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Abstract

Search algorithms and user query relevance have
given LLMs the ability to return relevant infor-
mation, but the effect of content phrasing on ad
visibility remains underexplored. We investigate
how LLM-based rewriting of advertisements can
improve their ranking in retrieval systems and
inclusion in generated LLM responses, without
modifying the retrieval model itself. We introduce
a supervised fine-tuning framework with a custom
loss balancing semantic relevance and content fi-
delity. To evaluate effectiveness, we propose two
metrics: ∆MRR@K (ranking improvement) and
∆DIR@K (inclusion frequency improvement).
Our approach presents a scalable method to opti-
mize ad phrasing, enhancing visibility in retrieval-
based LLM workflows. Experiments across both
instruction-based and few-shot prompting demon-
strate that PPO trained models outperform both
prompt engineering and supervised fine-tuning in
most cases, achieving up to a 2.79 ∆DIR@5 and
0.0073 ∆MRR@5 in instruction-based prompt-
ing. These results highlight the importance of
how the ad is written before retrieval and prompt
format and reinforcement learning in effective ad
rewriting for LLM integrated retrieval systems.

1. Introduction
Large language models (LLMs) have demonstrated impres-
sive capabilities across a wide range of natural language
tasks such as question answering and summarization (Ni-
jkamp et al., 2023; Lewis et al., 2021b). To overcome the
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limitations of internal knowledge, many modern LLM sys-
tems are designed to use Retrieval-Augmented Generation
(RAG) systems (Lewis et al., 2021b), where a retriever se-
lects relevant documents from an external corpus which is
then passed to a generator. As LLMs continue to be used
in industries like digital advertising, whose global revenue
reached USD 259 billion in 2024, up 15% from 2023 (Inter-
active Advertising Bureau (IAB) & PwC, 2025), their ability
to retrieve external documents is often limited by the quality
of current retrieval systems (Alinejad et al., 2024). Current
RAG pipelines focus on query-side optimization, often rely-
ing on black-box retrievers that compute similarity scores
between user queries and a static document corpus to iden-
tify the most relevant documents (Liu et al., 2024), yet they
ignore the producer side, i.e. how documents themselves
can be optimized for retrieval. This oversight leads to rele-
vant advertisements being missed due to minor differences
in phrasing, formatting, or keyword choice (Dash et al.,
2024). Suboptimal ranking in the retrieval process can sig-
nificantly reduce ad visibility, which hurts revenue potential.
Optimizing to fill the producer-side gap via integrating ad-
vertisements directly into LLM retrieval workflows presents
a promising solution for relevant sponsored content and
sustainable revenue models for AI applications.

In this paper, we introduce a novel approach to improv-
ing the ranking of advertisements by rewriting ad content
rather than modifying the retrieval system itself. Specifi-
cally, we propose using a fine-tuned language model with
a custom-designed loss function to encourage rewritten ad-
vertisements to: (1) align rewrites with user queries and (2)
preserve the ad’s original meaning. The contributions of
this paper are as follows:

• We propose a new approach that improves document
ranking and likelihood of inclusion in LLM output by
rewriting ad content, rather than modifying the retrieval
system, introducing a complementary angle to existing
re-ranking and retriever-based methods.

• We develop a tailored loss function that balances maxi-
mizing relevance to user queries with preservation of
the original intent of the ad, enabling effective fine-
tuning for retrieval-sensitive content rewriting.

• We show how Proximal Policy Optimization (PPO)
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can be applied to train LLMs to optimize ad visibil-
ity, demonstrating a new use case for RL in language
model fine-tuning.

• We contribute an evaluation setup using ∆MRR@K
and ∆DIR@K and highlight a scalable, potentially
monetizable application of LLMs in ad retrieval, offer-
ing a framework others can adopt for commercial or
academic use.

2. Related Works
Our work builds upon recent progress in Retrieval-
Augmented Generation (RAG) systems and the broader
literature on optimizing language model outputs for down-
stream utility.

Document Expansion vs. Ad Phrasing. Traditional docu-
ment expansion techniques, such as term importance predic-
tion (MacAvaney et al., 2020) and BERT-based re-ranking
(Nogueira & Cho, 2020), often assume neutral objectives
that can be generalized to a broad document corpus via opti-
mizing for query relevance. Ad phrasing, conversely, holds
even subtle linguistic changes to a higher standard insofar
as influencing user engagement. Rather than uniformly en-
riching content, we target strategic micro-edits that align
with the retrieval objectives of black-box models.

Retrieval-Augmented Generation. RAG has emerged as a
powerful framework for enhancing language models with
external knowledge sources (Lewis et al., 2021b), where a
retriever selects documents passed to a generator. While
prior work has largely focused on improving retrievers (Liu
et al., 2024) or combining retriever-generator feedback loops
(Alinejad et al., 2024), our approach complements these
efforts by rewriting the documents themselves to enhance
retrievability—without modifying the retriever.

Ad Content Optimization. In the context of digital ad-
vertising, existing work such as (Dash et al., 2024; Haans
et al., 2013) has highlighted the limitations of sponsored
content ranking, showing that minor changes in phrasing
can drastically affect ad visibility. However, most methods
address this through ranking adjustments or changes on the
platform side. In contrast, we propose content-side opti-
mization via LLM-driven rewriting, allowing advertisers to
improve discoverability in black-box systems.

Prompting and Language Model Steering. Our use of
Chain-of-Thought prompting (Wei et al., 2023b) and few-
shot learning techniques (Brown et al., 2020) follows recent
trends in LLM control. While prior work focuses on task
accuracy or reasoning depth, we apply these techniques to
guide ad rewriting for improved ranking and inclusion in
LLM responses.

Reinforcement Learning with LLMs. We introduce a

novel application of Proximal Policy Optimization (PPO)
to optimize ad visibility based on a composite reward that
balances ranking relevance and content fidelity. Although
PPO has been successfully applied to instruction tuning and
retrieval optimization (Ouyang et al., 2022; Kulkarni et al.,
2024), its application to retrieval-centric rewriting remains
underexplored.

Our framework fills a gap between search ranking systems
and LLM generation, providing a scalable method for ad-
vertisers to increase content discoverability in AI-driven
platforms.

3. Methods
Our objective is to rewrite advertisement documents such
that they rank higher in retrieval systems and are more likely
to be included in the LLM’s response, while preserving the
semantic content of the original ad.

In order to train the model for document rewriting, we
employ a custom loss function, which 1) maximizes the
similarity between the rewritten document and the query,
2) ensures that the rewritten document is more similar to
the query than randomly selected top k documents, and 3)
the rewritten document remains semantically faithful to the
original document.

To interpret the overall performance of the model for each
training iteration, we implemented two evaluation metrics
MRR@K Improvement (∆MRR@K) and document inclu-
sion rate @ K improvement (∆DIR@K), which measure
the change in rank a document experiences after a rewriting
strategy is applied and the change in frequency in which the
document is included in the LLM output, respectively.

To access inclusion, we prompt for a black-box LLM, Gem-
ini 1.5 Pro, with the original and rewritten ad documents.
The prompt is provided in the Appendix and visible in the
code base and is written to be intentionally minimal to avoid
prompt-induced bias and reflect practical scenarios.

3.1. Data Construction

First, we randomly sampled 11,000 advertisements from the
original dataset, CommercialAdsDataset by Microsoft, with
10,000 ads for the train data and 1,000 ads as our test data
to construct our initial advertisement dataset.

Each ad is associated with a domain and subdomain label
using a large language model (Gemini 1.5 Pro), which were
verified through human annotators with 85% accuracy. We
create a query data set by generating ten queries for each
pair of domain-subdomains. For each query, we retrieve
the top k relevant ads from the main advertisement dataset
and generate LLM responses conditioned on those ads. The
retrieval rankings produced for each query are then retained
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for later evaluation in rewriting strategies.

3.2. Retriever Configuration

Embedding model. We embed every advertisement and
every query with the public Sentence-Transformers check-
point all-MiniLM-L6-v21 Vectors are ℓ2-normalised
so cosine similarity reduces to inner-product distance.

Index type. All 11 000 ad embeddings (10 k train + 1 k
test) are stored in a faiss::IndexFlatIP (exact inner-
product search) built with FAISS. Exact search avoids ANN
hyper-parameters and guarantees deterministic recall. All
11 000 ads are embedded in mini-batches of 64 and then
added to the index in one call (index.add(embs)). At
search time we encode one query at a time, so the FAISS
call sees a batch of 1.

LLM for inclusion. Document-inclusion is evaluated by
gemini-1.5-pro-001 (Gemini 1.5 Pro, February 2024
release); the exact prompt appears in Appendix A.

3.3. Loss Function Construction and Implementation

The loss function guides the model during training by quan-
tifying how well a rewritten ad balances three goals in a
1:1:1 ratio:

• Maximize similarity to the user query

• Maximize difference from top-k documents

• Preserve semantic meaning from the original ad

Let the loss function be composed of the three components:

• Lrel gain: Relevance gain loss

• Ltriplet: Triplet sampling loss

• Lfidelity: Content fidelity loss

By minimizing loss, the model learns to generate rewrites
that aim to improve retrievability while staying loyal to the
original content. The overall loss function is a summation:

Ltotal = Lrel gain + Ltriplet + Lfidelity

Let:

d = the document we are tracking

Qd = set of user queries relevant to d

3.3.1. RELEVANCE GAIN LOSS (LREL GAIN)

This term encourages the rewritten ad to be more relevant
to the query than the original version. Let:

1384-dimensional output; sentence-transformers v2.6.1.

dbefore: original advertisement

dafter: rewritten advertisement

q ∈ Qd : a query relevant to the ad d

sim(a,b): cosine similarity between the embeddings of a
and b

Then:

Lrel gain(q, d) = −(sim(q, dafter) - sim(q, dbefore))

3.3.2. TRIPLET SAMPLING LOSS (LTRIPLET)

This loss term encourages the rewritten ad to be more rele-
vant to the query than competing documents retrieved for
the same query. We sample a set of 3 documents from the
top-k retrieved list for a given query and compute their aver-
age similarity to the query. This average is then compared
with the similarity between the rewritten ad and the query.
This loss penalizes rewritten documents whose relevance to
the query falls below the average of a sample of the top-k
retrieved documents.

Nq,d : set of 3 documents for query q

Define the average similarity of the distractors to the query
as:

s¬(q) =
1
3

∑
n∈Nq,d

sim(n, q)

Then the triple sampling loss is:

Ltriplet(q, d) = − [sim(q, dafter)− sim(q, s¬(q))]

3.3.3. CONTENT FIDELITY (LFIDELITY)

We preserve content fidelity between the rewritten and orig-
inal documents, maximizing the similarity between the orig-
inal and rewritten documents.

Lfidelity(q, d) = 1− sim(dafter, dbefore)

Our overall loss function for each document is as follows:

Ltotal = Lrel gain + Ltriplet + Lfidelity

3.4. Prompting Strategies

To guide the language model in rewriting advertisements
effectively, we designed two prompts based on a tech-
nique called Chain-of-Thought (CoT) reasoning. This ap-
proach encourages the model to ”think out loud” by walk-
ing through the reasoning process before generating a final
rewrite.

Using two prompting strategies grounded in popular, estab-
lished prompting methods (Wei et al., 2023b; Brown et al.,
2020), our goal was to help the model focus on improving
how relevant an ad sounds to a user’s query, without losing
the original meaning. The specific prompts are provided in
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the Appendix.

3.4.1. STRATEGY A: INSTRUCTION-BASED PROMPTING
WITH COT (ZERO-SHOT):

In this approach, the model is given a high-level instruction
to rewrite an ad in a way that improves its retrieval rank-
ing and likelihood of inclusion and is told to reason and
think before responding. The prompt encourages semantic
alignment with user intent and explicit reasoning before
rewriting.

3.4.2. STRATEGY B: FEW-SHOT PROMPTING WITH
COT:

This setup provides the LLM with two examples of ad
rewrites, including the original ad, rationale, and improved
version. After observing the examples, the model is
prompted to perform a similar rewrite on a new ad input.

4. Experiments
4.1. Evaluation Metrics

Let:

K = rank cut-off we impose (e.g. 10)

v ∈ {before, after} → document version

rankv(d, q) = rank of d for query q

X
(d,q)
v = 1 if the LLM actually uses d in its final answer,

else 0

4.1.1. METRIC 1: MMR@K IMPROVEMENT
(∆MRR@K)

We evaluate whether a rewriting strategy is effective in im-
proving a document’s ranking by measuring the change
in mean reciprocal ranking prior and post imposition. We
compute:

∆MRR@K = MRR@Kafter − MRR@Kbefore

∆MRR@K =
1

|Qd|
∑
q∈Qd

(
RRafter

K (d, q)−RRbefore
K (d, q)

)
where

RRv
K(d, q) =

{
1

rankv(d,q)
, if rankv(d, q) ≤ K

0, otherwise

4.1.2. METRIC 2: DOCUMENT-INCLUSION RATE @ K
IMPROVEMENT (∆DIR@K)

We track the inclusion rate of a document in the LLM’s
response across relevant queries and compute the change
between the inclusion rate of a document remaining in the
top-K set before and after rewriting.

This metric represents the absolute change (percentage-point
lift) and formally, we define it as follows:

∆DIR@K = DIR@Kafter −DIR@Kbefore

Below is a formal definition of the base metric, DIR@Kv:

First, restrict the query set to include only queries where the
document rank is within the top-k cut-off in both versions:

Q
(K)
d = {q ∈ Qd | rankbefore(d, q) ≤ K ∧ rankafter(d, q) ≤ K}

Then the Document-Inclusion Rate @ K for version v of
any document is:

DIR@Kv∈{before,after} =
1

|Q(K)
d |

∑
q∈Q

(K)
d

X(d,q)
v

4.2. Baselines

4.2.1. ZERO-REWRITE CONTROL

We establish a baseline using the original, unmodified ads.
For each query, we evaluate the responses retrieved and gen-
erated using the original ad set, without any LLM rewriting.

4.2.2. PROMPT ENGINEERING

Each of the two prompting strategies in Section 3.3 are used
to generate rewrites for the 1,000 test ads. For each rewritten
version, we compute ∆MRR@K and ∆DIR@K relative to
the original retrieval and inclusion statistics for each ad.

4.2.3. SUPERVISED FINE-TUNING (SFT)

We fine-tune a pretrained language model (LLaMA-3.1-8B)
using the original ads as inputs with rewritten advertise-
ments as the ground truths. The rewritten versions are gen-
erated through a general prompt, which is provided in the
Appendix, that is known to boost metric scores.

The objective is to teach the model to rewrite an original
ad similarly to an improved version which is more likely to
rank higher in retrieval and be included in LLM output.

4.3. Proximal Policy Optimization (PPO)

To further enhance the retrievability of rewritten ads, we
apply Proximal Policy Optimization (PPO) on top of our
supervised fine-tuned LLaMA-3.1-8B model. PPO enables
the model to optimize directly for our task-specific objective
by learning from a custom reward signal.

The reward is defined as the negative of the total loss in-
troduced in Section 3.2. This loss function balances three
priorities: improving query relevance, outperforming dis-
tractor documents, and preserving content fidelity.
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For each ad, we perform the following steps to compute the
reward:

• Identify up to three queries that share the same domain
and subdomain as the ad.

• For each query, retrieve the top-k documents from the
original dataset.

• Compute the reward using the loss function defined in
Section 3.2.

• Average the loss across all selected queries to obtain
the final reward signal.

This reinforcement learning stage allows the model to go
beyond pattern imitation and optimize rewrites that are more
likely to rank higher in retrieval and be included in down-
stream LLM outputs.

We implement LoRA fine-tuning with rank 8 on all atten-
tion and MLP projections, enable gradient checkpointing,
train in bfloat16, and employ DeepSpeed ZeRO-2 with
CPU optimizer offloading (zero stage=2). All PPO
hyper-parameters can be found in the Appendix.

5. Results
5.1. Comparing the Models

Tables 1, 2, and 3 present the ∆MRR@5 and ∆DIR@5
for the original ad baseline, prompt engineering, supervised
fine-tuning, and PPO training across both prompting strate-
gies, instruction-based and few-shot, for the latter three
models.

Model ∆MRR@5 ∆DIR@5

Zero-Rewrite 0.00 -0.0807

Table 1. Values of ∆MRR and ∆DIR for the zero-rewrite baseline
for k = 5

Model ∆MRR@5 ∆DIR@5

Prompt Eng. 0.0051 0.9061
SFT 0.0022 1.6382
PPO 0.0073 2.7944

Table 2. Comparison of ∆MRR and ∆DIR values across different
models for k = 5 for instruction-based prompting

Model ∆MRR@5 ∆DIR@5

Prompt Eng. 0.0067 1.9133
SFT -0.0017 1.4199
PPO -0.0008 1.9267

Table 3. Comparison of ∆MRR and ∆DIR values across different
models for k = 5 for few-shot prompting

In our evaluation, ∆MRR@5 is 0 and ∆DIR@5 is -0.0807
for the zero-rewrite baseline. As expected, both are closer
to zero than the metrics when the ads are rewritten.

Under instruction-based prompting, PPO consistently out-
performs both prompt engineering and SFT in both ∆MRR
and ∆DIR, achieving the highest ∆MRR value of 0.0073
and highest ∆DIR value of 2.7944, both of which are sta-
tistically significant under a 95% confidence interval. SFT
achieves the second best ∆DIR score of 1.6382 but does
have a low value for ∆MRR of 0.0022.

For few-shot prompting, PPO maintains a strong ∆DIR of
1.9267 which is relatively similar to prompt engineering’s
∆DIR value of 1.9133, but does exhibit a negative ∆MRR
value. SFT performs worst here, with both lower ∆MRR
and ∆DIR values.

5.2. Ablation Studies

5.2.1. VARYING K

We conduct ablation studies by varying the value of k to
examine how the amount of ads retrieved affects the metrics
∆MRR@k and ∆DIR@k across models.

k ∆MRR@k ∆DIR@k

1 0.00 0.6293
3 0.00 -0.558
5 0.00 -0.0807
10 0.00 -0.2844
20 0.00 0.2288
30 0.00 0.1246

Table 4. ∆MRR and ∆DIR values across varying k values for the
zero-rewrite baseline

The ∆MRR for the zero-rewrite control is always 0.00 since
the ad content remains unchanged and therefore has identi-
cal similarity to the query. The ∆DIR, while expected to be
near zero, may have slight fluctuations as the nondeterminis-
tic nature of LLM generated responses can include different
ads across runs even when the input remains the same.
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k Prompt Eng. SFT PPO

1 0.0033 0.0035 0.0072
3 0.0051 0.0026 0.0072
5 0.0051 0.0022 0.0072

10 0.0055 0.0036 0.0085
20 0.0065 0.0038 0.0082
30 0.0064 0.0036 0.0082

Table 5. ∆MRR values for different k across models with
instruction-based prompting

k Prompt Eng. SFT PPO

1 0.0062 -0.0003 -0.0000
3 0.0068 -0.0017 -0.0006
5 0.0067 -0.0017 -0.0008
10 0.0081 -0.0015 -0.0005
20 0.0088 -0.0014 -0.0008
30 0.0090 -0.0017 -0.0010

Table 6. ∆MRR values for different k across models with few-shot
prompting

k Prompt Eng. SFT PPO

1 0.4619 0.7773 1.8217
3 0.8898 1.3500 2.2337
5 0.9061 1.6382 2.7944
10 0.4598 1.0754 2.2342
20 -0.8517 -0.7896 -0.5477
30 -0.4629 -0.7658 -0.5215

Table 7. ∆DIR values for different k across models with
instruction-based prompting

k Prompt Eng. SFT PPO

1 0.0139 0.8113 1.5303
3 0.6524 0.8892 2.0755
5 1.9133 1.4199 1.9267
10 0.5740 0.9773 1.4795
20 -0.9622 -0.9881 -0.9081
30 -0.4483 -0.4321 -0.6708

Table 8. ∆DIR values for different k across models with few-shot
prompting
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Figure 1. ∆MRR metric for instruction-based prompting across k
values.
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Figure 2. ∆MRR metric for few-shot prompting across k values.
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∆MRR Trends (Tables 5, 6):
• For instruction-based prompting, PPO maintains con-

sistent performance across all values of k, with ∆MRR
peaking at k = 10 (0.0085), surpassing the values of
prompt engineering and SFT.

• For few-shot prompting, only prompt engineering has
a positive value of ∆MRR. Both SFT and PPO have
negative or near zero ∆MRR values suggesting that
few-shot rewriting may decrease the ad’s relevance to
the query.

∆DIR Trends (Tables 7, 8):
• Under instruction-based prompting, PPO has the high-

est values of ∆DIR, peaking at k = 5 (2.7944), surpass-
ing both prompt engineering and SFT. Beyond k = 20,
all three models exhibited negative values of DIR.

• For few-shot prompting, ∆DIR is the highest for PPO
at k = 3 (2.0755), but becomes negative beyond k = 20.

5.2.2. LOSS FUNCTION

To understand the impact of each component in our loss
function, we conduct an ablation study across six differ-
ent weightings of the composite loss used during PPO for
instruction-based and few-shot prompting:

Ltotal = αLrel gain + βLtriplet + γLfidelity

The weightings tested are:

• Equal weighting (1:1:1) – baseline

• 35:45:20 – emphasizing triplet loss

• 45:35:20 – emphasizing relevance gain

• 45:20:35 – emphasizing content fidelity

• 20:45:35 – balanced triplet and fidelity

• 30:60:10 – heavily emphasizing triplet loss

k ∆MRR in. ∆DIR in. ∆MRR fe. ∆DIR fe.

1 0.0072 1.8217 0.0000 1.5303
3 0.0072 2.2337 -0.0006 2.0755
5 0.0072 2.7944 -0.0008 1.9267

10 0.0085 2.2342 -0.0005 1.4795
20 0.0082 -0.5477 -0.0008 -0.9081
30 0.0082 -0.5215 -0.0010 -0.6708

Table 9. ∆MRR@k and ∆DIR@k values at α = 1, β = 1, and
γ = 1

k ∆MRR in. ∆DIR in. ∆MRR fe. ∆DIR fe.

1 -0.0061 0.7782 -0.0031 1.531
3 0.0070 2.6131 -0.0053 1.3385
5 0.0058 2.7644 -0.0053 2.5133

10 0.0058 2.3594 -0.0058 3.0537
20 0.0061 0.3193 -0.0058 0.6826
30 0.0050 0.5871 -0.0061 0.7782

Table 10. ∆MRR@k and ∆DIR@k values at α = 0.35, β =
0.45, and γ = 0.20

k ∆MRR in. ∆DIR in. ∆MRR fe. ∆DIR fe.

1 -0.0051 2.0068 -0.0045 2.5359
3 -0.0048 2.3990 -0.0074 2.1676
5 -0.0047 2.9368 -0.0087 2.1994

10 -0.0037 2.5265 -0.0090 2.0288
20 -0.0033 0.6943 -0.0089 0.9471
30 -0.0033 0.7806 -0.009 0.7327

Table 11. ∆MRR@k and ∆DIR@k values at α = 0.45, β =
0.35, and γ = 0.20

k ∆MRR in. ∆DIR in. ∆MRR fe. ∆DIR fe.

1 0.0046 2.2036 0.0002 1.7101
3 0.0042 2.3052 -0.0021 1.8560
5 0.0045 2.5554 -0.0034 2.5287

10 0.0056 2.2332 -0.0043 2.177
20 0.0059 0.9995 -0.0043 0.9982
30 0.0058 0.9697 -0.0045 0.7180

Table 12. ∆MRR@k and ∆DIR@k values at α = 0.45, β =
0.20, and γ = 0.35

k ∆MRR in. ∆DIR in. ∆MRR fe. ∆DIR fe.

1 0.0028 1.1920 -0.0014 2.2464
3 0.0031 1.2890 -0.0025 2.4326
5 0.0036 2.6791 -0.0040 2.8285

10 0.0036 2.6109 -0.0048 2.0644
20 0.0039 1.0337 -0.0050 1.5736
30 0.0038 0.9374 -0.0053 0.9407

Table 13. ∆MRR@k and ∆DIR@k values at α = 0.20, β =
0.45, and γ = 0.35

k ∆MRR in. ∆DIR in. ∆MRR fe. ∆DIR fe.

1 0.0077 1.7394 -0.0015 2.0998
3 0.0078 2.4325 -0.0023 2.1454
5 0.0066 2.6691 -0.0044 2.9004

10 0.0068 2.2473 -0.0045 2.2760
20 0.0068 0.8375 -0.0046 1.7480
30 0.0068 0.6761 -0.0046 1.7158

Table 14. ∆MRR@k and ∆DIR@k values at α = 0.30, β =
0.60, and γ = 0.10
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Figure 5. ∆MRR@k metric for instruction-based prompting
across varying loss weights.
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Figure 6. ∆MRR@k metric for few-shot prompting across varying
loss weights.
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Figure 7. ∆DIR@k metric for instruction-based prompting across
varying loss weights..
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Figure 8. ∆MRR@k metric for few-shot prompting across varying
loss weights.

∆MRR Trends ( Tables 9 to 14 ):
• For instruction-based prompting, the equal weight-

ing (1:1:1) achieves the most consistent positive
∆MRR@5 performance (0.0072), outperforming most
alternative weightings. The 45:35:20 weighting shows
negative ∆MRR values (−0.0047 at k=5) despite
achieving the highest ∆DIR performance.

• For few-shot prompting, most weightings result in neg-
ative ∆MRR values, with the equal weighting (1:1:1)
maintaining the least negative impact (∆MRR@5 =
−0.0008). This suggests that few-shot prompting may
inherently trade ranking performance for inclusion im-
provements.

∆DIR Trends ( Tables 9 to 14 ):
• Under instruction-based prompting, the 45:35:20

weighting achieves peak ∆DIR@5 performance
(2.9368), surpassing the equal-weighting baseline
(2.7944). The 35:45:20 weighting also shows strong
inclusion performance (2.7644 at k=5).

• For few-shot prompting, the 30:60:10 weighting

performs well on inclusion metrics, achieving
∆DIR@5 = 2.9004 and the 35:45:20 weighting
achieves strong performance at k=10 (∆DIR@10 =
3.0537).

6. Discussion
Main comparison at k=5 Our main claim is that PPO
simultaneously boosts rank and inclusion under instruction
prompting. Table 2 confirms this: PPO lifts ∆MRR@5
from 0.0051 (prompt engineering) to 0.0073 and increases
∆DIR@5 from 0.9061 to 2.7944. Supervised fine-tuning re-
duces rank to 0.0022 yet still improves inclusion to 1.6382,
indicating that content-fidelity supervision alone cannot
fully overcome retriever bias but that lower MRR does not
correlate with higher inclusion.

For the few-shot prompting (Table 3), PPO continues to
increase ∆DIR (+1.93) but lowers ∆MRR (–0.0008), sug-
gesting that rewriting improves the chance of an ad being
integrated by an LLM but not its relevance to a query. The
rank dip persists for all k values in Table 6, whereas ∆DIR
remains positive until k=20, matching typical RAG first-
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page windows (Lewis et al., 2021a).

Sensitivity to cut-off k Under instruction prompting (Ta-
bles 5, 7), the metrics for PPO usually peak at around k = 5
to k = 10, decreasing beyond k = 20. This underscores that
rewriting may become less effective in retrieval ranking and
inclusion as less relevant ads are being ranked and the LLM
has more ads to choose from.

Ablation: k value Optimal retrieval occurs at moderate
values of k = 5 to k = 10 because large values of k introduce
noise and diminish relevance. Removing PPO and retain-
ing only SFT drops ∆MRR by 60–70% yet still improves
∆DIR, confirming that content-fidelity supervision alone
cannot reliably raise rank (Dong et al., 2024).

Ablation: Loss weighting The equal weighting (1:1:1)
provides the most balanced performance across both ranking
and inclusion metrics, suggesting that all three components
contribute meaningfully to effective ad rewriting (Huq &
Pervin, 2022; Chen et al., 2018). Lrel gain directly optimizes
query–document similarity, explaining why higher α values
can improve inclusion rates (Ha & Blanz, 2021). Ltriplet
helps ads outperform competing documents, which is cru-
cial in competitive retrieval scenarios, as shown by the high
inclusion (few-shot) and relatively high ∆MRR (instruction-
based) in Tables 10 and 14. Lfidelity prevents semantic drift,
but can limit the model’s ability to make strategic keyword
choices (Chaturvedi et al., 2024; Matton et al., 2025).

Why does PPO help? PPO optimizes a composite reward
balancing query similarity, distractor margin, and fidelity,
leveraging its stability for LLM alignment (Schulman et al.,
2017; Ram et al., 2023). This surfaces high-IDF keywords
valued by the retriever while preserving semantics, hence
the joint lift in ∆MRR and ∆DIR (Ziegler et al., 2020).

Inclusion vs. ranking. An important consideration for
practical deployment is that inclusion in LLM responses
(∆DIR) may be more commercially valuable than ranking
position (∆MRR). Recent RAG-evaluation studies empha-
sise that the text actually surfaced in the answer, rather than
its raw retrieval rank, drives user value and system quality
(Yu et al., 2025; Brehme et al., 2025). Because users never
see the internal ranking scores but do see which passages are
quoted, optimizing ∆DIR is often more aligned with real-
world objectives (Es et al., 2025). Our own results echo this:
configurations such as 45:35:20 (instruction) and 35:45:20
(few-shot) push inclusion strongly even when ranking gains
are modest or negative.

Strategy-specific Instruction prompting typically sup-
plies richer task signals than few-shot demonstrations,
which explains why our instruction-based run with
α=0.45, β=0.35, γ=0.20 achieves the highest ∆DIR@5
(Wei et al., 2023a; Wang et al., 2023a). In contrast, few-shot

exemplars anchor the model to brevity and marketing tone;
the fidelity weight over-penalizes lexical deviation, reducing
keyword coverage, and hurting rank, a pattern also observed
in ranking work on few-shot prompting (Sinhababu et al.,
2024) and lexical overlap analyses of dense retrievers (Ram
et al., 2023). Few-shot setups benefit from emphasizing
hard-negative discrimination (β) as in the 35:45:20 setting,
mirroring findings that chain-of-thought exemplars can over-
anchor lexical style and hurt precision unless balanced by
discriminative losses (Wang et al., 2023b).

• Instruction-based prompting: α = 0.45, β =
0.35, γ = 0.20 achieves peak ∆DIR@5 = 2.9368.

• Few-shot prompting: α = 0.35, β = 0.45, γ = 0.20
achieves peak ∆DIR@10 = 3.0537.

The results demonstrate a clear trade-off between ranking
and inclusion performance. Most alternative weightings
improve inclusion at the expense of ranking performance,
with only the equal weighting maintaining positive ranking
improvements while achieving competitive inclusion rates.
Practitioners should therefore pick weights according to
business goals: equal weighting for balanced improvements,
or inclusion-focused weightings when ad visibility in LLM
responses is the primary concern.

7. Conclusion
In this study, we introduced a novel approach to improve ad
visibility in LLM retrieval systems through content rewrit-
ing, without modifying the retriever itself. Our framework
leverages Proximal Policy Optimization to improve retrieval
ranking and inclusion in the LLM response. By creating a
custom composite loss that maximizes semantic relevance
and content fidelity, we demonstrate how language models
can be fine-tuned to make commercially effective rewrites.
Empirically, we show that our PPO enhanced models gen-
erally outperform both supervised fine-tuning and prompt
engineering baselines on two key metrics, ∆MRR@k and
∆DIR@k, over multiple k values and two prompting strate-
gies, suggesting that LLM rewriting and optimization is
an effective approach to improve ad visibility in language
model pipelines. As LLMs continue to power search, rec-
ommendation, and generation pipelines, our results indicate
that phrasing optimization can improve retrieval output for
black-box systems. Our hope is that this method can serve
as a foundation for future work on retrieval-aware and LLM
alignment, especially in domains where visibility directly
influences utility or monetization.

8. Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

9



Rewrite-to-Rank: Optimizing Ad Visibility via Retrieval-Aware Text Rewriting

References
Alinejad, A., Kumar, K., and Vahdat, A. Evaluating the

retrieval component in llm-based question answering
systems, 2024. URL https://arxiv.org/abs/
2406.06458.
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A. Appendix
A.1. Prompt Design

Black-Box LLM that Integrates the Ads Prompt

You are a helpful and knowledgeable assistant. Below is a list of product advertisements. Your task is to respond to
the user’s query in a natural and informative way, promoting one or two relevant products. Include brand and url
into your response without revealing that you have access to product ads.

At the end of your response (not visible to the user), list which documents you included clearly only using the
format: ’id: ..., id: ..., ...’.

USER QUERY: query
RETRIEVED COMMERCIAL ADS: context

Please provide a helpful, informative response directed to the user based on the above information.

General prompting strategy

You are given an advertisement. Your task is to rewrite it so that its ranking in retrieval and inclusion in LLM
response improves. Focus on semantic relevance and matching the user’s likely search intent.

Original Ad: ad

Respond with the improved version:

Title: ...

Description: ...

Instruction-based Prompting with CoT (Zero-Shot)

You are given an advertisement. Your task is to rewrite the ad so that its ranking in retrieval and inclusion in LLM
responses improves. Focus on semantic relevance and matching the user’s likely search intent.

Original Ad: ad

Think step by step first, then provide the improved version.

Respond with the improved version at the end of your response **only** in the following format:

Thinking: ...

Title: ...

Description: ...

Few-Shot Prompting with CoT

Rewrite the advertisement so that it ranks better in retrieval and its inclusion in LLM responses improves. Here are
two examples:

Example 1

Original Ad: Title: Yoga Pants Description: Affordable yoga pants for women, available in multiple colors.
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Reasoning: The phrase ”affordable yoga pants” is generic. Adding activity-specific and quality-based terms may
help.

Rewritten Ad: Title: High-performance women’s yoga leggings Description: great yoga pants for training and
Pilates – breathable, colorful, and comfortable.

Example 2

Original Ad: Title: mugs Description: Buy custom mugs with your name.

Reasoning: This lacks variety and emotional appeal. Including gifting context and materials can help retrieval.

Rewritten Ad: Title: Personalized ceramic mugs Description: perfect gifts with names, photos, or messages.

Your turn

Original Ad: ad

Reasoning:

Rewritten Ad:

A.2. PPO Hyper-Parameters

Table 15 lists every setting required to reproduce our RL stage.

Category Symbol / Key Value

Clip range ϵ 0.2
KL penalty β 0.1
PPO epochs / batch — 4
Reward discount γ 1.0

Micro-batch size m 4
Grad-accumulation g 4
Effective batch m× g 16
Learning rate η 1× 10−5

Scheduler — Cosine
Warm-up ratio — 0.10

Train epochs — 3
Dataset size N 10 000 ads
Total PPO updates† ⌈3N/(16×NGPU)⌉ 1 875 (1 GPU)

Table 15. PPO settings for LLaMA-3.1-8B. †Divide by NGPU to scale.

A.3. Code and Data Availability

To foster reproducibility while preserving anonymity, we release our implementation in two static repositories:

• https://anonymous.4open.science/r/ad-ppo-lora-2706

• https://anonymous.4open.science/r/ad-doc-reranker-57C6
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