
Under review as a conference paper at ICLR 2022

NVIT: VISION TRANSFORMER COMPRESSION AND
PARAMETER REDISTRIBUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers yield state-of-the-art results across many tasks. However, they still
impose huge computational costs during inference. We apply global, structural
pruning with latency-aware regularization on all parameters of the Vision Trans-
former (ViT) model for latency reduction. Furthermore, we analyze the pruned
architectures and find interesting regularities in the final weight structure. Our
discovered insights lead to a new architecture called NViT (Novel ViT), with a redis-
tribution of where parameters are used. This architecture utilizes parameters more
efficiently and enables control of the latency-accuracy trade-off. On ImageNet-1K,
we prune the DEIT-Base (Touvron et al., 2021) model to a 2.6× FLOPs reduction,
5.1× parameter reduction, and 1.9× run-time speedup with only 0.07% loss in
accuracy. We achieve more than 1% accuracy gain when compressing the base
model to the throughput of the Small/Tiny variants. NViT gains 0.1-1.1% accuracy
over the hand-designed DEIT family when trained from scratch, while being faster.

1 INTRODUCTION

Self-attention based transformer models demonstrate high model capacity, easy scalability, and
superior ability in capturing long-range dependency (Vaswani et al., 2017; Devlin et al., 2018;
Radford et al., 2018; Jiao et al., 2019; Brown et al., 2020). They have thus been widely applied
to natural language processing (NLP) tasks, and recently received growing attention for computer
vision tasks. Vision Transformer, i.e., the ViT (Dosovitskiy et al., 2020), shows that embedding
image patches into tokens and passing them through a sequence of transformer blocks can lead to
higher accuracy compared to state-of-the-art CNN models. DEIT, recent work by Touvron et al.
(2021), further presents a data-efficient training method such that acceptable accuracy can be achieved
without extensive pretraining. Offering competitive performance to CNNs under similar training
regimes, transformers now point to the appealing perspective of solving both NLP and vision tasks
with the same architecture (Zheng et al., 2021; Kim et al., 2021; Jiang et al., 2021).

Unlike CNNs built with convolutional layers that are mainly parameterized by few dimensions
like the kernel size and the number of filters, the ViT has multiple distinct components, i.e., QKV
projection, multi-head attention, multi-layer perceptron, etc. (Vaswani et al., 2017), each defined by
independent dimensions. As a result, the dimensionality of each component in each ViT block needs
to be carefully designed to achieve a decent trade-off between efficiency and accuracy. However, this
is typically not the case for state-of-the-art models. Models such as ViT (Dosovitskiy et al., 2020)
and DEIT (Touvron et al., 2021) mainly inherit the design heuristics from NLP tasks, e.g., use MLP
expansion ratio 4, fix QKV per head, all the blocks having the same dimensions, etc., which may not
be optimal for computer vision (Chen et al., 2021a), causing significant redundancy in the base model
and a worse efficiency-accuracy trade-off upon scaling, as we show extensively in our experiments.

This work targets efficient ViTs by exploring latency-aware global structural pruning, leveraging
the insights to redistribute parameters for enhanced accuracy-efficiency trade-off. Our approach, as
visualized in Figure 1, starts from analyzing the blocks in the computation graph of ViT to identify
all the dimensions that can be independently controlled. We apply global structural pruning over all
the components in all blocks. This offers complete flexibility to explore their combinations towards
an optimal architecture in a complicated design space. Our global pruning utilizes an importance
score based on the first-order Taylor expansion of the pruning loss, offering comparability among all
prunable components from all layers. Furthermore, we incorporate the estimated latency reduction of
each neuron into its importance score. This guides the final pruned architecture to be faster on target

1

Under review as a conference paper at ICLR 2022

MLP
head C classes

QQQ

Prunable weights

QQK QQV

PROJPROJProj.

FC1 FC2

ExQKxH ExQKxH E x V

VxExH

ExM

MxE

Vision Transformer

Prunable Components Analysis NViT Design

Input tokens

NViT Block

NViT Block

NViT Block

NViT Block

NViT Block

NViT Block

MLP
head C classes

Pruned weights

FC1

0.7Ex0.6Q
Kx0.5H

0.7Ex0.9Vx0.5H
0.9Vx0.7Ex0.5H

0.7Ex0.6M

0.6Mx0.7E

Global Importance Ranking

Blocks / Layers

Im
po

rta
nc

e
Thres. FC1

FC2

PROJProj.

QQ KK VV

Parameter Redistribution

Blocks Layers

D
im

en
si

on

Pruned model

Trend

Input tokens

H heads

Ex(VxH)

Q

K

V

Ex(QKxH)
kh

qh

vh

kh

qh

vh

kh

qh

vh

LayerN
orm

Input
tokens
NxE

Proj.

(VxH)xE

Multihead Self Attention (MSA)

Output
tokens
NxE

Concat

split

Ex(QKxH)

Transformer Blocks x12

ExM MxE

Multi-layer Perceptron (MLP)

FC
 2

LayerN
orm

FC
 1

0.7Ex0.6Q
Kx0.5H

Global Structural Pruning

Towards Efficient Inference

Figure 1: Towards efficient vision transformer models. Starting form ViT, specifically DEIT, we
identify the design space of pruning (i) embedding size E, (ii) number of head H, (iii) query/key size
QK, (iv) value size V and (v) MLP hidden dimension M in Section 3.1. Then we utilize a global
ranking of importance score to perform iterative global structural pruning in Section 3.2. Finally we
derive a simple NViT architecture from observing the dimension trend of all the components in the
pruned model, as in Section 4.1.

devices, as we show in experiments. The pruned models are distilled utilizing the information of the
ground truth labels, a pretrained CNN teacher akin to DEIT (Touvron et al., 2021), and the original
full model. On the ImageNet-1K benchmark (Russakovsky et al., 2015), structural pruning enables a
nearly lossless 5.14× parameter reduction, 2.57× FLOPs reduction and 1.86× speed up on V100
GPU over the DEIT-Base model. An 1% and 1.7% accuracy gain is observed over DEIT-Small and
DEIT-Tiny models when we compress the base model to a similar latency.

Using structural pruning for architectural guidance, we further make an important observation that
the popular uniform distribution of parameters across all layers is, in fact, not optimal. A simple
redistribution of parameters can already provide stronger architectural alternatives, as we show in
our experiments for both pretraining and downstream tasks. To this end, we present a new parameter
distribution rule to scale ViT architectures, enabling a breed of models named as NViT. When scaling
to similar FLOPs and latency, NViT architectures achieve 0.1%, 0.2% and 1.1% accuracy gains over
the DEIT-Base, Small, and Tiny models respectively when trained from scratch on ImageNet-1K.

Our main contributions are as follows:

• Provide a systematic analysis on the prunable components in the ViT model. We identify the
ability to perform structural pruning on the embedding dimension, number of heads, MLP
hidden dimension, QK dimension and V dimension of each head separately;

• Propose a latency-aware, importance-based criteria that enables hardware-friendly global
structural pruning of all the components, achieving a nearly lossless 1.9× speedup;

• Present a new architecture scaling rule that enables NViT, a new family of efficient vision
transformer architectures that redistributes the dimensions of DEIT models to outperform
them under similar FLOPs and latency. This is the first work showing the potential of
discovering novel scalable architectures by pruning vision transformers;

• Demonstrate that the high performance achieved by the pruned models and NViT models
transfer effectively to downstream tasks.

2

Under review as a conference paper at ICLR 2022

2 RELATED WORK

2.1 VISION TRANSFORMER MODELS

Inspired by the success of transformer models in NLP tasks, recent research proposes to use trans-
former models on computer vision tasks. The inspiring vision transformer (ViT) (Dosovitskiy et al.,
2020) demonstrates the possibility of performing high-accuracy image classification with transformer
architecture only, yet also finds that learning attention between image patches is a challenging task
that requires large training set and model size. This stimulates recent works to ease extensive pre-
training and improve the efficiency-accuracy tradeoff. One noticeable approach DEIT (Touvron et al.,
2021) provides carefully designed training schemes and data augmentation techniques to train ViT
from scratch on ImageNet only. Another line of work renovates ViT transformer blocks to better
capture image features, such as changing input tokenization (Yuan et al., 2021; Graham et al., 2021),
using hierarchical architecture (Liu et al., 2021; Wang et al., 2021; Graham et al., 2021), upgrading
positional encoding (Chu et al., 2021), and performing localized attention (Liu et al., 2021; Han et al.,
2021), bringing in further accuracy improvements under similar computation cost.

In this work we focus on the original ViT architecture (Dosovitskiy et al., 2020) amid its widespread
usage, as illustrated in the top of Figure 1. ViT model first divides the input image into patches
that are tokenized to embedding dimension E through a linear projection. Image tokens, together
with an independently initialized class token, form an input x ∈ RN×E . Input tokens pass through
transformer blocks before classification is made from the class token output of the last block.

In its simplest form, a ViT block includes a multi-head self attention (MSA) and a multi-layer
perceptron (MLP) module. The MSA module first linearly transforms the N × E tokens into queries
q ∈ RN×(QK×H), keys k ∈ RN×(QK×H), and values v ∈ RN×(V×H). The q, k and v are then split
into H heads. Each head performs the self-attention operation defined in Equation (1) in parallel:

Attn(qh, kh, vh) = softmax
(
qhk

T
h√
dh

)
vh, (1)

where 1√
dh

is the scaling factor, and qh ∈ RN×QK , kh ∈ RN×QK and vh ∈ RN×V are the query,
key and value of head h. The output of all the heads are then concatenated prior to a fully-connected
(FC) linear projection back to the original dimension of RN×E . Note that though previous works
set dimension QK = V in designing the model architecture (Dosovitskiy et al., 2020; Touvron
et al., 2021; Chen et al., 2021a), setting them differently will not go against the shape rule of matrix
multiplication. The MLP module includes two FC layers with a hidden dimension of M . The output
of the last FC layer preserves token dimension at RN×E .

Built upon the original ViT, DEIT models (Touvron et al., 2021) further exploit a distillation token,
which learns from the output label of a CNN teacher during the training process to incorporate some
inductive bias of the CNN model, and significantly improves the DEIT accuracy.

Our work uses the DEIT model architecture as a starting point, where we explore the potential of
compressing the model and better allocating of the dimensions of different blocks for enhanced
efficiency-accuracy tradeoff. Our method is also applicable to other vision transformer architectures
for further efficiency improvements, which will be explored in future works.

2.2 VIT COMPRESSION TECHNIQUES

Despite rapid progress of ViTs for vision tasks, ViT blocks still heavily inherit the architecture of
transformers for NLP tasks (Vaswani et al., 2017), e.g., the dimension of each block is determined
without much optimization, and all the blocks in the stacked model architecture share the same
dimension. As we will show later, such design may not be optimal for computer vision tasks.

To improve model efficiency, very recent works successfully use structural pruning techniques on
vision transformer models, with trainable gate variables (Zhu et al., 2021) or Taylor importance
score (Chen et al., 2021b). Both methods show the potential of compressing ViT models, yet only
consider part of the prunable architecture like the number of heads or the MLP hidden dimension,
use manually designed sparsity distribution, and do not take run time latency into account, thus may
not lead to optimal compressed models. Our method resolves these issues through a latency-aware
global structural pruning of all prunable components across all layers in a jointly manner.

3

Under review as a conference paper at ICLR 2022

Besides pruning, AutoFormer (Chen et al., 2021a) uses a neural architecture search (NAS) approach
to search for efficient ViT models. AutoFormer only explores a small number of dimension choices,
due to the constraint on the supernet training cost; while our method continuously explores the entire
design space of ViT model with a single training process, leading to the finding of more efficient
architectures with less training cost. Most importantly, our pruning scheme successfully leads to
a scalable design rule, where we can easily design efficient vision transformer models at different
scales. This has never been attempted in previous works.

There has been a series of research on improving the efficiency of attention-based models on NLP
tasks, specifically pruning the number of heads in the MSA block. This includes utilizing stochastic
binary gate (Louizos et al., 2017; Voita et al., 2019), pruning with sensitivity score (Michel et al.,
2019) and exploring lottery ticket hypothesis (Frankle & Carbin, 2018; Behnke & Heafield, 2020).
Our work aims on pruning all parameters including heads, and therefore, has a larger pruning space.

Other great ways of improving the efficiency of transformers include weight sharing across trans-
former blocks (Lan et al., 2019), dynamically controlling the attention span of each token (Chen
et al., 2019; Tambe et al., 2020), and allowing the model to output the result in an earlier transformer
block (Zhou et al., 2020; Schwartz et al., 2020). These techniques are orthogonal to our pruning-
based method and have remained unexplored on vision models. Applying them on ViT models and
combining with our pruning method would be an interesting and fruitful future direction.

3 LATENCY-AWARE GLOBAL STRUCTURAL PRUNING

3.1 IDENTIFYING PRUNABLE STRUCTURES

Ex(VxH)

Q

K

V

Ex(QKxH)
kh

qh

vh

kh

qh

vh

kh

qh

vh

LayerN
orm

Input
tokens

NxE

Proj.

(VxH)xE

Output
tokens

NxE

Concat

split

Ex(QKxH)

Reshaped Attention Block for Pruning

kh

qh

vh

kh

qh

vh

kh

qh

vh

LayerN
orm

Input
tokens

NxE
ExQKxH

ExVxH

ExQKxH

VxExH

QQQ

K KKK

VQV

Proj.
Proj.

Proj.

H headsH heads

Original Attention Block

Output
tokens

NxE

Figure 2: Attention block reshaping for latency-friendly structural pruning. We reshaped
the QKV projection and final output projection in the attention block to explicitly control
the number of head and align the QK & V dimensions in each head head.

In this work, we focus on pruning all the independent structural components in ViT, namely:

• The embedding dimension shared across all blocks, denoted as EMB;

• The number of heads in MSA for every block, denoted as H;

• The output dimension of Q and K projection per head in MSA, denoted as QK;

• The output dimension of V projection and input dimension of the PROJ per head, denoted as V;

• The hidden dimension of MLP per block, denoted as MLP.

Note that this is slightly different from the dimensions we showed in Section 2.1. As highlighted
on the left of Figure 2, in a typical ViT implementation, the QKV projection output dimensions are
a concatenation of all the attention heads (Wightman, 2019), effectively QK ×H or V ×H . The
projected tokens are then split into H heads to allow the computation of MSA in parallel. If we
directly prune this concatenated dimension, then there is no control on the remaining QK and V
dimension of each head. Therefore, the latency of the entire MSA will be bounded by the head with
the largest dimension.

To alleviate such inconsistency between pruned head dimensions, we explicitly control the number
of heads and align the QK and V dimension remaining in each head. As illustrated on the right of
Figure 2, for model pruning we reshape the weight of Q, K, V and PROJ projection layers to single
out the head dimension H. Performing structural pruning on the reshaped block along the H dimension
will enable the removal of an entire head, while pruning along the QK/V dimension guarantees the

4

Under review as a conference paper at ICLR 2022

remained QK and V dimension of all the heads are the same. This reshaping is only applied during
the pruning process, while the final pruned model is converted back to the concatenated scheme. Note
that H, QK, V and MLP in different blocks can all be independently pruned. While the H dimension
should be kept the same for all Q, K, V and PROJ weights within each block. Finally, EMB needs to
be kept the same for all the blocks due to the shortcut connections.

A comparison of this latency-friendly pruning scheme with directly applying structural pruning on the
concatenated QK ×H and V ×H dimension is provided in Appendix B.3, where we demonstrate
lower latency and higher accuracy can be achieved with our pruning scheme.

3.2 STRUCTURAL PRUNING CRITERIA

3.2.1 GLOBAL IMPORTANCE RANKING

Structural pruning aims to find a model with weights W, under a certain model size constraint C,
that leads to the minimal loss L(D,W) on dataset D. This can be solved by optimization as:

min
W
L(D,W), s.t.

∣∣∣∣∣
∣∣∣∣∣∑
s∈S
|ws|

∣∣∣∣∣
∣∣∣∣∣
0

≤ C, (2)

where ws is an element in the structural group S of weight W. Unfortunately, the optimization under
`0 norm constraint is known to be non-convex, NP hard and requires inefficient combinatorial search.

As an alternative, previous research relaxes the full combinatorial search with an iterative greedy
search scheme (Guo et al., 2016; He et al., 2017; Molchanov et al., 2019). Under this scheme, starting
with well-trained parameters W achieving minW L(D,W), we greedily remove a few structural
groups at a time based on their importance scores, until the targeted constraint is achieved. The
expected squared perturbation in the loss function by setting the group S to 0 is equal to:

IS =
(
L(D,W|ws = 0)− L(D,W)

)2
. (3)

To efficiently evaluate IS in Equation (3), instead of calculating the loss difference for each group,
we perform a first-order Taylor expansion of the loss value with pruned weights, as:

L(D,W|ws = 0) = L(D,W) +
∑
s∈S

gsws, (4)

where gs = ∂L/∂ws denotes the gradient of training objective with respect to ws. Substituting this
approximation into Equation (3) leads to a simplified importance score:

IS(W) =

(∑
s∈S

gsws

)2

. (5)

Since the gradients with respect to all weight elements are already available from backpropagation,
the importance score in Equation (5) can be easily calculated during the finetuning process without
additional cost. Unlike the magnitude of the weight being in various ranges in different layers, the
Taylor-based importance score can be compared among all layers of weight as a global pruning
criteria as it reflects the contribution of the weight to the loss value, as shown to be very effective for
CNN filter pruning (Molchanov et al., 2019; Ding et al., 2019; Yin et al., 2020; Chawla et al., 2021).

In this work we further show that Taylor importance score of different groups can be biased to
encourage more intense pruning of some parameters. The simplest solution would be to set a
multiplier per structural group. As explained in Appendix A.2, we divide importance of H by 6 to
encourage removal of heads.

Pruning can be tailored towards latency reduction by penalizing the importance score with latency-
aware regularization:

ILS (W) = IS(W)− η
(

Lat(W)− Lat(W\S)
)
. (6)

Lat(·) denotes the latency of the current model, which is characterized by a lookup table of attention
block latency given the current EMB, H, QK, V, and MLP dimension of each block in the pruned

5

Under review as a conference paper at ICLR 2022

model. Details of the latency lookup table are provided in Appendix A.3, where we show a small
lookup table can achieve accurate latency estimation throughout the pruning process. We use ILS as
the pruning criteria for iterative pruning in our work, with detailed procedure in Appendix A.2. A
compact and dense model can be achieved by removing pruned groups and recompiling the model.

3.2.2 AMPERE (2:4) GPU SPARSITY

Figure 3: Illustration of 2:4 Ampere sparsity. In every 4 consecutive weight elements the
two with the smallest magnitude are set to zero (denoted as blank spaces on the right).

Emerging software and hardware developments have brought support to the acceleration of a more
fine-grained sparsity patterns. The recently introduced NVIDIA Ampere GPU architecture supports
acceleration of sparse matrix multiplication with a specific pattern of 2:4 sparsity (2 of the 4 consec-
utive weight elements are zero, see Figure 3). This comes with a limitation of requiring the input
and output dimensions of all linear projections to be divisible by 16 (Mishra et al., 2021). We assure
compatibility with such pattern by structurally pruning matrices to have the remaining dimension be
divisible by 16 (more details in Appendix A.2). Interestingly, we find that Ampere sparsity can be
performed by just magnitude pruning with no accuracy drop after the initial pruning is finished.

3.3 TRAINING OBJECTIVE

We next consider the training objective function that supports both pruning for importance ranking
and finetuning for weight update. To start with, we inherit the CNN hard distillation training objective
as proposed in DEIT (Touvron et al., 2021), which is formulated as follows:

LCNN = LCE

(
Ψ(zsc), Y

)
+ LCE

(
Ψ(zsd), Y CNN

)
, (7)

where Ψ(·) denotes softmax and LCE the cross entropy loss. We refer to logits computed from the
class token of the pruned model as zsc , and the one computed from the distillation token as zsd. Note
that zsc is supervised by the true label Y , while zsd is supervised by the output label of a CNN teacher
Y CNN to capture the inductive bias of CNN through attention. Unless otherwise stated, we use a
pretrained RegNetY-16GF model (Radosavovic et al., 2020) as the teacher, in line with DEIT.

In addition to CNN distillation, we consider full model distillation given the unique access to such
supervision under the pruning setup. Specifically, the “full model” corresponds to the pretrained
model, which serves as the starting point of the pruning process. Ideally a pruned model shall behave
similar to its original counterpart. To encourage this, we distill the classification logits from both the
class and distillation tokens of the pruned model from the original counterpart, forming Equation (8):

Lfull = LKL

(
Ψ(τzsc),Ψ(τztc)

)
+ LKL

(
Ψ(τzsd),Ψ(τztd)

)
. (8)

Superscripts t and s represent the output of the full pretrained model and the model being pruned
respectively. LKL denotes the KL divergence loss, and τ is the distillation temperature.

The final objective is therefore composed as: L = αLfull + LCNN. An ablation study of alternating
the formulation of the training objective is provided in Appendix B.1.

3.4 PRUNING ANALYSIS ON IMAGENET-1K

We evaluate our pruning method on the challenging ImageNet-1K benchmark, using the DEIT-Base
model pretrained with CNN distillation as the starting point. The model size, run time speedup and
accuracy of the state-of-the-art methods and our method are compared in Table 1. The training and
finetuning hyperparameters can be found in Appendix A.1, and details for our pruning configurations
can be found in Appendix A.2.

6

Under review as a conference paper at ICLR 2022

For best insights, we conduct pruning in four configurations, where we refer to our pruning scheme
as Novel ViT Pruning (NVP):

• NVP-B aims to match the accuracy of DEIT-B model, which achieves an 1.86× speedup and a
2.57× reduction on FLOPs over DEIT-B with neglectable 0.07% accuracy drop. It also achieves a
2.25× further FLOPs reduction over the more efficient SWIN-B transformer under same accuracy.

• NVP-H aims to half the run time latency of DEIT-B, with only 0.4% accuracy loss. It also achieves
1.41× further reduction on FLOPs over SWIN-S with similar accuracy.

• NVP-S aims to match the latency of DEIT-S model, with 1% higher accuracy.

• NVP-T aims to match the latency of DEIT-T model, with 1.7% higher accuracy.

The model size-accuracy tradeoff also outperforms previous model compression methods like SViTE
and AutoFormer by a large margin. Since our pruning scheme supports the utilization of Ampere
sparsity on advanced GPU architectures, with the help of Apex ASP (Mishra et al., 2021), an
additional 5% speedup can be achieved on our pruned models without further accuracy loss.

Table 1: Structural pruning results on ImageNet-1K. Our pruned models are reported in Novel ViT Pruning
(NVP) lines. We compare the parameters and FLOPs count (and compression ratio), run time speedup and
accuracy of different models. NVP models are compared with DEIT (Touvron et al., 2021), SWIN (Liu et al.,
2021), T2T-ViT (Yuan et al., 2021), AutoFormer (Chen et al., 2021a) and SViTE (Chen et al., 2021b). All
compression ratios and speedups are computed with respect to that of DEIT-Base model. Latency of NVP are
estimated on a single GPU with batch size 256. “ASP” stands for post-training 2:4 Ampere sparsity pruning,
enabling 2× parameter reduction and 2× throughput on linear operations with TensorRT (Mishra et al., 2021).

Size (Compression) Speedup (×)

Model #Para (×) #FLOPs (×) V100 RTX 3080 Top-1 Acc.

DEIT-B 86M (1.00) 17.6G (1.00) 1.00 1.00 83.36
SWIN-B 88M (0.99) 15.4G (1.14) 0.95 - 83.30
NVP-B 34M (2.57) 6.8G (2.57) 1.86 1.75 83.29
+ ASP 17M (5.14) 6.8G (2.57) 1.86 1.85 83.29

SWIN-S 50M (1.74) 8.7G (2.02) 1.49 - 83.00
AutoFormer-B 54M (1.60) 11G (1.60) - - 82.40

NVP-H 30M (2.84) 6.2G (2.85) 2.01 1.89 82.95
+ ASP 15M (5.68) 6.2G (2.85) 2.01 1.99 82.95

DEIT-S 22M (3.94) 4.6G (3.82) 2.44 2.27 81.20
AutoFormer-S 23M (3.77) 5.1G (3.45) - - 81.70

T2T-ViT-14 21.5M (4.03) 6.1G (3.38) - - 81.50
SWIN-T 29M (2.99) 4.5G (3.91) 2.58 - 81.30
SViTE 35M (2.49) 7.5G (2.35) - - 81.28
NVP-S 21M (4.18) 4.2G (4.24) 2.52 2.35 82.19
+ ASP 10.5M (8.36) 4.2G (4.24) 2.52 2.47 82.19

DEIT-T 5.6M (15.28) 1.2G (14.01) 5.18 4.66 74.50
AutoFormer-T 5.7M (15.14) 1.3G (13.54) - - 74.70

NVP-T 6.9M (12.47) 1.3G (13.55) 4.97 4.55 76.21
+ ASP 3.5M (24.94) 1.3G (13.55) 4.97 4.66 76.21

4 PARAMETER REDISTRIBUTION & NVIT

4.1 TRENDS OBSERVED IN VIT PRUNING

As observed by Liu et al. (2018), channel/filter pruning in CNN models can provide guidance on
finding efficient network architectures, yet this has never been explored on ViT models. Here we
show for the first time that our pruning method can serve as an effective architecture search tool for
ViT models, and more interestingly the inferred design rules are scalable to different model sizes.

As we prune the ViT model to different sizes, we observe the following insights in the way the model
architecture changes, as visualized by the gray lines of Figure 4:

• Number of heads, QK of each head and MLP scales linearly with the dimension of EMB; while V
of each head can be largely kept the same;

7

Under review as a conference paper at ICLR 2022

• The scaling factors of head, QK and MLP are not uniform among all blocks: dimension is larger in
the blocks in the middle and smaller towards the two ends;

• The first and last blocks require larger dimensions compared to neighboring blocks;
• Reducing dimensions related to the multi-head attention (H, QK, V) while increasing MLP dimen-

sion may lead to more accurate model under similar latency.

Compared to ViT, our insight shows the need to scale QK of each head with the EMB size, and
more importantly to allow different transformer blocks in the model to have different dimensions.
Interestingly, these trends are not observed in NLP transformer compression (Michel et al., 2019;
Voita et al., 2019). Appendix C discusses intuitive hypothesis on why these trends appear in ViT, as
we show a similar less-more-less trend in the attention score diversity among all heads of each block,
which potentially reflects how much redundancy appears in each block.

Figure 4: Model dimension comparison between NViT (green), DEIT (blue) and pruned
NVP model (grey). Compared to DEIT, the pruned model has more parameters in blocks
towards the middle and in MLP; but fewer parameters in blocks towards the two ends and
in MSA (H and QK). We follow these insights closely in the design of our NViT models.

4.2 NVIT DESIGN AND PERFORMANCE

NViT design rule. Our pruning insights lead to a redistribution of parameters and a new architecture
we name NViT. We follow the trends in Figure 4 and smooth them out to simplify the architecture,
shown with green lines. More specifically, we redistribute the parameters in ViT models in a more
efficient manner, using a simplified rule in Table 2 to determine the parameter dimensions of each
block based on embedding size EMB and a single scaling factor ε. We use EMB as the main driving
factor for model scaling, as it leads to the most drastic change in size and performance compared
to other structural components, as shown in the single component pruning results in Appendix B.2.
Since the first and last attention blocks are typically more important, we set the dimension of them
separately. For a 12-layer vision transformer model, we use ε = 2 for block 4-9, and use ε = 1 for
other intermediate blocks. H is rounded to the nearest even number, and QK rounded to the nearest
number divisible by 8 to satisfy the dimension requirement of Ampere GPUs.

Table 2: NViT block dimensions. For comparison the dimensions of a DEIT block are also listed.

Blocks H QK V MLP

DEIT EMB/64 64 64 EMB×4

First/last 10 EMB/10 64 EMB×3
Intermediate ε×EMB/100 ε×EMB/20 64 ε×EMB×3

Scalability. We next demonstrate the scalability of the proposed NViT architecture through providing
a set of variants that match the latency of the models in DEIT family, as specified by the embedding

8

Under review as a conference paper at ICLR 2022

size in Table 3. Figure 4 compares the dimensions of NViT models vs. the DEIT models vs. our
pruned model with a similar accuracy (for base) or latency (for small and tiny), where we show that
the NViT architecture well approximates the trend observed in the pruned model.

Comparison. To verify that our NViT parameter redistribution is beneficial, we train all pairs
of DEIT and NViT models from scratch on the ImageNet-1K benchmark with the same training
objective and hyperparameter choices, which are specified in Appendix A.1.2. As shown in Table 3,
our redistribution lets NViT achieve higher accuracy than DEIT with similar FLOPs and lower latency.
Specifically, NViT-B, NViT-S and NViT-T achieve a Top-1 accuracy gain of 0.11%, 0.21% and 1.07%,
respectively, over their DEIT counterparts.

Table 3: Comparing NViT models with DEIT model family. All compression ratios and speedups are
computed with respected to that of the DEIT-Base model. Latency was estimated on an RTX 2080 GPU. DEIT
accuracy marked with * indicates the train-from-scratch accuracy we achieve from the DEIT GitHub repo1 using
default hyperparameters2, which is slightly lower than the reported accuracy in DEIT paper. All pairs of models
are trained from scratch with the same hyperparameters from the official DEIT-B script.

Model EMB #Para (×) #FLOPs (×) Speedup (×) Accuracy (%)

DEIT-B 768 86M (1.00) 17.6G (1.00) 1.00 82.99*
NViT-B 720 86M (1.00) 17.6G (1.00) 1.01 83.10
DEIT-S 384 22M (3.94) 4.6G (3.82) 2.29 81.01*
NViT-S 384 23M (3.75) 4.7G (3.75) 2.31 81.22
DEIT-T 192 5.6M (15.28) 1.2G (14.01) 4.39 72.84*
NViT-T 192 6.4M (13.34) 1.3G (13.69) 4.53 73.91

4.3 DOWNSTREAM TASKS

Table 4: Transfer learning tasks performance with ImageNet pretraining. We report the Top-1 accuracy of
finetuning the ImageNet trained models on other datasets. DEIT-B (Touvron et al., 2021) and ViT-B (Dosovitskiy
et al., 2020) results as reported by Touvron et al. (2021) are provided for reference. Speedup evaluated on RTX
2080 GPU with respect to DEIT-B.

Model CIFAR-10 (%) CIFAR-100 (%) iNat-18 (%) iNat-19 (%) Speedup (×)

DEIT-B 99.1 91.3 73.7 78.4 1.00
ViT-B/16 98.1 87.1 - - 1.00

DEIT-T 97.93 85.66 62.41 72.08 4.39
NViT-T 98.18 85.68 63.43 73.73 4.53
NVP-T 98.31 85.88 64.78 74.65 4.48

Finally, we evaluate the generalization ability of our pruned models and the derived NViTs with
transfer learning. Here we finetune the ImageNet trained DEIT, NViT and pruned models on CIFAR-
10, CIFAR-100 (Krizhevsky & Hinton, 2009), iNaturalist 2018 and 2019 (Van Horn et al., 2018)
dataset respectively. The detailed information of these datasets and our training configuration for the
downstream tasks are available in Appendix A.4. The transfer leaning results are provided in Table 4.
Pruned models consistently outperform the DEIT models on all the tasks, while NViT models achieve
a better performance than DEIT with better speedup. These observations show that the efficiency
demonstrated on ImageNet can be preserved on downstream tasks.

5 CONCLUSIONS

This work proposes a latency-aware global pruning framework that provides significant lossless
compression on DEIT-Base model, facilitating the finding of simple design heuristics for novel
efficient vision transformers (NViT) with consistent performance improvements. We hope this
work opens up a new way to better understand the contribution of different components in the ViT
architecture, and inspires more efficient ViT models.

1Available at https://github.com/facebookresearch/deit.
2As in Table 9 of Touvron et al. (2021).

9

https://github.com/facebookresearch/deit

Under review as a conference paper at ICLR 2022

REPRODUCIBILITY STATEMENT

We have included details on how to reimplement our work. For structural pruning experiments,
we provide the hyperparameter choices in Appendix A.1.1, and the implementation details with
link to full model checkpoints in Appendix A.2. Details of the latency lookup table are included
in Appendix A.3. The NViT models have all dimensions specified in Section 4.2, with training
hyperparameters available in Appendix A.1.2. The dataset details and hyperparameters used in our
downstream task experiments are available in Appendix A.4.

REFERENCES

Maximiliana Behnke and Kenneth Heafield. Losing heads in the lottery: Pruning transformer attention in neural
machine translation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 2664–2674, 2020.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

Akshay Chawla, Hongxu Yin, Pavlo Molchanov, and Jose Alvarez. Data-free knowledge distillation for object
detection. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp.
3289–3298, 2021.

Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin Ling. Autoformer: Searching transformers for visual
recognition. arXiv preprint arXiv:2107.00651, 2021a.

Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, and Zhangyang Wang. Chasing sparsity in vision
transformers: An end-to-end exploration. arXiv preprint arXiv:2106.04533, 2021b.

Ting Chen, Ji Lin, Tian Lin, Song Han, Chong Wang, and Denny Zhou. Adaptive mixture of low-rank
factorizations for compact neural modeling, 2019. URL https://openreview.net/forum?id=
r1xFE3Rqt7.

Xiangxiang Chu, Zhi Tian, Bo Zhang, Xinlong Wang, Xiaolin Wei, Huaxia Xia, and Chunhua Shen. Conditional
positional encodings for vision transformers. arXiv preprint arXiv:2102.10882, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Xiaohan Ding, Guiguang Ding, Xiangxin Zhou, Yuchen Guo, Jungong Han, and Ji Liu. Global sparse momentum
sgd for pruning very deep neural networks. arXiv preprint arXiv:1909.12778, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks.
arXiv preprint arXiv:1803.03635, 2018.

Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, and Matthijs
Douze. Levit: a vision transformer in convnet’s clothing for faster inference. arXiv preprint arXiv:2104.01136,
2021.

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. In Advances In Neural
Information Processing Systems, pp. 1379–1387, 2016.

Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu, and Yunhe Wang. Transformer in transformer. arXiv
preprint arXiv:2103.00112, 2021.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks. In
Proceedings of the IEEE International Conference on Computer Vision, pp. 1389–1397, 2017.

Yifan Jiang, Shiyu Chang, and Zhangyang Wang. Transgan: Two transformers can make one strong gan. arXiv
preprint arXiv:2102.07074, 2021.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu. Tinybert:
Distilling bert for natural language understanding. arXiv preprint arXiv:1909.10351, 2019.

10

https://openreview.net/forum?id=r1xFE3Rqt7
https://openreview.net/forum?id=r1xFE3Rqt7

Under review as a conference paper at ICLR 2022

Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-and-language transformer without convolution or
region supervision. arXiv preprint arXiv:2102.03334, 2021.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Technical report,
Citeseer, 2009.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut. Albert:
A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942, 2019.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. arXiv preprint arXiv:2103.14030, 2021.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of network
pruning. arXiv preprint arXiv:1810.05270, 2018.

Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through l_0 regular-
ization. arXiv preprint arXiv:1712.01312, 2017.

Jiachen Mao, Huanrui Yang, Ang Li, Hai Li, and Yiran Chen. Tprune: Efficient transformer pruning for mobile
devices. ACM Transactions on Cyber-Physical Systems, 5(3):1–22, 2021.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? arXiv preprint
arXiv:1905.10650, 2019.

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh, Chong Yu, and
Paulius Micikevicius. Accelerating sparse deep neural networks. arXiv preprint arXiv:2104.08378, 2021.

Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estimation for neural
network pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 11264–11272, 2019.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language understanding by
generative pre-training. 2018.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing network
design spaces. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
10428–10436, 2020.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015. doi:
10.1007/s11263-015-0816-y.

Roy Schwartz, Gabriel Stanovsky, Swabha Swayamdipta, Jesse Dodge, and Noah A Smith. The right tool for
the job: Matching model and instance complexities. arXiv preprint arXiv:2004.07453, 2020.

Thierry Tambe, Coleman Hooper, Lillian Pentecost, Tianyu Jia, En-Yu Yang, Marco Donato, Victor Sanh, Paul
Whatmough, Alexander M Rush, David Brooks, et al. Edgebert: Sentence-level energy optimizations for
latency-aware multi-task nlp inference. arXiv preprint arXiv:2011.14203, 2020.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou.
Training data-efficient image transformers & distillation through attention. In International Conference on
Machine Learning, pp. 10347–10357. PMLR, 2021.

Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam, Pietro Perona,
and Serge Belongie. The inaturalist species classification and detection dataset. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 8769–8778, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in neural information processing systems, pp.
5998–6008, 2017.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua
Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson,
C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert
Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian
Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

11

Under review as a conference paper at ICLR 2022

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head self-attention:
Specialized heads do the heavy lifting, the rest can be pruned. arXiv preprint arXiv:1905.09418, 2019.

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo, and Ling
Shao. Pyramid vision transformer: A versatile backbone for dense prediction without convolutions. arXiv
preprint arXiv:2102.12122, 2021.

Alan Weiser and Sergio E Zarantonello. A note on piecewise linear and multilinear table interpolation in many
dimensions. Mathematics of Computation, 50(181):189–196, 1988.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

Hongxu Yin, Pavlo Molchanov, Jose M Alvarez, Zhizhong Li, Arun Mallya, Derek Hoiem, Niraj K Jha, and Jan
Kautz. Dreaming to distill: Data-free knowledge transfer via deepinversion. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8715–8724, 2020.

Li Yuan, Yunpeng Chen, Tao Wang, Weihao Yu, Yujun Shi, Zihang Jiang, Francis EH Tay, Jiashi Feng, and
Shuicheng Yan. Tokens-to-token vit: Training vision transformers from scratch on imagenet. arXiv preprint
arXiv:2101.11986, 2021.

Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu, Zekun Luo, Yabiao Wang, Yanwei Fu, Jianfeng Feng,
Tao Xiang, Philip HS Torr, et al. Rethinking semantic segmentation from a sequence-to-sequence perspective
with transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 6881–6890, 2021.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu Wei. Bert loses patience: Fast and
robust inference with early exit. arXiv preprint arXiv:2006.04152, 2020.

Mingjian Zhu, Kai Han, Yehui Tang, and Yunhe Wang. Visual transformer pruning. arXiv preprint
arXiv:2104.08500, 2021.

12

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

Under review as a conference paper at ICLR 2022

A PRUNING AND TRAINING DETAILS

A.1 TRAINING HYPERPARAMETERS

In our experiments, we use the same data preprocessing, data augmentation, optimizer setup, and
learning rate scheduling scheme as mentioned in Table 9 of the DEIT paper (Touvron et al., 2021),
unless otherwise mentioned in the following sections.

A.1.1 PRUNING AND FINETUNING

For pruning and finetuning we use the training objective L = αLfull + LCNN to update the model.
We set the balancing factor α = 1 · 105 and full model distillation temperature τ = 20. The pruning
process is performed starting from the pretrained DEIT-Base model, with a fixed learning rate of
0.0002× batchsize

512 . We perform the pruning experiments on the cluster of four NVIDIA V100 32G
GPUs, with a batch size of 128 on each GPU. We prune the model continuously until a targeted
latency is reached, which is discussed in detail in Appendix A.2. Followed by the iterative pruning
we remove the pruned away dimensions of the pruned model to turn it into a small and dense model,
and continue to finetune the small model to further recover accuracy. Entire finetuning is performed
for 300 epochs with an initial learning rate of 0.0002× batchsize

512 , cosine learning rate scheduling
and no learning rate warm up. The finetuning is performed on a cluster of 32 NVIDIA V100 32G
GPUs, with a batch size of 144 on each GPU.

A.1.2 NVIT EXPERIMENTS

For the experiments on NViT models we use the CNN hard distillation objective as in Equation (7) as
the training objective for all the models. We train Each pair of comparable DEIT and NViT models
with the same set of hyperparameters. In all experiments, we train the model from scratch for 300
epochs with an initial learning rate of 0.0005 × batchsize

512 , cosine learning rate scheduling and 5
epochs of learning rate warm up. The models are trained on a cluster of 16 V100 32G GPUs, with a
batch size of 48 on each GPU for base models and a batch size of 144 on each GPU for small and
tiny models.

A.2 PRUNING CONFIGURATION

Table 5: Pruning configurations and remained dimensions for models reported in Table 1. The
reported dimensions are averaged across all the blocks.

Avg. dim remained

Model Target speedup Pruning steps EMB H QK V MLP

DEIT-B N/A 0 768 12 64 64 3072

NVP-B 1.85× 480 496 8.00 35.33 58.67 1917.3
NVP-H 2.00× 524 480 7.33 32.67 56.67 1816.0
NVP-S 2.56× 642 400 5.83 24.00 47.33 1557.3
NVP-T 5.26× 908 224 3.17 14.67 34.00 930.67

We use DEIT-Base model with CNN distillation as the starting point of our pruning process, whose pre-
trained model is available at https://dl.fbaipublicfiles.com/deit/deit_base_
distilled_patch16_224-df68dfff.pth. We prune the model in an iterative manner: We
compute the moving average of the latency-aware importance score ILS for all unpruned dimension
groups in each training step of the pruned model. Every 100 steps, we remove a group of dimensions
that has the minimum total importance. Removed dimensions will never be reactivated. We prune
EMB and MLP in a group size of 16, QK and V in a group size of 8, and H in a group size of 2,
so that the input and output dimensions of all the linear projection operations in the model can be
divided by 16, thus satisfying the dimension requirement of the Ampere GPU.

Given that EMB dimension is shared across all 12 blocks, we divided the Taylor importance of
EMB by 12 to make the importance comparable with other components. We also divide the Taylor

13

https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth
https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth

Under review as a conference paper at ICLR 2022

importance of H dimension by 6 to encourage head pruning in the model. An ablation study on the
effectiveness of scaling down head importance is provided in Appendix B.4.

The pruning process will terminate once the estimated latency of the model reaches a targeted speedup
ratio over that of the DEIT-base model. The pruned model will then be converted into a small dense
model and finetuned to further restore the accuracy.

Table 5 reports the target speedup ratio we use to achieve NVP-B, NVP-H, NVP-S and NVP-T
architectures reported in Table 1. The resulted number of pruning steps and the averaged dimension
of EMB, H, QK, V and MLP among all the transformer blocks are also provided.

A.3 LATENCY LOOKUP TABLE PROFILING DETAIL

We use a latency lookup table to efficiently evaluate the latency of the pruned model given all its
EMB, H, QK, V and MLP dimensions. We initialize the lookup table by profiling the latency of a
single vision transformer block on a V100 GPU with batch size 576. We evaluate the latency through
a grid of:

• EMB: 0, 256, 512, 768 (latency assigned as 0 at zero EMB);

• H: 1, 3, 6, 9, 12;

• QK: 1, 16, 32, 48, 64;

• V: 1, 16, 32, 48, 64;

• MLP: 1, and 128 to 3072 with interval 128;

resulting into 9375 configurations in total. We run each configuration for 100 times and record the
median latency value in the lookup table. For a block with arbitrary dimensions, its latency is estimated
via a linear interpolation of the lookup table, which we implement with the RegularGridInterpolator
function from SciPy (Weiser & Zarantonello, 1988; Virtanen et al., 2020). The estimated latency of
the entire model is computed as the sum of the estimated latency of all the blocks, while omitting the
latency of the first projection layer and the final classification FC layer.

Figure 5: Estimated latency from the lookup table vs. evaluated latency on V100 GPU with
batch size 256. Reduction ratio computed with respect to the latency of the full model.

To show the usefulness of the lookup table, we compare the estimated and evaluated latency of
different model architectures in Figure 5. Each point represent the model achieved from a pruning
step towards NVP-T configuration (See Appendix A.2). The estimated latency and evaluated latency
of ViT demonstrate strong linear relationship throughout the pruning process, withR2 = 0.99864.
This enables us to accurately estimate the latency improvement brought by removing each group
of dimensions, and to use the estimated speedup of the pruned model as the stopping criteria of the
pruning process.

14

Under review as a conference paper at ICLR 2022

A.4 DOWNSTREAM TASK DETAILS

The details of the datasets used for our downstream task transfer learning experiments are provided
in Table 6.

Table 6: Datasets used for downstream task experiments.

Dataset Train size Test size # Classes

CIFAR-10 (Krizhevsky & Hinton, 2009) 50,000 10,000 10
CIFAR-100 (Krizhevsky & Hinton, 2009) 50,000 10,000 100
iNaturalist 2018 (Van Horn et al., 2018) 437,513 24,426 8,142
iNaturalist 2019 (Van Horn et al., 2018) 265,240 3,003 1,010

Similar to the experiment setting of DEIT (Touvron et al., 2021), for downstream task experiments
we rescale all the images to 224× 224 to ensure we have the same augmentation as the ImageNet
training. All models are trained for 300 epochs with a initial learning rate of 0.0005 × batchsize

512 ,
cosine learning rate scheduling and 5 epochs of learning rate warm up. We use batch size 512 for
CIFAR-10 and CIFAR-100 models, and batch size 1024 for iNaturalist models.

B ADDITIONAL ABLATION STUDIES

B.1 TRAINING OBJECTIVE

As discussed in Section 3.3, we propose to use a combination of full model distillation and CNN hard
distillation as the final objective of our pruning and finetuning process. Here we ablate the validity of
this choice and compare the finetuning performance achieved with removing one or both distillation
loss from the objective. Specifically, we consider the following 4 objectives:

• Proposed objective: L = αLfull + LCNN;

• CNN distillation only: LCNN as in Equation (7);

• Full model distillation with cross-entropy: Lfull + LCE

(
Ψ
(

zs
c+zs

d

2

)
, Y
)

;

• Cross-entropy only: LCE

(
Ψ
(

zs
c+zs

d

2

)
, Y
)

.

We use each of the 4 objectives to finetune the pruned model achieved with NVP-T configuration,
and report the final Top-1 accuracy in Table 7. The finetuning is performed for 50 epochs, with all
other hyperparameters set the same as described in Appendix A.1.1. The proposed objective achieves
the best accuracy.

Table 7: NVP-T model finetuning accuracy with different objectives.

Objective Proposed CNN Full model CE only

Top-1 Acc. 73.55 73.40 72.62 72.36

B.2 PRUNING INDIVIDUAL COMPONENTS

In this section we show the result of pruning EMB, MLP, QK and V component individually. The
pruning procedure and objective are almost the same as described in Section 3.2, other than here we
only enable the importance computation and neuron removal on a single component. The pruning
interval of EMB, MLP, QK and V are set to 1000, 50, 200 and 200 respectively, in order to allow
the model to be updated for similar amount of steps when pruning different components to the same
percentage. 32 neurons are pruned for each pruning step. We stop the pruning process and finetune
the model for 50 epochs after the targeted pruned away percentage is reached.

15

Under review as a conference paper at ICLR 2022

The compression rate and accuracy achieved by pruning each component are discussed in Table 8.
Under similar pruned away ratio, we can observe that pruning EMB leads to the most significant
compression on the parameter and FLOPs count, as well as the largest drop in accuracy. This implies
that the embedding dimension leads to the most effective exploration on the compression-accuracy
tradeoff, which motivates us to use EMB as the key driving factor in designing our NViT scaling rule
in Section 4.1.

Table 8: Iterative pruning single component to targeted percentage.

Component Pruned away Para (×) FLOPs (×) Top-1 Accuracy

Base 0% 1 1

EMB 50% 1.98 1.92 79.24
MLP 50% 1.49 1.47 82.13
QK 50% 1.09 1.10 82.98
V 50% 1.09 1.10 82.63

EMB 70% 2.95 2.77 73.15
MLP 75% 1.97 1.91 80.29
QK 75% 1.14 1.16 82.64
V 75% 1.14 1.16 81.51

B.3 EFFECTIVENESS OF LATENCY-FRIENDLY PRUNING SCHEME

We also illustrate the benefit of explicitly single out the head dimension and align the dimensions of
each head in structure pruning. We show the tradeoff curve between parameter/latency reduction and
the accuracy achieved with or without explicit head alignment in Figure 6. For models pruned without
head alignment, we estimate their latency as if each head are padded with zeros to have the same QK
and V dimensions during inference. Under a similar accuracy target, though models achieved without
head alignment can have a larger model size compression rate, the associated latency speedup is
smaller than that achieved with our proposed head-aligned pruning scheme.

Figure 6: Comparing the parameter reduction-accuracy tradeoff and latency reduction-
accuracy tradeoff of different pruning schemes. Latency estimated on RTX 2080 GPU.
Model size compression rate and latency reduction rate are computed based on that of the
DEIT-Base model respectively.

B.4 ENCOURAGING HEAD PRUNING IN THE GLOBAL PRUNING

As discussed in the pruning procedure, we propose to divide the Taylor importance of the head
dimension by 6, in order to encourage more heads to be pruned. This decision is made based on the
observation that encouraging head pruning can enable having a larger pruned model under the same
latency budget, which can often lead to better accuracy for the pruned model.

In this section we illustrate this observation by exploring different manipulation of head dimension
importance in the global pruning process. Here we apply the proposed global latency-aware structural
pruning method to prune the model until its estimated latency reaches 45% of that of the full DEIT-
Base model. Table 9 shows the resulted model size, latency and accuracy of the pruned model under
different head importance scaling, As we scale down the Taylor importance of the head dimension,

16

Under review as a conference paper at ICLR 2022

we encourage more heads to be pruned away, leading to the model reaching the latency target in lesser
pruning steps. This in turn enables the pruned model to have a higher embedding size, and allow the
model to have more parameters and FLOPs within the latency budget, potentially reaching a higher
accuracy. Meanwhile, pruning the head too much will also hurt the accuracy as it largely reduces the
feature diversity learned by the model. We empirically find that dividing the Taylor importance of
head dimension by 6 leads to the highest accuracy under the same latency budget, thus we utilize the
scaling factor 1/6 in our pruning method.

Table 9: Pruned model with different head Taylor importance manipulation. The dimension remained
is averaged across all attention blocks. The latency is estimated on a single RTX 2080 GPU with
batch size 256. We report the accuracy of the pruned model without any further finetuning.

Dim remained Compression (×)

H scale Pruning steps EMB H #Para #FLOPs Top-1 Acc. Lat. (s)

1/2 725 352 11.3 4.36 4.20 76.91 0.3123
1/3 714 368 10.3 4.18 4.05 78.11 0.3101
1/4 671 400 9.5 3.77 3.69 78.43 0.3177
1/6 573 464 6.5 3.20 3.22 78.76 0.3195
1/8 509 480 5.0 3.07 3.14 78.41 0.3139

C INTUITION BEHIND NVIT MODEL DESIGN

Figure 7: Pair-wise cosine distance between all heads’ attention score in each transformer
block. Blue indicates a smaller distance while yellow indicates a larger one. The dark blue
blocks in NVP-B figures corresponds to the heads being pruned away, which have all-zero
attention scores thus zero cosine distance in between.

As we observe in Figure 4 and mentioned in Section 4.1, the pruned models tend to preserve more
dimensions in the transformer blocks towards the middle layers, while having less dimensions towards
the two ends of the model. Here We explore an intuitive analysis on why this trend occurs by observing
the diversity of features captured in each transformer blocks. Given the attention computation serves
important functionality in ViT models, here we use the diversity of the attention score learned by each
head as an example. Specifically, we take a random batch of 100 ImageNet validation set images,
pass them through the pretrained DEIT-Base model and our NVP-B model, and record the averaged
attention score softmax

(
qhk

T
h√

dh

)
of all the images computed in each head h. We then compute

the pair-wise cosine distance of the attention score from each head as a measure of diversity, and
visualize the results in Figure 7.

In DEIT-B model, we can observe that in earlier blocks like block 2 and later blocks like block 11,
there are clear patches of darker blue indicating a group of heads having attention scores similar to

17

Under review as a conference paper at ICLR 2022

each other. While for blocks in the middle such as block 5-8, almost all pairs of heads appear to be
fairly diverse. Such difference in diversity leads to different behavior in the pruning process, where
less heads are preserved in earlier and later blocks while more are preserved in the middle. Note
that all remaining heads in NVP-B model appears to be diverse with each other, showing a more
efficient utilization of the model capacity. Interestingly, this less-more-less trend of dimensional
change across different transformer is not observed in previous works compressing BERT model for
NLP tasks (Voita et al., 2019; Michel et al., 2019; Mao et al., 2021). The learning dynamic of ViT
model leading to this trend is worth investigating in the future work.

18

	Introduction
	Related work
	Vision transformer models
	ViT compression techniques

	Latency-aware global structural pruning
	Identifying prunable structures
	Structural pruning criteria
	Global importance ranking
	Ampere (2:4) GPU sparsity

	Training objective
	Pruning analysis on ImageNet-1K

	Parameter Redistribution & NViT
	Trends observed in ViT pruning
	NViT design and performance
	Downstream tasks

	Conclusions
	Pruning and training details
	Training hyperparameters
	Pruning and finetuning
	NViT experiments

	Pruning configuration
	Latency lookup table profiling detail
	Downstream task details

	Additional ablation studies
	Training objective
	Pruning individual components
	Effectiveness of latency-friendly pruning scheme
	Encouraging head pruning in the global pruning

	Intuition behind NViT model design

