Lemma|G.4] we have

tr(HC,) <

N-1 N—-2—t

var = (1—a)® > <H< > aNQtk(I-éH)k)((B_g)octJra?z)
t=0 k=0
N—-2—t
(koaNth:I (5H))>

N-1

<> (1 - )@ tr(HC,) + 0%)
t=0
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N—2—t N—-2-t
. <H,< Z O[N727t7k(1 )H< Z O[N 2—t—k I 5H) )>
k=0 k=0
0_2 d N—-1 ,N—-2—t 2
1—a)?(6N)? < N=2-t—k 5)\2-’“), E.l
S Tt 121( a)(6Ai) ; 2 a (1 ) (E.D)

where the first inequality holds due to Lemma [G.I] part b and Assumption [3.4] and the second
inequality holds due to Lemma [E.T] We then study the upper bound for .J;. Firstly, we have

Ji<(1-a)(s i(NitaN 2=k 5A,»)’f)2

t=0
(I—a)dhi  1+a—ad)
l—a+adh; (1+a)(2-0N)
(1 70&)5/\@
< —t .
T 1l—a+ad)
< min{l — a, d\; }, (E.2)

where the first inequality holds because positive terms are added, the second inequality holds be-
cause 1 + o — oA < 1+ a < (14 a)(2 —dA;), and the second inequality holds because
1 —a+ ad); > max{l — «,d\;}. Secondly, we have

N—-1 ,N—-2—t N-1

Ji < (1—a)?(6A Z( Z alN =27t ’C) (622> (1= a2 < N§2A7, (E3)

t=0

where the first inequality holds because 1 — dA; < 1, and the second inequality holds because

1 — aN=1=t < 1. Substituting (E.2) and (E.3) into (E.I)), we have

2

d
s 242
Vi <7§ _ . 2
ar 1 ’d}dtr(H)l 1m1n{1 0476AZ,N(S AZ}

o? " il
zl_wtr(H)[u—a)k +5 > /\H—N(SQZ)\f}

i=k*+1 i>kf

Proof of Lemma According to the definition of var and Lemma|G.4] we have

N-1 N—-2—t

var = (1 — a)? tz;< ( Z A 5H)k>(<3_i§)oct+522)
(Nf: taN*Q*t*’“(I - 6H)’“)>

k=0

=2

> o?

71( —a)?$ <H,<Nito/v S ) (N]:OtaN 2THI - 0H) )>

N-1 ,t-1 2
(1 —a)?(0N)? ( a1k 6)\i)k) )
k=0

1 t=0

= EM

I
Q

7

Ji

where the inequality holds due to Lemma|[G.I| part b. We then study the lower bound for .J;, based
on the regime that \; falls into:

17
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Case1: 1 < k* .Inthiscase, 1 —d\; < «, and we have
(I — )1+ a—adh) (1 — o)
a (1—a+a6)\i)(1+a)(2—5)\¢)
_ 2001 —a)’(1=dr)aN oV —(1-0N)Y (1 a)?N (aN —(1- (m)N)Q

Ji

(I —a+ad))(2—-25N) a—(1-=148\) 2—0N a—(1-=246\)
SAi(1—a)(1+a—adr)(1—a?N) 260 (1 —a)?(1 —dX\)aN  dN(1 —a)?
T (I=a+ad\)(1+a)(2-68N) (1—a+4+adr)(2—-9\) 2 -6\
SAi(1—a)(1+a—ad))(a®—a?N) 260 (1 —a)?(1 —6\) (o — V)
T T l—at et =N (I—a+tash)2—on)

S (1 —a)(1 +a—ad))(a? —a?N)
- (1 —Oé+0é(5)\i)(1+04)(2—5>\1‘) ’

where the first inequality holds because % < NoV~=! < 1, and the second inequality
holds because a positive term is dropped. We then consider the function
(1 —-2z)(1+ ax) 2(1 - «)
= —t—=L=1- ) € 07 )

/(@) (1—ax)(l+x) 1/z —ax+ (1 — ) v e (0.9
so f(z) is decreasing in z, and f(z) > f(a) = (1 + a?)/(1 + a)* > 1/2 (Cauchy-Schwarz
inequality). Since oV ~! < 1/N, we also have 1 — o*¥—1 > 1 — 1/N? > 3/4 because N > 2.
We thus have

a2(1 _ 0¢2(N_1))

Ji:(l—a)'f(l—(S/\i) I+a
1 3a?
== 5 0w
3(1 — a)a?
Z =15

where the last inequality holds because o < 1.

Case2: k* <i <k Inthiscase,1 —1/N <1—6)\; < a,and forany p € (1, N), we have

N-1 t—1 2
Ji 2 (1 — Oz)2<5)\i)2 Z ((1 — 6)\i)t_1 Z Oék>
t=0 k=0
N-1
=(X)2 ) (1 —6X)2N (1 —at)?
t=0
N-1

> (0N Y (1=on)P (- al)?
t=[logy /o 1]
N—-1
> (6N (1—1/p)? Y (1=6x)20
t=[logy /o 1]
o1 —1/p)?
T 26\

where the first inequality holds because (1 — §);)¥ < (1 — d\;)*~L, the second inequality holds

because negative terms are dropped, and the last inequality holds because o < alloganl < e
Since 1 — 6)\; > «, we have

[(1 = ox;)>(Mo8r/a HT=D — (1 — 63,)> (V1)

(1 — o) 2 Meer/a 1= > 210810 n1=1) > (2logr/an — =2,
Furthermore, since 1 — 0A; < 1 —1/N, we have

(1—6X)* N7 < (1—1/N)* V=0 < (1/2)? = 1/4,
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where the second inequality holds because (1 —1/N )2~ =2 is decreasing in N when N > 2. There-
fore, by taking ;=1 = (1 + \/5)/4 we have

0N 6v3-9 LY
‘T2 64 T 100
Case3 :i> kT Inthiscase \; < 1/Né, and for all k < N, we have
(1—=6X)"> 1 —1/N)NL > et

where the second inequality holds because (1 — 1/N)~~! is decreasing in N when N > 2 and the
limit is e~!. We then have

N-1 ,t-1 2
Ji > e 21— a)?(0))? (Z ozk>
t=0 k=0
—1
“2(6))? (1—a)?

t

=

Il
<

-1

2N Y (1—ah)?

t=|N/2]

N _
> ?52)\12(1 — a(N-1)/2)2

1 N§2)\2
> N&2AZ —— . (1-1/vV2)?2 > i
= i 9e2 ( V2 2 180 ’

where the second inequality holds because positive terms are dropped, the third inequality holds
because for all ¢ > |N/2], we have a! < aN=1/2_"and the fourth inequality holds because
NI <1/N <1/2.

Combining all the above, we have

T
3a2(1 — a)k* R
>0l | Y——— 4 — i+ /\2
var=¢ 6 100 iz;ﬂ 180 Z

E.3 BIAs BOUND
We need the following lemma to prove Lemma[C.3]
Lemma E.2. The matrices B; satisfies

> tr(HBy) < W Z”Oz —(1=6X)1.

k=1
The proof of Lemma[E.2)is given in Appendix [F.2] We then prove Lemma|[C.3]
Proof of Lemma|C.3| By definition of the bias error and Lemma|[G.4] we have

N—2—t 2
bias < wz 1—a)?(0)\;) Z tr(HB;) ( Z oV =27tk (1 — 5)\2-)’“)
k=0

=1

Ji
d 2
2 ] (1 — Oz)(l - 5/\Z)N — (5)\1')041\[

where the inequality holds due to Lemma|[G.T| part b. We then study the upper bound of J;. Firstly,
we have

N-—-1 N—-2—t 2
Ji < (1—a)¥( 2ZtrHBt( 2(1—5)\2-)’“)
t=0

k=0
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=2
L

=(1- a)2 tr(HBy)(1 — (1 — 5)\2,)1\7*1715)2

Z WH
|
o

<(1—a)? ) tr(HBy)

Il
o

< 5(1 1/)r)(H 27701 (1—0x)N]

Ufi»(""oll?w + Nolmoll,, ).

where the first inequality holds because o < 1, the second inequality holds because 1 — (1 —

SA;)V~17t < 1, the third inequality holds due to Lemma and the last inequality holds because
1—(1—=6X)Y <min{1, Né);}. Secondly, we have

N-1 N—2-t
Ji < (1= a)*(0))* Y tr(HBy) ( Z oGN-2-t— k)
N-1 =
= (0A)? D tr(HB,)(1 — oV 71?2
Nt
< (0N)? Z tr(HB;)

t

<9
>
N
=)

d
< i 2 M1 (1 — AN
< T ste 2o el — (1= on))
5N?
< ? 2

where the first inequality holds because 1 — d\; < 1, the second inequality holds because 1 —
aN~1=t < 1, the third inequality holds due to Lemma and the last inequality holds because
1—(1—-6\)N < min{1, Né\;}. Combining all the above, we have

+ Nlmoll,, ),

_ d(lwo —wullf . +Nolwo—wilfr, )/ |
bias = 5(1 — 3 tr(F)) (ra-arss 2% )
" (5)\) —(1—a)(1=0x)N?

Proof of Lemma According to the definition of the bias error and Lemma[G.4] we have

d N-1 N—2—t 2
bias > 62(1 —a)?(6)\)? Z tr(HBy) < Z e 5)\i)k>
t=0

i=1

d 2
()N — (1 —a)(1 =6\
" ;”‘“{ i —(1—a) }

d N-1 t—1 2
> Btr(BoH(I — 6H)*V =) 3 " (1 — a)?(6A;)? (Zat_l_k(l — m)k)
=1

d 2
(EX)a™ — (1 —a)(1 — AN
' ;US,M{ oA —(1—a) } ,
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where the second inequality holds because
=B'oBg = B' o By = (I—0H)'Bo(I— 6H)! = (I — 6H)V " 'By(I — 6H)V 1.

Note that the lower bound for J; is the same as that in the proof of Lemma [C.3] For the term
tr(BoH(I — §H)?Y), we have

tr(BoH(I — 6H)?N) an >SRN - NP > e g F

i>kt

where the second inequality holds because 6\; < 1/N when i > kf, and the second inequality
holds because (1 — 1/N)2(V=1) > 1 /e2. We thus have

.
. _ 3a2(1 — a)k* R
bias > Be 2||770H%1Hm {16+ 100 Z ,+— Z A2

i=k*+1 z>kT

d
(M) — (1 — a)(1 — 67N
+;n3’i&{ oA — (1 —a) } '

F PROOF OF LEMMAS IN APPENDIX

F.1 PROOF OF LEMMA[E.]
We need the following lemmas to prove Lemma [E.I}
Lemma F.1. C; satisfies

k-1

Ct:ZB’“OE.

k=0
Since B is a PSD operator (Lemma @, we have
Co=xCi=---C =
Proof. The expression for C; follows directly from the recursive formula for C;. O
We now provide the proof of Lemma[E.T]

Proof of Lemma According to the recursive formula, we have

Ci=BoCi_1+68 <BoCy_y+02(tr(HC,_1) + 02)H
t—1
(0% tr(HC;_1_) + 02) - BFoH
k=0
t—1
< 6% (¢ tr(HC,) +0%) > B o H
k=0

< 62(y tr(HCy) + 0%) Y BF o H,
k=0
where the first inequality holds due to Lemma|G.T|part b and Assumption[3.2] the second inequality
holds by recursively applying the first inequality, the third inequality holds due to Lemma[FT} and
i

the last inequality holds because B is a PSD operator (Lemma|G. 1} part a). Taking the inner product
with H on both sides of the inequality, we have

tr(HC,) < 0*(¢ tr(HC,) + o?) f: tr(H(I — §H)"H(I — 6H))
k=0
= 2(Y tr(HCy) 4 o?) i tr(H(I — 6H)?*H)

k=0
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< 82 (Y tr(HCy) 4 0?) f: tr(H(I — 6H)"H)
k=0
= §(¢ tr(HCy) + %) tr(H),

where the second inequality holds because I — dH > 0. Rearranging terms, as long as § <
1/(y tr(H)), we have

o2 tr(H)

wHC) < T 5wy

F.2 PROOF OF LEMMA
Proof of Lemma|E.2] Define

t—1
Sl = ZBt.

Note that S} satisfies S} = B o S;_1 + By, so according to Lemmampart b, S} can be bounded
by

S! <BoS! | +¢s*tr(HS! | )H + B,

t—1
= o (82 tr(HS;_,_,)H + By)
k=0
t—1 N
< ¥ o (62 tr(HSHH + By)
k=0

t—1 t—1
= ¢0% tr(HS}) Y (I dH)"H(I — 6H)* + ) (I - 6H)"B,(I - 6H)",
k=0 k=0
where the second inequality holds by recursively applying the first inequality, and the third inequality
holds because S%_l_ it S%. Taking the inner produce on both sides of the inequality, we have

t—1 t—1

tr(HS}) < 96” tr(HS}) Y tr(H*(I— 6H)?) + )~ tr(BoH(I — 6H)*)
k=0 k=0
t—1 t—1

< ¢o® tr(HS}) Y | tr(HA(T - 6H)¥) + ) " tr(BoH(I — 6H)Y)

k=0 k=0
t—1

< 1h62 tr(HS}) Ztr (H*(T— 6H)*) + ) tr(BoH(I — §H))
k=0 k=0

d
= 8 tr(H) tr(HS}) + 671> g (1= (1= 0M)"),

i=1
where the second inequality holds because (I — 6H)?* < (I — §H)¥, and the third inequality holds
because positive terms tr(H?(I — 6H)*) for k > t are added. Rearranging terms, we have

d
(HS ) < m an,i[l —(1=6X)"].

=1

G PROPERTIES OF CENTERED ITERATES AND LINEAR OPERATORS ON
MATRICES

Lemma G.1. The linear operators on matrix enjoy the following properties:
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a. M, Mv B, and BB are all PSD operators, i.e., for any PSD matrix A, we have that Mo A, Mvo A,
Bo AN, and Bo A are all PSD matrices.
b. B— B = §2(M — M) is also a PSD operator, which is bounded by

862 tr(HAYH < (B—B)o A = §>(M — M) o A < 6> Mo A < 4§ tr(HA)H.
Proof. a. Let A denote any PSD matrix, and v be any vector. We then have
vi(MoA)v =E[(v x)*(x"Ax)] > 0,
where the equality holds because (VTX)2 > 0 and x" Ax > 0. Furthermore,
vi(BoA)Ww =E[v'(I-dxx")A(I - dHxx")v] =E[v - 46(v x)x)"A(v - (v x)x)] >0,

where the inequality holds because for any vector u (u = v — §(v ' x)x in this case), we have

u' Au > 0. Finally, M and B are PSD operators because any matrix similar to a PSD matrix is
also a PSD matrix. _
b. The difference between B and B is

B-B=E[I-dxx")® (I-dxx")]—(I—-0H)® - FH)
—(I9I-HRI-0I@H+ M) - (I®I-fH®I - §I®H+ §°M)
= 62(M — M).
Furthermore,
M= M=E[(xx" —H) @ (xx' —H)],

s0 M — M s a PSD operator. The upper bound follows directly from the fact that M is PSD and
Assumption [3.2]
O

Lemma|G.2]and Lemma|[G.3|are similar to their counterparts in Zou et al.| (2021), and are presented
here for completeness.

Lemma G.2. The excess risk is equivalent to

L(Wx) = L(w.) = 5(HL 7y © 7).

Proof. By definition of the risk function, we have

L) = L(W.) = 2E eyl — (@nx))? — (4 — (wa, x))?]

E(x,y)ND[(W* - WN)T(X . 2y — XXT (WN —+ W*))]

2
1
2
1
§(W* —wny) ' (2Hw, — H(Wy +Ww,))
1. _
= §<H7nN ® T’N>’
where the third equality holds due to (B.I]) and the definition of H. O

Lemma G.3. For any ¢ > 0, we have

bias var

Ne="mn  +n
We thus have

iy = TN+ AR
Proof. We prove the lemma by induction. When ¢ = 0, the lemma holds trivially. Suppose that the
lemma holds for ¢ — 1, then we have

N = Wy — Wy = (Wt—l - W*) + 5(yt - <Wt—1,Xt>)Xt
= (Wyo1 — Wy) + (& — (Wit — W, Xy) )Xy
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=I- 5th:)77t 1+ 08Xy
= (T — %% ) (0™ + ™) + 66,
— (L — dxex] P + [(L = S ™ + 0o
= o

where the fifth equality holds due to the induction hypothesis. Therefore, the lemma holds for t.
Combining all the above, the lemma is proved for all ¢ > 0. O

Lemma G.4. The second moment of the residual vectors can be decomposed as
E[—blas ®ﬁl])\}as] _ (1 _ Oé)2

N—-1 ,N—-2—-t N—-2—t
X Z ( Z aN_2_t_k(I—(5H)k) ((B B OBt ( Z aN 2—t— k 5H)k)
t=0 k=0
N-1 N-1
+ (aNI +(1—a)) NI 6H)’“>B0 <O/V1 +(1—a)) NI 5H)k>,
k=0 k=0
By @y’ = (1-a)®
N—-1 ,N—2—t N—-2—t
. Z < Z N TR — 5H)’“) (B—B)oC, + 522)( Z N2 5H)k>.
t=0 k=0 k=0

Proof. To simplify notations, we omit the superscripts of 7; and 77, and denote D; = E[n: ® 1]
According to the definition of 77, we have
N—1
ity ©77x] = E|(a¥m -+ (1 - 0

N—-1
1) o (et (1) 3 01|
t=0

t=0

N-1
= oDy + (1-a) 3 a1 [Elmo © i) + Elm: © o
t=0
N—-1N-1
-0 Y Y @R, @
s=0 t=0

2
L

= Do+ (1—-0a) Y V1 Dy(I - 6H)" + (I - §H)'Dy]

t=0
N-1 N—1—t
+ (1 _ 04)2 |:0z2N_2_2tDt + Z a2N_2_2t_k[Dt(I _ (SH)k + (I _ 5H)th]:|
t=0 k=1
N-1 N-1
<N1+1a > NI - oH) >D0( N4+ (1-a) Zale(IéH)k)
k=0 =0
N-1 -
(1-a) ( > oVt (SH)k)DO( Z aN TR — 5H)k)
k=0 k=0
N—-1p ,N—-1-t N—1-t
(1—a)? > K > NI 6H)k)Dt< > NI 6H)’“)
t=0 k=0 k=0
N—-1-t N—1-t
_ ( Z aN—l—t—k(I_ 5H)k>Dt< Z aN—l—t—k(I_ 5H)k>:|
k=1
N-1 N-1
:(aNI+(1—a)ZaN 1=F(1 - 6H) )Do( N+ (1-a) Z(XN 1= k(I—(SH)k)
k=0 k=0
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(g (o)

k=1 k=1

N-—-1 N-1
- (aNI+(1—a)ZaN_l_k(I—éH)k>Do( M+ (1-a)) oM Ra- 5H))
k=0
N-1 —t

N-2
oy (3
t=0 k=0

N—-2—t
aN_Q_t_k(I—dH)k>(Dt+1 BoD,) ( Z aN 2R 6H)k>,

where the third inequality holds because E[1;4x ® 1;] = E[E[n:4x ® m:|Ft]] = E[(I — 6H)*(n: ®
n:)] = (I — §H)*Dy, and the fifth equality holds due to telescope sum. Specifically, for the bias
residual, we have B;11 = B o By, so

By @)™ = (1-a)’
N—-1 ,N-2-t 2

Z(Zaz\rzm 5H)k)((3 BoBt(Z N=2-t-k( 5H)k>

t=0 k=0
N—1 N—1
( M4+ (1-a) ZozN 1=k (I — §H) )B0< M+ (1—a) ) oV 1" k(I—éH)’“).
=0 k=0
For the variance residual, we have C;; = Bo C; + 62X and Cy = 0, so
By @y’ = (1 —a)’
N—1 —2— N—2—t

Z( Z N G (B Bo €t ) (3 oY 2RI om)* ).

t=0 k=0
O
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